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2 Introduction 
Improving eating quality of Australian lamb meat will enhance the industry's capacity to meet 
increasing consumer expectations for lamb products. Meat tenderness is one of the major 
factors contributing to overall eating quality of lamb meat (Thompson et al. 2005). To improve 
lamb meat tenderness by selection, the trait needs to be accurately defined and consistently 
measured and have genetic variation. Meat tenderness can be objectively measured using 
mechanical shear force, which is a measure of myofibrillar toughness (Purchas 2014). Meat 
tenderness can be influenced by environmental parameters post-slaughtering such as the 
interaction between pH and temperature decline which can influence the occurrence of cold 
shortening in the muscles and increase the toughness of meat (Warner 2016). The aim of this 
study was to review the models used for shear force analysis by Sheep Genetics and 
determine suitable methods to edit the raw data in order to improve the genetic parameter and 
breeding value estimation.    

3 Materials and methods 
3.1 Animals and measurements 
Measures of shear force were collected between 2007 and 2020 from 32,913 Merino and 
Merino crossed animals originating from 46 commercial flocks, the 8 Information Nucleus and 
MLA Resource Flocks (Van der Werf et al. 2010). The animals were the progeny of 2,260 
sires. The sire types include Merino sires (Merino, Poll Merino, Dohne Merino), Maternal sires 
(Border Leicester, Booroola Leicester, Coopworth, Bond, Corriedale, East Friesian, Prime 
South African Meat Merino) and Terminal sires (Dorper and White Dorper, Hampshire Down, 
Ile De France, Poll Dorset, Southdown, Suffolk, Texel, White Suffolk). Average number of 
progeny per sire was 14. The average age at slaughter in days (standard deviation) was 279 
(95.4), across 1,772 contemporary groups.  

All animals were slaughtered at commercial abattoirs. Carcases were subjected to electrical 
stimulation and trimmed according to AUS-MEAT specifications (Anonymous 1992). Hot 
carcase weight (HCWT) was recorded at slaughter. Carcases were chilled overnight (3-4 ⁰C) 
and then were cut between the 12th and 13th rib to expose the surface of the M. longissimus 
thoracis et lumborum (LL). Depth of the LL muscle (EMD) and the depth of fat at the c – site 
(CFAT, depth of fat over the maximum depth of the LL) were measured with callipers. The pH 
of the LL was measured at different carcase target temperatures (35 ⁰C, 20 ⁰C and 12 ⁰C). 
The ultimate pH (ph24ll) was determined 19 – 24 hours after slaughter as described by Pearce 
et al. (2010). Carcase temperature when carcase reached pH 6 was also calculated using the 
method described by Pearce et al. (2010). The percentage of lean meat (LMY) in each carcase 
was predicted through a partial bone-out procedure as described in Gardner et al. (2010).  

The lumbar portion of the LL was excised from the carcase at 24h post slaughter. A section of 
the LL (65 g) was aged for 5 days at 3–4 °C, and stored frozen. For shear force testing (SF5), 
these samples then were cooked from frozen for 35 min in plastic bags at 71 °C in a water 
bath and tested using a Lloyd texture analyser (Model LRX, Lloyd Instruments, Hampshire, 
UK) with a Warner– Bratzler type shear blade fitted as described by Hopkins et al. (2010). 
Percentage of intramuscular fat (IMF) was determined using a near infrared procedure (NIR) 
as described by Perry et al. (2001). 
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Summaries of shear force and other carcase traits used in the analysis are shown in Table 1. 

 

Table 1. Summary statistics for all data used in the analyses: CV: coefficient of variation, SF5: shear 
force 5 days after slaughter, pH6temp: temperature when pH = 6, pH24ll: pH 24h after slaughter, 
HCWT: hot carcase weight, CFAT: carcase c-side fat, EMD: carcase eye muscle depth, EMW: carcase 
eye muscle width, IMF: intramuscular fat, LMY: lean meat yield. 

Trait Breed Records Sires Contemporary 
groups Mean (sd) CV (%) 

SF5 (N) 

all 29697 2260 1772 32.00 (11.88) 37.12 
merino 7680 609 446 31.87 (12.30) 38.60 

maternal 3507 332 451 31.25 (10.70) 34.24 
terminal 16401 1162 1121 32.26 (12.02) 37.27 

ph6temp (⁰C) 

all 18379 2023 1538 19.68 (8.09) 41.12 
merino 4187 560 338 18.88 (8.39) 44.44 

maternal 2392 289 405 19.45 (8.07) 41.49 
terminal 10619 1026 1003 20.06 (7.93) 39.55 

ph24ll 

all 27838 2238 1708 5.65 (0.16) 2.78 
merino 6164 601 390 5.68 (0.17) 2.99 

maternal 3441 319 449 5.64 (0.16) 2.84 
terminal 16507 1162 1121 5.63 (0.15) 2.63 

HCWT (Kg) 

all 33651 2271 1315 23.27 (4.02) 17.30 
merino 7680 609 446 21.29 (3.99) 18.73 

maternal 3507 332 451 23.74 (3.62) 15.26 
terminal 16401 1162 1121 24.48 (3.87) 15.79 

CFAT (mm) 

all 20814 1824 1042 4.52 (2.50) 55.24 
merino 4104 509 250 3.62 (2.10) 58.18 

maternal 2814 251 331 5.24 (2.67) 50.88 
terminal 12514 917 664 4.71 (2.53) 53.65 

EMD (mm) 

all 31703 2257 1281 30.77 (4.97) 16.14 
merino 4105 509 251 27.93 (4.05) 14.49 

maternal 2812 251 332 30.19 (4.27) 14.13 
terminal 12615 917 669 32.37 (4.51) 13.92 

IMF (%) 

all 20922 1811 1057 4.65 (1.20) 25.79 
merino 4103 509 258 5.08 (1.38) 27.09 

maternal 2809 251 338 4.81 (1.13) 23.53 
terminal 12364 917 669 4.42 (1.07) 24.20 

LMY (%) 

all 9363 498 639 58.11 (3.06) 5.27 
merino 4090 509 100 58.52 (2.76) 4.72 

maternal 2808 251 133 56.92 (2.97) 5.22 
terminal 12450 917 435 58.19 (3.13) 5.37 

 

 

3.2 Capturing cold shortening effects 

Cold shortening occurs when a muscle contracts before entering the rigor mortis (conversion 
from muscle to meat) stage. It increases cellular calcium and depends on the cooling rate of 
the muscle and the energy deposits of the muscle cells. It is more common if the temperature 
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falls below 14 ⁰C (Ertbjerg & Puolanne 2017) when the muscle is still in pre-rigor and its pH is 
higher than 6 (Thompson et al. 2006).  

Out of 32,913 carcases with shear force records in the data set, 19,640 had records for 
temperature at pH 6 (ph6temp) and were used to determine possible temperature thresholds 
to identify cold shortened carcases. These thresholds were estimated in two steps in order to 
adjust shear force records for fixed effects. In the first step solutions for the temperature effect 
were obtained under two different models: 

𝑆𝑆𝑆𝑆5 = 𝑐𝑐𝑐𝑐 + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + 𝑝𝑝ℎ6𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝 + 𝑏𝑏𝑡𝑡 + 𝑟𝑟𝑡𝑡 + 𝑎𝑎𝑐𝑐𝑡𝑡 + 𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎𝑐𝑐𝑡𝑡 + 𝑡𝑡  [1] 
 

𝑆𝑆𝑆𝑆5 = 𝑐𝑐𝑐𝑐 + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + 𝑝𝑝ℎ6𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝 + 𝑏𝑏𝑡𝑡 + 𝑟𝑟𝑡𝑡 + 𝑎𝑎𝑐𝑐𝑡𝑡 + 𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎𝑐𝑐𝑡𝑡 + 𝐻𝐻𝑆𝑆𝐶𝐶𝐻𝐻 + 𝑡𝑡  [2] 
 

For both models, SF5  is the shear force observation, cg is the contemporary group (defined 
by breed, flock, management group, sex, date of measurement and kill group; 686 levels), 
HCWT is the hot carcase weight, ph6temp is the temperature variable, bt is the birth type (6 
levels), rt the rear type (5 levels), age is the age of the animal, damage is the age of the dam 
and e is the random error. Fixed effects were used for the analysis of carcase traits in previous 
studies (Mortimer et al. 2010; Mortimer et al. 2014). For model [2], CFAT is the fat depth in the 
c-side previously found to have a negative correlation with shear force (Mortimer et al. 2010; 
Brito et al. 2017).      

In the second step, solutions obtained from each run of models [1] and [2] were used to 
estimate the temperature threshold using the approach proposed by Muggeo (2003) and 
implemented in the Segmented R package (Muggeo 2008). One initial threshold was provided 
as a way to examine the effect of lower temperature on eye muscle tenderness. 

 

3.3 Filtering out extreme values 
An initial series of analyses was performed to identify outliers that have extreme shear force 
values either due to recording errors or potentially due to the impact of cold shortening. 
Analyses investigated several different procedures for removing data for the entire data set 
and for animals within contemporary groups. Data was filtered using a three-step approach to 
exclude extreme individuals: 

1. Records with shear force values higher than 4 standard deviations from the mean 
(mean(SF5) + 4*sd(SF5)). 
 

2. Records with shear force values outside the interval formed by the contemporary group 
median shear force plus 4 median absolute deviations (CGmean (SF5) + 
4*sd(CGSF5)). 
 

3. Records with shear force values outside threshold using methods combined. 

The effect of the data filtering procedure was determined by examining the number of records 
removed and its effects on the trait mean and standard deviation (Table 2) and on variance 
component estimates. 

 

3.4 Data transformation 
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Even after removal of outlier individuals, shear force data was not normally distributed (Figure 
1). In addition to the analysis of SF5 records on the observed scale (𝑆𝑆𝑆𝑆50), to produce a 
distribution that is close to normality, two methods were applied to transform the data: 

1. Shear force was expressed as a proportion of the contemporary group mean. The 

transformation applied was 𝑆𝑆𝑆𝑆5𝐺𝐺𝐺𝐺 =  𝑆𝑆𝑆𝑆5
0

𝑆𝑆𝑆𝑆5𝐶𝐶𝐶𝐶
 ×  𝜇𝜇  where 𝑆𝑆𝑆𝑆5𝐺𝐺𝐺𝐺 is the transformed 

observation, 𝑆𝑆𝑆𝑆50 was the raw observation, 𝑆𝑆𝑆𝑆5𝐶𝐶𝐺𝐺 the mean of the contemporary 
group and μ the universal mean. 
 

2. Individual records were log (base 2) transformed after filtering (𝑆𝑆𝑆𝑆5𝐿𝐿𝐿𝐿𝐿𝐿).  

Log transformation has been previously used for the analysis of lamb shear force data 
(Hopkins et al. 2010), while trait values expressed as a contemporary group mean has been 
previously described by Huisman et al. (2015). 
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Figure 1. Distributions and normality plots for raw data (A), filtered data (B), filtered data 
transformed as a proportion of contemporary group mean (C) and filtered log2 transformed 
data (D). 
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3.5 Genetic analysis 
Variance components and genetic parameters for shear force were estimated using a series 
of linear mixed models and REML methods with ASReml software (Gilmour et al. 2015). 
Different analyses were used to account for: i) influence of data filtering, ii) impact of 
transforming the data (𝑆𝑆𝑆𝑆50, 𝑆𝑆𝑆𝑆5𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑆𝑆𝑆𝑆𝐺𝐺𝐺𝐺), and iii) impact of including different covariates 
to account for temperature and pH decline. All analyses started from a basic linear mixed 
model (Model 1, Table 3). For this basic model, fixed effects included birth type (6 levels), rear 
type (5 levels), contemporary group (686 levels), sex (male or female), animal age, dam age 
and the linear covariate of hot carcase weight (HCWT). Contemporary group was as defined 
by breed, flock, management group, sex, date of measurement and kill group. Different 
covariates fitted for each of the other models are shown in Table 3. All models included the 
random effects of animal (pedigree) and genetic group defined by flock of origin or sheep type 
(Swan et al. 2016). Maternal effects were not fitted since preliminary and previous analysis 
showed they were non-significant (Mortimer et al. 2010). For all models the animal effect 
represented the additive genetic variance. Phenotypic variance was calculated as the sum of 
the additive genetic and residual variance. 

To determine whether the linear or quadratic effect of ph6temp and ph24ll would be used 
(Models 2 and 3 on Table 2) a separate analysis was carried out fitting the basic linear model 
(1) and including different effects (Table 3). 

Bivariate analyses carried out in ASReml (Gilmour et al. 2015) provided estimates of 
phenotypic and genetic covariances and correlations between SF5 and other carcase traits 
based on the univariate analysis described above. For a more accurate estimation of genetic 
parameters bivariate analysis was carried out in two steps: a) using all animals after filtering; 
b) partitioning the data in different breeds (Table 1). 

Table 2. Mixed models and fixed effects used for the shear force analysis. hot carcase weight (HCWT) 
was used as a covariate for all models. pH6temp: temperature when pH = 6, ph24ll: eye muscle pH 24h 
after slaughter, CFAT: carcase c-side fat. pH6temp.cg: interaction between pH6temp and contemporary 
group, pH24ll: interaction between ph24ll and contemporary group. 

Model Covariates Fixed effects Random Effects Analysis 
1 HCWT 

Birth type, rear type, 
sex, contemporary 
group, age of dam 

Animal,  
genetic groups 

Univariate 
2 HCWT, ph24ll 
3 HCWT, ph6temp 
4 HCWT, CFAT 
5 HCWT Bivariate: SF5 - CFAT 

 

Table 3. Co-variates used when ph24ll and ph6temp were included. 

Model  Covariates Fixed effects Random Effects Analysis 
1  - 

Birth type, rear 
type, sex, 

contemporary 
group, age of dam 

Animal,  
genetic groups Univariate 

2 
a pH24ll.cg 
b pH24ll, pH24ll.cg 
c pH24ll2 

3 
a pH6temp.cg 
b pH6temp, pH6temp.cg 
c pH6temp2 
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3.6 Model validation 
Cross validation of the different models investigated in the analysis was performed using 
forward prediction as described by Huisman et al. (2015). For each genetic model data was 
randomly split into a training data set (containing 75% of records) to estimate genetic 
parameters and obtain Estimated Breeding Values (EBVs), and one validation data set 
(remaining 25% of records). These EBVs were used in regression analysis regressing 
offspring performance on sire EBV. The offspring data used in the regression were adjusted 
for the appropriate fixed effects of each model (Table 3). The regression carried out in ASReml 
(Gilmour et al. 2015) using the model: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑖𝑖 + 𝑓𝑓 +  𝑏𝑏𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖   

Where yijk is the performance value of offspring k of sire j, cgi is the contemporary group i for 
offspring k, b is the regression coefficient of yijk on EBVj, EBVj is the estimated breeding value 
of sire j, f is the vector of fixed effects and eijk is a random residual term. Since animals get 
half of their genes from their sire, the expectation of b is 0.5. A b-value below 0.5 indicates 
that for each unit in EBV the expected progeny difference is less than half of the EBV. A b-
value above 0.5 indicates that for each unit in EBV the expected progeny difference is more 
than half of the EBV (Huisman et al. 2015). In total five random replicates of this procedure 
where carried out. The regression results for each model were averaged across the random 
groups and the model with the best predictive ability was selected.  

 

4 Results and Discussion 
4.1  Cold shortening definition 
The first part of this study aimed to define possible temperature thresholds for which the effect 
of temperatures on SF5 is more pronounced. For this purpose, the least square means for the 
temperature variable obtained from mixed models were used in a piecewise-linear regression 
procedure to characterize the temperature thresholds. For piecewise-linear regression method 
is that threshold estimation can sometimes be strongly dependent on the starting point 
(Muggeo 2003). For this study, a starting point at 16 °C for pH6temp was initially used. 
Independence of temperature thresholds was confirmed by repeating the analysis with 
different initial values. Temperature thresholds estimated with the two different models 
(including CFAT or not) ranged between 12 and 14 °C (Figure 2).  

These thresholds agree with previously recommended temperature windows at pH 6. To avoid 
cold shortening, the industry recommendation is for carcases to be cooled down at a controlled 
rate, so that pH is below 6 when the loin is between 18 and 35 °C (Pearce et al. 2010; Gutzke 
et al. 2014). Previous studies showed that the lowest shear force occurred when carcases 
achieved pH=6 when temperature was between 21 and 25 °C (Thomson et al. 2005; Hopkins 
& Toohey 2006). Similarly, higher shear force values were observed when carcases were 
exposed to temperatures between 2 and 4 °C (Muela et al. 2010). Therefore, higher shear 
force values are expected when carcases achieve pH 6 in lower temperatures. In this report, 
summarised raw data shows that shear force increases when carcase temperature declines 
(Figure 3).  
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However when these thresholds were used to distinguish between possible cold shortened 
and non-cold shortened carcases, it was difficult to discriminate between the two. Similarly, 
temperature thresholds were not able to distinguish between potentially cold shortened and 
non-cold shortened carcases when temperature and SF5 values were averaged for each 
contemporary group and each sire (Figure 4). This is probably because of the fact that the 
relationship estimated between shear force and temperature looks a bit more linear with no 
obvious cliff (Figure 2). In addition, there is a lot of variation in shear force between different 
contemporary groups and different sires (Figure 4) which cannot be explained by variations in 
temperature (Pearson’s correlation coefficient between raw shear force and temperature data 
was -0.17).    

Figure 2.Temperature thresholds based on piecewise linear regression results. 

 

Figure 3. Effect of temperature at pH = 6 on shear force 5 (SF5). a: raw data, b: SF5 records were 
summarised for each temperature degree for better representation. 
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Figure 3. Average shear force for contemporary groups (a) and sires (b). Different colours represent 
different contemporary groups and sires respectively. Dot size represents number of records for every 
contemporary group (a) and number of progeny per sire (b) and dotted black line represents 
temperature thresholds based on piecewise regression. 

 

Shear force variation in the eye muscle in lamb has been shown to be explained by sex and 
animal age, but most importantly by factors like sarcomere length (Starkey et al. 2016). 
Sarcomere length could be used to identify cold shortened carcases, but has not been 
recorded for the carcases used in this report. Identifying the effect of temperature decline on 
shear force can be complicated. Previous reports about it have been contradictive: some 
studies found that it had no effect on SF5 (Hopkins et al. 2015; Starkey et al. 2016), while 
others argued it was sufficient to explain SF5 variation (Hopkins et al. 2011b). Our results 
suggest that a cold shortening temperature threshold cannot be defined with the current data. 
Although evidence suggests that colder carcases tend to be tougher, more research is needed 
to address this issue properly.      

 

4.2 Data filtering and effect on genetic parameters  

Different methods were used to remove carcases with extreme values and the effect of 
removing these records on the genetic variance components was examined. The reduction of 
residual variance was used as a key parameter to assess different edited strategies. Results 
from this series of analyses are presented on Table 4. The first method removed extreme 
records with values higher than 79.52 N (4 standard deviations above the mean). The overall 
mean and standard deviation reduced slightly. The additive genetic variance were also 
reduced but little change in heritability was observed. The second method removed carcases 
with SF5 values with shear force values outside the interval formed by the contemporary group 
median plus 4 median absolute deviations. There was a further reduction in additive and 
residual variance but again there was small change in heritability using this method. The 
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lowest residual variance was observed when the two previous editing strategies were 
combined. In that case the heritability estimate was 0.25, which was in agreement with 
previously reported estimates (Mortimer et al. 2014; Brito et al. 2017). As a result, the 
combination of the above to methods is considered the best approach to remove individuals 
with extreme shear force values.  

Table 4. Number of records, removed records, sires, contemporary groups (CG), mean SF5 (standard 
deviation) and variance components using the basic model after each filtering step. Heritability (h2), 
additive (𝜎𝜎�𝑎𝑎), genetic group (𝜎𝜎�𝐿𝐿𝐿𝐿), residual (𝜎𝜎�𝜀𝜀), and phenotypic (𝜎𝜎�𝑝𝑝) variance. 

Filter Records Removed 
Records Sires CG Mean SF5 

(sd) h2 𝝈𝝈�𝒂𝒂 𝝈𝝈�𝒈𝒈𝒈𝒈 𝝈𝝈�𝜺𝜺 𝝈𝝈�𝒑𝒑 

None 32,913 0 2260 1772 32.00 
(11.88) 

0.26 
(0.02) 

21.05 
(1.3) 

4.36 
(1.57) 

56.29 
(1.17) 

81.70 
(1.71) 

mean(SF5) + 
4*sd(SF5) 32,216 697 2258 1767 31.07 

(10.00) 
0.27 

(0.02) 
16.4 

(1.00) 
3.55 

(1.29) 
41.08 
(0.89) 

61.04 
(1.38) 

CGmean (SF5) + 
4*sd(CGSF5) 32042 871 2255 1765 31.5 

(11.54) 
0.25 

(0.02) 
17.48 
(1.13) 

3.04 
(1.14) 

49.87 
(1.03) 

70.39 
(1.28) 

Combined 31,345 1568 2253 1760 30.53 
(9.48) 

0.25 
(0.02) 

12.32 
(0.8) 

2.20 
(0.83) 

33.86 
(0.72) 

48.39 
(0.92) 

 

 

4.3 Genetic parameters for transformed and non-transformed data  

Different models were used to estimate genetic variance components including a series of 
different covariates (as shown in Table 2 and Table 3) and data transformation. Variance 
components for each series of analyses are shown in Table 5 and Table 6. All analyses 
included data after filtering (using combined 1 and 2 filtering methods). Heritability estimates 
were similar between different models and data transformations and in agreement with 
previous studies (Mortimer et al. 2014; Brito et al. 2017). For analyses using phenotypic data 
measured on the same scale (SF50 and SF5GM) additive and residual variance estimates were 
lower for the SF5GM compared to SF50 but heritability estimates were similar. Because of 
similar heritability estimates obtained with different models and transformations, the best 
model/transformation combination was selected after cross validation using forward 
predictions (Table 7).   

Table 5. Estimates of variance components obtained from different co-variate analysis using 
𝑆𝑆𝑆𝑆50. Heritability (h2), additive (𝜎𝜎�𝑎𝑎), genetic group (𝜎𝜎�𝐿𝐿𝐿𝐿), residual (𝜎𝜎�𝜀𝜀), and phenotypic (𝜎𝜎�𝑝𝑝) variance. 
Covariates for different models can be found in Table 3. 

Model h2 𝝈𝝈�𝒂𝒂 𝝈𝝈�𝒈𝒈𝒈𝒈 𝝈𝝈�𝜺𝜺 𝝈𝝈�𝒑𝒑 
1  0.24 (0.02) 18.20 (1.43) 10.86 (3.98) 46.2 (1.3) 75.26 (4.03) 

2  

a 0.22 (0.02) 18.66 (1.28) 9.66 (3.51) 54.96 (1.17) 83.28 (3.56) 
b 0.24 (0.02) 17.30 (1.42) 10.42 (3.82) 44.06 (1.3) 71.78 (3.87) 
c 0.23 (0.02) 11.28 (4.07) 17.32 (1.37) 45.35 (1.26) 73.95 (4.11) 

3 
a 0.26 (0.02) 18.38 (1.46) 10.45 (3.82) 43.23 (1.32) 72.06 (3.87) 
b 0.25 (0.02) 18.39 (1.47) 10.47 (3.83) 43.35 (1.33) 72.21 (3.88) 
c 0.24 (0.02) 17.61 (1.39) 10.87 (3.95) 45.55 (1.27) 74.02 (4.00) 
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Table 6. Estimates of variance components obtained from different models and phenotype 
transformations. Heritability (h2), additive (𝜎𝜎�𝑎𝑎), genetic group (𝜎𝜎�𝐿𝐿𝐿𝐿), residual (𝜎𝜎�𝜀𝜀), and phenotypic (𝜎𝜎�𝑝𝑝) 
variance. 

Transformation Model h2 𝝈𝝈�𝒂𝒂 𝝈𝝈�𝒈𝒈𝒈𝒈 𝝈𝝈�𝜺𝜺 𝝈𝝈�𝒑𝒑 
𝑆𝑆𝑆𝑆50 

1 
0.25 (0.02) 12.32 (0.80) 2.20 (0.83) 33.86 (0.72) 48.39 (0.92) 

𝑆𝑆𝑆𝑆5𝐿𝐿𝐿𝐿𝐿𝐿 0.26 (0.02) 0.03 (0.002) 0.01 (0.002) 0.07 (0.001) 0.10 (0.002) 
𝑆𝑆𝑆𝑆5𝐺𝐺𝐺𝐺  0.26 (0.02) 11.30 (0.72) 2.14 (0.80) 30.74 (0.65) 44.18 (0.88) 
𝑆𝑆𝑆𝑆50 

2 
0.25 (0.02) 11.71 (0.78) 2.53 (0.92) 32.59 (0.71) 46.83 (1.00) 

𝑆𝑆𝑆𝑆5𝐿𝐿𝐿𝐿𝐿𝐿 0.26 (0.02) 0.03 (0.002) 0.01 (0.002) 0.06 (0.001) 0.09 (0.002) 
𝑆𝑆𝑆𝑆5𝐺𝐺𝐺𝐺  0.25 (0.02) 10.74 (0.7) 2.48 (0.89) 29.53 (0.64) 42.75 (0.96) 
𝑆𝑆𝑆𝑆50 

3 
0.25 (0.02) 10.85 (0.90) 3.41 (1.23) 29.49 (0.82) 43.76 (1.30) 

𝑆𝑆𝑆𝑆5𝐿𝐿𝐿𝐿𝐿𝐿 0.25 (0.02) 0.02 (0.002) 0.01 (0.003) 0.06 (0.002) 0.09 (0.003) 
𝑆𝑆𝑆𝑆5𝐺𝐺𝐺𝐺  0.24 (0.02) 9.06 (0.75) 3.00 (1.08) 25.65 (0.70) 37.71 (1.15) 
𝑆𝑆𝑆𝑆50 

4 
0.25 (0.02) 12.15 (0.80) 2.19 (0.83) 33.52 (0.72) 47.86 (0.93) 

𝑆𝑆𝑆𝑆5𝐿𝐿𝐿𝐿𝐿𝐿 0.26 (0.02) 0.03 (0.002) 0.01 (0.002) 0.07 (0.001) 0.10 (0.002) 
𝑆𝑆𝑆𝑆5𝐺𝐺𝐺𝐺  0.25 (0.02) 11.09 (0.72) 2.14 (0.81) 30.5 (0.65) 43.74 (0.89) 
𝑆𝑆𝑆𝑆50 

5 
0.26 (0.02) 12.37 (0.81) 2.28 (0.86) 33.56 (0.73) 48.22 (0.95) 

𝑆𝑆𝑆𝑆5𝐿𝐿𝐿𝐿𝐿𝐿 0.26 (0.02) 0.03 (0.001) 0.01 (0.002) 0.07 (0.001) 0.10 (0.001) 
𝑆𝑆𝑆𝑆5𝐺𝐺𝐺𝐺  0.26 (0.02) 11.3 (0.73) 2.22 (0.82) 30.56 (0.66) 44.08 (0.90) 

 

 

4.4 Model validation 

Regression results are shown in Table 7 for unfiltered and filtered data and different models. 
Model 1 without any data filtering or transformation (𝑆𝑆𝑆𝑆50) was the reference since it was 
based on phenotype and pedigree information and only used HCWT as a covariate (which is 
the current model used by Sheep Genetics). When different sire models are validated using 
forward predictions, the regression coefficient (b) is expected to be 0.5, since each animal 
gets half of their genes from their sire. A b-value below 0.5 indicates that the EBV is 
underestimating the genetic variance, while a b-value above 0.5 indicates that the genetic 
variance is overestimated. Results showed that the basic model (1) exceeded (0.88) the 
expectation of 0.5 when predicted progeny performance. Filtering data for extreme values 
improved the prediction (0.39) even when no transformation was applied. Transformations 
based on the contemporary group mean (𝑆𝑆𝑆𝑆5𝐺𝐺𝐺𝐺) reliably predicted progeny performance 
(regression coefficients between 0.40 and 0.44) across models using different covariates. 
Similar results were obtained when log2 transformation (𝑆𝑆𝑆𝑆5𝐿𝐿𝐿𝐿𝐿𝐿) was used (regression 
coefficients between 0.41 and 0.44). Comparisons between observed and predicted 
performances in a cross validation analysis is important because it is a measure of the 
efficiency of the application of the proposed models to specific data sets (Legarra et al. 2008). 
Model 2, using ph24ll, filtered data and log transformed phenotypes (𝑆𝑆𝑆𝑆5𝐿𝐿𝐿𝐿𝐿𝐿), had the best 
predictive ability (0.44), followed by Model 3 with the same transformation and accounting for 
ph6temp (0.42), and Model 5 which included 𝑆𝑆𝑆𝑆5𝐿𝐿𝐿𝐿𝐿𝐿 data and the same fixed effects as the 
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basic model but in a bivariate analysis with CFAT (0.42). However, ph24ll records were not 
available for all animals and ph6temp was not recorded for almost one third of the animals 
included in the SF5 data set (Table 1). In order to be able to use the full data set for the genetic 
evaluation, and since the genetic evaluation currently run in OVIS, the genetic evaluation 
software used by LAMBPLAN (Brown et al. 2000) uses a multi-trait approach, Model 5 with 
log2 (SF5Log ) data transformation was the preferred model because it combined a 
bigger number of records and it reliably predicted progeny performance.  

 

Table 7. Regression coefficient of progeny performance on sire estimated breeding values for SF5 
using different transformations, models and extreme values filtering. Models and data transformation 
with the best predictive ability are shown in bold. 

Transformation 
Regression 
coefficient Range Model Covariate Filtering 

𝑆𝑆𝑆𝑆50 0.88 0.67 - 1.10 1 HCWT No 

𝑆𝑆𝑆𝑆50 0.39 0.27 - 0.54 1 

HCWT Yes 𝑆𝑆𝑆𝑆5𝐿𝐿𝐿𝐿𝐿𝐿 0.41 0.28 - 0.50 1 

𝑆𝑆𝑆𝑆5𝐺𝐺𝐺𝐺  0.41 0.28 - 0.51 1 

𝑆𝑆𝑆𝑆50 0.40 0.25 - 0.67 2 

HCWT, ph24ll Yes 𝑆𝑆𝑆𝑆5𝐿𝐿𝐿𝐿𝐿𝐿 0.44 0.30 - 0.69 2 

𝑆𝑆𝑆𝑆5𝐺𝐺𝐺𝐺  0.44 0.28 - 0.69 2 

𝑆𝑆𝑆𝑆50 0.40 0.21 - 0.52 3 

HCWT, ph6temp Yes 𝑆𝑆𝑆𝑆5𝐿𝐿𝐿𝐿𝐿𝐿 0.42 0.26 - 0.51 3 

𝑆𝑆𝑆𝑆5𝐺𝐺𝐺𝐺  0.42 0.24-0.52 3 

𝑆𝑆𝑆𝑆50 0.39 0.30 - 0.50 4 

HCWT, CFAT Yes 𝑆𝑆𝑆𝑆5𝐿𝐿𝐿𝐿𝐿𝐿 0.41 0.30 - 0.47 4 

𝑆𝑆𝑆𝑆5𝐺𝐺𝐺𝐺  0.40 0.29 - 0.47 4 

𝑆𝑆𝑆𝑆50 0.41 0.32 - 0.57 5 

HCWT Yes 𝑆𝑆𝑆𝑆5𝐿𝐿𝐿𝐿𝐿𝐿 0.42 0.31 - 0.52 5 

𝑆𝑆𝑆𝑆5𝐺𝐺𝐺𝐺  0.42 0.31- 0.53 5 
 

Estimated breeding values (EBVs) acquired with the proposed model (Model 5) and SF5Log 

data transformation were compared against EBVs acquired with the basic model (Model 1) 
and SF50 data (raw phenotypes). In both cases data was filtered as described earlier 
(combined 1 and 2 filtering methods). Analyses were performed for each sire breed type 
separately, as it used in OVIS. The EBVs were highly correlated (0.96 – 0.97, Figure 5,  6,  7) 
indicating there was little re-ranking among sire breeding values.   
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Figure 4.Correlations between estimated breeding values (EBVs) and accuracies with log2 transformed 
(SF5Log) and raw shear force (SF50) data for: all Merino animals (A, B), all Merino sires (C, D), high 
accuracy Merino sires (E, F). 
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Figure 5. Correlations between estimated breeding values (EBVs) and accuracies with log2 transformed 
(SF5Log) and raw shear force (SF50) data for: all terminal animals (A, B), all terminal sires (C, D), high 
accuracy terminal sires (E, F). 
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Figure 6. Correlations between estimated breeding values (EBVs) and accuracies with log2 transformed 
(SF5Log) and raw shear force (SF50) data for: all maternal animals (A, B), all maternal sires (C, D), high 
accuracy maternal sires (E, F). 
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To be consistent with current analysis in OVIS where Merino, terminal and maternal sire 
breeds are analysed separately, variance components were estimated using SF5Log and SF50 
for each of the sire breed types (Table 8 and Table 9, respectively). Shear force was 
moderately heritable for the full data set and for Merino and terminal animals (0.32 and 0.26). 
Previous studies reported heritability estimates of five day aged shear force from 0.27 
(Mortimer et al. 2014) to 0.38 ((Mortimer et al. 2010; Hopkins et al. 2011a). Heritability 
estimates for maternal animals which were the smallest subset of the data were the lowest 
(0.18). This can be attributed to lower additive variance in maternal animals (8.25 for SF50 

compared to 16.05 in Merino and 25.41 in terminal). In general, SF5Log improved heritability; 
all estimates were higher with SF5Log compared to SF50.    

Table 8. Variance component estimates for different breeds using SF5Log data. Heritability (h2), additive 
(𝜎𝜎�𝑎𝑎), residual (𝜎𝜎�𝜀𝜀), and phenotypic (𝜎𝜎�𝑝𝑝) variance. 

Breed Records 
Mean  

𝑆𝑆𝑆𝑆5𝐿𝐿𝐿𝐿𝐿𝐿 (sd) h2 𝝈𝝈�𝒂𝒂 𝝈𝝈�𝜺𝜺 𝝈𝝈�𝒑𝒑 

all 27588 4.91 (0.48) 0.26 (0.02) 0.03 (0.002) 0.08 (0.002) 0.13 (0.006) 
maternal 3507 4.89 (0.45) 0.18 (0.04) 0.02 (0.005) 0.09 (0.005) 0.11 (0.003) 
Merino 7680 4.90 (0.48) 0.26 (0.03) 0.03 (0.004) 0.08 (0.004) 0.11 (0.002) 
terminal 16401 4.92 (0.49) 0.32 (0.03) 0.04 (0.003) 0.08 (0.003) 0.13 (0.005) 
 

Table 9. Variance component estimates for different breeds for SF50 data. Heritability (h2), additive 
(𝜎𝜎�𝑎𝑎), residual (𝜎𝜎�𝜀𝜀), and phenotypic (𝜎𝜎�𝑝𝑝) variance. 

Breed Records 
Mean  

𝑆𝑆𝑆𝑆50 (sd) h2 𝝈𝝈�𝒂𝒂 𝝈𝝈�𝜺𝜺 𝝈𝝈�𝒑𝒑 

all 27588 31.94 (11.78) 0.24 (0.02) 19.80 (1.26) 55.05 (1.13) 83.19 (3.19) 
maternal 3507 31.10 (10.45) 0.13 (0.04) 8.25 (2.48) 54.60 (2.63) 63.16 (1.80) 
Merino 7680 31.79 (12.18) 0.23 (0.03) 16.05 (2.28) 52.61 (2.11) 68.71 (1.24) 
terminal 16401 32.23 (11.95) 0.30 (0.02) 25.41 (2.00) 54.26 (1.72) 85.00 (2.96) 

 

4.5 Correlations with other carcase traits 

Estimates of genetic and phenotypic correlations between SF5 and other carcase traits were 
estimated using bivariate analyses for SF5Log and SF50 both for the full dataset and for different 
sire breed types. Genetic and phenotypic correlations are shown on Table 10. Genetic 
correlations comparison between different breeds for SF5Log and SF50 are shown on Figure 6. 
Comparison of genetic correlations of CFAT with SF5Log and SF50 within breeds showed that 
the genetic correlations estimated with SF5Log were less extreme; they ranged from -0.268 to 
0.088, while the correlations estimated with SF50 were between -0.34 and 0.15. In both cases 
correlations between CFAT and lower than previously reported (-0.08, Mortimer et al. (2018)). 
Genetic correlations between SF5 and EMD with SF5Log are higher than the correlations 
estimated from SF50 and slightly higher than previously reported (Brito et al. 2017).Genetic 
correlations between SF5Log and SF50 and IMF were similar for both all data and each breed 
separately (-0.27 to -0.40) with the exception of Merino data the estimate between IMF and 
SF50 was 0.63. Results were in agreement with previous research where genetic correlation 
between SF5 and IMF was estimated to be between -0.62 and -0.27, indicating that higher 
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levels of intramuscular fat are genetically associated with more tender meat (Karamichou et 
al. 2006; Mortimer et al. 2014; Mortimer et al. 2018). Genetic correlations between LMY and 
SF5 for the full data set and terminal and maternal animals were lower (0.05 – 0.39) than 
previously reported (0.53, Mortimer et al. (2018)). LMY and SF5 correlations were higher for 
Merino animals (0.562 for SF5Log and 0.593 for SF50 respectively).       

Table 10. Genetic and phenotypic correlations of SF5Log and SF50 and carcase and meat quality traits 
for all data and each breed separately. 

  Genetic Correlations Phenotypic Correlations 

 Breed Trait SF5Log SF50 SF5Log SF50 

all 
CFAT 

 
  

-0.14 (0.05) -0.21 (0.04) -0.09 (0.02) -0.11 (0.04) 

maternal 0.09 (0.19) 0.15 (0.20) -0.04 (0.04) -0.05 (0.03) 

terminal -0.18 (0.06) -0.20 (0.06) -0.08 (0.03) -0.07 (0.02) 

merino -0.27 (0.11) -0.34 (0.12) -0.15 (0.02) -0.05 (0.02) 

all 
EMD 

 
  

0.03 (0.05) 0.03 (0.05) 0.09 (0.04) 0.08 (0.04) 

maternal 0.22 (0.19) 0.15 (0.21) 0.02 (0.04) 0.02 (0.03) 

terminal 0.03 (0.07) 0.02 (0.07) -0.01 (0.03) 0.002 (0.02) 

merino -0.13 (0.14) -0.18 (0.02) 0.01 (0.02) 0.01 (0.01) 

all 
IMF 

 
  

-0.40 (0.03) -0.40 (0.03) -0.19 (0.01) -0.28 (0.03) 

maternal -0.38 (0.16) -0.27 (0.01) -0.22 (0.04) -0.23 (0.02) 

terminal -0.40 (0.04) -0.40 (0.05) -0.27 (0.05) -0.22 (0.03) 

merino -0.39 (0.02) -0.63 (0.06) -0.30 (0.01) -0.27 (0.02) 

all 
LMY 

 
  

0.34 (0.06) 0.33 (0.06) 0.10 (0.01) 0.13 (0.06) 

maternal 0.05 (0.30) 0.07 (0.35) 0.11 (0.08) 0.08 (0.11) 

terminal 0.39 (0.07) 0.36 (0.07) 0.16 (0.03) 0.16 (0.04) 

merino 0.56 (0.25) 0.59 (0.27) 0.17 (0.06) 0.16 (0.05) 
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Figure 7.Genetic correlations between SF5 and carcase and meat quality traits for SF5Log and SF50. 
IMF: intramuscular fat, LMY: lean meat yield, EMD: eye muscle depth, CFAT: c-side fat. 
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5 Conclusions 
• Cold shortening impact on SF5 could not be defined in this analysis. Based on the 

available data a clear temperature threshold for cold shortening could not be defined 
and the relationship between shear force and temperature at pH6 appears to be linear 
with no cut-off point. Moreover there is a lot of variation in shear force and temperature 
at pH6 between different sires and contemporary groups.    

• Filtering carcases with extreme shear force values improves variance components 
estimation and progeny performance predictability.  

• Shear force model predictability improved with log transformation and accounting for 
temperature at pH6 or pH 24 hours after slaughter.  

• Only one third of the animals have temperature records. To include the highest 
possible number of animals in the genetic evaluation, bivariate analysis and 
comparisons were carried out with log2 transformed (SF5Log) data only and without 
including temperature.  

• Genetic correlations of shear force and carcase and meat quality traits obtained with 
SF5Log and SF50 data are similar and in agreement with previous research, but for some 
traits SF5Log provided more consistent correlations for animals of different breeds.  
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