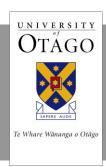


UNIVERSITY OF OTAGO DEPARTMENTS OF HUMAN NUTRITION and MEDICINE

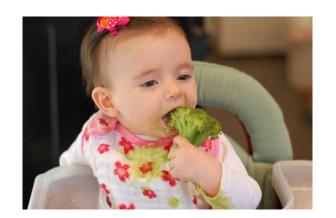
Over-fed and under-nourished – could a novel, baby-led, approach to infant feeding be protective?

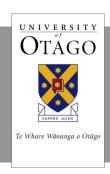
Anne-Louise Heath, Cameron S, Daniels L, Williams S, Taylor B, Wheeler B, Taylor R



Outline

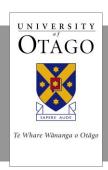
- "First 1,000 days"
- Over-fed & under-nourished?
- Baby-Led Weaning a solution?
- Baby-Led Introduction to SolidS
- Some take-home messages





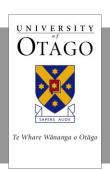
Outline

- "First 1,000 days"
- Over-fed & under-nourished?
- Baby-Led Weaning a solution?
- Baby-Led Introduction to SolidS
- Some take-home messages

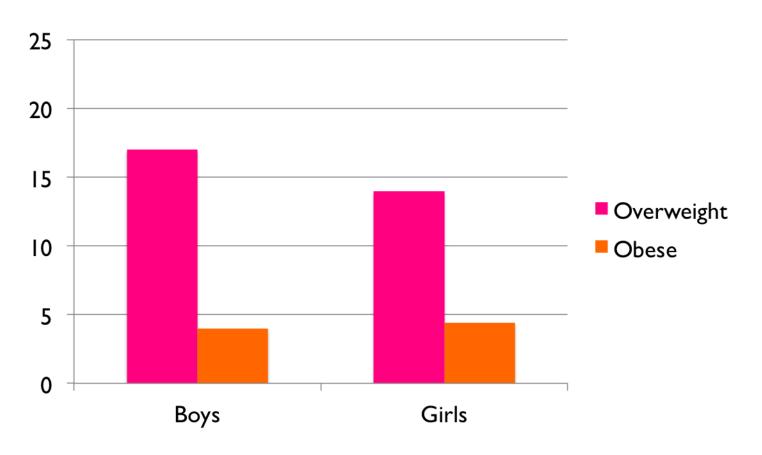


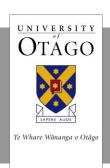
The first 1,000 days

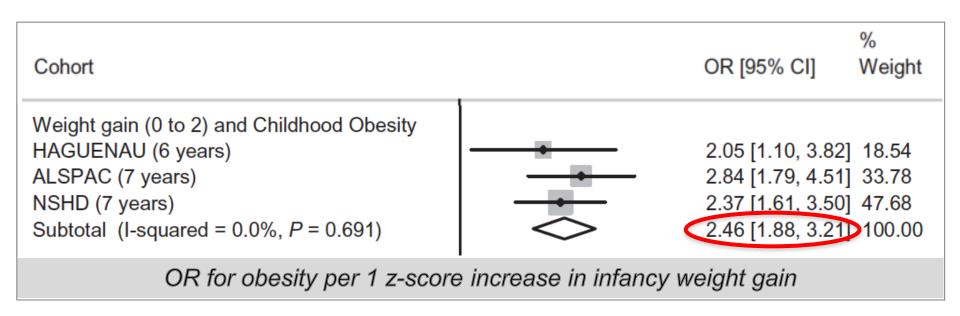
- Conception to 2 years of age
- 3.5kg at birth → 12kg on second birthday
- Brain ~25% formed at birth → most of remaining 75% formed by 2 years of age
- Developmental score at 22 months an accurate predictor of educational outcome at 26 years



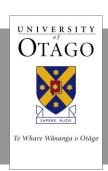
Outline


- "First 1,000 days"
- Over-fed & under-nourished?
- Baby-Led Weaning a solution?
- Baby-Led Introduction to SolidS
- Some take-home messages




By 2-3 years of age 1 in 5 are already overweight or obese

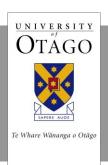
(2007 National Children's Nutrition and Physical Activity Survey)



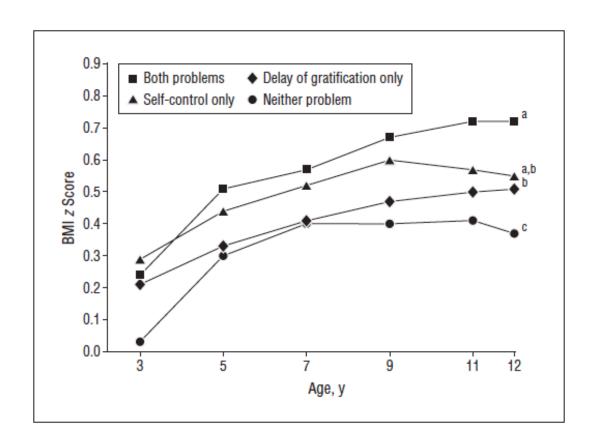
Weight gain 0-2 years a risk factor for later obesity

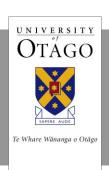
 Individual level meta-analysis using 10 large cohort studies (n > 47,000)

(Druet et al., 2012)


Infants, but not toddlers, eat smaller portions when energy density is high

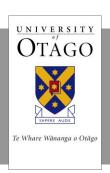
Predictors of portion size				
	4-5 months	6-11 months	12-24 months	
Number of eating occasions	-0.13*	-0.07*	-0.04*	
Number of unique foods	0.0	0.02*	-0.01	
Energy density	-0.41*	-0.26*	0.16	


^{*} P<0.05


(Feeding Infants and Toddlers Study: Fox et al., 2006)

Poor self-regulation in children is associated with higher BMI

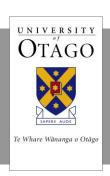
(Francis & Susman, 2009)



Many toddlers are iron or zinc deficient

	12-24 month olds
Iron deficiency	10%
Iron deficiency anaemia	3%
Zinc deficiency	32%

(Zhou et al., 2012)

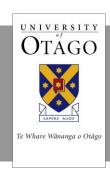


Many toddlers are iron or zinc deficient

	12-24 month olds
Iron deficiency	10%
Iron deficiency anaemia	3%
Zinc deficiency	32%

	12-24 month olds
Inadequate iron intake	16%
Inadequate zinc intake	3%

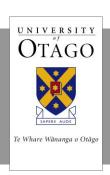
(Zhou et al., 2012)



Consequences of iron deficiency

Iron deficiency anaemia is associated with:

- Poorer cognitive, motor, socio-emotional development
- These effects may not be reversible
- May increase morbidity (fever, respiratory infections, diarrhoea)


Consequences of iron deficiency

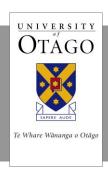
Iron deficiency anaemia is associated with:

- Poorer cognitive, motor, socio-emotional development
- These effects may not be reversible
- May increase morbidity (fever, respiratory infections, diarrhoea)

Non-anaemic iron deficiency may be assoc with:

- Subtle -ve effects on cognitive function, fatigue
- Increased risk of iron deficiency anaemia

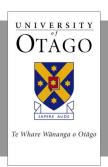
Consequences of zinc deficiency


Zinc deficiency in Australian preschool children has been associated with:

- Symptoms of respiratory disease
- Sore throat
- Shorter height-for age

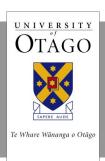
Other studies have suggested:

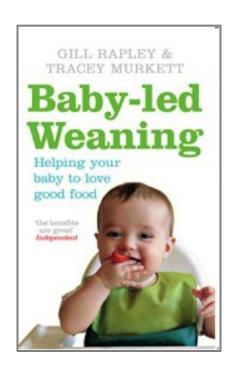
- Poorer cognition
- Recurrent infections

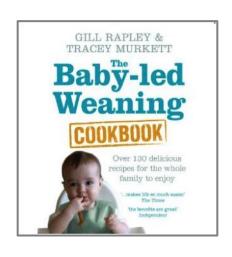


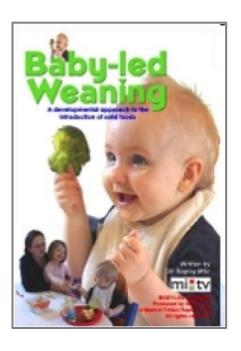
Outline

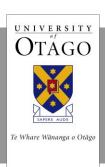
- "First 1,000 days"
- Over-fed & under-nourished?
- Baby-Led Weaning a solution?
- Baby-Led Introduction to SolidS
- Some take-home messages

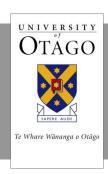



What is Baby-Led Weaning?

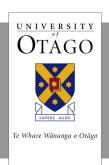

- Infant self feeds
- Stick shaped pieces of food
- No spoon feeding
- Eating together
- Start at 6 months




Origins

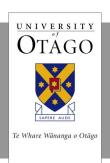

www.baby-led.com

Baby-Led Weaning in action!


http://www.youtube.com/watch?v=ews5ceknSZ4

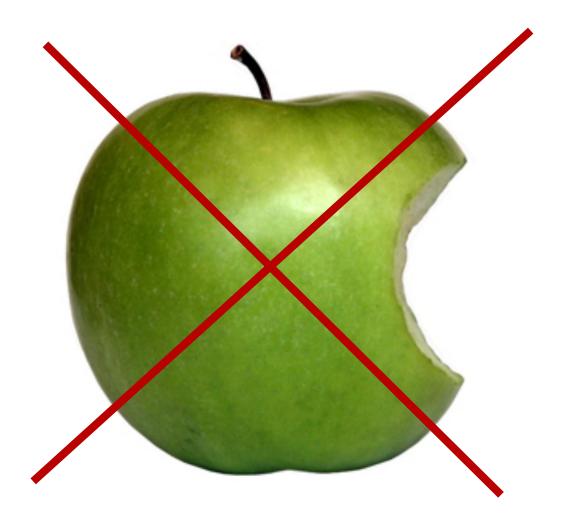
Possible benefits?

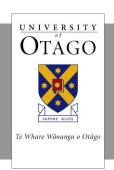
- ◆ Obesity
- ↑ Dietary diversity texture & flavour
- ▶ Neophobia
- Family meals
- "Makes sense"
- Healthier food


Some health professionals have concerns

Cameron S et al. (2012) *BMJ Open* doi 10.1136/bmjopen-2012-001542

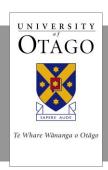
- n=31 health professionals
- Interviews with semi-structured interview schedule
- Identified a number of possible benefits
- Specific concerns:
 - Choking
 - Inadequate energy intake
 - Iron deficiency
- As a result reluctant to recommend


Mothers who have followed BLW much more positive


Cameron S et al. (2012) *BMJ Open* doi 10.1136/bmjopen-2012-001542

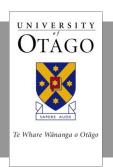
- n=20 mothers who had followed BLW
- Interviews with semi-structured interview schedule
- No major concerns
- Considered BLW to be:
 - Healthier
 - More convenient
 - Less stressful
- BUT ... 30% reported "choking"

(Cameron et al., BMJ Open 2012)


BLW is associated with greater satiety responsiveness

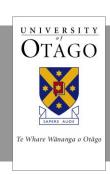
Brown A & Lee MD (2013) *Pediatric Obesity* doi 10.1111/j.2047-6310.2013.00207.x

- n=298 mothers of an 18-24 month old (54.7% BLW)
- Questionnaire
- BLW significantly less food-responsive
- BLW significantly more satiety-responsive
- Overweight BLW 8.1% vs SW 19.2%
- BUT:
 - Outcomes self-reported
 - Observational



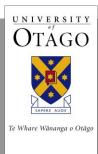
Outline

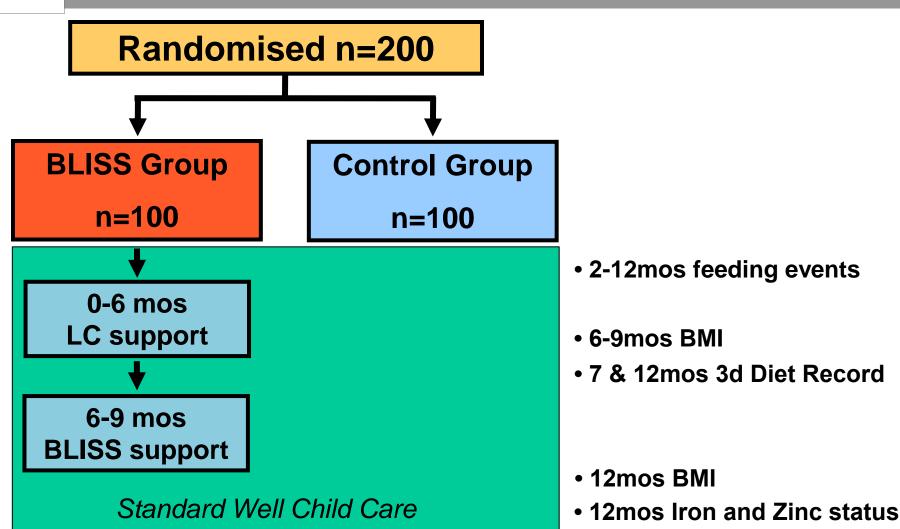
- "First 1,000 days"
- Over-fed & under-nourished?
- Baby-Led Weaning a solution?
- Baby-Led Introduction to SolidS
- Some take-home messages

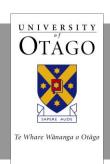


Baby-Led Introduction to SolidS

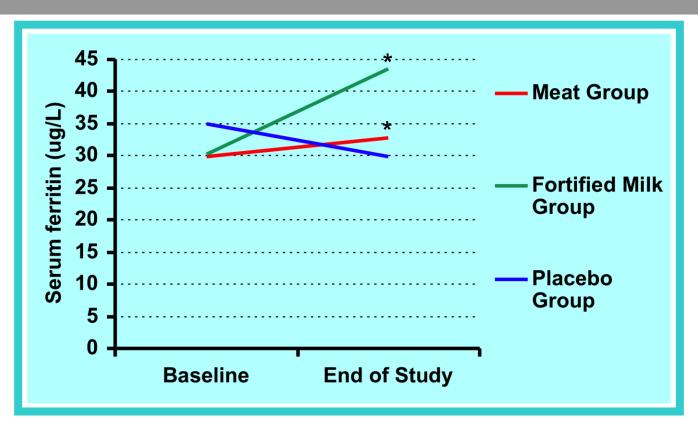
Baby-Led Weaning modified to address:


- Choking
- Iron deficiency
- Growth faltering

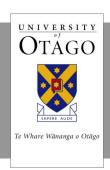



BLISS Study

A randomised controlled trial with 200 infants to determine whether a novel approach to complementary feeding using foods that an infant can feed themselves - "BLISS" - can prevent the development of overweight in infants and toddlers without detrimental effects on their iron status or growth.

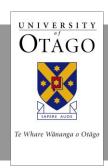


Randomised controlled trial



Red meat improves iron status in toddlers

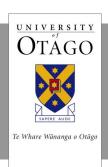
Adjusted for age, sex, age x sex, infection, education, income, ethnicity * Significant change compared to Placebo Group *P*<0.05



Study outcomes

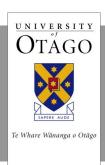
When completed, the BLISS study will tell us:

- Does a baby-led approach prevent obesity in young children?
- Can it improve iron and zinc status?
- Is it safe?
- Should all parents be doing it?



Outline

- "First 1,000 days"
- Over-fed & under-nourished?
- Baby-Led Weaning a solution?
- Baby-Led Introduction to SolidS
- Some take-home messages



Take home messages

- Lots of interest in BLW
- Very little research
- Possible risks: iron deficiency, growth faltering, choking
- Randomised controlled trial data urgently needed to determine whether BLISS can address overfeeding and under-nutrition of our young children

Acknowledgements

Liz Fleming
Jen McArthur
Rhondda Davies
Victoria Wood
Maha Hanna

Britt Morison
Liz Williams
Louise Bee
Sabina Bacchus
Ashley Luciano

The participants and their families

