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Abstract. The accuratemeasurement of the soil organic carbon (SOC) stock inAustralian grazing lands is important due to
themajor role that SOC plays in soil productivity and the potential influence of soil C cycling onAustralia’s greenhouse gas
emissions. However, the current sampling methodologies for SOC stock are varied and potentially conflicting. It was the
objective of this paper to review thenature of, and reasons for, SOCvariability; the samplingmethodologies commonlyused;
and to identify knowledge gaps for SOC measurement in grazing lands. Soil C consists of a range of biological materials,
in various SOC pools such as dissolved organic C, micro- and meso-fauna (microbial biomass), fungal hyphae and fresh
plant residues in or on the soil (particulate organic C, light-fraction C), the products of decomposition (humus, slow pool C)
and complexed organic C, and char and phytoliths (inert, passive or resistant C); and soil inorganic C (carbonates and
bicarbonates). Microbial biomass and particulate or light-fraction organic C are most sensitive to management or land-use
change; resistant organicC and soil carbonates are least sensitive. TheSOCpresent at any location is influenced by a series of
complex interactions between plant growth, climate, soil type or parent material, topography and sitemanagement. Because
of this, SOCstock andSOCpools are highlyvariable onboth spatial and temporal scales. This creates a challenge for efficient
sampling. Samplingmethods are predominantly based on design-based (classical) statistical techniques, crucial towhich is a
randomised sampling pattern that negates bias.Alternatively amodel-based (geostatistical) analysis can be used,which does
not require randomisation. Each approach is equally valid to characterise SOC in the rangelands. However, given that SOC
reporting in the rangelands will almost certainly rely on average values for some aggregated scale (such as a paddock or
property),we contend that thedesign-basedapproachmight bepreferred.Wealso challenge soil surveyors and their sponsors
to realise that: (i) paired sites are themost efficientwayof detecting a temporal change inSOCstock, but destructive sampling
and cumulative measurement errors decrease our ability to detect change; (ii) due to (i), an efficient sampling scheme to
estimate baseline status is not likely to be an efficient sampling scheme to estimate temporal change; (iii) samples should be
collected aswidely as possiblewithin the area of interest; (iv) replicate of laboratory analyses is a critical step in being able to
characterise temporal change. Sampling requirements for SOC stock in Australian grazing lands are yet to be explicitly
quantified and an examination of a range of these ecosystems is required in order to assess the sampling densities and
techniques necessary to detect specified changes in SOC stock and SOC pools. An examination of techniques that can help
reduce sampling requirements (such as measurement of the SOC fractions that are most sensitive to management changes
and/or measurement at specific times of the year – preferably before rapid plant growth – to decrease temporal variability),
and new technologies for in situ SOC measurement is also required.

Introduction

For the purposeof this review, rangelands are definedas relatively
undisturbed ecosystems containing savannas, woodlands, and
shrublands, where rainfall is too low or unreliable and soils too
poor to support regular cropping (Beeton et al. 2006; Bastin
2008). One of the major threats to the sustainability of Australian
grazing lands, and particularly rangelands where inputs such as
fertiliser are not economically feasible, is the depletion of soil
organic carbon (SOC). Soil organic matter contains ~58% SOC
and ismadeupof a range of biologicalmaterials, livingorganisms
(micro- and meso-fauna), fresh plant residues in or on the soil,
particulate organic matter, the products of decomposition
(humus), and inert (humic and char) substances (Gregorich et al.

1994), and silica-occluded plant C or phytoliths (Parr and
Sullivan 2005). It plays an important role in maintaining the
sustainability of grazing lands due to the function it plays within
the soil. For example, it provides a primary source of many plant
nutrients, improves the water-holding capacity of the soil, is
responsible for the formation of stable aggregates that protect the
soil from erosion, and provides a habitat for soil microbial
bioversity (Weil and Magdoff 2004).

In addition to its role in maintaining soil productivity, in
recent years there has been a focus on the ability of SOC to act as a
CO2 ‘sink’, and thus assist in the reduction of atmospheric
greenhousegases (Follett 2001).Changes tograzingmanagement
practices that increase SOC storage may have the potential to
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reduce Australia’s net greenhouse gas emissions, and thus
contribute towards Australia achieving its greenhouse gas
emissions targets.

Because of its important role, the effect of management
practices onSOCstock (i.e. the product of SOCconcentration and
soil bulk density and sampling depth) in grazing lands has been
studied extensively for many years. However, one issue that has
continually been encountered by researchers is the high spatial
and temporal variability of SOC stock and the difficulties that this
creates when using statistical techniques to measure relatively
small differences between land uses or management treatments.
It is desirable to be able to detect relatively small changes in SOC
stock, since across large areas of rangelands these can represent
a substantial sequestration or loss of C. In addition, being able to
detect small SOC changes enables the effect of management
practices to be assessed within shorter timescales.

Numerous and varied approaches have been used when
sampling for SOC stock, and we are faced with what can
be a confusing array of choices when selecting sampling
methodology. Thus, there is a need for greater understanding of
the sampling methodologies available to estimate SOC stock in
grazing lands. It is the objective of this review to: (i) examine the
nature of, and reasons for, SOC variability; (ii) examine the
strengths and weaknesses of the sampling methods commonly
used for SOC stock; and, (iii) identify knowledge gaps and areas
for future research for SOC measurement in grazing lands.

Characteristics of soil C

Soil C consists of organic C as organic matter containing a
range of organic materials and inorganic C as carbonates and
bicarbonates. Organic C stocks are ~1500Gt (1015 g) C and
inorganic C stocks are ~720Gt C in the top 1m of soil depth
(Batjes 1996).

Soil organic C is heterogeneous in nature and consists of
several SOC pools, which can be broadly grouped based on their
turnover rates in soil. For example, Parton et al. (1987) postulated
3 SOC pools: (i) the active or labile C pool; (ii) the slow C pool;
and, (iii) the resistant or passive pool. These have turnover
periods of, respectively, <10 years, 10–200 years, and >100 years
(Table 1).

The labile pool consists of soluble fresh plant residues
including fine roots, living organisms (microbial biomass),
particulate organic C and/or light fraction, in varying proportions
of <5, <10 and up to 30–40% of SOC, respectively. These are
measured as soluble and microbial products and root exudates,
microbial biomass, and <53mm organic C fraction (particulate
organic C) and/or light fraction (<1.6–2 g/cm3 density) of
soil, respectively, (Parton et al. 1987; Cambardella and Elliott
1992; Baldock and Skjemstad 1999; Dalal and Chan 2001;
Franzluebbers and Stuedemann 2003).

Dissolved organic C, usually <1% from root exudates,
microbial products and plant materials forms the most labile
fraction in soil. It is transported within the soil profile and in run-
off waters to streams and eventually to oceans (Hopkinson and
Vallino 2005). Within the soil profile, it is immediately available
to soil microbes and is rapidly mineralised within hours to days;
otherwise it enters into or forms soil microaggregates (Smucker
et al. 2007).

Microbial biomassC comprises<5%of theSOC (Dalal 1998).
It is considered as a sensitive indicator of SOC changes due to
land-use change and/or management (Sparling 1992). In most
soils, light-fraction C is essentially similar to particulate organic
C, and rarely exceeds 30%of the total SOC,with turnover periods
of <10 years in mesic subhumid and semi-arid environments
(Dalal and Chan 2001).

Humus or clay-sorbed C forms the slow C pool, which varies
from 30 to 60%, depending on soil type, clay content, clay
mineralogy and iron and aluminiumoxides,with turnover periods
from 10 years to 200 years or more, depending on climatic
conditions (Parton et al. 1987). Three possible mechanisms have
been suggested for slow turnover rates of this C pool. These are:
chemical nature of SOC, with increasing aromaticity; increasing
spatial inaccessibility to microorganisms and extracellular
enzymes due to microaggregation and physical separation; and
sorption of C on mineral surfaces and/or interaction with mineral
particles (Sollins et al. 1996; von Lutzow et al. 2007).

The resistant or passive SOC pool comprises primarily
charcoal C, up to 30% (Skjemstad et al. 1999), with turnover
periods generally >100 years, depending on the charcoal source
and quality although charcoal C dynamics in soil is not known.
A proportion of organo-mineral-metal complexed SOC also

Table 1. Soil carbon (C) pools, soil C fractions, forms measured and sensitivity to management change

Soil C pool Soil C fraction Pool C/total C (%) Form measured Turnover
period (year)

Sensitivity to
management
change

Labile (active) CA Soluble fresh residues 0.5–5 Microbial and root exudates <0.1 Very rapidA

Living micro- and
meso-flora and fauna

1–10 Microbial biomass <5 RapidA,C

Particulate organic C 1–40 >53mm <10 RapidB,D,E

Light fraction 1–30 <1.6–2 g/cm3 <10 RapidC

Slow CA Humus 30–50 Total organic C – particulate organic C 10–200 MediumB

Clay-complexed C 30–60 <2mm 10–100 MediumC

Resistant (passive) CA Charcoal C 1–30 Resistant to chemical oxidation >100 SlowB

Phytoliths 1–30 Oxidised at ~13008C Millenia? Very slowF,G

Carbonates 0–30 Release of CO2 by acid treatment >1000 Very slowH,I,J

AParton et al. (1987). BBaldock andSkjemstad (1999). CDalal andChan (2001). DCambardella andElliott (1992). EFranzluebbers andStuedemann (2003). FDrees
et al. (1989). GParr and Sullivan (2005). HCerling (1984). IDalal and Mayer (1986b). JKnowles and Singh (2003).
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forms the passive SOC pool (Kögel-Knabner et al. 2008). The
phytolith C pool is generally small, up to 3% (Drees et al. 1989)
although some reports suggest much higher amounts, up to 60%
in the soil profile (Parr and Sullivan 2005). Since phytoliths are
very stable in soil, these have been used to reconstruct the
paleovegetation during the Holocene and/or Pleistocene periods
(Piperno and Becker 1996). However, the role of phytoliths in
SOCdynamics in response to land use andmanagement change is
little understood.

Soil carbonates and bicarbonates are the primary pools of soil
inorganic C and comprise a substantial total C pool (>30%) in
mesic, semi-arid and arid regions (Knowles and Singh 2003).
These are derived both from parent material as well as formed
in situ as pedogenic carbonates. Similar to phytolith C and
charcoal C, pedogenic carbonate C is used to reconstruct region-
wide paleoenvironments (Zhou and Chafetz 2010). Since
pedogenic carbonates are relatively stable, with turnover periods
>1000 years (Cerling 1984; Amundson et al. 1994; Zhou and
Chafetz 2010), the carbonate stocks in soil are generally similar
following land-use andmanagement changes. For example,Dalal
andMayer (1986a) and Knowles and Singh (2003) found similar
carbonate stocks in soil after 60 years of agriculture following
conversion of land use from native vegetation even though initial
SOC stocks declined by up to 60% during this period. Therefore,
carbonate C is not considered in this review although further
studies may elucidate the role of carbonate C in the rangeland
soils, especially if the legume component of the vegetation
increases, which may enhance the acidification of the soil profile
and dissolution of carbonate C.

Depth distribution of SOC

Spain et al. (1983) summarised SOC concentrations of several
Australian soils. They noted that SOC stocks generally decreased
exponentially with soil depth, but the magnitude of this change

depends on soil type and vegetation, and generally follows root
density distribution of the dominant vegetation. For example, in
Fig. 1, SOC stocks under Queensland blue grass (Dicanthium
sericeum L.) vegetation changed less with depth as compared
with that under Brigalow (Acacia harpohylla L.) vegetation,
where SOC stocks were higher in the top 0.3-m depths although
total SOC stocks in the top 1.2-m depths were similar (104 t/ha)
under both vegetations (Dalal and Carter 2000). Generally, IPCC
(2006) recommends the samplingof the top0.3-mdepthof soil for
SOC stock measurement or estimation since changes in SOC
stock due to land-use change or management are primarily
confined to the top 0.1- or 0.3-m depths in most soils (Dalal and
Mayer 1986b; Knowles and Singh 2003; Dalal et al. 2005).

The depth distribution of SOC pools generally follow the total
SOC trends except that in the top 0.1-m depth, labile organic C
may be proportionally greater than the total SOC, mainly due to
themixing of litter with the soil in the top layer (Dalal et al. 2005).

Soil bulk density

Soil bulk density, expressed asmass per unit volume of soil (units
of g/cm3 or t/m3), is used to calculate soil C density or SOC stock
for a given depth (kg/m2 or t/ha) from SOC concentration (%),
bulk density and soil depth. For measurement of soil bulk density
in the field, including soils containing coarse fragments such
as gravel, refer to McKenzie et al. (2000) and Cresswell and
Hamilton (2002). Precisemeasurement of bulk density in thefield
is time consuming and expensive and remains a challenge,
although recent developments in the in situmeasurement of bulk
density using gamma-ray attenuation, and electromagnetic
induction appears to be promising across a range of landscapes
(Tyler et al. 2001; Pires et al. 2009).

Soil bulk density is affected by farming systems such as
cropping (through tillage, residue management, vehicular traffic)
and grazing (through pasture type, grazing intensity, compaction,
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Fig. 1. Depth distribution of soil organic carbon under three native vegetations, Dicanthium
sericeum (Queensland blue grass) on black Vertosol, Eucalyptus populnea–Dicanthium sericeum
(Eucalypt woodland-savanna) on grey Vertosol, Acacia harpophylla (Brigalow) on grey Vertosol
in southern Queensland, Australia (data from Dalal and Carter 2000).
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fire, drought) and forestry systems (through land preparation for
plantation and harvesting operations), besides the natural factors
such as soil characteristics, climate and vegetation. In shrink-
swell soils such as Vertosols, bulk density is also affected by soil
water content. Thismeans that, in these soils, themoisture content
needs to be explicitly considered when attempting to compare
SOC stocks of paired-sites, or for chronosequence-sampled sites
or treatments with variable moisture content and bulk density on
an equivalent soil mass basis to assess management effects on
SOCstocks (Dalal andMayer 1986b;Gifford andRoderick 2003;
Wuest 2009), as shown in Fig. 2 (Dalal et al. 2005).

Spatial and temporal variability of SOC and SOC pools
in Australian grazing lands

The SOC that is present at any particular location is a result of
the balance between (i) inputs of SOC from plant growth or
material deposited during erosion, and (ii) losses of SOC due
to soil respiration or export of SOC offsite due to erosion and
leaching. This balance is affected by a series of complex
interactions between plant growth, climate, soil type, topography
and site management (Baldock and Skjemstad 1999). These
processes affect SOC concentrations and stocks on a range of
different temporal and spatial scales ranging from plant/pedon
scales (mm–200m), to community scales (20m–km), and to
landscape and regional scales (>km) (Bird et al. 2001) (Fig. 3).

Spatial variability

Plant/pedon scale (up to 200m)

At the plant/pedon scale, the main contributors to the spatial
variability of SOC are vegetative patterns and plant community
dynamics. Plant material provides the main source of SOC
through litter drop, the production of root exudates, and root
mortality (Bird et al. 2001). Consequently, the size, morphology
(e.g. tree, shrub, grass) and spatial distribution of plants affects the
areas where C is input into the soil (Jackson and Caldwell 1993;
Hook and Burke 2000).

In grazing areas and particularly rangelands, strong
heterogeneity at the plant/pedon scale is often a characteristic of
sites with sparsely distributed plants. In these sites, C enrichment

tends to occur in the area surrounding plants, with areas of lower
C content in interplant areas (Hook and Burke 2000; Lechmere-
Oertel et al. 2005). In semi-arid woodland areas, for example, the
spatial distribution of resources may operate on several levels.
At the largest scale (~100m2), distinct groves of trees separated
by open intergroves may be responsible for a concentration of
organicC. In addition, at a plant level, individual trees, shrubs and
grasses create distinct areas where organic C will accumulate,
interspersed with areas that are relatively nutrient-poor (Ludwig
and Tongway 1995). This occurs not only due to the direct inputs
of organicC fromplants, but also due to the entrapment of organic
material that is moved across the landscape by wind and water
(LudwigandTongway1995).Thus, JacksonandCaldwell (1993)
found that SOC stocks varied by as much as 5-fold within a
120-m2 area of sagebrush-steppe vegetation.

The pattern of plant growth also affects the location of
other sources of SOC such as the soil microbial biomass and soil
fauna. These components will tend to congregate around areas
already high in organic C content, further contributing to SOC
heterogeneity (Bird et al. 2001). Soil macro- and micro-fauna
also contribute to SOC heterogeneity due to the soil mixing or
bioturbation they cause (VandenBygaart 2006).

Community scale (20m–km)

At the community scale, spatial variability is primarily
affected by soil type, and sitemanagement. Soil type is influential
due to the effect that soil nutrition can have on biomass
production,with soil types higher in clay content generally able to
provide more nutrients and higher moisture retention, and thus
act as a better substrate for plant growth (Burke et al. 1995).

Areas of high C sequestration
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Fig. 3. Schematic representation of soil carbon features at the pedon/plant,
community and landscape scale, as affected by vegetation, soil type,
environment and management (adapted from Bird et al. 2001).
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In addition, the sorptionofSOC toclay, its isolation inmicropores
and its physical protection within stable macro- and
microaggregates can reduce SOC availability and hence
decomposition rates. Consequently, SOC is generally lower in
coarse textured and poorly structured soils and numerous
authors have observed positive correlations between SOC and
clay content (Burke et al. 1989; Hook and Burke 2000;
VandenBygaart and Kay 2004; Don et al. 2007). This trend has
also been observed in Australian grazing environments. For
example, in Queensland rangeland environments, sites with fine
textured soils had significantly greater SOC stocks than coarse
textured soils (Harms and Dalal 2003).

At the community scale, landmanagement also starts to play a
role in SOC variability. In grazing lands, management practices
that increase yield such as fertiliser use, lime application or the
use of more productive species, can increase SOC, particularly
where soil has inherently low soil fertility (Chan 1997; Schnabel
et al. 2001). However, such strategies can also decrease SOC in
certain situations due to increases in the decomposability of the
organic material, or decreases in root biomass sometimes
associated with increases in fertility (Schnabel et al. 2001). The
activities of grazing animals will also influence SOC variability.
Hoof action creates surface disturbances that can both increase
erosion (and thus decrease SOC) and help incorporate surface
litter into the soil (potentially increasing SOC) (Dormaar et al.
1977; Schuman et al. 2009). Consequently, grazing intensity can
alter SOC concentrations, with the direction of change a result of
the balance between SOC loss due to overgrazing and the SOC
gains due to incorporation of litter into the soil (Schnabel et al.
2001). The accumulation of SOC from animal excreta around
animal camps or watering places also contributes substantially to
SOC variability (Schnabel et al. 2001; Bisigato et al. 2008).

Although natural bushfires occur infrequently in semi-arid
grazing lands, fire as a grazingmanagement tool is used regularly
in large areas of northern rangelands (Bradstock 2010). Up to
40% of tropical rangelands are burned every year (Bastin 2008).
Fire frequency in semi-arid woodlands affects the woodland
thickening (Bastin 2008) and vegetation communities and grass
composition (Rossiter et al. 2003), and increases landscape
spatial variability (Ludwig and Tongway 1995), and hence SOC
variability. For example, Coetsee et al. (2010) found that frequent
fires in savannas over a 50-year period changed the distribution of
SOC (and N) under canopies and away from canopies but had no
significant effect on total SOC stocks. However, Williams et al.
(2004) surmised that frequent and extensive fires reduced the
potential net ecosystem productivity by ~2 t C/ha by decreasing
both SOC stocks and aboveground C stocks in mesic savanna in
the Northern Territory, Australia. Actual data on SOC stocks and
SOCpools (labileC, charcoalC) and transfer between them in this
region are currently not available to verify their assessment.

Regional and landscape scales (>km)

On a regional or landscape scale, topography and climate are
the main factors responsible for SOC variability. Topography is
particularly influential due to the effects that slope and aspect can
have on soil moisture and depth, and hence biomass production
and C input. Steeper slopes have been found to have lower
SOC and down-slope positions higher SOC due to erosion
(Burke et al. 1995;Hook andBurke 2000; Jia andAkiyama 2005;

Liu et al. 2006). The highermoisture contents, and hence biomass
production, in down-slope position also contribute to the higher
SOC concentrations (VandenBygaart 2006) and stocks.

In addition to water erosion, wind erosion can also be
responsible formoving soil and its associated organicC around in
the landscape and thus contribute to SOC variability (Zuo et al.
2008). Grazing areas are particularly susceptible to wind erosion
(Webb et al. 2009) during periods of lowvegetation cover such as
after fire, during drought or due to overgrazing (Bastin 2008; Zuo
et al. 2008).

Climate also plays a large role in SOC variability, particularly
on regional scales. Temperature and rainfall effects have a large
influence on both plant biomass production and soil respiration,
and generally SOC tends to be higher in cold, wet climates and
lower in warm, dry ones (Amundson 2001). With increasing
temperature, both plant biomass production and soil respiration
rates tend to be higher. Adequate moisture will also increase
biomass production and decomposition rates. However,
excessively high moisture contents will lead to anaerobic
conditions within the soil and a decrease in decomposition rates,
thus increasing SOC storage (Amundson 2001).

Temporal variability

Where distinct growing seasons exist due to the seasonality of
temperature or rainfall, plant biomass production and the activity
of the soil microbial biomass can vary throughout the year and
potentially impact on SOC concentrations (Dormaar et al. 1977;
Saggar and Hedley 2001; Jacobs et al. 2007) and stock. In areas
where distinct warm and cold periods exist, pasture production
and root growth is often observed to vary during the year, being
highest in spring or summer and lowest in winter (Saggar and
Hedley 2001; Jacobs et al. 2007). In addition, where plants have
distinct growing periods, litter fall is often higher at certain times
of the year (Wilson and Thompson 2005). Similarly, microbial
growth and soil respiration also show distinct seasonality, being
influenced by temperature, the availability of organic substrates
(e.g. root exudates), andmoisture availability (Kaiser et al. 1995;
Corre et al. 2002). One feature of Australian grazing lands
particularly relevant to variation on a temporal scale is the
inherent climatic variability. Cycles of drought and rainfall are
common, and contribute to periods of low followed by high
organic matter input (Bastin 2008). Thus, rangelands are subject
to SOC losses during drought and this should be consideredwhen
comparing long-term SOC stocks from different grazing
managements (Schuman et al. 2009).

While the seasonality ofC input into, and cycling through, soil
systems is generally acknowledged, there are currently very few
studies that have quantified the subsequent changes to SOC and
SOC pools in Australian grazing systems and the effect that this
could potentially have on the measurement of SOC. In overseas
grazing systems, however, total SOC has been observed to
increase by over 60% in the upper humus layer (Ah) between
summer and winter sampling times (Dormaar et al. 1977),
possibly due to increase mostly in particulate organic C or labile
pool. A corollary to these studies from cropping soils in Australia
shows that SOC stocks in the top 0.1-m depth decreased by 10%
during the fallow period, primarily as a result of substantial
decomposition of labile organic C and lack of fresh plant C input
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(Wang et al. 2004). This emphasises the importance of sampling
the soil for SOC stock at the same time each year (preferably
before rapid plant growth) to minimise the temporal (seasonal)
variation to discern the land-use andmanagement effects on SOC
stock.

Spatial variability of SOC in grazing lands compared
with other land uses

Grazing lands may encompass a wide range of different
ecosystems, ranging from the intensivelymanaged andhigh input
dairy pastures in eastern Australia, through to the grazing of
rangeland ecosystems in central and northern Australia. Varied
grazing management was noted as a possible explanation for
spatial variability in SOC found in Australia’s uncleared
landscapes in some of the National Carbon Accounting System
studies (Griffin et al. 2003; Harms and Dalal 2003; Murphy et al.
2003). However, there is very little published information on the
variability of SOC in Australian grazing lands compared with
other land uses. In addition, from the international literature it is
difficult to draw conclusions regarding the variability of SOC in
one type of land use comparedwith another, as this often depends
on the characteristics of the area in question. However, as a
generalised statement, SOC in grazing areas is often found to be
more heterogeneous than in cropped locations (Miao et al. 2000;
Bird et al. 2001), particularly where mixing and homogenisation
by cultivation occurs.

Comparison of grazing and forest lands suggests the degree of
spatial variability in SOC tends to depend more on the type of
forest and the characteristic of the grazing land. For example,
some studies have observed greater spatial heterogeneity in
ungrazed rangeland soils compared with protected forested areas
(oak) (Nael et al. 2004). This observation was explained by the
fact that the protected forests were relatively homogeneous over-
and understorey, creating a more homogeneous input of organic
C.The rangelandarea, however, had a significant amount of shrub
vegetation and also grass tussocks (Ludwig and Tongway 1995),
resulting in the concentration of organic C under shrubs and
tussocks and thus, a greater heterogeneity of SOC. Other studies
of more typical grassland pastures, however, have been observed
to have a lower degree of spatial heterogeneity under pasture
compared to forested sites (Conant and Paustian 2002). Most
likely, comparison of the extent of SOC spatial variability
between different ecosystems is complicated by variation in soil
type, landscape and topographic position, andvegetation typeand
distribution, amongother factors such as seasonality, temperature
and rainfall amount and distribution.

The degree of spatial variability of SOC observed in grazing
lands may also depend on grazing management. Where stocking
rates are too high and not sustainable, grazing can change the
nature of the surface vegetation, for example, leading to an
increase in the invasion of shrub species (Schlesinger et al. 1990),
species composition (annual v. perennial grasses, slow-rooted v.
deep-rooted vegetation) (Schuman et al. 2009) or decreasing
plant cover so that plant growth becomes ‘patchy’ and is
characterised by areas of greater fertility interspersed with
bare, infertile soil (Schlesinger et al. 1990; Ludwig and Tongway
1995; Su et al. 2006). In such cases an increase in the spatial
heterogeneity of SOC can be expected. In other instances grazing

pressuresmay reduce vegetation cover to such an extent that SOC
distribution starts to become more homogeneous due to the
limited input of organic material and the compaction and
homogenisation of soil due to hoof action (Nael et al. 2004; Zhao
et al. 2007). In instances where ecosystems are naturally
characterised by shrub vegetation and overgrazing leads to the
replacement of shrubs by grassland, decreased spatial variability
has also been observed (Lechmere-Oertel et al. 2005).

The above discussion indicates that the spatial variability of
SOC in grazed areas, and particularly rangeland areas with shrub
vegetation, is likely to be high in all but the most degraded areas.
Consequently, sampling methodologies need to be designed in
order to adequately characterise this variation, and must be
capable of doing so at a variety of spatial scales. This is important
for C accounting purposes, since SOC stock is usually expressed
at larger spatial scales and estimated according to relative land-
use area.

Sampling designs to characterise SOC

Without an appropriate sampling design, the ability for
inference about SOC is compromised. de Gruijter et al. (2006)
note that there are three ways to choose where to sample:
(i) choosing by convenience; (ii) choosing at random;
or, (iii) choosing those locations thought to be the most
informative (i.e. choosing purposively). The advantages of
choosing locations by convenience are self-evident – soil
sampling by the roadside is a typical example – but its statistical
properties are questionable, and we will not deal with it further.
Choosing locations at random or purposively give rise to,
respectively, two contrasting philosophies of statistical
investigation: the design-based approach, and the model-based
approach. Papritz andWebster (1995a) summarised the essential
difference between the two: ‘. . .the random character of an
observation arises in the design-based approach from
randomising the selection of the sampling positions. In model-
based estimation, in contrast, each observed value per se is
considered tobe the outcomeof a randomvariable postulated for a
given position in space’.Neither approach is ‘best’ to characterise
SOC, although, depending on themotivation for sampling, one is
usually more appropriate than the other. de Gruijter et al. (2006)
note that the suitability of the two approaches to a particular task
changes with the spatial resolution of interest: for example, the
design-based approach might be favoured to estimate the mean
SOC stock for a paddock (‘global estimation’), but the model-
based approach might be favoured to map SOC stock within
a paddock (‘local estimation’). But it is misleading to classify
their roles so crisply: the design-based approach can be used
for local estimation, just as the model-based approach can be
used for global estimation. A summary of the advantages and
disadvantages of each approach are presented in Table 2.

Design-based approach

The design-based approach evolved in the first half of the 20th
Century, largely through the pioneering ideas of R. A. Fisher
(1890–1962). For illustrative purposes, let us say that our variable
of interest is SOC stock. In the simplest case of sampling for this
variable, where all locations in an area of interest have equal
probability of being chosen, the sample mean, sample variance,

232 The Rangeland Journal D. E. Allen et al.



and estimation variance of the sample mean [ms, s2
s , and s2

s (ms),
respectively], are computed, without bias, by (after de Gruijter
et al. 2006):

ms ¼
1
n

Xn
i¼1

yi ð1Þ

s2
s ¼

1
n� 1

Xn
i¼1

ðyi � msÞ2 ð2Þ

s2
s ðmsÞ ¼

s2
s

n
ð3Þ

where yi is the ith of n observations of SOC stock. More
informationon these quantities canbe found in standard statistical
texts, such as Snedecor and Cochran (1989), and Zar (1999).
Through randomisation we ensure that the deviations about the
mean (the errors) form an independent random variable (i.e. one
sample has no relation to another), a necessary assumption for
design-based inference. The most familiar application of the
design-based approach is ANOVA (Snedecor and Cochran
1989), due to Fisher. In part, the design-based approach was an
attempt to overcome historical constraints on the gathering and
processing of information: contemporaries of Fisher needed a
way to interpret and extrapolate results from what would
now be considered relatively small sample sizes. Fisher’s
techniques were tremendously successful, and have since
become convention. Besides unbiasedness, the advantage of
the design-based approach is that, because it is convention,
many of its accompanying statistical analyses have been
packaged in commercial software as ‘one-click’ procedures. The
disadvantage of simple random sampling is that it tends to cluster
the samples, which can result in undesirably large parts of the
study area remaining unsampled (Fig. 4a).

To circumvent the clustering effect of simple random
sampling, the study area can be stratified, i.e. split into strata that
are, ideally, as homogeneous as possible. Two samples (at least)
are then selected, at random, from each stratum. An unbiased
estimate of the sample mean of SOC stock through stratified
random sampling, mst, is computed by (after de Gruijter et al.
2006):

mst ¼
XH
h¼1

ahmh ð4Þ

where H is the number of strata, and ah and mh are, respectively,
the proportion of the study area and the mean SOC stock
associated with the hth stratum. Equation 1 is used to estimate mh;

the variance and estimation variance of the hth stratum, s2
h and

s2
h(mh), are estimated according toEqns 2 and 3, respectively. The

estimation variance of mst is computed, without bias, by:

s2
stðmstÞ ¼

XH
h¼1

a2hs
2
hðmhÞ ð5Þ

and an unbiased estimate of the sample variance, s2
st, is given by:

s2
st ¼

1
n

Xn
i¼1

yi
2

 !
� m2

st þ s2
stðmstÞ ð6Þ

There are two ways in which strata can be delineated (de
Gruijter et al. 2006): (i) through geographic coordinates (Fig. 4b);
or, (ii) through ancillary data (Fig. 4c). de Gruijter et al. (2006)
recommend the use of a k-means classifier (e.g. Hartigan and
Wong 1979) to derive the strata, which we have followed here.
In Fig. 4b, we see that stratification by geographic coordinates
has dispersed the sampling locations about the study area more
than simple random sampling. When stratifying by an ancillary
variable, the ancillary variable should have a plausible correlation
with the target variable; we used here an estimate of the long-term
mean vegetative cover of the ground surface (%) (Scarth et al.
2006), derived from 20 years of Landsat satellite imagery,
under the hypothesis that SOCwill increase proportionately. The
resulting sample locations are not guaranteed to disperse
spatially; however, they are dispersed over the range of variation
of the ancillary variable.

A systematic grid can be used as part of a design-based
sampling approach, but only on the condition that the initial
location of the grid is chosen randomly (deGruijter et al. 2006). It
may be necessary to permute the initial location and the grid
spacingmany timesbefore thedesirednumberof samplesfit in the
area of interest. In the example in Fig. 4d, the samples are spread
adequately through the study areawith a spacing of 247m, but the
choice of initialising location has meant that one sample is very
close to the field boundary. To move this sample away from
the boundary would introduce bias. Under systematic random
sampling, as this design is known, the user can estimate the
sample mean without bias according to Eqn 1, but there is no
unbiased estimate of sample variance. de Gruijter et al. (2006)
note that Eqn 2 can be used but it will generally overestimate.
However, if there is periodic variation in the study area that occurs
at a wavelength coincident to the sampling interval (e.g. water
drains, hedge rows) then Eqn 2 will severely underestimate. An
alternative, less-biased approximation is the method of balanced
differences (Yates 1981; Papritz and Webster 1995a). The

Table 2. A summary of the two sampling approaches to characterise soil organic carbon stock

Approach Site selection Advantages Disadvantages Ideal useA Inference

Design-based Random UnbiasedA In its simplest form, provides Non-spatial summary Analysis of
poor spatial coverageA of a study area varianceA

Model-based Purposive Optimises the Not a safeguard against biasA Mapping of a Linear mixed
spatial coverageA study area modelA

Obtaining the ‘model’ can be
difficultA

Analysis is complexA

AIdeal, though not exclusive.
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technique is related closely to signal processing, where
engineers commonly filter the informative component of data
(‘signal’) from background variation (‘noise’). In the context of
estimating the sample variance of a systematic design, it is the
‘noise’ that is relevant.Webster andOliver (2001) describe afilter
of the form:

�0:25 þ0:50 �0:50 þ0:25

þ0:50 �1:00 þ1:00 �0:50

�0:50 þ1:00 �1:00 þ0:50

þ0:25 �0:50 þ0:50 �0:25

Note that each row and column of the filter sum to zero. This
filter moves over the systematic grid in J steps (where J < n; there
can be some overlap between the steps). At the jth location the
values of the 16 nearest sample locations are convolved with the
filter coefficients to yield a single value,dj. The sample variance is
then computed as:

s2
sy ¼

1
J � 6:25

XJ
j¼1

d2j ð7Þ

where ‘6.25’ is the sum of the squared coefficients in the filter
given above. The method may be less biased than Eqn 2, but has

its own problems, such as how to handle the data at the edge of the
study area, and the arbitrary choice of the dimension of the filter.

Another commonly used design-based strategy is nested
sampling. Webster and Oliver (2001) provide an overview of the
technique. The simplest form of nested sampling involves
selecting a set of n1 locations separated by distance d1. These are
called ‘first-stage’ samples. At a distance d2 (where d2< d1) from
each first-stage sample, with random orientation, one sample is
taken to form the collection of n2 samples. Then, at a distance d3
(where d3< d2) from each first- and second-stage sample, with
random orientation, one sample is taken to form the collection of
n3 samples. The process is repeated for any number of stages,
although the total sample number quickly becomes large. This
basic scheme forms a ‘balanced’ hierarchy, which means that
there is full replication at each stage. For three stages, labelled a,
b, and c, respectively, the model of variation is:

zijk ¼ mþ ai þ bij þ cijk ð8Þ

where: zijk is the value of the kth unit in the cth stage, in the jth unit
of the bth stage, in the ith unit of the ath stage; m is the overall
mean; ai is the difference betweenm and themean of the ath stage;
bij is the difference between the mean of the first stage and the
mean of the jth subclass in class i; and, cijk is the difference
between the observed value and its class mean at the third stage.
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m
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Fig. 4. Examples of four different kinds of design-based sampling (each with n= 10) for a hypothetical paddock:
(a) simple random sampling; (b) random sampling stratified by classified geographical coordinates (shown in the
background shading); (c) random sampling stratified by a classified ancillary variable (in this case, an estimate of
long-termmean ground cover, shown in the background shading); (d) systematic random sampling (with the initial
location shown as an open circle).
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The quantities ai, bij, and cijk are independent random variables
associated with the three stages. Each stage has zero mean
and the respective variance components s2

a;s2
b;s2

c . The overall
variance of z is:

s2¼s2
a þ s2

b þ s2
c ð9Þ

Analysis of a balanced hierarchy is relatively straightforward,
through ANOVA. However, full replication is wasteful of
resources, and a user might prefer to concentrate resources at
particular stages.This creates anunbalancedhierarchy. Pettitt and
McBratney (1993) proposed a form of unbalanced nested design
for soil sampling, suited to situations where the variability of
the target process is not known. To summarise their method, the
study area is divided into strata, and within each stratum a
randomly oriented transect is placed. Individual samples are then
collected at exponential spacings along the transect. However,
analysis of an unbalanced hierarchy is complex. Garrett and
Goss (1980) provided a computer program to tackle the task.
Unfortunately, the method suffers the possibility of returning
negative estimates for some variance components. Spijker et al.
(2005) circumvented the issue by substituting zeros for the
negative estimates. Amore elegant way to ensure valid estimates
of the variance components is through residual maximum
likelihood (e.g. Pettitt and McBratney 1993), although this
technically makes the scheme a hybrid of the design-based and
model-based sampling approaches.

There are other types of design-based sampling scheme
besides those we have outlined above. We refer the reader to de
Gruijter et al. (2006) for a comprehensive treatment.

Model-based approach

The model-based approach evolved through advances in
computing, and the ability to collect and process large amounts of
information quickly. Choosing sampling locations purposively
necessitates the existence of prior knowledge, in the form of a
model. In its least tractable form this model might reside in the
mind of expert. More commonly, we will derive the model
through statistical procedures. For SOC stock arguably the most
relevantmodel is born of geostatistical theory, which is discussed
in detail below.

The advantage of the model-based approach is that
samples can be spread optimally throughout the area of interest
(although this does assume that the model is sensible and can be
extrapolated). Compared with design-based sampling, the
disadvantages of the model-based approach are: (i) the latter is
not as secure a safeguard against bias; and, (ii) the statistical
analyses that accompany themodel-based approach are relatively
complicated, and less prevalent in commercial software. de
Gruijter et al. (2006) note that to gain advantage over the design-
based approach, the model-based approach must satisfy three
conditions: (i) theremust bemany samples; (ii) the target variable
must display spatial autocorrelation; and, (iii) a large proportion
of the samplesmust be taken at spatial intervalsmuch smaller than
the range of the variogram. The concepts of ‘autocorrelation’,
‘variogram’ and ‘range’ are introduced below.

The basic tenet of geostatistical theory is that if you observe
SOC stock at location x in a paddock, then step h= 1m (in some
arbitrary direction) and make another observation, the pair of

recorded values will probably be quite similar. However, if you
walk h= 100m from x and make an observation of SOC stock,
youwill probablyfind that the recordedvalue is quite dissimilar to
the value at x. This is the concept of autocorrelation. Over many
pairs of observations we can compute the average dissimilarity
between each pair (based on half their squared difference) as a
function of h, which is known as the experimental (semi)-
variogram (Webster and Oliver 2001):

�gðhÞ ¼ 1

2nðhÞ
XnðhÞ
i¼1

fzðxiÞ � zðxi þ hÞg2 ð10Þ

where �g(h) denotes the average semi-variance as a function of h;
n(h) is the number of pairs as a function of h; z(xi) is the ith value
of the observed variable; and, z(xi +h) is another observation
of z, located h units from z(xi). The experimental variogram is
usually quite noisy, and, to be useful, has to be idealised with
what is known as an ‘authorised function’, to form the theoretical
variogram. It is the theoretical variogram that lends itself so
readily to the ‘model’ of model-based sampling, in that it
summarises the available knowledge about the spatial variability
of SOC stock in an area of interest. Webster and Oliver (2001)
describe the various authorised functions, how to fit them to
the experimental variogram, and then choose the best theoretical
model. Figure 5 illustrates how the theoretical variogram
summarises the spatial variability of observations under different
amounts of autocorrelation. In each case the authorised
function is a spherical model (Webster and Oliver 2001).When a
process is autocorrelated strongly, as in the top row of Fig. 5,
the observations show a distinct spatial pattern. The variogram of
this process shows that the ‘nugget’ variance component – the
y-intercept – is relatively small. Nugget variance describes
uncorrelated variation, and is due to the combined effects of
measurement error and fluctuations in the process that occur over
intervals smaller than the minimum sampling distance. As the
proportionof nuggetvariance increases, uncorrelatedfluctuations
supersede the autocorrelated fluctuations (the middle and bottom
rowsof Fig. 5). In each of the three cases, the variogram rises from
the nugget variance to a maximum known as the ‘sill’ variance.
If the samplemeanand sample varianceof the observations canbe
assumed constant within the area of interest, the sill variance
theoretically equals the sample variance;when this is not the case,
it indicates that the spatial variability of the process is complex,
and the usermight wish to consult a statistician for advice on how
to proceed. The separation distance at which the sill is reached is
called the ‘range’. Samples separated by distances larger than the
range can be considered independent under the model-based
approach. For simplicity we have ensured that the range of the
three variograms in Fig. 5 is constant at a 30-m distance.

The theoretical variogram relates to purposive sampling
through the interpolation method known as kriging. Kriging is a
type of moving average that interpolates estimates at unsampled
locations, conditional on the values observed at sampled
locations (Webster and Oliver 2001). The moving average is
weighted inversely by the semi-variances between observed
locations, which, as we have seen, are a function of h according
to the model of spatial variation. The uncertainty associated
with a kriging estimate – the kriging variance, analogous to
the estimation variance of the sample mean in design-based
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statistics – depends, not on the values of the observations, but on
the theoretical variogram and on the spatial arrangement of the
sample locations. Therefore, if one is lucky enough to know
the variogram in advance, a set of locations for purposive
sampling can be proposed, and kriging used to ensure that the
kriging variance for the entire area of interest is smaller than
some nominated threshold (McBratney et al. 1981). Often the
variogram is not known in advance of sampling, and must be
gleaned from ameta-analysis, or estimated with a reconnaissance
survey. McBratney and Pringle (1999) surveyed the published
literature for variograms of topsoil attributes, and created
averages that could serve as an initial guess about the spatial
variability of an attribute, before sampling. Pringle and Lark
(2008) updated the averages, and placed those for SOC
concentration (%) and bulk density (g/cm3)—as noted above,
both variables are needed to estimate SOC stock on a mass-per-
area basis—in the context of a ‘linear model of coregionalisation’
(LMCR) (Journel and Huijbregts 1978) (Table 3). A LMCR is a
construct that describes how the theoretical variogram of one
attribute relates to another, through their cross-variogram. Of the
two variables, bulk density has the largest proportion of nugget
variance to sill variance, at 0.25. This reflects the inherent
randomness of bulk density at the scale of a soil core. The LMCR
of SOC concentration and bulk density enables optimisation
of a model-based sampling strategy for both variables
simultaneously. McBratney and Webster (1983a) explored this
idea in the context of the components of soil texture.

In regard to reconnaissance survey,Marchant andLark (2006)
developed an adaptivemethod. An initial theoretical variogram is

computed from a bare minimum of samples in the first phase, and
used to propose a set of optimum sample locations for the second
phase. Following their collection, the second-phase samples are
used to update the variogram, which then optimises the sample
locations for the third phase, and so on. The method could be
extended to cater formore thanonevariable, but cannot escape the
fact that it is suited ideally tovariables that canbemeasured in situ,
or to variables not expected to vary substantially between one
phase of sampling and the next. SOC concentration fails to meet
both of these criteria, as the variable: (i) has to be estimated
through laboratory analysis; and, (ii) has been shown to change
seasonally (Leinweber et al. 1994; Saggar and Hedley 2001). In
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Fig. 5. Spatial variability described by the variogram. Panels on the left show hypothetical observations of a variable
at 100 locations along a transect. Panels on the right show the associated theoretical (standardised) variogram.
The process is autocorrelated strongly in the first row, moderately in the second row, and weakly in the third row.
The range parameter of variogram is 30m in each case.

Table 3. Coregionalisation matrices of topsoil organic carbon
concentration (SOC, units of%2) and bulk density [BD, units of (g/cm3)2]
The authorised function that links the three matrices is a double-spherical

model (Webster and Oliver 2001)

SOC BD

(a) Nugget structure
d0 = 0m SOC 0.009 –0.005

BD – 0.010

(b) 1st autocorrelated structure
d1 = 30m SOC 0.009 –0.005

BD – 0.010

(c) 2nd autocorrelated structure
d2 = 300m SOC 0.090 –0.023

BD – 0.020
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regard to the former, Gehl andRice (2007) reviewed the ability of
proximal sensing to measure SOC content in situ, and concluded
that laboratory techniques will be needed for some time yet.

An alternative reconnaissance method for estimating the
variogram is nested sampling, introduced above. The variance
components of Eqn 9 can be plotted as a function of separation
distance, thus approximating the variogram (Oliver andWebster
1987). Unbalanced schemes are generally favoured because
they allow the concentration of sampling resources at the finest
spatial scales, which are crucial for variogram estimation
(de Gruijter et al. 2006). The studies of Schöning et al. (2006)
and Rossi et al. (2009) both used unbalanced nested schemes
to create variograms of SOC stock, which were then used to
propose optimum model-based sampling schemes. Corstanje
et al. (2007) used the variograms obtained from an unbalanced
nested ANOVA to examine how SOC concentration correlated
with the activity of the urease enzyme, an important component of
N-cycling. They found that, for a pasture site, the variables were
correlated only weakly, and that the correlation did not change
significantly with spatial scale.

We mentioned above how the LMCR of SOC concentration
and bulk density (Table 3) enables optimisation of amodel-based
strategy for simultaneous sampling of both variables. Figure 6
presents an example. Because there are two variables, we are
dealing with cokriging variance rather than kriging variance
(Webster and Oliver 2001). Central to optimisation is the
definition of an objective function, i.e. a quantity that we want to
minimise (or perhaps maximise) through the action of sampling.
In a univariate context, vanGroenigen et al. (1999) used themean
kriging variance across the study site as an objective function, on
the basis that kriging variance represents uncertainty, which,
obviously, we want to minimise. A more rigorous objective

functionmight be conceived (e.g. Lark 2002), butwehave chosen
here to follow the idea of van Groenigen et al. (1999). At any one
location in the study area there will be two values of cokriging
variance, one for each variable. The objective function must be a
single value. To integrate the two variables we computed the
proportion of cokriging variance to sill variance, averaged over
both variables, over the study site. The optimisation procedure
involved: (i) proposing a set of n= 20 initial sampling locations
for both variables, based on stratified random sampling by
geographic coordinates (Fig. 4b) (n.b. it is not necessary to specify
the same number of samples for both variables, but we have done
so here for illustrative purposes); (ii) calculating the objective
function based on the LMCR and the proposed sampling
locations; and (iii) using spatial simulated annealing (van
Groenigen et al. 1999) to minimise the objective function. The
initial proposed locations returned mean cokriging variances of
0.080%2 and 0.037 (g/cm3)2 for SOC concentration and bulk
density, respectively. The initial value of the objective function
was 0.828. Following optimisation the samples are spread evenly
throughout the study site (Fig. 6), on a roughly triangular grid.
van Groenigen et al. (1999) demonstrated the same effect, which
reflects the fact that a triangular grid is the most efficient way
to implement systematic sampling (McBratney et al. 1981).
The mean cokriging variances reduced to 0.068%2 and 0.034
(g/cm3)2, for SOC concentration and bulk density, respectively,
while the final value of the objective function was 0.745.

Number of samples needed to estimate SOC

We have seen above the basic sampling arrangements that might
be used by the design-based approach.We have also seen how the
model-based approach might be used to optimise a sampling
arrangement for a study area. But howmany samples do we need
to take?Wemust ensure we have adequate samples for inference,
but we do not want to be wasteful of resources. Both sampling
approaches provide answers to this question.

Design-based approach

Let us say that we need to estimate the mean SOC stock for an
area of interest. The optimum number of samples to collect will
depend on the sample variance of SOC stock, and on what sort
of uncertainty we can tolerate. Usually we know in advance, at
least roughly, the tolerable uncertainty. Against the uncertain
background we need to sample enough locations to ensure that
we can detect a case of SOC stock departing from the mean. The
probability of correct detection is known as ‘statistical power’
(Snedecor andCochran1989). Statistical power, in this context, is
a function of four quantities: (i) the number of samples; (ii) the
tolerable uncertainty, scaled by the square-root of the sample
variance; (iii) the significance level (a); and (iv)whether the test is
one-tailed or two-tailed. For a given dataset, the only variablewill
be the number of samples; the rest are constant. The choice of (iii)
and (iv) are somewhat arbitrary, although two tailed-tests are
generally used at a= 0.05.

Consider the simple random sampling scheme in Fig. 4a. In
implementing this strategywewould observe SOC concentration
and bulk density (g/cm3) at all 10 locations, then make the
necessary conversion to SOC stock. In our experience this latter
variable has a log-Normal distribution, but statistical power

Mean CKV: SOC = 0.068 (%)2; BD = 0.034 (g/cm3)2;  Objective function = 0.745
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Fig. 6. Model-based sampling scheme that minimises the mean cokriging
variance for soil organic carbon concentration and bulk density. We have
assumed that both variables will be collected at the same locations, but this is
not essential.
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requires a Normal distribution. Therefore, we transform the
data to SOC [log(Mg/ha)]. We used the LMCR in Table 3, in
conjunction with the method of Lark (2002), to generate a
realisation of SOC [log(Mg/ha)] for the paddock in Fig. 2. The
mean and variance of the realisation were m = 3.762 log(Mg/ha),
and s2 = 0.141 [log(Mg/ha)]2, respectively, although we could
never know this in reality.We then sampled the area according to
the scheme in Fig. 4a, where we found that the sample mean was
ms= 3.840 log(Mg/ha), and the sample variance was s2

s = 0.099
[log(Mg/ha)]2. Following Larsen et al. (2001), we used tolerable
uncertainty of 10% above and below the sample mean. Snedecor
andCochran (1989) present the computational steps for statistical
power. For a particular number of samples we start by finding
the values of ms that constitute a significant deviation: at
a= 0.05, a significant deviation lies outside the interval
ms� 1.96

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
s ðmsÞ

p
, which corresponds to ms < 3.645 and

ms > 4.035 in our example. We then calculate the probability
of ms being outside this interval when the mean is at the limit
of tolerance, ms+ 0.1ms= 4.224. For ms= 3.645 the normal
deviate is zl = (3.645�4.224)/

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
s ðmsÞ

p
=�5.807. For ms= 4.035

the normal deviate is zu = (4.035�4.224)/
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
s ðmsÞ

p
=�1.896.

The probabilities associated with these deviates are P(zl) < zl� 0
andP(zu)> zu = 0.971, respectively. These quantities are summed
to yield the statistical power to detect a deviation greater than
the tolerable uncertainty with 95% confidence (two-tailed test).
We repeated this process for various sample sizes, and
plotted the results (Fig. 7). Also shown in Fig. 7 are the statistical
power functions for the stratified and systematic sampling
schemes shown in Fig. 4b and d, respectively, where we
observed mst= 3.683 log(Mg/ha), s2

st = 0.087 [log(Mg/ha)]2,
msy= 3.748 log(Mg/ha), and s2

sy = 0.156 [log(Mg/ha)]2 (where,
for simplicity, the latter was calculated according to Eqn 2).
A statistical power of 0.8 is used conventionally as a benchmark
for minimum sampling effort (Lenth 2001). Simple random

sampling and stratified random sampling both require 5 samples
to estimate mean SOC stock with a statistical power of 0.8, while
systematic random sampling requires 8 samples. These numbers
serve only as an illustrative example, and should not be construed
as a recommendation.

An alternative expression of statistical power is the minimum
detectable difference (MDD), which, to paraphrase Garten and
Wullschleger (1999), is defined as the smallest difference that can
be detected between means with a certain amount of confidence.
The conventional formula for determining the optimum sample
size to estimate a mean is (Cline 1944; Snedecor and Cochran
1989; Zar 1999):

n ¼
s2t2a=2;ðn�1Þ

d2
ð11Þ

wheres2 is the sample variance; t2a=2;ðn�1Þ is Student’s t-value at a
confidence level of a (two-sided), with n�1 degrees of freedom;
and, d is half the width of the desired confidence interval. The
value of n has to be determined iteratively because it appears
on both sides of the equation (Zar 1999). Equation 11 can be
reformulated in terms of statistical power (Zar 1999):

n ¼ s2

d2
ðta=2;ðn�1Þ þ tð1�bÞ;ðn�1ÞÞ2 ð12Þ

where 1�b is the desired statistical power (say, 0.8). TheMDD is
obtained by rearranging Eqn 12 (Zar 1999):

MDD ¼
ffiffiffiffiffi
s2

n

r
ðta=2;ðn�1Þ þ tð1�bÞ;ðn�1ÞÞ2 ð13Þ

The equation needs to be modified if computing the MDD
for multiple treatments; see Zar (1999) for details. The study of
Garten and Wullschleger (1999), who examined SOC stocks
under different types of plant cover, is often cited for its use of
MDD. They showed how the MDD decreases asymptotically
with increasing sample size.

Finally, it is possible to derive a model-based solution for
optimal design-based sampling, provided that a variogram of the
target variable can be used as prior knowledge (de Gruijter et al.
2006). The first step is to compute themean semi-variance for the
(two-dimensional) area of interest, B (Webster and Oliver 2001):

�gðB;BÞ ¼ 1

jB2j
ð
B

ð
B

gðx� x0Þdxdx0 ð14Þ

where g(x�x0) represents the theoretical semi-variance at the
separation distance between a pair of locations x and x0. The
quantity �g(B, B) is known as the ‘dispersion variance’ in
geostatistical terminology. The integration is usually done
numerically over a large number of pairs. If simple random
sampling is the desired arrangement, the estimation variance for
the observations will be (after de Gruijter et al. 2006):

s2
s ðmsÞ ¼

�gðB;BÞ
n

ð15Þ

If stratified random sampling is desired, the estimation
variance will be:

s2
stðmstÞ ¼

XH
h¼1

a2h �gðb; bÞ ð16Þ
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Fig. 7. Statistical power to detect a deviation within 10% of the sample
mean, with 95% confidence (two-tailed test): solid line = simple random
sampling (Fig. 4a); dashed line = random sampling stratified by geographical
coordinates (Fig. 4b); dotted line = systematic random sampling (Fig. 4d).
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where �g(b, b) denotes the dispersion variance for the hth stratum.
Under systematic random sampling the estimation variance will
be:

s2
syðmsyÞ ¼ �gðB;BÞ � �gðb; bÞ ð17Þ

where�g(b,b) denotes here the dispersion variance of the proposed
locations in the grid. (Actually, multiplying s2

sy(msy) by n yields
anotherwayof approximating the sample varianceof a systematic
random design, besides Eqn 2 and the method of balanced
differences.)

Model-based approach

The method of McBratney et al. (1981) for optimising a model-
based sampling scheme uses a pre-specified maximum kriging
variance to propose n, arranged in a grid pattern. Rossi et al.
(2009) recently used this method to derive optimum sampling
schemes for SOC stocks in Tanzanian forests. But because many
soil surveyors know in advance roughly howmany samples they
can afford to collect, it is arguably better to reverse the method of
McBratney et al. (1981). This was done by McBratney and
Webster (1983b), who showed how, under the model-based
approach, a geostatistical analogue of the classical estimator in
Eqn 11 returned relatively efficient estimates of the optimum n for
a study area. The approach was adopted recently by Worsham
et al. (2010) to describe SOC stocks associated with different
types of land cover in a forest in Georgia, USA. Mooney et al.
(2007) proposed amethod to optimise sampling for SOC stock by
reducing the estimate of variance, while circumventing the need
for a formal geostatistical analysis. They argued that this was
necessary on the (rather flimsy) basis that geostatistics requires
specialised software. To reduce variance they first had to infer a
value for the range of spatial correlation. In our opinion thework-
around needed to avoid computing a variogram is not worth the
trouble.

Power analysis can also be used with the model-based
approach. Schöning et al. (2006) examined variograms of SOC
stock, then substituted estimates of semi-variance at particular lag
distances to compute the MDD. Stroup (2002) detailed a method
for power analysis under a model-based approach, based on the
output of a linearmixedmodel (Lark andCullis 2004). It is not our
intention to describe the details of a linear mixed model, other
than to say that it is a regression model that accounts explicitly
for spatial variability by simultaneously estimating regression
parameters and the parameters of the theoretical variogram. The
key advantage of a linearmixedmodel is that, as under the design-
based approach, one can test hypotheses about the regression
coefficients. The disadvantages of the linear mixed model are
that the method is relatively complex, computationally intense,
and relies on iterative fitting that, if done without care, might
return a suboptimal solution. Kravchenko et al. (2006) followed
the method of Stroup (2002) to find the optimum sample size to
describe total soil C content. They found that, for a particular
sample size, MDD decreased as the range of the variogram
increased.

Wehave seen inFig. 6howa theoretical variogramcanbeused
in conjunction with simulated annealing to optimise a model-
based sampling scheme. In that example, we assumed from

simplicity that n= 20 for both variables but noted that this did not
have to be the case. To find the optimum number of samples for
each variable, the method we outlined above could be run for
different combinations of n for both SOC concentration and
bulk density, and the most satisfactory outcome chosen. A more
elegant approach would be to explicitly incorporate n as a
parameter to optimise.

Sampling in space and time

In the above discussion of adequate sample sizes we have
purposefully conveyed only the ‘spatial’ component of sampling.
But what about the ‘time’ component? Assuming that we sample
adequately to establish the baseline status of SOC stock, we will
ultimatelywant to sample adequately todetect a changeover time.

Papritz and Webster (1995a) provided a theoretically
rigorous treatment of how to estimate change under both the
design-based approach and the model-based approach, and
provided some pointers on how to choose the right approach for
a certain situation. de Gruijter et al. (2006) discuss four basic
arrangements for space-time sampling: (i) static (spatial positions
are fixed, but temporal positions change); (ii) synchronous
(temporal positions are fixed, but the spatial positions change
such that they might never be revisited); (iii) static-synchronous
(a combination, most easily related as a space-time grid); and,
(iv) rotational (a compromise, where the spatial positions
sampled at a particular time are partially replaced at the next
sampling time). A static design, in the strictest sense, cannot be
implemented for SOC stocks because of destructive sampling,
i.e. we can never sample the same location twice. For general
flexibility and ease of statistical inference, de Gruijter et al.
(2006) recommend the synchronous pattern; however, each
pattern has its own advantages and disadvantages, which depend
somewhat on the nature of the variable being monitored, and on
the objective of themonitoring programme.We refer the reader to
de Gruijter et al. (2006) for further details about calculating
sample means, sample variances, and estimation variances under
each arrangement.

Design-based approach

In the context of design-based analysis, it is recommended that,
when revisiting an already sampled study area with the intention
of detecting SOC change, one should sample as close as possible
to the original baseline locations. This approximates the ‘static’
approach described above, but might also be termed ‘temporally
paired sites’ (Conteh 1999). Such a scheme increases the
precision of the estimates of change (Papritz andWebster 1995b;
Lark 2009). Note the words: estimates of change. What makes
change detection particularly difficult is that we are interested in
neither the baseline observations nor the revisit observations;
rather, we are interested in their difference,Y, which is distributed
as (Lark 2009):

Y �ðmY ;s
2
Y þ 2s2

e þ s2
LÞ ð18Þ

where mY is the mean difference, and s2
Y þ 2s2

e þ s2
L represents

the total variance of Y. The variance component s2
Y is the sample

variance of Y; the variance component s2
e represents sampling

and measurement errors accrued in the baseline and revisit
observations (multiplied by 2 because they are independent in
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space and time); and, the variance component s2
L represents

location error (necessary due to destructive sampling). Note that
estimation of s2

e entails a proportion of replicated laboratory
analysis for both the baseline survey and the revisit. It is unlikely
(in the extreme) that the term s2

Y þ 2s2
e þ s2

L will equal the
sample variance of the baseline observations. The importance of
this cannot be overstated: to quote Lark (2009), ‘Soil scientists
and the administrators who sponsor surveys should not fall into
the trap of assuming that a survey planned to estimate status will
also suffice for estimating change or that the requirements for
estimating change can be computed in a simple way from data on
status alone’. Similar sentiments were echoed by deGruijter et al.
(2006), who noted that rotational sampling patterns are relatively
efficient for estimating the current mean of a target variable, but
static synchronous patterns are relatively efficient for detecting
change in the mean. Lark (2009) recommended adopting
stratified reconnaissance sampling, where only a proportion of
baseline sites are initially revisited in any one stratum. Strata that
show a large change could then sampled more intensively and
vice versa.

At this point it is worth returning briefly to MDD (Eqn 13).
Garten and Wullschleger (1999) applied the method to assess
SOCstock spatially, but speculated that it couldbeused todetect a
change in SOC stock. Many studies have since promoted MDD
for the elucidation of change (for example, Conant et al. 2003;
Kucharik et al. 2003; Poussart et al. 2004; Homann et al. 2008;
Heim et al. 2009). Schöning et al. (2006) did the same in termsof a
model-based analysis. But as none of these studies considered the
implications of Eqn 18 they have used an incorrect estimate of
variance, and so their conclusions are flawed.

We refer the reader to Stewart-Oaten et al. (1992) for further
discussion of the statistical pitfalls of estimating change in paired
samples, collected under the design-based approach.

Model-based approach

Papritz and Flühler (1994) presented a model-based method for
estimating the change of a spatially autocorrelated target quantity
between two dates, say baseline sampling and a revisit. The
method is a modification of cokriging. As such it requires that the
observed variables associated with each date are described by an
LMCR (Table 3). However, due to the necessity for destructive
sampling that accompanies estimates of SOC stock, the standard
cross-variogram in the LMCR will have to be replaced with
the pseudo-cross-variogram (Myers 1991). There are three
advantages to the method of Papritz and Flühler (1994). First,
because the temporally paired samples are not collocated,
cokrigingwill always return amore precise estimate of the change
than kriging the two variables independently and subtracting one
interpolated surface from another (de Gruijter et al. 2006). The
second advantage is that the LMCR can be used to optimise a
model-based sampling scheme to detect further change in SOC
stock. The third advantage relates to the concept of geostatistical
blocking (Webster and Oliver 2001). Geostatistical blocking
should not be confused with the blocking that is applied to
experimental designs. Through geostatistical blocking the user
can effectively scale the predictions of the method of Papritz and
Flühler (1994) to represent global estimates of the change in the
mean (as opposed to the local estimates that would usually be

returned). This is an example of the model-based approach
lending itself to a task that many would associate readily with the
design-based approach.

Krige’s relation

Soil monitoring programmes are expensive to maintain. An
obvious way to reduce costs is to limit the amount of time spent
travelling from site to site. Thus, the financial benefit of sampling
in a relatively small area, say 25� 25m, is self-evident. This has
the added advantage of being easily communicated, which
increases its adoptability as a standard procedure. Advocates of
this approach argue that, byminimising spatial effects, the chance
of detecting a changeover time is increased.Unfortunately, due to
the geostatistical principle of Krige’s relation, the method is
flawed if wishing to describe temporal change over an area larger
than 25� 25m.

Let us say that we have been asked to estimate the baseline
mean SOC stock for a paddock. This paddock is part of a larger
property. From a random part of the paddock, we choose a site for
the 25� 25-m area, from which we will collect 10 samples. We
denote the property, paddock and sample area as R, B, and b,
respectively. In Eqn 14 we described how to compute the
dispersion variance for an area of interest, B. The same formula
applies for thedispersionvariance associatedwith eachofR andb.
Krige’s relation describes how the dispersion variance is
partitioned according to the spatial scale of interest (afterWebster
and Oliver 2001), that is:

s2ðb 2 RÞ ¼ s2ðb 2 BÞ þ s2ðB 2 RÞ ð19Þ
where s2 (b2R) = �g(R, R)��g(b, b), s2 (b2B) = �g(B, B)��g(b, b),
and s2(B2R) = �g(R, R)��g(B, B). The term s2 (b2B) is the key
here, because it relates the uncertainty of the sample mean of the
paddock, estimated under a particular sampling pattern.

What is the implication of Krige’s relation? For the
hypothetical paddock of Fig. 4 we demonstrate in Table 4 how
the s2(b2B) component of Eqn 19 changes according to
two contrasting sampling arrangements: (i) selecting n= 10
locations from within a b = 25� 25-m area within the paddock;
and, (ii) selecting n = 10 locations from the entire paddock
(i.e. b=B� 1000� 1000-marea).We assume that the theoretical
variogram is described by a spherical function with a sill of 1 unit
and a nugget variance of 0.5 units, but alter the range parameter to
take values of a = {5, 10, 30, 50, 100, 1000} (in units of m). For
simplicity we have used simple random sampling (Fig. 4a) to

Table 4. Dispersion variance (uncertainty) of a hypothetical variable,
when estimated from samples spread over an area b, within a paddock

of B� 1000� 1000m

Range (m) b
25� 25m 1000� 1000m

5 0.115 0.098
10 0.143 0.098
30 0.310 0.098
50 0.397 0.097
100 0.468 0.094
1000 0.347 0.085
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derive the estimates of s2 (b2B), although the same principle
applies to anydesign-basedormodel-basedarrangement.There is
some fluctuation in the values of s2 (b2B) (Table 4), inherited
from the process of random site selection in b, but the general
pattern is clear: Krige’s relation implies that we obtain relatively
precise estimates of the paddock mean by sampling as widely as
possible within the paddock. This is a simple and sensible
message, but it is easily supplanted by the desire for convenience,
which, as noted by de Gruijter et al. (2006), creates samples with
weak statistical properties.

Further considerations for optimum sampling

In addition to statistical issues, two important considerations
relate to: (i) sample compositing; and, (ii) the temporal variability
of SOCand its constituent pools. Sample compositing (‘bulking’)
has been used by numerous authors in order to reduce lateral
variability (e.g. Webster and Burgess 1984; Dalal and Mayer
1986b; Studdert et al. 1997; Brus et al. 1999; Conant et al. 2003;
Harms and Dalal 2003). Compositing involves collecting several
soil cores in close proximity, then mixing the cores together to
form a single sample. The effect of compositing is to smooth
short-range fluctuations, which increases the chance of detecting
longer-range treatment differences. A variogram can be used as
prior knowledge to help decide the optimum way in which
samples should be composited (Webster and Burgess 1984). The
principal reason for compositing is that analytical costs are
reduced. A user must be aware of the implicit assumption that the
composite sample, upon analysis, must yield the same value as
the mean of the individual cores that comprise the composite
(disregarding sampling and measurement errors) (de Gruijter
et al. 2006). Fortunately, this is the case for both SOC
concentration and bulk density. (A notable soil attribute to be
affected by this assumption is pH: due to the log. transform
applied to the activity of the H+ ions a composite sample of soil
pH will not equal the mean of individual observations.)

In regard to temporal variability, we expect that a
management-induced change to SOC stock will, in general,
manifest itself slowly over several years. Somemay consider this
to be too long. Encouragingly, in several studies it has been found
that the particulate fraction of SOCor light-fraction C (labile C) is
lost preferentially under a change in management (Chan 1997;
Franzluebbers and Stuedemann 2003; Dalal et al. 2005).
Research is needed to verify whether this applies to northern
Australian rangeland conditions. If so, then concentrating
analytical effort on this fraction of SOC might expedite the
process of detecting change.

FollowingConteh (1999), VandenBygaart (2006), andGoidts
et al. (2009), some additional considerations for sampling for
SOCstock include: (i)whether it is better to sample byfixeddepth
intervals (IPCC default value is a 0–0.3-m depth) or sample by
horizon; (ii) the sampling process cannot be streamlined by
assuming that bulk densities or SOC pools such as labile C are
temporally constant (consider sampling at the same time of
the year); (iii) clay particles play an important role in C cycling
(Sollins et al. 1996), and their concentration should not be
assumed temporally stable, particularly in areas prone to erosion;
(iv) plant litter and roots are importantC sinks (contribute to labile
C pool) and should be sampled concomitantly with soil; (v) rocky

soil is a major source of uncertainty due to its influence on bulk
density – affected areas may require estimation by spatial
interpolation or by a calibrated pedotransfer function; and (vi) the
more background information one collects about a site, the better
(two of the more obvious for rangelands are historical stocking
rates and rainfall). In addition, the background information
gathered from electromagnetic surveys (clay content, salinity
etc.), biomass and yield maps (Dang et al. 2009) and remote
sensing (Fisher et al. 2009) can be employed to stratify soil
sampling. An example of utilising the variability in long-term
ground cover for designing a sampling scheme is shown in Fig. 4.

Sampling and analytical costs and time required to estimate
SOC stocks (and other soil properties) may be reduced by
employing emerging technologies for in situ estimation
(surrogate measures) of soil C (Gehl and Rice 2007). These
techniques include laser-induced breakdown spectroscopy
(Ebinger et al. 2003), inelastic neutron scattering (Wielopolski
et al. 2001), visible-near infrared spectroscopy (Morgan et al.
2009), and remote sensing for surface cover and plant biomass,
normalised difference vegetation index (NDVI), and hence
potential C input (Chen et al. 2000).

Conclusion

We have discussed the nature and the causes of spatial and
temporal variability in SOC stock and SOC pools, and the
statistical issues that arisewhen theyare sampled.At thevery least
we hope that we have shown how statistical considerations
pervade every aspect of sampling, and enlightened the reader to
the contrast between the design-based approach and the model-
based approach, and how they might apply to his or her own
research.

McKenzie et al. (2000) proposed a broad soil sampling
strategy for terrestrial C accounting to support the National
Carbon Accounting System. This strategy recommended a
stratified random sampling scheme, with a minimum of 4
replicates per strata. Due to a dearth of information, it is not yet
known whether this is too few or too many for Australian
rangelands. Ultimately, we should be able to detect, with the
confidence afforded by statistical rigour, whether the SOC stock
and SOC pools at a certain location have increased or decreased
due to management effect or following land-use change in
comparison with a baseline value. MDD is an appropriate tool by
which this can be achieved. However, before we arrive at this
goal, the discussion above has highlighted several important
issues:
(i) At the outset, which approach dowewant to follow, design-

based or model-based? The ultimate objective is to
determine a change in the mean SOC stock over some
aggregated area (e.g. a paddock, a farm, a region). This
implies that we are interested in global estimation.
Consequently, the design-based approach might be
preferred, provided of course that the principle of random
site selection can be adhered to strictly. We have seen that
a model-based approach can also lend itself to global
estimation of change. If random site selection cannot be
guaranteed then the model-based approach is the sole
option, although it will require a greater sampling intensity
than the design-based approach.
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(ii) Sample as widely as possible with the unit of interest
(respecting, of course, the principles of the particular
approach that is being used). This principle will ensure that
the mean is estimated precisely, and applies to intensively
grazed dairy pasture paddocks aswell as extensively grazed
rangeland paddocks. If working under the model-based
approach, we recommend that, at a proportion of sampling
sites, an additional, adjacent sample is collected. These
additional samples will help improve the accuracy of the
variogram of the target variable, which will, in turn,
improve future sampling schemes.

(iii) A proportion of the samples must be replicated during
laboratory analysis, in order to quantify laboratory
measurement error. It is easy to overlook this consideration
but it is critically important when making inference about
change.

(iv) Temporally paired sites are the most efficient way of
detecting a change in SOC stock, but destructive sampling
and cumulative measurement errors decrease our ability to
detect change. Tominimise the effect of seasonal variation,
especially for labile C pools, we recommend that revisit
samples are collected at the same timeof year as the baseline
samples.

(v) Research is needed to establish an appropriate MDD for
Australian rangelands.

Acknowledgments

We thankMeat andLivestockAustralia for their partial fundingof this review.
This review has benefitted immensely fromnumerous constructive comments
and suggestions fromBeverley Henry,MickQuirk, Adrian Chappell and two
anonymous reviewers and the journal editor.

References

Amundson, R. (2001). The carbon budget in soils. Annual Review of
Earth and Planetary Sciences 29, 535–562. doi:10.1146/annurev.
earth.29.1.535

Amundson, R., Wang, Y., Chadwick, O., Trumbore, S., McFadden, L.,
McDonald, E., Wells, S., and Deniro, M. (1994). Factors and processes
governing the 14C content of carbonate in desert soils. Earth and
Planetary Science Letters 125, 385–405. doi:10.1016/0012-821X(94)
90228-3

Baldock, J. A., and Skjemstad, J. O. (1999). Soil organic carbon/soil organic
matter. In: ‘Soil Analysis: An Interpretation Manual’. (Eds K. I. Peverill,
L. A. Sparrow and D. J. Reuter.) pp. 159–170. (CSIRO Publishing:
Melbourne.)

Bastin,G. (2008). ‘Rangelands2008–Taking thePulse.’ (Publishedonbehalf
of the ACRIS Management Committee by National Land and Water
Resources Audit: Canberra.)

Batjes, N. H. (1996). Total carbon and nitrogen in the soils of the world.
European Journal of Soil Science 47, 151–163. doi:10.1111/j.1365-
2389.1996.tb01386.x

Beeton, R. J. S., Buckley, K. I., Jones, G. J., Morgan, D., Reichelt, R. E., and
Dennis, T. (2006). Australia State of the Environment 2006, Independent
Report to theAustralianGovernmentDepartment of the Environment and
Heritage, Canberra, Australia.

Bird, S. B., Herrick, J. E., and Wander, M. M. (2001). Exploiting
Heterogeneity of Soil Organic Matter in Rangelands: Benefits for
Carbon Sequestration. In: ‘The Potential of U.S. Grazing Lands to
Sequester Carbon andMitigate the Greenhouse Effect’. (Eds R. F. Follet,
J. M. Kimble and R. Lal.) pp. 121–138. (CRC Press: Boca Raton, FL.)

Bisigato, A. J., Laphitz, R. M. L., and Carrera, A. L. (2008). Non-linear
relationships between grazing pressure and conservation of soil resources
in Patagonian Monte shrublands. Journal of Arid Environments 72,
1464–1475. doi:10.1016/j.jaridenv.2008.02.016

Bradstock, R. A. (2010). A biogeographic model of fire regimes in Australia:
current and future implications. Global Ecology and Biogeography 19,
145–158. doi:10.1111/j.1466-8238.2009.00512.x

Brus, D. J., Spätjens, L. E. E. M., and de Gruijter, J. J. (1999). A sampling
scheme for estimating the mean extractable phosphorus concentration of
fields for environmental regulation.Geoderma89, 129–148. doi:10.1016/
S0016-7061(98)00123-2

Burke, I. C., Elliott, E. T., and Cole, C. V. (1995). Influence of macroclimate,
landscape position, and management ion soil organic matter in
agroecosystems. Ecological Applications 5, 124–131. doi:10.2307/
1942057

Burke, I. C., Yonker, C. M., Parton, W. J., Cole, C. V., Schimel, D. S., and
Flach, K. (1989). Texture, climate, and cultivation effects on soil organic
matter content in U.S. grassland soils. Soil Science Society of America
Journal 53, 800–805.

Cambardella, C. A., and Elliott, E. T. (1992). Particulate soil organic-matter
changes across a grassland cultivation sequence. Soil Science Society
of America Journal 56, 777–783.

Cerling, T. E. (1984). The stable isotopic composition of modern soil
carbonate and its relationship to climate. Earth and Planetary Science
Letters 71, 229–240. doi:10.1016/0012-821X(84)90089-X

Chan, K. Y. (1997). Consequences of changes in particulate organic carbon
in vertisols under pasture and cropping. Soil Science Society of America
Journal 61, 1376–1382.

Chen, F., Kissel, D. E., West, L. T., and Adkins, W. (2000). Field-scale
mapping of surface soil organic carbon using remotely sensed imagery.
Soil Science Society of America Journal 64, 746–753.

Cline, M. G. (1944). Principles of soil sampling. Soil Science 58, 275–288.
doi:10.1097/00010694-194410000-00003

Coetsee, C., Bond,W. J., and February, E. C. (2010). Frequent fire affects soil
nitrogen and carbon in an African savanna by changing woody cover.
Oecologia 162, 1027–1034. doi:10.1007/s00442-009-1490-y

Conant, R. T., and Paustian, K. (2002). Spatial variability of soil organic
carbon in grasslands: implications for detecting change at different scales.
Environmental Pollution 116, S127–S135. doi:10.1016/S0269-7491(01)
00265-2

Conant, R. T., Smith, G. R., and Paustian, K. (2003). Spatial variability of soil
carbon in forested and cultivated sites: implications for change detection.
Journal of Environmental Quality 32, 278–286.

Conteh, A. (1999). Discussion paper 3: evaluation of the paired site
approach to estimating changes in soil carbon. In: ‘Estimation of changes
in soil carbon due to changed land use’. Technical Report No. 2.
(Ed. Webbnet Resource Services Pty. Ltd) pp. 65–79. (National Carbon
Accounting System Technical Report, Australian Greenhouse Office:
Canberra.)

Corre, M. D., Schnabel, R. R., and Stout, W. L. (2002). Spatial and seasonal
variation of gross nitrogen transformations and microbial biomass in a
Northeastern US grassland. Soil Biology & Biochemistry 34, 445–457.
doi:10.1016/S0038-0717(01)00198-5

Corstanje, R., Schulin, R., and Lark, R. M. (2007). Scale-dependent
relationships between soil organic carbon and urease activity. European
Journal of Soil Science 58, 1087–1095. doi:10.1111/j.1365-2389.
2007.00902.x

Cresswell, H. P., and Hamilton, G. J. (2002). Bulk density and pore space
relations. In: ‘Soil Physical Measurement and Interpretation for Land
Evaluation’. (Eds N. McKenzie, K. Coughlan and H. Cresswell.)
pp. 35–58. (CSIRO Publishing: Melbourne.)

Dalal, R. C. (1998). Soil microbial biomass – what do the numbers really
mean? Australian Journal of Experimental Agriculture 38, 649–665.
doi:10.1071/EA97142

242 The Rangeland Journal D. E. Allen et al.

dx.doi.org/10.1146/annurev.earth.29.1.535
dx.doi.org/10.1146/annurev.earth.29.1.535
dx.doi.org/10.1016/0012-821X(94)90228-3
dx.doi.org/10.1016/0012-821X(94)90228-3
dx.doi.org/10.1111/j.1365-2389.1996.tb01386.x
dx.doi.org/10.1111/j.1365-2389.1996.tb01386.x
dx.doi.org/10.1016/j.jaridenv.2008.02.016
dx.doi.org/10.1111/j.1466-8238.2009.00512.x
dx.doi.org/10.1016/S0016-7061(98)00123-2
dx.doi.org/10.1016/S0016-7061(98)00123-2
dx.doi.org/10.2307/1942057
dx.doi.org/10.2307/1942057
dx.doi.org/10.1016/0012-821X(84)90089-X
dx.doi.org/10.1097/00010694-194410000-00003
dx.doi.org/10.1007/s00442-009-1490-y
dx.doi.org/10.1016/S0269-7491(01)00265-2
dx.doi.org/10.1016/S0269-7491(01)00265-2
dx.doi.org/10.1016/S0038-0717(01)00198-5
dx.doi.org/10.1111/j.1365-2389.2007.00902.x
dx.doi.org/10.1111/j.1365-2389.2007.00902.x
dx.doi.org/10.1071/EA97142


Dalal, R.C., andCarter, J. O. (2000). Soil organicmatter dynamics and carbon
sequestration in Australian tropical soils. In: ‘Global Climate Change
and Tropical Ecosystems’. Advances in Soil Science. (Eds R. Lal,
J. M. Kimble and B. A. Stewart.) pp. 283–314. (CRC Press: Boca Raton,
FL.)

Dalal, R. C., and Chan, K. Y. (2001). Soil organic matter in rainfed cropping
systems of the Australian cereal belt. Australian Journal of Soil Research
39, 435–464. doi:10.1071/SR99042

Dalal, R. C., Harms, B. P., Krull, E., and Wang, W. J. (2005). Total organic
matter and its labile pools following mulga (Acacia aneura) clearing for
pasture development and cropping 1. Total and labile carbon. Australian
Journal of Soil Research 43, 13–20. doi:10.1071/SR04044

Dalal, R. C., and Mayer, R. J. (1986a). Long-term trends in fertility of soils
under continuous cultivation and cereal cropping in southernQueensland.
I. Overall changes in soil properties and trends in winter cereal yields.
Australian Journal of Soil Research 24, 265–279. doi:10.1071/
SR9860265

Dalal, R. C., and Mayer, R. J. (1986b). Long-term trends in fertility of soils
under continuous cultivation and cereal cropping in southernQueensland.
II. Total organic carbon and its rate of loss from the soil profile.Australian
Journal of Soil Research 24, 281–292. doi:10.1071/SR9860281

Dang, Y. P., Dalal, R. C., Darr, S., Biggs, A. J. W., Moss, J., and Orange, D.
(2009). Spatial variability of subsoil constraints in north-easternAustralia.
In: ‘Proceedings of the Surveying and Spatial Sciences Institute
Biennial International Conference’. (Eds B. Ostendorf, P. Baldock,
D. Bruce, M. Burdett and P. Corcoran.) pp. 1217–1229. (Surveying &
Spatial Sciences Institute: Adelaide.)

de Gruijter, J. J., Brus, D. J., Bierkens, M. F. P., and Knotters, M. (2006).
‘Sampling for Natural Resource Monitoring.’ (Springer: The
Netherlands.)

Don, A., Schumacher, J., Scherer-Lorenzen, M., Scholten, T., and Schulze,
E. D. (2007). Spatial and vertical variation of soil carbon at two grassland
sites – implications for measuring soil carbon stocks. Geoderma 141,
272–282. doi:10.1016/j.geoderma.2007.06.003

Dormaar, J. F., Johnston, A., and Smoliak, S. (1977). Seasonal variation in
chemical characteristics of soil organic matter of grazed and ungrazed
mixed prairie and fescue grassland. Journal of Range Management
30, 195–198. doi:10.2307/3897467

Drees, L. R.,Wilding, L. P., Smeck,N. E., and Senkayi, A. L. (1989). Silica in
soils: quartz and disordered silica polymorphs. In: ‘Mineral in Soil
Environments’. 2nd edn. (Eds J. B. Dixon and S. B.Weed.) pp. 471–552.
(Soil Science Society of America: Madison, WI.)

Ebinger,M.H.,Norfleet,M.L.,Breshears,D.D.,Cremers,D.A., Ferris,M. J.,
Unkefer, P. J., Lamb, M. S., Goddard, K. L., and Meyer, C. W. (2003).
Extending the applicability of laser-induced breakdown spectroscopy for
total soil carbon measurement. Soil Science Society of America Journal
67, 1616–1619.

Fisher, P. D., Abuzar, M., Best, F., and Rab, M. A. (2009). Advances in
precision agriculture in south-easternAustralia, Part I: Amethodology for
the combined use of historical paddock yields and normalised difference
vegetation index to simulate spatial variation in cereal yields. Crop &
Pasture Science 60, 844–858. doi:10.1071/CP08347

Follett, R. F. (2001). Organic carbon pools in grazing land soils. In: ‘Potential
of US Grazing Lands to Sequester Carbon and Mitigate the Greenhouse
Effect’. (Eds R. F. Follet, J. M. Kimble and R. Lal.) pp. 121–138. (CRC
Press: Boca Raton, FL.)

Franzluebbers, A. J., and Stuedemann, J. A. (2003). Bermudagrass
management in the southern piedmont USA. III. Particulate and
biologically active soil carbon. Soil Science Society of America Journal
67, 132–138.

Garrett, R. G., and Goss, T. I. (1980). UANOVA: a Fortran IV program for
unbalanced nested analysis of variance. Computers & Geosciences 6,
35–60. doi:10.1016/0098-3004(80)90006-0

Garten, C. T., and Wullschleger, S. D. (1999). Soil carbon inventories under
a bioenergy crop (switchgrass): measurement limitations. Journal of
Environmental Quality 28, 1359–1365.

Gehl, R. J., and Rice, C. W. (2007). Emerging technologies for in situ
measurement of soil carbon. Climatic Change 80, 43–54. doi:10.1007/
s10584-006-9150-2

Gifford, R. M., and Roderick, M. L. (2003). Soil carbon stocks and bulk
density: spatial or cumulative mass coordinates as a basis of expression?
Global Change Biology 9, 1507–1514. doi:10.1046/j.1365-2486.2003.
00677.x

Goidts,E., vanWesemael,B., andCrucifix,M. (2009).Magnitudeandsources
of uncertainties in soil organic carbon (SOC) stock assessments at various
scales. European Journal of Soil Science 60, 723–739. doi:10.1111/
j.1365-2389.2009.01157.x

Gregorich, E. G., Carter, M. R., Angers, D. A., Monreal, C. M., and Ellert,
B. H. (1994). Towards a minimum data set to assess soil organic matter
quality in agricultural soils. Canadian Journal of Soil Science 74,
367–385.

Griffin,E.A.,Verboom,W.H., andAllen,D.G. (2003). ‘PairedSiteSampling
for Soil Carbon (and Nitrogen) Estimation –Western Australia.’National
Carbon Accounting System Technical Report No. 38. (Australian
Greenhouse Office: Canberra.)

Harms, B., and Dalal, R. C. (2003). ‘Paired Site Sampling for Soil Carbon
(and Nitrogen) Estimation – Queensland.’ National Carbon Accounting
System Technical Report No. 37. (Australian Greenhouse Office:
Canberra.)

Hartigan, J. A., and Wong, M. A. (1979). A K-means clustering algorithm.
Applied Statistics 28, 100–108. doi:10.2307/2346830

Heim, A., Wehrli, L., Eugster, W., and Schmidt, M. W. I. (2009). Effects of
sampling design on the probability to detect soil carbon stock changes at
the Swiss CarboEurope site Lägaren. Geoderma 149, 347–354.
doi:10.1016/j.geoderma.2008.12.018

Homann, P. S., Bormann,B. T., Boyle, J. R., Darbyshire, R. L., andBigley,R.
(2008). Soil C and N minimum detectable changes and treatment
differences in a multi-treatment forest experiment. Forest Ecology and
Management 255, 1724–1734. doi:10.1016/j.foreco.2007.11.037

Hook, P. B., and Burke, I. C. (2000). Biogeochemistry in a shortgrass
landscape: control by topography, soil texture, andmicroclimate.Ecology
81, 2686–2703. doi:10.1890/0012-9658(2000)081[2686:BIASLC]2.0.
CO;2

Hopkinson, C. S., and Vallino, J. J. (2005). Efficient export of carbon to the
deep ocean through dissolved organic matter. Nature 433, 142–145.
doi:10.1038/nature03191

IPCC (2006). ‘2006 IPCC Guidelines for National Greenhouse Gas
Inventories. Vol 4: Agriculture, Forestry and Other Land Use.’
(Eds S. Eggleston, L. Buendia, K. Miwa, T. Ngara and K. Tanabe.)
(IGES: Japan.)

Jackson, R. B., and Caldwell, M. M. (1993). Geostatistical patterns of soil
heterogeneity around individual perennial plants. Journal of Ecology
81, 683–692. doi:10.2307/2261666

Jacobs, A. F. G., Heusinkveld, B. G., andHoltslag, A. A.M. (2007). Seasonal
and interannual variability of carbon dioxide and water balances of
a grassland. Climatic Change 82, 163–177. doi:10.1007/s10584-006-
9182-7

Jia, S., and Akiyama, T. (2005). A precise, unified method for estimating
carbon storage in cool-temperate deciduous forest ecosystems.
Agricultural and Forest Meteorology 134, 70–80. doi:10.1016/j.
agrformet.2005.08.014

Journel, A. G., and Huijbregts, C. H. J. (1978). ‘Mining Geostatistics.’
(Academic Press: London.)

Kaiser, E. A., Martens, R., and Heinemeyer, O. (1995). Temporal changes in
soil microbial biomass carbon in an arable soil. Consequences for soil
sampling. Plant and Soil 170, 287–295. doi:10.1007/BF00010481

A review of sampling designs for measuring soil organic carbon The Rangeland Journal 243

dx.doi.org/10.1071/SR99042
dx.doi.org/10.1071/SR04044
dx.doi.org/10.1071/SR9860265
dx.doi.org/10.1071/SR9860265
dx.doi.org/10.1071/SR9860281
dx.doi.org/10.1016/j.geoderma.2007.06.003
dx.doi.org/10.2307/3897467
dx.doi.org/10.1071/CP08347
dx.doi.org/10.1016/0098-3004(80)90006-0
dx.doi.org/10.1007/s10584-006-9150-2
dx.doi.org/10.1007/s10584-006-9150-2
dx.doi.org/10.1046/j.1365-2486.2003.00677.x
dx.doi.org/10.1046/j.1365-2486.2003.00677.x
dx.doi.org/10.1111/j.1365-2389.2009.01157.x
dx.doi.org/10.1111/j.1365-2389.2009.01157.x
dx.doi.org/10.2307/2346830
dx.doi.org/10.1016/j.geoderma.2008.12.018
dx.doi.org/10.1016/j.foreco.2007.11.037
dx.doi.org/10.1890/0012-9658(2000)081[2686:BIASLC]2.0.CO;2
dx.doi.org/10.1890/0012-9658(2000)081[2686:BIASLC]2.0.CO;2
dx.doi.org/10.1890/0012-9658(2000)081[2686:BIASLC]2.0.CO;2
dx.doi.org/10.1038/nature03191
dx.doi.org/10.2307/2261666
dx.doi.org/10.1007/s10584-006-9182-7
dx.doi.org/10.1007/s10584-006-9182-7
dx.doi.org/10.1016/j.agrformet.2005.08.014
dx.doi.org/10.1016/j.agrformet.2005.08.014
dx.doi.org/10.1007/BF00010481


Knowles, T. A., and Singh, B. (2003). Carbon storage in cotton soils of
northern New South Wales. Australian Journal of Soil Research 41,
889–903. doi:10.1071/SR02023

Kögel-Knabner, I., Ekschmitt, K., Fless, H., Guggenberger, G., Matzner, E.,
Marschner, B., and von Lutzow, M. (2008). An integrative approach of
organicmatter stabilization in temperate soils: linking chemistry, physics,
and biology. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 171,
5–13. doi:10.1002/jpln.200700215

Kravchenko, A. N., Robertson, G. R., Snap, S. S., and Smucker, A. J. M.
(2006). Using information about spatial variability to improve estimates
of total soil carbon. Agronomy Journal 98, 823–829. doi:10.2134/
agronj2005.0305

Kucharik,C. J., Roth, J. A., andNabielski, R. T. (2003). Statistical assessment
of a paired-site approach for verification of carbon and nitrogen
sequestration onWisconsin Conservation Reserve program land. Journal
of Soil and Water Conservation 58, 58–67.

Lark, R. M. (2002). Optimized spatial sampling of soil estimation of the
variogram by maximum likelihood.Geoderma 105, 49–80. doi:10.1016/
S0016-7061(01)00092-1

Lark, R. M. (2009). Estimating the regional mean status and change of soil
properties: two distinct objectives for soil survey. European Journal of
Soil Science 60, 748–756. doi:10.1111/j.1365-2389.2009.01156.x

Lark, R. M., and Cullis, B. R. (2004). Model-based analysis using REML for
inference from systematically sampled data on soil. European Journal of
Soil Science 55, 799–813. doi:10.1111/j.1365-2389.2004.00637.x

Larsen, P. L., Turvey, N. D., and Grocott, S. C. (2001). The technology of
certification of soil carbon sinks. Baseline sampling – how many and
how much? In: ‘Greenhouse Gas Control Technologies. Proceedings
of the Fifth International Conference on Greenhouse Gas Control
Technologies’. Victoria, Australia. (Eds D. Williams, B. Durie,
P. McMullan, C. Paulson and A. Smith.) (CSIRO Publishing:
Melbourne.)

Lechmere-Oertel, R. G., Cowling, R. M., and Kerley, G. L. H. (2005).
Landscape dysfunction and reduced spatial heterogeneity in soil
resources and fertility in semi-arid succulent thicket, South Africa.
Austral Ecology 30, 615–624. doi:10.1111/j.1442-9993.2005.01495.x

Leinweber, P., Schulten, H.-R., and Körschens, M. (1994). Seasonal
variations of soil organic matter in a long-term agricultural experiment.
Plant and Soil 160, 225–235. doi:10.1007/BF00010148

Lenth, R. V. (2001). Some practical guidelines for effective sample size
determination. The American Statistician 55, 187–193. doi:10.1198/
000313001317098149

Liu, D., Wang, Z., Zhang, B., Song, K., Li, X., Li, J., Li, F., and Duan, H.
(2006). Spatial distribution of soil organic carbon and analysis of related
factors in croplands of the black soil region, northeast China. Agriculture
Ecosystems & Environment 113, 73–81. doi:10.1016/j.agee.2005.09.006

Ludwig, J. A., and Tongway, D. J. (1995). Spatial organisation of landscapes
and its function in semi-arid woodlands, Australia. Landscape Ecology
10, 51–63. doi:10.1007/BF00158553

Marchant, B. P., and Lark, R. M. (2006). Adaptive sampling and
reconnaissance surveys for geostatistical mapping of the soil. European
Journal of Soil Science 57, 831–845. doi:10.1111/j.1365-2389.2005.
00774.x

McBratney, A. B., and Pringle, M. J. (1999). Estimating average and
proportional variograms of soil properties and their potential use in
precision agriculture. Precision Agriculture 1, 125–152. doi:10.1023/
A:1009995404447

McBratney, A. B., and Webster, R. (1983a). Optimal interpolation and
isarithm mapping of soil properties. V. Coregionalization and multiple
sampling strategy. Journal of Soil Science 34, 137–162. doi:10.1111/
j.1365-2389.1983.tb00820.x

McBratney, A. B., and Webster, R. (1983b). How many observations are
needed for regional estimation of soil properties? Soil Science 135,
177–183. doi:10.1097/00010694-198303000-00007

McBratney, A. B., Webster, R., and Burgess, T. M. (1981). The design of
optimal sampling schemes for local estimation and mapping of
regionalized variables – I: Theory andmethod.Computers&Geosciences
7, 331–334. doi:10.1016/0098-3004(81)90077-7

McKenzie, N., Ryan, P., Fogarty, P., and Wood, J. (2000). ‘Sampling,
Measurement and Analytical Protocols for Carbon Estimation in Soil,
Litter and Coarse Woody Debris.’ National Carbon Accounting System
Technical Report No. 14. (Australian Greenhouse Office: Canberra.)

Miao, Y., Robinson, C. A., Stewart, B. A., and Evett, S. R. (2000).
Comparison of soil spatial variability in crop and rangeland. In:
‘Proceedings of the 5th International Conference on Precision
Agriculture’. Bloomington, Minnesota, USA, 16–19 July 2000.
(Eds P. C. Robert, R. H. Rust and W. E. Larson.) pp. 1–10. (American
Society of Agronomy: Madison, WI.)

Mooney, S, Gerow, K., Antle, J., Capalbo, S., and Paustian, K. (2007).
Reducing standard errors by incorporating spatial autocorrelation into
a measurement scheme for soil carbon credits. Climatic Change 80,
55–72. doi:10.1007/s10584-006-9142-2

Morgan, C. L. S., Waiser, T. H., Brown, D. J., and Hallmark, C. T. (2009).
Simulated in situ characterisation of soil organic and inorganic carbon
with visible near-infrared diffuse reflectance spectroscopy. Geoderma
151, 249–256. doi:10.1016/j.geoderma.2009.04.010

Murphy,B., Rawson,A.,Ravenscroft, L., Rankin,M., andMillard,R. (2003).
‘Paired site sampling for soil carbon estimation.’ National Carbon
Accounting System Technical Report No. 34. (Australian Greenhouse
Office: Canberra.)

Myers, D. E. (1991). Pseudo-cross variograms, positive-definiteness,
and cokriging. Mathematical Geology 23, 805–816. doi:10.1007/
BF02068776

Nael,M., Khademi, H., andHajabbasi,M.A. (2004). Response of soil quality
indicators and their spatial variability to land degradation in central Iran.
Applied Soil Ecology 27, 221–232. doi:10.1016/j.apsoil.2004.05.005

Oliver, M. A., and Webster, R. (1987). The elucidation of soil pattern in the
Wyre Forest of the West Midlands, England. II. Spatial distribution.
Journal of Soil Science 38, 293–307. doi:10.1111/j.1365-2389.1987.
tb02146.x

Papritz, A., and Flühler, H. (1994). Temporal change of spatially
autocorrelated soil properties: optimal estimation by cokriging.
Geoderma 62, 29–43. doi:10.1016/0016-7061(94)90026-4

Papritz, A., and Webster, R. (1995a). Estimating temporal change in soil
monitoring: I. Statistical theory. European Journal of Soil Science
46, 1–12. doi:10.1111/j.1365-2389.1995.tb01808.x

Papritz, A., and Webster, R. (1995b). Estimating temporal change in soil
monitoring: II. Sampling from simulated fields. European Journal of
Soil Science 46, 13–27. doi:10.1111/j.1365-2389.1995.tb01809.x

Parr, J. F., and Sullivan, L. A. (2005). Soil carbon sequestration in phytoliths.
Soil Biology & Biochemistry 37, 117–124. doi:10.1016/j.soilbio.2004.
06.013

Parton,W.P., Schimel,D. S.,Cole,C.V., andOjima,D.S. (1987).Analysis of
factors controlling soil organic matter levels in Great Plains grasslands.
Soil Science Society of America Journal 51, 1173–1179.

Pettitt, A. N., and McBratney, A. B. (1993). Sampling designs for estimating
spatial variance components. Applied Statistics 42, 185–209.
doi:10.2307/2347420

Piperno, D., and Becker, P. (1996). Vegetation history of a site in the central
Amazon basin derived from phytolith and charcoal records from natural
soils. Quaternary Research 45, 202–209. doi:10.1006/qres.1996.0020

Pires, L. F., Rosa, J. A., Pereira, A. B., Arthur, R. C. J., and Bacchi, O. O. S.
(2009). Gamma-ray attenuation method as an efficient tool to investigate
soil bulk density spatial variability. Annals of Nuclear Energy 36,
1734–1739. doi:10.1016/j.anucene.2009.08.016

Poussart, J. N., Ardo, J., and Olsson, L. (2004). Verification of soil carbon
sequestration: sample requirements. Environmental Management 33,
S416–S425. doi:10.1007/s00267-003-9149-7

244 The Rangeland Journal D. E. Allen et al.

dx.doi.org/10.1071/SR02023
dx.doi.org/10.1002/jpln.200700215
dx.doi.org/10.2134/agronj2005.0305
dx.doi.org/10.2134/agronj2005.0305
dx.doi.org/10.1016/S0016-7061(01)00092-1
dx.doi.org/10.1016/S0016-7061(01)00092-1
dx.doi.org/10.1111/j.1365-2389.2009.01156.x
dx.doi.org/10.1111/j.1365-2389.2004.00637.x
dx.doi.org/10.1111/j.1442-9993.2005.01495.x
dx.doi.org/10.1007/BF00010148
dx.doi.org/10.1198/000313001317098149
dx.doi.org/10.1198/000313001317098149
dx.doi.org/10.1016/j.agee.2005.09.006
dx.doi.org/10.1007/BF00158553
dx.doi.org/10.1111/j.1365-2389.2005.00774.x
dx.doi.org/10.1111/j.1365-2389.2005.00774.x
dx.doi.org/10.1023/A:1009995404447
dx.doi.org/10.1023/A:1009995404447
dx.doi.org/10.1111/j.1365-2389.1983.tb00820.x
dx.doi.org/10.1111/j.1365-2389.1983.tb00820.x
dx.doi.org/10.1097/00010694-198303000-00007
dx.doi.org/10.1016/0098-3004(81)90077-7
dx.doi.org/10.1007/s10584-006-9142-2
dx.doi.org/10.1016/j.geoderma.2009.04.010
dx.doi.org/10.1007/BF02068776
dx.doi.org/10.1007/BF02068776
dx.doi.org/10.1016/j.apsoil.2004.05.005
dx.doi.org/10.1111/j.1365-2389.1987.tb02146.x
dx.doi.org/10.1111/j.1365-2389.1987.tb02146.x
dx.doi.org/10.1016/0016-7061(94)90026-4
dx.doi.org/10.1111/j.1365-2389.1995.tb01808.x
dx.doi.org/10.1111/j.1365-2389.1995.tb01809.x
dx.doi.org/10.1016/j.soilbio.2004.06.013
dx.doi.org/10.1016/j.soilbio.2004.06.013
dx.doi.org/10.2307/2347420
dx.doi.org/10.1006/qres.1996.0020
dx.doi.org/10.1016/j.anucene.2009.08.016
dx.doi.org/10.1007/s00267-003-9149-7


Pringle, M. J., and Lark, R. M. (2008). The effects of simple perturbations of
a process model on the spatial variability of its output. Geoderma 145,
267–277. doi:10.1016/j.geoderma.2008.03.014

Rossi, J., Govaerts, A., De Vos, B., Verbist, B., Vervoort, A., Poesen, J.,
Muys, B., andDeckers, J. (2009). Spatial structures of soil organic carbon
in tropical forests – a case study of Southeastern Tanzania. Catena 77,
19–27. doi:10.1016/j.catena.2008.12.003

Rossiter, N. A., Setterfield, S. A., Douglas, M. M., and Hurley, L. B. (2003).
Testing the grass-fire cycle, alien grass invasion in the tropical savannas of
northern Australia. Diversity & Distributions 9, 169–176. doi:10.1046/
j.1472-4642.2003.00020.x

Saggar, S., and Hedley, C. B. (2001). Estimating seasonal and annual carbon
inputs, and root decomposition rates in a temperate pasture following
field 14C pulse-labelling. Plant and Soil 236, 91–103. doi:10.1023/
A:1011942619252

Scarth, P., Byrne, M., Danaher, T., Henry, B., Hassett, R., Carter, J., and
Timmers, P. (2006). State of the paddock: monitoring condition and
trend in groundcover across Queensland. In: ‘Proceedings of the 13th
Australasian Remote Sensing and Photogrammetry Conference’.
Canberra. (Organizer 13th Australasian Remote Sensing and
Photogrammetry Conference: Canberra.)

Schlesinger, W. H., Reynolds, J. F., Cunningham, G. L., Huenneke, L. F.,
Jarrell, W. M., Virginia, R. A., and Whitford, W. G. (1990). Biological
feedbacks inglobaldesertification.Science247, 1043–1048.doi:10.1126/
science.247.4946.1043

Schnabel, R. R., Franzluebbers, A. J., Stout, W. L., Sanderson, M. A., and
Stuedemann, J. A. (2001). The effects of pasture management practices.
In ‘Potential of US Grazing Lands to Sequester Carbon and Mitigate
the Greenhouse Effect’. (Eds R. F. Follet, J. M. Kimble and R. Lal.)
(CRC Press LLC: USA.)

Schöning, I., Uwe Totsche, K., and Kögel-Knabner, I. (2006). Small
scale spatial variability of organic carbon stocks in litter and solum of a
forested Luvisol. Geoderma 136, 631–642. doi:10.1016/j.geoderma.
2006.04.023

Schuman, G. E., Ingram, L. J., Stahl, P. D., Derner, J. D., Vance, G. F., and
Morgan, J. A. (2009). Influence of management on soil organic carbon
dynamics in northern mixed-grass rangeland. In: ‘Soil Carbon
Sequestration and the Greenhouse Effect’. SSSA Special Publication 57,
2nd edn. pp. 169–180. (American Society of Agronomy: Madison, WI.)

Skjemstad, J. O., Taylor, J. A., and Smernik, R. J. (1999). Estimation of
charcoal (Char) in soils. Communications in Soil Science and Plant
Analysis 30, 2283–2298. doi:10.1080/00103629909370372

Smucker, A. J.M., Park, E. J., Dorner, J., andHorn, R. (2007). Soil micropore
development and contributions to soluble carbon transport within
microaggregates. Vadose Zone Journal 6, 282–290. doi:10.2136/
vzj2007.0031

Snedecor, G. W., and Cochran, W. G. (1989). ‘Statistical Methods.’ 8th edn.
(Iowa State University Press: Ames, IA.)

Sollins, P., Homann, P., and Caldwell, B. A. (1996). Stabilization and
destabilization of soil organic matter: mechanisms and controls.
Geoderma 74, 65–105. doi:10.1016/S0016-7061(96)00036-5

Spain, A. V., Isbell, R. F., and Probert, M. E. (1983). Soil organic matter.
In: ‘Soils: An Australian viewpoint’. (Ed. CSIRO Australia Division of
Soils.) pp. 551–564. (CSIRO Publishing: Melbourne.)

Sparling, G. P. (1992). Ratio of microbial biomass carbon to soil organic
carbonas a sensitive indicator of changes in soil organicmatter.Australian
Journal of Soil Research 30, 195–207. doi:10.1071/SR9920195

Spijker, J., Vriend, S. P., and van Gaans, P. F. M. (2005). Natural and
anthropogenic patterns of covariance and spatial variability of minor and
trace elements in agricultural topsoil.Geoderma127, 24–35. doi:10.1016/
j.geoderma.2004.11.002

Stewart-Oaten, A., Bence, J. R., and Osenberg, C. W. (1992). Assessing
effects of unreplicated perturbations: no simple solutions. Ecology 73,
1396–1404. doi:10.2307/1940685

Stroup,W.W. (2002). Power analysis based on spatial effects mixed models:
a tool for comparing design and analysis strategies in the presence of
spatial variability. Journal of Agricultural Biological & Environmental
Statistics 7, 491–511. doi:10.1198/108571102780

Studdert,G.A., Echeverria,H. E., andCasanovas, E.M. (1997). Crop-pasture
rotation for sustaining the quality and productivity of a Typic Argiudoll.
Soil Science Society of America Journal 61, 1466–1472.

Su, Y. Z., Li, Y. L., and Zhao, H. L. (2006). Soil properties and their spatial
pattern inadegradedsandygrasslandunderpost-grazing restoration, Inner
Mongolia, northern China. Biogeochemistry 79, 297–314. doi:10.1007/
s10533-005-5273-1

Tyler, A. N., Davidson, D. A., and Grieve, I. C. (2001). In situ radiometric
mapping of soil erosion and field-moist bulk density on cultivated fields.
Soil Use and Management 17, 88–96.

van Groenigen, J. W., Siderius, W., and Stein, A. (1999). Constrained
optimisation of soil sampling for minimisation of the kriging variance.
Geoderma 87, 239–259. doi:10.1016/S0016-7061(98)00056-1

VandenBygaart, A. J. (2006). Monitoring soil organic carbon stock changes
in agricultural landscapes: Issues and a proposed approach. Canadian
Journal of Soil Science 86, 451–463.

VandenBygaart, A. J., and Kay, B. D. (2004). Persistence of soil organic
carbon after plowing a long-termno-tillfield in southernOntario, Canada.
Soil Science Society of America Journal 68, 1394–1402.

vonLutzow,M.,Kögel-Knabner, I., Ekschmitt,K., Flessa,H.,Guggenberger,
G., Matzner, E., and Marschner, B. (2007). SOM fractionation methods:
relevance to functional pools and to stabilization mechanisms. Soil
Biology & Biochemistry 39, 2183–2207. doi:10.1016/j.soilbio.2007.
03.007

Wang,W. J., Dalal,R.C., andMoody,P.W. (2004). Soil carbon sequestration
and density distribution in a Vertosol under different farming practices.
Australian Journal of Soil Research 42, 875–882. doi:10.1071/SR04023

Webb, N. P.,McGowan, H. A., Phinn, S. R., Leys, J. F., andMcTainsh, G. H.
(2009). A model to predict land susceptibility to wind erosion in western
Queensland, Australia. Environmental Modelling & Software 24,
214–227. doi:10.1016/j.envsoft.2008.06.006

Webster, R., and Burgess, T. M. (1984). Sampling and bulking strategies for
estimating soil properties in small regions. Journal of Soil Science 35,
127–140. doi:10.1111/j.1365-2389.1984.tb00267.x

Webster, R., and Oliver, M. A. (2001). ‘Geostatistics for Environmental
Scientists.’ (John Wiley & Sons Ltd: Chichester.)

Weil, R. R., andMagdoff, F. (2004). Significance of soil organicmatter to soil
quality and health. In: ‘Significance of Soil OrganicMatter to Soil Quality
andHealth’. (EdsF.Magdoff andR.R.Weil.) pp. 1–43. (CRCPress:Boca
Raton, FL.)

Wielopolski, L. P., Drees, L. R., and Nordt, L. C. (2001). Soil carbon
measurements using inelastic neutron scattering. IEEE Transactions on
Nuclear Science 47, 914–917. doi:10.1109/23.856717

Williams,R. J.,Hutley,L.B.,Cook,G.D.,Russell-Smith, J.,Edwards,A., and
Chen, X. (2004). Assessing the carbon sequestration potential of mesic
savannas in the Northern Territory, Australia: approaches, uncertainties
and potential impacts of fire. Functional Plant Biology 31, 415–422.
doi:10.1071/FP03215

Wilson, T. B., and Thompson, T. L. (2005). Soil nutrient distributions of
mesquite-dominated desert grasslands: changes in time and space.
Geoderma 126, 301–315. doi:10.1016/j.geoderma.2004.10.002

Worsham, L.,Markewitz, D., andNibbelink, N. (2010). Incorporating spatial
dependence into estimates of soil carbon contents under different land
covers. Soil Science Society of America Journal 74, 635–646.
doi:10.2136/sssaj2008.0412

Wuest, S. B. (2009). Correction of bulk density and sampling method biases
using soil mass per unit area. Soil Science Society of America Journal
73, 312–316. doi:10.2136/sssaj2008.0063

Yates, F. (1981). ‘Sampling Methods for Censuses and Surveys.’ 4th edn.
(Griffin: London.)

A review of sampling designs for measuring soil organic carbon The Rangeland Journal 245

dx.doi.org/10.1016/j.geoderma.2008.03.014
dx.doi.org/10.1016/j.catena.2008.12.003
dx.doi.org/10.1046/j.1472-4642.2003.00020.x
dx.doi.org/10.1046/j.1472-4642.2003.00020.x
dx.doi.org/10.1023/A:1011942619252
dx.doi.org/10.1023/A:1011942619252
dx.doi.org/10.1126/science.247.4946.1043
dx.doi.org/10.1126/science.247.4946.1043
dx.doi.org/10.1016/j.geoderma.2006.04.023
dx.doi.org/10.1016/j.geoderma.2006.04.023
dx.doi.org/10.1080/00103629909370372
dx.doi.org/10.2136/vzj2007.0031
dx.doi.org/10.2136/vzj2007.0031
dx.doi.org/10.1016/S0016-7061(96)00036-5
dx.doi.org/10.1071/SR9920195
dx.doi.org/10.1016/j.geoderma.2004.11.002
dx.doi.org/10.1016/j.geoderma.2004.11.002
dx.doi.org/10.2307/1940685
dx.doi.org/10.1198/108571102780
dx.doi.org/10.1007/s10533-005-5273-1
dx.doi.org/10.1007/s10533-005-5273-1
dx.doi.org/10.1016/S0016-7061(98)00056-1
dx.doi.org/10.1016/j.soilbio.2007.03.007
dx.doi.org/10.1016/j.soilbio.2007.03.007
dx.doi.org/10.1071/SR04023
dx.doi.org/10.1016/j.envsoft.2008.06.006
dx.doi.org/10.1111/j.1365-2389.1984.tb00267.x
dx.doi.org/10.1109/23.856717
dx.doi.org/10.1071/FP03215
dx.doi.org/10.1016/j.geoderma.2004.10.002
dx.doi.org/10.2136/sssaj2008.0412
dx.doi.org/10.2136/sssaj2008.0063


Zar, J. H. (1999). ‘Biostatistical Analysis.’ 4th edn. (Prentice Hall
International Inc.: Upper Saddle River, NJ.)

Zhou, J., and Chafetz, H. S. (2010). Pedogenic carbonates in Texas: stable-
isotope distributions and their implications for reconstructing region-wide
paleoenvironments. Journal of Sedimentary Research 80, 137–150.
doi:10.2110/jsr.2010.018

Zhao, Y., Peth, S., Krümmelbein, J., Horn, R., Wang, Z., Steffens, M.,
Hoffmann, C., and Peng, X. (2007). Spatial variability of soil properties
affected by grazing intensity in Inner Mongolia grassland. Ecological
Modelling 205, 241–254. doi:10.1016/j.ecolmodel.2007.02.019

Zuo, X., Zhao, H., Zhao, X., Zhang, T., Guo, Y., Wang, S., and Drake, S.
(2008). Spatial pattern and heterogeneity of soil properties in sand dunes
under grazing and restoration inHorqin SandyLand,NorthernChina. Soil
& Tillage Research 99, 202–212. doi:10.1016/j.still.2008.02.008

Manuscript received 3 July 2009; accepted 20 May 2010

246 The Rangeland Journal D. E. Allen et al.

http://www.publish.csiro.au/journals/trj

dx.doi.org/10.2110/jsr.2010.018
dx.doi.org/10.1016/j.ecolmodel.2007.02.019
dx.doi.org/10.1016/j.still.2008.02.008

