♦ AGRISTA

PRODUCTIVITY& PROFITABILITY

The 'so what' of carbon in agriculture

Presenter: Cam Nicholson

♦ AGRISTA

Greenhouse Effect: Greenhouse Effect Normal CO₂ More heat escapes into Less heat space escapes into space Less heat More heat trapped in trapped in atmosphere atmosphere Solar Radiation Solar Radiation **Re-Radiated Re-Radiated** Heat Heat Some greenhouse gases More Greenhouse Gases Atmosphere

₩ **AGRISTA**

Need to consider carbon on 2 fronts:

- Productivity / resilience
- Climate implications

- The carbon issue WILL impact your farming business.
- Government agreements (international)
- Supply chain / markets increasingly on board

"Of the 100 largest economies in the world, 69 are companies and 31 are countries. Government policy may now be less influential than market forces".

Prof Richard Eckhard (UoM)

₩∧GRIST∧

Sectors that can store carbon will attract interest from sectors who can't.

Opportunity / threat?

• How much do we need?

PRODUCTIVITY&PROFITABILITY

5

₩AGRISTA

Learning on the job

What should we do?

To suggest future topics scan here:

PRODUCTIVITY& PROFITABILITY

Where has this carbon thing has come from?

₩AGRISTA

Intergovernmental Panel on Climate Change (IPCC). Estab by UN in 1988.

• AIM: To stabilize <u>GHG concentrations in the atmosphere</u> at a level that would prevent dangerous anthropogenic interference with the climate system.

IPCC meet annually - since 1995 (Conference of Parties – COP) – COP 28 Dubai.

- Kyoto protocol 1997 (COP 3) benchmarks, submit inventories
- Paris 2015 (COP 21) (legally binding treaty CN by 2050)

Where has this carbon thing has come from?

₩AGRISTA

IPCC also put out assessment reports (**AR6** - 2022) – the 'rules' based on best science. **But this changes the goalposts**

Greenhouse gas	AR2 (2008/9 to 2014/15)	AR4 (2015/16 to 2019/20)	AR5 (2020/21 onward)	AR6 (2022*)
Carbon Dioxide (CO ₂)	1	1	1	1
Methane (CH₄)	21	25	28	27 (biogenic)
	21	23	20	29.8 (fossil)
Nitrous Oxide (N ₂ 0)	310	298	265	273

Created private sector opportunity

National Inventory Report

PRODUCTIVITY& PROFITABILITY

What are we really trying to do here?

Reduce certain greenhouse gases from the atmosphere and store them 'permanently' (25 yrs, 100 yrs, >100 yrs).

Actions to take:

- Reduce what is emitted in the future (emission reduction / avoidance)
- Drawn down what is already in the atmosphere (carbon sequestration)
- Both

Australia - 43% net emissions (from 2005) by 2030 and net zero by 2050

#Feb2024

Methane pledge (voluntary) - 30% less methane by 2030

Scientists (Arndt et al. 2022) To meet 1.5 ⁰C, methane must reduce by:

11-30% by 2030

Targets

• 24-47% by 2050

To suggest future topics scan here.

FOREST, LAND AND

GUIDANCE

VERSION 1.1 DECEMBER 202

AGRICULTURE SCIENCE-**BASED TARGET-SETTING**

~ 30% by 2030

Government and the private sector

₩∧GRIST∧

Government

Publish methods (sequester / avoid)

Issue Aust Carbon Credit Units (ACCU) • Additionality, permancy, future use

ACCU (financial product, audited, register etc).

- Leakage (net emissions)
- Measurement & calculation approach

While not perfect, the methods provide

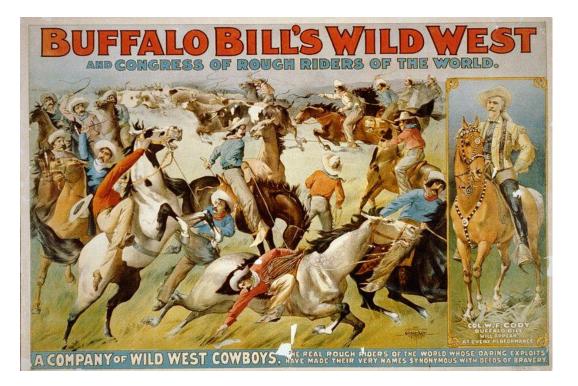
a useful reference point to compare

what is being offered in the private

sector

• Register, auditing

To suggest future topics scan here:


1:

Government and the private sector

Private sector

Forest, Land and Agriculture (FLAG)

The SBTi's FLAG Guidance provides the world's first standard method for companies in land-intensive sectors to set science-based targets that include land-based emission reductions and removals. The guidance enables companies to reduce the 22% of global greenhouse gas emissions from agriculture, forestry and other land use.

What should you do?

1. Know your emissions (history)

Tools

13

Greenhouse Accounting Frameworks (GAF) for Australian Primary Industries Latest versions

- (D-GAF) Dairy GHG Accounting Framework V14.7
- (SB-GAF) Sheep & Beef GHG Accounting Framework V2.3
 - Meat & Livestock Australia (MLA) Carbon Accounting Technical Manual
- (G-GAF) Cropping GHG Accounting Framework V10.9
 Fertiliser composition reconciliation tool
- (F-GAF) Feedlot GHG Accounting Framework V3.9
- (S-GAF) Sugar GHG Accounting Framework V1.26
- (C-GAF) Cotton GHG Accounting Framework V1.35
 (H-GAF) Horticulture Greenhouse Accounting Framework V1.4
- (P-GAF) Pork Greenhouse Accounting Framework V1.35
- (Bu-GAF) Buffalo Greenhouse Accounting Framework V1.5
- (De-GAF) Deer Greenhouse Accounting Framework V1.3.2
- (Go-GAF) Goat Greenhouse Accounting Framework V1.25
- (Po-GAF) Poultry Greenhouse Accounting Framework V1.45 (batchs not seasons now)
- (R-GAF) Rice Greenhouse Accounting Framework V1 (new)

Roughly right, but precisely wrong (at this stage)

- Retrospective?
- From today (update when you prepare your BAS)

What should you do?

How the Greenhouse Accounting Framework (GAF) tool works

General

Meets the National Greenhouse Gas Inventory (NGGI) standards

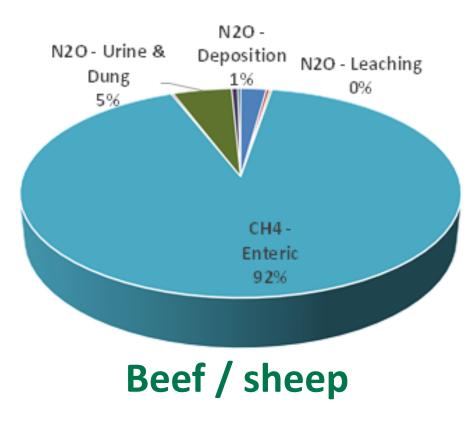
Assumptions in the GAF tools change when the Aust Govt adopt them (multiple versions, regularly updated)

Emissions (CO₂, CH₄, N₂O) – multiple sources

- Scope 1 (all direct greenhouse gas emissions inside the farm boundary)
- Scope 2 (electricity)
- Scope 3 (products brought onto the farm)

What should you do?

How the Greenhouse Accounting Framework (GAF) tool works


- Calculations
- Annual / seasonal (livestock)
- <u>Carbon account (CA)</u>. Net emissions = Scope 1 & 2 emission, less tree sequestration
- <u>Carbon footprint (CF)</u>. Net emissions + Scope 3. **Emissions intensity** (net carbon emitted per unit of product).

What should you do?

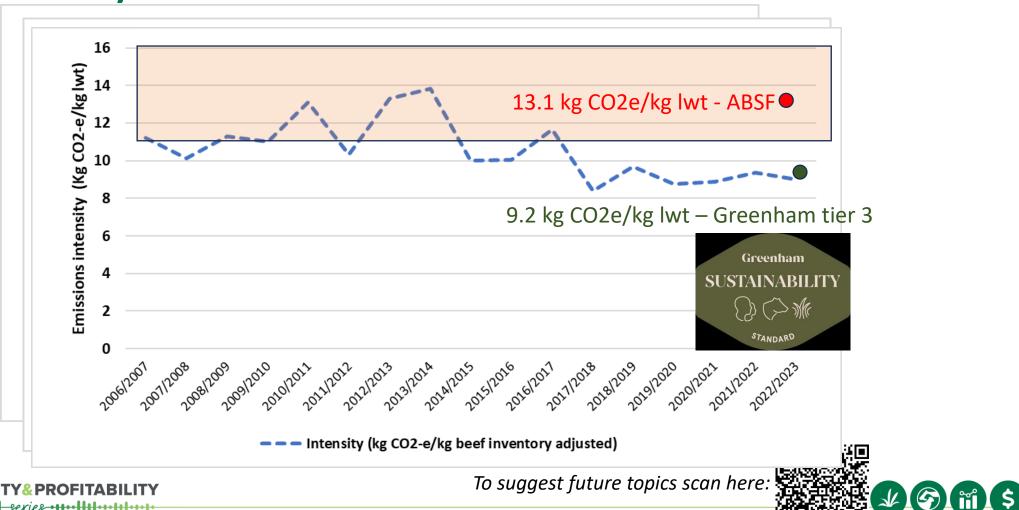
Calculation to get right

Methane $(g/day) = 20.7 \times Intake (kg/day)$

Intake influenced by:

- Liveweight
- Weight gain
- Lactation
- Numbers

To suggest future topics scan here:



mla

What should you do?

Emissions intensity

What should you do?

How to lower emissions intensity

(**5**) iii (\$

18

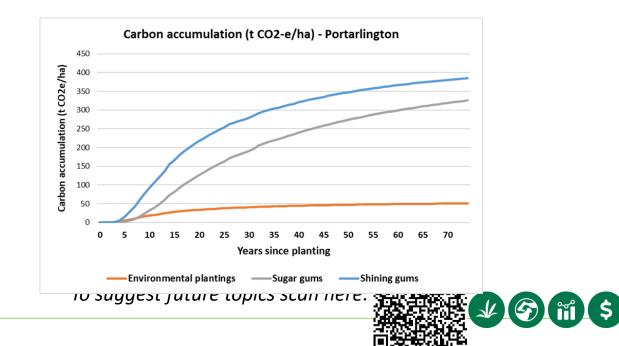
What should you do?

₩AGRISTA

Sequestration / carbon capture (NEW, PERMANENT)

Credible sequestration requires emissions calculation are

PRODUCTIVITY& PROFITABILITY

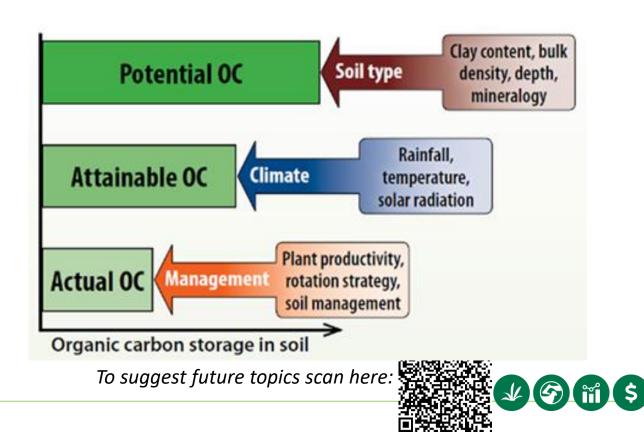


What should you do?

Trees

- ACCUs generated using FullCAM (underestimate?)
- Species and location influence

20

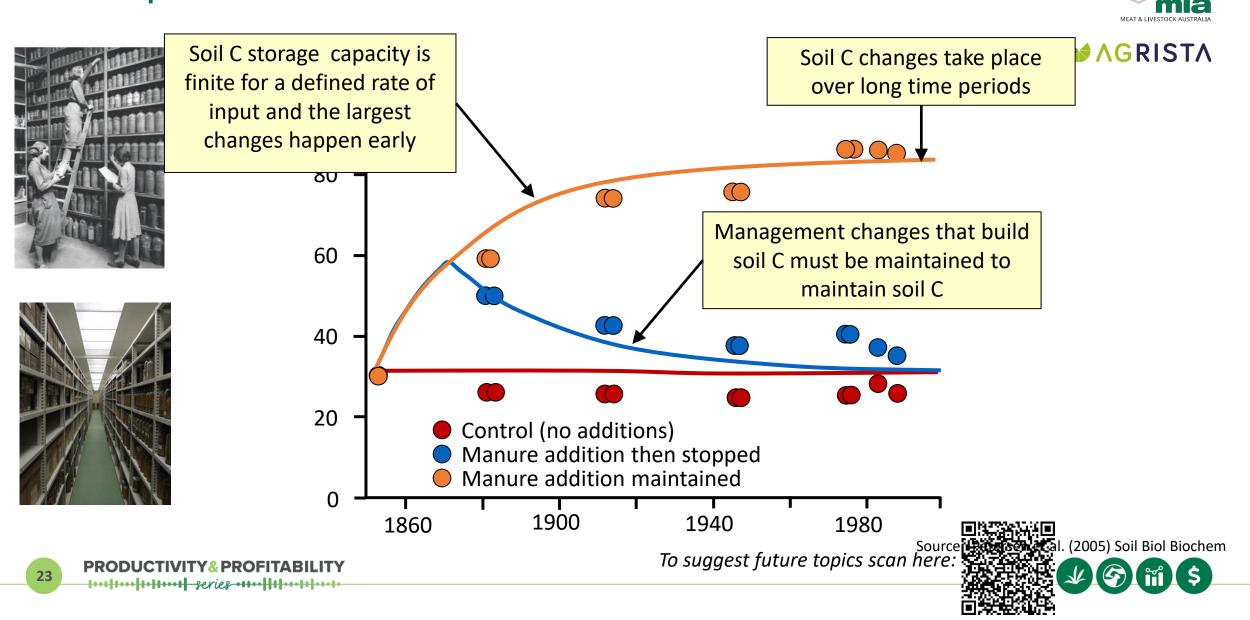

What should you do?

Soils

1. There is an **upper limit** to what a soil can store (potential – attainable – actual).

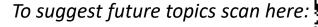

AFAT & LIVESTOCK ALISTR

To ask questions head to slido.com and enter #Feb2024 What should you do?


 Soil carbon stocks are the results of the soil carbon balance (inputs less losses) – highly rainfall dependent.

- 3. To build stable soil carbon takes **nutrients.**
- Permanent increases in soil carbon require sustained additional carbon inputs.

To ask questions head to slido.com and enter #Feb2024 4. Soil permanence


What should you do?

Soils

5. Tension between **stable carbon** (carbon credits) and **labile carbon** (mineralisation) – hard to have both!

What should you do?

Whose carbon is it anyway?

If you create carbon credits (offsets) and **sell them** they are no longer yours to use, but you are responsible for maintaining them (25 yrs)

If you create carbon credits **for your own use** (insets) they are yours to use (5 year vintage), but you are responsible for maintaining them (25 yrs).

Carbon in agriculture is an issue we cannot ignore

Calculate your emissions (and emissions intensity) – it puts you in the game

Focus today on driving your emissions and emission intensity down.

Only enter the carbon credit market if you really appreciate what you are getting into.

