#### **♦ AGRISTA**



MEAT & LIVESTOCK AUSTRAL



## **Spring Pasture Management**

Presenter: Basil Doonan



## Address



**♦** AGRISTA



- High rainfall
- Low rainfall
- Rangelands
- 2 Grazing systems
  - Rotational
  - Set stocking
- 2 Seasons
  - Normal
  - Failed



- 2 Animals
  - Sheep
  - Cattle





**₩**AGRISTA

## Spring

- The time to attack!!
  - Month 1 when's it going to arrive
  - Month 2 confirming its arrived
  - Month 3 where did it go!





# **Typical vs failed/failing spring**

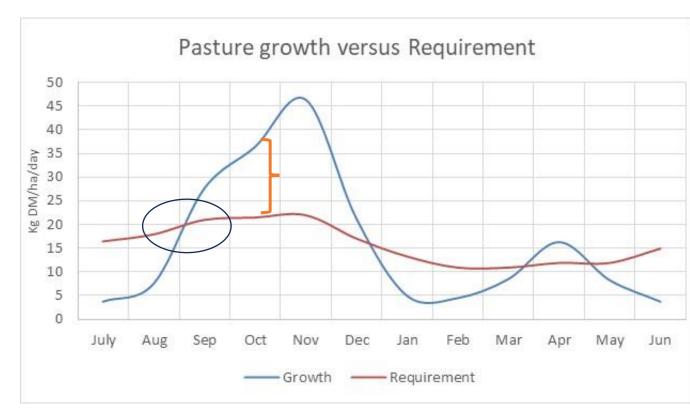
- Really is a tale of 2 seasons in Australia
- Need to cover
  - Normal spring feed base management
  - Failed spring
    - Feeding
    - Destocking





## **Normal spring**

- Challenges are:
  - Not chasing break-even (BE) away/holding your nerve
  - Excess feed
  - Feed quality
    - Matching animals needs to feed quality
  - Survivability/Perreniality






#### Measurement

₩ **∧**GRISTA

- Know where you are relative to expected
  - TSDM
  - FOO
  - Groundcover
  - Average pasture cover
- Know when you're in surplus
  - Supply > demand
- Know by how much
  - BE is a pain point







MGRISTA 😼

#### **Growth vs Requirement**





3000



### **Breakeven!**

- **₩**AGRISTA
- When growth (kg DM/ha/day) = Demand kg DM/ha/day
- If pasture growth is 45 kg DM/ha/day
- And we have 3 steers/ha allocated 10 kg DM/ha then we require 30 kg DM/ha/day
- Our excess is 45 30 = 15 kg DM/ha/Day
- OR 15/45 = 33% of the growth! (farm area)





#### **Excess feed**

- Decrease rotation length
  - Offer more
- Lift residual
  - Lift animal intake
- Build cover
- Isolate excess
  - Rotational Grazers Drop paddocks
  - Set Stockers Box mobs



# **Genuine surplus**

- Mostly cost-effective option:
  - Hay (55% efficiency)
  - Silage (65% efficiency)
  - Defer (45% efficiency)
  - Liveweight (80% efficiency)
- Example of cost



|          | Activity                         |    | Cost        |
|----------|----------------------------------|----|-------------|
|          | Pasture (surplus)                |    | \$0         |
| AL.      | Mow, rake, bale, wrap, transport |    | \$158/tonne |
| N. S. A. | Decreased energy value           |    | 20%         |
|          | Wastage at feedout               |    | 20%         |
|          | Cost to feedout                  |    | \$120/tonne |
|          | ΤΟΤ                              | AL | \$430/tonne |

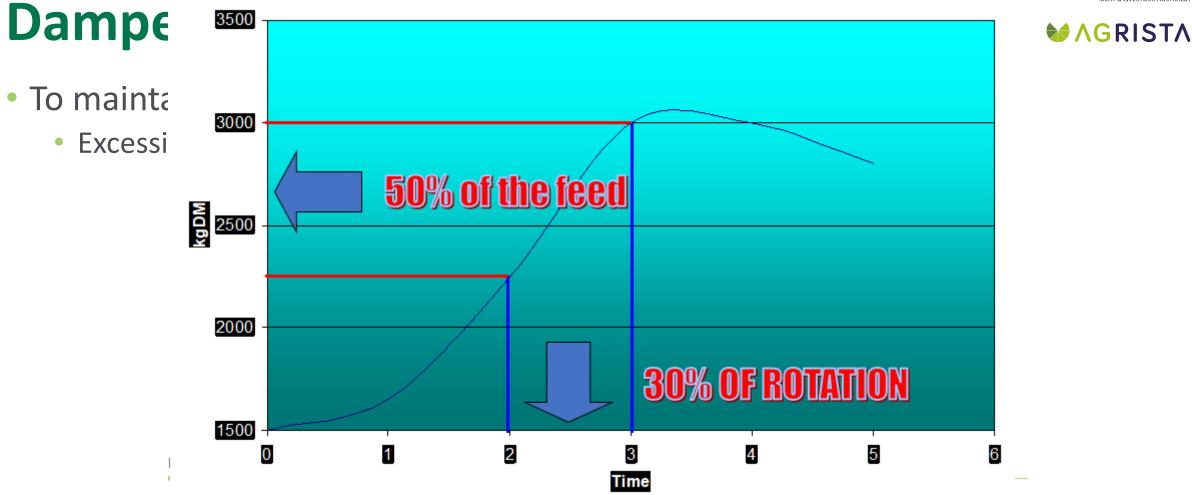




## **Induced surplus**

- Can be a costly mistake to make:
  - The cost of what you induced it with is the starting price per tonne
- Examples
  - Nitrogen
  - Grain

| Activity                     |       | Cost          |
|------------------------------|-------|---------------|
| Grain                        |       | \$400/tonne   |
| Mow rake bale wrap transport |       | \$158/tonne   |
| Decreased energy value       |       | 20%           |
| Wastage at feedout           |       | 20%           |
| Cost to feedout              |       | \$120/tonne   |
|                              | TOTAL | \$1,060/tonne |


## Warning!



- Never chase poor quality feed at the expense of good quality feed
- Never "lock-up" supplements at the expense of animal production





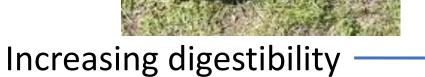


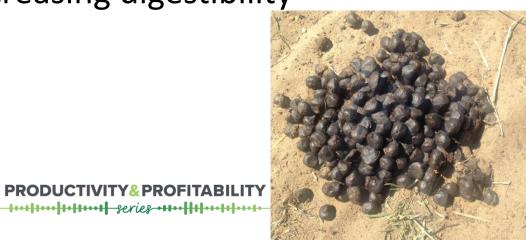


## **Maintaining feed quality**

- Spring feed is usually pretty good stuff
- If we don't maintain grazing pressure, we lose quality
  - Rotational grazing
  - Set Stocked
- Need to decrease elongation and kill parent tillers
  - Promote the production and survival of daughter tillers







₩ **AGRISTA** 

#### **Turds**















| 2 6. SEP. 20071513:42 03-5DAIRY BRANCH DPT | FEEDTEST NO. 383 F. 3/35<br>Victor<br>We 1.8 Report | ACCERTAGE AUSTRALIA |
|--------------------------------------------|-----------------------------------------------------|---------------------|
| Test                                       | Units                                               |                     |
| Drymatter                                  | 4 00/                                               | 998<br>-07<br>-07   |
| Crude protein                              | 26%                                                 |                     |
| NDF                                        | 43.5%                                               |                     |
| Digestibility                              | 86%                                                 |                     |
|                                            | 13.2                                                |                     |



#### **Feed quality**



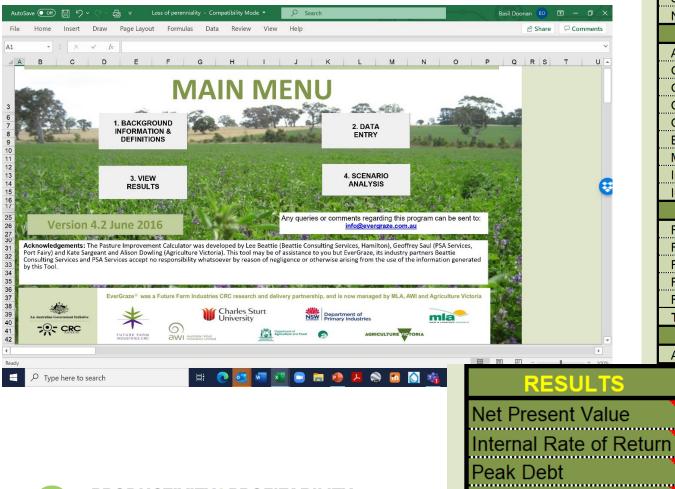
| Growth<br>phase | NSC/DIP | % RDP | Ca:P  | K/(Ca +<br>Mg) |
|-----------------|---------|-------|-------|----------------|
| 0-1             | 1:1     | 30    | 1:1   | 8:1            |
| 1-1.5           | 1:1     | 22    | 1.5:1 | _              |
| 1.5-2           | 2:1     | 16    | 2:1   | 2.5:1          |
| Optimal         | 2:1     | 18    | 2:1   | 2.2:1          |







## **Survivability**


- Perennial plant tillers
  - Last about a year
  - Generally don't like regrazing
  - Generally are hard to kill by grazing the crown
  - Need light at the tiller base to be produced
  - Daughter tillers are only produced after the parent has enough energy to survive grazing



## **Survivability**

**PRODUCTIVITY& PROFITABILITY** 

19



| General Assumptions                                          |         |  |  |  |
|--------------------------------------------------------------|---------|--|--|--|
| Paddock and Pasture Production Values                        |         |  |  |  |
| Expected pasture/infrastructure life (4-20 Years)            | 20      |  |  |  |
| Chance of pasture failure (%)                                | 5%      |  |  |  |
| Stocking rate before improvement (DSE/ha)                    | 10.0    |  |  |  |
| Peak stocking rate after improvement (DSE/ha)                | 40.0    |  |  |  |
| Time to reach peak stocking rate (1-5 years)                 | 5.0     |  |  |  |
| Year when stocking rate begins to decline                    | 6.0     |  |  |  |
| Stocking rate at end of pasture/infrastructure life (DSE/ha) | 20.0    |  |  |  |
| No. weeks pasture grazed in year of sowing                   | 38.0    |  |  |  |
| Economic and Financial Values                                |         |  |  |  |
| Agistment cost (\$ per DSE per week)                         | \$1.22  |  |  |  |
| Gross margin before improvement (\$/DSE)                     | \$44.00 |  |  |  |
| Gross margin at peak stocking rate (\$/DSE)                  | \$50.00 |  |  |  |
| Capital cost of livestock (\$ per DSE)                       | \$150   |  |  |  |
| Opportunity cost of invested capital                         | 7.0%    |  |  |  |
| Expected Annual Inflation Rate                               | 2.0%    |  |  |  |
| Marginal Tax Rate                                            | 30%     |  |  |  |
| Interest on borrowed funds                                   | 3.0%    |  |  |  |
| Interest on investment funds                                 | 4.0%    |  |  |  |
| Residual Values                                              |         |  |  |  |
| Residual value of the seed and sprays (\$/ha)                | \$0     |  |  |  |
| Residual value of the lime/gypsum (\$/ha)                    | \$300   |  |  |  |
| Residual value of the fertiliser (\$/ha)                     | \$200   |  |  |  |
| Residual value of soil N (higher legume content) (\$/ha)     | \$0     |  |  |  |
| Residual value of paddock infrastructure (\$/Ha)             | \$6,000 |  |  |  |
| Total residual value of paddock development (\$/ha)          | \$6,500 |  |  |  |
| Estimated Environmental Benefits                             |         |  |  |  |
| Annual environmental benefit (\$/Ha)                         | \$0     |  |  |  |
| 1 0                                                          |         |  |  |  |
|                                                              |         |  |  |  |
| \$178,745 \$949,451                                          |         |  |  |  |

.....

27.4%

-\$357,035

. . . . . . . . . . . . . . . . . . .

.....

8.4%

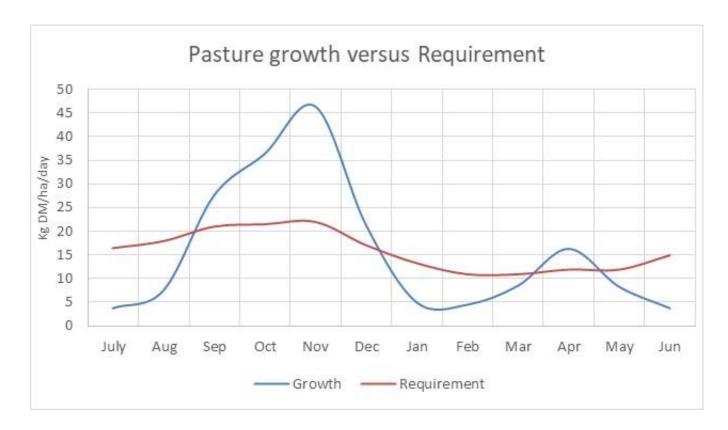
-\$1,543,009

15

Year of Peak Debt

Break Even Year




#### **AGRISTA**

| × | 9 | îï | \$ |
|---|---|----|----|
|   |   | U  |    |



**₩**AGRISTA

#### Feed profile







## The method is the important thing

- Beware of "Man Math" or "Bush Economics"
  - Working backward to justify a decision you have already made
  - Making big enough mistakes that any option pays!
- Particularly in a failed spring....the stakes are high





# Failed springs or end of spring

- Challenges are:
  - The start of more to come (El Nino prediction)
  - Coinciding with low red meat prices
  - Supplement and input prices likely to climb





₩ AGRISTA

# What you should do vs what you can do

- Should do:
  - Marginal cost vs marginal revenue
  - Average cost is a killer
    - Working on "average costs" and "average returns" means you are losing at the margin
- Could do:

23

Cash limited





## **Decisiveness is important**

- Destocking and feeding are not mutually exclusive
- Marginal approach can be highly effective
- Steps
  - 1. Determine feed resources and suitability
  - 2. Destock unprofitable animals early (mobs)
  - 3. Retain only the profitable animals in the profitable mobs
    - i. Often not done well







#### Step one

- Marginal cost approach sets animals up to compete for scarce resources
- Average cost approach means losing at the margin
  - Feeding for longer than you should
  - Feeding more animals than you should
- HGF types
  - Growing/Finishing
  - Holding/Maintenance
  - Weight loss





## **Profitable mobs**

- Say our lambs and ewes are competing for pasture
  - There's not enough to go round
- We decide to feedlot the lambs and run the ewes on pasture that the lambs could have eaten!
- Most producers will work out if that specific activity has a margin.
  - Its important to do the "most" profitable thing!





## **Example: Lambs versus ewes**

- We feedlot the lamb's 50:50 vetch hay and grain at \$250/tonne DM and \$350/tonne DM respectively
- The average cost of the diet is \$300/tonne DM
- 2 kg DM will add 250 gms liveweight say
- 2 kg @ \$0.30 is \$0.60
- Price \$2.50 kg Lwt at 250 gms is \$0.62
- MOFC (average margin) = \$0.02/kg Lwt







#### Lambs versus ewes

**♦ AGRISTA** 

- The ewes are eating pasture at \$100/tonne
- Say our lambing rate is 100% and weaned lambs average \$50 then the return is \$50/365 days then the average return is just \$0.15/day
- If we can run them on 1 kg DM that's \$0.10/day...we have a margin

• BUT

- Because the ewes are competing for lamb food the cost of the ewe's diet at the margin is also \$300/tonne DM
- If we can run them on 1 kg DM that's \$0.30/day or a loss at the margin of -\$0.15/day





## What's this saying.....

- Don't supplement at present....destock!
  - The costliest group of animals
    - Probably old ewes
- Graze the lambs on the grass and achieve the widest margin
  - That maximises profit from the available resources
  - That return would be \$0.62 \$0.20 = \$0.42/kg lwt
- A loss is a loss but for the sake of consistency
  - Lambs returned \$0.21/kg DM fed
  - Ewes lost -\$0.15/kg DM fed







## Lambs vs Lambs



- Lambs now graze 1.5 kg DM pasture at \$100/tonne DM and get 250 grams grain at \$350/tonne so the average cost of the diet is \$120/tonne
- They do 250 grms/day say
- It costs \$0.24 to get this and at \$2.50/kg we get \$0.62 or a MOFC of \$0.38
- So on average lambs need to achieve only 110 grams/day to break even using the average cost of the diet.
- However, the marginal cost is \$350/tonne so they need to do at least 320 grams....which is less than the lambs are doing on average





## What's this saying.....

**♦** AGRISTA

- That on average our supplement strategy is paying off
- However some lambs are costing money
- Profit is compromised
- Sell the worst lambs and turn off as many as possible from pasture





#### **Ewes vs ewes**

- Ewe lambs 70% lambing
- Mid age group 130% lambing
- Older age group 100% lambing
- A weaned XB lamb is worth \$50
- Ewe lambs 70% lambing x \$50/365 = \$0.10/day
- Mid age group 130% lambing x \$50/365 = \$0.18
- Older age group 100% lambing x \$50/365 = \$0.14





#### **Ewes vs ewes**



- Ewe lambs 70% lambing x 1.5 kg DM/day @ \$100/tonne = \$0.15/day
- Mid age group 130% lambing 2 kg DM/day = \$0.20/day
- Older age group 100% lambing x 1.75 kg DM/day = \$0.18/day
- MARGIN
- Ewe lambs 70% lambing = -\$0.05/day
- Mid age group 130% lambing = -\$0.02/day
- Older age group 100% lambing = -\$0.04/day







#### Summary

₩ ∧GRIST∧

- Spring offers opportunity
  - Know where you are relative to average or expectation
  - Know when you are past break even
  - Know how much you can build APC/TSDM/Groundcover/FOO
  - Quickly drop surplus feed out
  - Maintain quality
  - Be hard to convince to manipulate the diet







### Summary

- If it fails
  - At low prices destock before feeding
  - Feed at the margin
  - Feed profitable mobs
  - Feed profitable animals in profitable mobs

