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Highlights

The Harvest Year enabled the following :

Soil coring undertaken at the end of the National Experiment in spring 2001 allowed the use of soil
profile mineral N as a surrogate for N leaching measurements

A rule of thumb was developed, which indicates that to replace the N removed by product only
between 10 and 20% legume is necessary. Higher legume percentages than this lead to a build-up
of N in the soil, and an increased risk of N leaching.

Cross-site analysis of runoff water quality data showed that across ceniral and southern Sites
(Carcoar, Maindample, Ruffy, and Vasey) higher soil fertility was associated with higher P
concentrations in runoff water

At the northern Sites (Barraba, Manilla and Nundle), there was no relationship between soil fertility
and the P concentration in surface runoff. There was, however, a strong relationship between total P
and suspended sediment concentration. Both these parameters were strongly related to quantity of
runoff and the proportion of bare ground. Heavily stocked continuously grazed treatments were
associated with a high proportion of bare ground, high surface runoff, and high P load.

High spatial variation in the generation of surface runoff was demonstrated at all Eastern States Sites
gxcept Maindample. This means that there is an opportunity to minimise water guality problems
associated with grazing management by identifying those areas that produce the most runoff, and
managing them as low-phosphorus systems.

Highlights from the Theme prior to the Harvest Year were :

A minimum protocol was developed which obtained a useful and common set of data across sites
and was not too demanding on Site resources

Results from the National Sites highlighted how the more intensive grazing systems based on pasture
improvement, higher fertility and higher stocking rates have few environmental problems cn some
parts of the landscape, but not on others. In many cases the most financially rewarding pasture
system also had similar or fewer environmental problems (recharge to groundwater, acidification,
arosion risk, loss of nutrients to waterways). There were, however, notable exceptions such as on
gradational soils and steep hills.

Quantities of P and N in runoff waters from sheep pastures were much lower than anticipated at the
start of the SGS program, and amount to less than $0.50/ha.year of P fertiliser equivalent

in some environments a high proportion of surface runoff exceeded the healthy stream standard of
0.05 mg P/litre; how much of this reaches the stream is unclear.

New research leads have been found for how to capture the benefit of fertiliser application while
minimising P loss in waterways, i.e. by infensifying production on areas less likely to contribute to
surface runcff.

N losses on high, medium and low intensity systems were similar, and thus high input systéms are no
less environmentally acceptable than lower input ones.

Very little N is lost in surface runoff but substantial amounts can be lost in subsurface flow and deep
drainage; the concentration of N in surface runoff can exceed the World Health Organisation drinking
water level of 10 mg N/litre, and well-exceed the stream health figure of 0.5 mg N/litre). Whether this
ends up in waterways is unclear buf it raises serious political issues about current agriculfural
systems, particularly those based on annual pastures.

Nitrogen application has been found fo increase the growth and improve the quality of a kikuyu-
subclover pasture when applied prior to out-of-season summer rainfall.

Nitrogen application to a phalaris-subclover pasture during winter produced no extra pasture growth
during the target period, and caused reduced gross margins. There is therefore limited scope to
increase pasture production on phalaris-subliclover pastures where there have been high legume
percentages over a sustained period.
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Background to the Theme and key questions

The Theme was initially set up to develop & minimum protocel for nutrient sampling and analysis.- As
SGS developed, the Theme's plans addressed the following objective:

For a range of the major climatic regions of the High Rainfall Zone where temperate perennial
pastures are an important land use, to quantify the positive and negative effects of N and applied
P both on and off site on

» pasture and animal productivity;

+ soil acidification; and

« P and N concentrations in runoff waters

Overview of progress against the contract objectives

8GS (to June 2001): The Theme provided leadership and co-ordination of:

s Research into the dynamics of nutrients in intensive pasture systems

¢ forage mineral nutrient analyses

+ soll analyses for a standard fertility description of two treatments at each Site (low and high fertility

+ soil analyses for pH buffering capacity.

In addition, the Theme has provided a focus for issues concerning intensive vs extensive pastures. The
‘Theme leader is also involved in the Triple P research program, funded by Wool Innovations Limited and
the NRE Wool Program, and a Dalry Nifrogen project funded by DRDC, ARC and the NRE Dairy
Program. His co-involvement has enabled substantial synergies that have allowed the SGS program
rapid access to the latest findings from these other programs.

Harvest Year: The Theme provided leadership and co-ordination of:

» soll coring, conducted at all National Experiment Sites to determine mineral N store, exchangeable Al
and total P

» Cross-site relationships between soil fertility and P concentrations in surface runoff

¢ long-term simulations of contrasting HRZ grazing management and pasture scenarios using the SGS
Model, which showed large reductions in N leaching through kikuyu

» Preparation of the Theme paper for the special edition of the AJEA.

Tools, Rules of Thumb, and Guidelines

1. N export in product for a ewe-lamb enterprise is approximately 1 kg of N per DSE

2. Nfixation is approximately 28 kg N per tonne of legume growth

3. Combining these rules of thumb, the long-term safe legume percentage can be calculated from
stocking rate {S, DSE/ha) and pasture growth (G, tonnes/ha.year} as 100 $/(28 G), and ranges
between 10 and 20%. Higher legume percentages than this are likely to lead to N build-up in the soil,
and an increased soil acidification risk. Lower percentages would lead to a run-down in grass vigour
through N deficiency.

Findings Hunches and Uncertainties
Findings

Environmental aspects

1. The concentration of P in surface runoff was related to soil feriiity at the southern Sites (Carcoar,
Maindample, Ruify and Vasey), indicating that greater use of P fertiliser would increase P movement
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into waterways. At northern Sites (Barraba, Manilla and Nundie) runoff P concentration was not
related to fertility, but instead related to suspended sediment concentration. (Multi-site analysis)

There was no relationship between runoff N concentration and fertility. (Multi-site analysis)

Across all Sites, both P and N concentrations in surface and sub-surface runoff were well above
guidelines for healthy streams. The guidelines refer to periods of low flow, whereas surface runoff
events contribute to high streamflow. (Multi-site analysis)

Across most Sites, there was considerable spatial variation in surface runoff generation.
Furthermore, only a small proportion of streamflow was generated from the pertion of the landscape
represented by the National Experiment. The SGS Sites represented the portion of the landscape
most likely to be improved under commercial conditions. Areas contributing disproportionately i
runoff generation are likely to be riparian zones and areas of convergent topography. It is
recommended overall production be increased by focussing intensification on the suitable land units
and retiring from production the parts of the landscape that produce the greatest proportion of surface
flow, such as riparian zones. (Multi-site analysis)

Low-P native pastures generate greater quantities of runoff and more consistently than high-FP
phalaris-subclover pastures, and the water has lower P and N concentrations (Wagga).

At a site producing large quantities of runoff (>100mm/year), only 20% of samples exceeded the
healthy stream standard of 0.05 mg P/litre, and there was little relationship between P application rate
and P concentration in runoff (Maindample).

At a Site producing lower quantities of runoff (20 mm/year), nearly all samples exceeded the heaithy
stream standard even where low rates of P had been applied (Vasey). Since both Maindample and
Vasey have similar soil P values (Table 2), P in waterways appears to be more of a problem where
runoff rates are lower and streamflow more erratic.

P losses in runoff from sheep-grazed pasture represent only a small financial cost to production
(about $0.50/ha.year of fertilizer equivalent} (Maindample, Vasey)

N fosses of up to 10 kg N/ha.year have been recorded from the NE Vic Sites. Whether this is
acceptable depends on whether the N ends up in streams. There may be processes that utilise the N
prior to its discharge into streams, such as plant uptake by riparian vegetation (Ruffy and
Maindample).

Production aspects

10. Carrying capacity increases of between 80% and 193% were achieved by a combination of pasture

improvement and fertiliser application. (Multi-site analysis)

11. The response of phalaris to additional N was erratic and not economic. N applied in winter caused no

‘additional growth in winter, but caused extra growth in November if soil water was sufficient (Vasey).

12. A phalaris-subclover pasture responded to either N or K. Of these, K is the more economic to apply

because of its better residual value. The main implication from this finding is that if a pasture has
symptoms of being N-responsive (enhanced growth on urine patches), it is worthwhile to test for K
being a limiting nutrient (Vasey).
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13. In a Mediterranean environment where kikuyu grass is active in summer/autumn, the application of
nitregenous fertilisers to kikuyu pastures in later spring or preceding summer rain, can provide feed of
sufficient quality and quantity to grow livestock ouiside the growing season (Esperance).

Hunches

Low-P systems on wel spots

Findings that a high proportion of surface runoff is generated from a small propoertion of the area led to a
recommendation that they should be managed as low phosphorus systems to improve stream quality.
(The source areas for surface runoff generation are typically less than 10% of the catchment ~ personal
communication from Guy Geeves, DLWC, Wagga Wagga).

" R&D opportunity. Guidelines are needed for how to identify these areas in different geomorphological
environments, and the concept needs to be proven at a small catchment scale.

Uncertainties

P and N in runoff water

1. There are as yet no guidelines for P and N conceniration in stream water for periods of high flow,
- which is when surface runoff occurred from the National Experiment Sites. Furthermore, P and N
stream quality guidelines are very conservative and may be unrealistic. They are based on pristine
streams. There is evidence that disturbed streams (which all ‘real’ streams now are) can tolerate
higher concentrations.

2. There is also no quantification of how much P and N is removed from flowing water betwsen paddock
and stream, through processes such as sedimentation and adsorption in farm dams. This is an R&D
opportunity,

3. Intensive systems don't necessarily increase P in runoff water; While there was a relationship
between soil test P and the P concentration in runoff water for Carcoar, Maindample, Ruffy and
Vasey, there was no relationship for the North-West Slopes Sites. It was hypothesised in the Theme
paper that this was because with higher fertility, more pasture grew and that this improved the surface
cover. Another explanation is that relatively little P was added relative to the high total P in these
soils (this making a relationship difficult to prove), and that most of the fertiliser response was
because of S rather than P. It would be worthwhile to research this further and develop guidelines by
which producers can identify the situations where fertiliser application has no net detrimental effect on
waterways. This is an R&D opportunity.

Acidification processes

4. Acidification through nitrate leaching was only examined at the NE Victorian Sites, and surrogates
(soil mineral N and legume percentage) were used for other Sites. There was poor correspondence
hetween N leaching measurements and these surrogates. Further field measurement of N leaching
is recommended for future experimental programs where legume percentages exceed that required
for product export (between 10-20%).

Database and model

The Nutrient Theme has been unigue in that samples rather than data have been sent from Site teams to
the coordinator. Data were usually sent direct from the laboratory to the Theme Coordinator and were
thus available for immediate statistical analysis and interpretation. The Co-ordinator did not need to wait
for data to become available from Site daiabases before analysis could commence. All data were,
however, forwarded to Site teams to bs entered into their Site database.




L

1

SGS Nutrient Theme Final Report

The model only began addressing nutrient questions late in the Harvest Year, after the results of soil
coring data became available in March. By then, there was time pressure on modelling resources from
other Themes, and insufficient time for nutrient components of the Model to be fully tested.

R&D opportunity: There is scope to use soil profile and forage mineral nutrient concentration data and
collected during the National Experiment to develop the Model into a more reliable tool to address nutrient
questions.

Publications

Nearly complete: The only journal publication produced by the Theme has been for the Special Edition
of the Australian Journal of Experimental Agriculture, which was submitted in December. A draft of the
version submitted to AJEA is attached.

Plan to write: No other papers are planned without new resources.

Could be written: The nutrient cycling components of the SGS Model requires further development and
testing. Forage mineral nutrient data and soil profile nutrient data were collected from all SGS Sites to
assist with model development, but there was insufficient time in the Harvest Year to use these data with
the Model. Soil profile data, needed for initialising nutrient aspects the model, only became available in
March, and between March and June there a lot of other competing time requirements placed on the
Theme Co-ordinator and Modeller.

Challenges and opportunities for the Theme.

The main chalienge in the Nuirients field is that while the impacts of fertiliser on production are well
known, the environmental aspects of P and N movement are poorly known, but measurement of these is
expensive. There are opportunities for MLA to link with R&D activities funded under other programs,
such as the National Action Plan for Salinity and Water Quality, and the CRC for Catchment Hydrology, 1o
achieve positive outcomes for the pasture-based meat production industries.
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Financial statement

Harvest Year, July 2001 to September 2002

$ (excl GST)

Analytical cosis

Wagga 0-10 cm cores 122.00
Feed (3 sampies) 132.00
Wagga 913.20
Carcoar 6.000.00
Albany 620.80
Vasey 2,836.20
NW Slopes 4,637.00
NE Vie 5,672.40
Esperance 303.00
Esperance 200.00
Subtotal - analyses 21,236.60
Collection costs

Esperance {casual labour & freight) 906.36
Hamilton (coring rig hire, casual labour) 850.00
Subotal - collection 1,756.36
Total - Nutrient Theme 22,992.96
less Nutrient Theme contract - 10,000.00
less previous Nutrient Theme carryover - 2,307.00
less excess funds in Animal Theme ~ 2,766.50
less invoiced to Pasture Theme - 7,919.46
Balance 0.00

Prior to Harvest Year, July 1999 to June 2001

$

Nutrient Theme income 2000/2001 7,500

Carryover funds from 1899/2000 7,500

Subtotal - income 15,000

Mineral nutrient analyses WA Chem Centre 11,438

| Casual labour for dispatch from Feedtest and integration

of Feedtest results with mineral data 1,255

Subtotal - expenditure 12,683

Income 15,000

Income less expenditure 12,693
Garryover funds to Harvest Year (income less

expenditure) 2,307

]
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Value added by the Harvest Year

Value added to Theme findings: The Harvest Year enabled soil coring of contrasting treatments at each
8GS Site and soil analysis, which contributed several Figures and Tables to the Theme paper (the impact
of treatments on exchangeable Al, mineral N, total P). The time of the Harvest Year also enabled more
thorough analysis and documentation of findings for the scientific press.

How much have Theme findings changed since last year’s report ? The report produced in June
2001 was a compilation of nutrient-refated findings from Site reports. The Harvest Year has enabled
these Site findings to be extended into mulii-Site analysis, increasing the rigour of the findings. There
have also been several new findings, listed in “Highlights” on page 2 of this document.

What is the added confidence in the findings ? The Harvest Year has enabled researcher hunches to
be thoroughly analysed, documented, and published as the Theme paper. Because the results are
available as a peer-refereed journal paper, there can be greater confidence when the findings are
rewritten for other audiences, such as policymakers, extension staff and farmers.

How has the Harvest Year sped up production of Theme products ? Prior to the Harvest Year, data
collected by the Nutrient Theme as part of the minimum protocol and from the Theme budget was
designed more to underpin other studies (eg soll cross-site soil tests), or because of opportunity (eg
forage mineral nutrients), rather than to address theme guestions directly. Without the Harvest Year,
there would have been virtually no stand-alone Theme products, Cross-site soil fertility data would have
been incorporated into the National Experiment Overview paper, and used as a variate in the Pasture and
Animal Theme papers. The Harvest Year enabled the site coring and modelling to be conducted, which
contributed over half the data in the Theme paper.

What was the value of the post-docs ? The post-doc was responsible for extracting data from Site
databases, some cross-site analyses, and for model runs. The post-doc’s value to the Theme was limited
by him not having a strong background in nutrients, and not being co-located with the Theme leader. In
hindsight the post-doc needed much closer management and direction that he was given.

in hind-sight, how could the Harvest Year have been more effective ?

1. The post-doc needed much tighter supervision, and should have been trained in the use of the SGS
model much earlier in his term.

2. Had the tables and Figures in the paper been scoped out earlier, co-authors would have “come on
board” earlier with data such as nutrient flow, and less rush of data analysis toward the end.

3. The value of soil coring was limited by it being conducted in spring rather than autumn. This is
because funding was not approved until August 2001. Autumn sampling provides a better indication
of mineral N that can leach after the autumn break. Had there been approval by March 2001,
sampling could have been conducted in autumn.

Effectiveness of the Theme approach

The cross-site generalisations would not have occurred without the Theme approach. Without a Theme
role in protocol development, soil fertility information for the National Sites would have been disjointed.

The Theme approach also allowed aspects of the SGS data set that would otherwise not have heen
published, to be used to support an integrated assessment of the sustainability of nutrient usage in the
pasture-based meat industries. Exampies include data on the variability of surface runoff generation,
totai P in the soil profile, and mineral N in the soil profile.

Report completed by Dr. Malcolm McCaskill, Nutrient Theme Co-ordinator, February 2003
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Abstract. To assess the production and environmental risks and benefits of more intensive
pasture management, 2 or 3 (reatments with contrasting fertiliser regimes were selected
from each Site of the Sustainable Grazing Systems National Experiment. The assessment
used soil coring data, modelling and runoff nutrient concentration data.

Simulations were conducted at 6 of the Sites using long-term weather data
éomparing nitrate leaching rates from pastures based on annuals, phalaris (Phalaris
aquatica) and kikuyil (Pennisetum clandestinium). Simulated nitrate leaching was greatest
for the annual pasture (range 34-58 kg N/ha.year), followed by phalaris (< 11 kgN/ha.year)
then kikuyu (< 3 kg N/ha.year). Soil acidification rates were estimated from the simulated
nitrate leaching, and product removal estimated from the stocking rates at each site. Much
higher acidification rates were estimated at southern sites such as Maindample and Albany
(1.2-4.7 kmol H'/ha.year) than in northern NSW sites such as Barraba and Nundle (0.2-
0.94 kmol H'/ha.year). This was because of to the relatively low level of nitrate leaching
likely in summer dominant rainfall environments coupled with lower stocking rates.

The concentration of P in surface runoff was related to soil fertility at the 4
southern Sites, indicating that greater use of P fertiliser would increase P movement into

waterways. There was no relationship between runoff N concentration and soil fertility.

There was also evidence of high spatial variation in surface runoff generation. Based on -

these results, it is recommended that intensification should be accompanied by retiring
from production the parts of the landscape that contribute disproportionately to the

generation of surface flow.

Introduction

Fertiliser application is a vital component of Australian pastoral agriculture.
Superphosphate was initially applied to wheat, and in the 1920s significant responses of
introduced pasture plants to phosphate (P) fertiliser were also observed (Donald 1970).
However, it was not until the 1920s, when the first subterranean clover cultivars (Trifolium

subterraneum L.) were released, that State Departments of Agriculture began to promote
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“sub and super” as a means to intensify pasture-based livestock production. By 1965, the
area of pasture receiving superphosphate exceeded 16 million ha (Williams and Andrew
1970). From 1963 to 1977, the federal government supported a bounty that subsidised
about 20% of the purchase costs {Davey et al 1976), which helped maintain the momentum
of using P fertilisers on pastures. The benefits of P fertiliser application included 2 higher
proportion of the pasture species favoured by livestock, higher pasture growth rates, and
higher digestibility, all resulting in increased animal carrying capacity, and higher
livestock growth rates. In south-eastern Australia, spring-lambing meat enterprises based
on heavily fertilised pastures typically have gross margins 33% higher than those where
lower rates of fertiliser are applied (Court 1998).

The intensification of livestock production through pasture improvement, fertiliser
application and increased stocking rates has had significant impacts on the environment at
the paddock and catchment scales. These impacts variously include: soil acidification,
contamination of surface and subsurface water, degradation of remaining remnant
vegetation, and increased dryland salinity (Gretton and Salma 1996). In the past, these
impacts were discounted as being of little importance because they did not initially reduce
on-farm production. For example, the effects of increased acid inputs associated with
legumes and fertiliser application were evident on lower pH soils in the 1950s (Donald and
Williams 1954; Williams and Donald 1957). This issue was not considered important until
the 1980s when production losses of pH-sensitive crop and pasture species were recorded
(Coventry et al. 1987). Appropriate land use was also an issue with problems exacerbated
on landscapes that were intensified beyond their capability (Johnston et al. 1999).

Increasingly, issues such as water quality and salinity that affect the environment
beyond the farm boundary have emerged as major concerns of the community. In

response, farmers who were initially focused on remedying on-site environmental impacts
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that affect their own production and profitability are now also concerned about the off-site
consequences of their farming activities (Ridley et al. 2003). This shift in farmer attitudes
is caused in part by new environmental targets and changes in legislation. In the Murray-
Darling Basin, for example, societal concerns have led to the setting of targets for salinity
and water quality for each major tributary (Anon. 20004, ), and the onus now rests on the
agricultural industries to justify and improve their environmental performance. Such
pressures contributed in part to the establishment of the Sustainable Grazing Systems
(SGS) (Mason et al. 2003) and its National Experiment (NE) (Andrew and Lodge 2003).
Within SGS, the Nutrient Theme aimed to quantify the positive and negative on-
and likely off-site effects of the intensification of grazing systems in the high rainfall zone
(HRZ, >600 mm rainfall) of southern Australia. The productivity benefits of applied P in
the SGS NE have been reported for pastures (increased herbage accumulation, increased
legume content) by Sanford ez al. (2003) and for animal production (increased carrying
capacity) by Graham ef al. (2003), so we have explored only some aspects of these in this
paper. However, we have explored in more detail the extent to which potential negative
impacts were realised. Negative on-site impacts include an increased likelihood of soil

acidification, while negative off-site impacts include increased P and nitrogen (N) leaving

paddocks in surface runoff, and increased amounts of nitrate-N lost through deep drainage.

Another source of potential negative impact is the imbalance between the export of

nuirients via product and the inputs of those nutrients into the system.

Materials and methods
At each of the SGS NE Sites, treatments that represented a range of extensive and
intensive grazing systems (Table 1) were selected for study. These included contrasting

fertiliser input rates, pasture types, grazing methods and grazing management strategies.
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All treatments reflected levels of management input found on commercial farms in the

vicinity of the respective Sites.

Insert Table 1 near here

Soil fertility

To quantify soil fertility across the Sites, samples (0-10 cm) were collected from low and
high fertility treatments in spring 1998 and 2000. Samples were analysed for available P
using 1 or more of 3 commonly applied soil tests, namely that described by Olsen et al.
(1954} (Potsen), Bray and Kurtz (1945) (Pg,4y), and Colwell (1963) (Peomven). The Genstat
(2000) statistical package was used to derive the following relationships between these soil

P tests, based on 82 cross-site samples:

Peonven = exp(0.8295+1.0063 In(Pogsen)) R*=0.92 'e))
Pomen = exp(1.163+0.7944 In(Pp,q)) R*=0.81 2
Prpray= exp(-0.003+1.1032 In(Poyse)) R*=0.89 3)
Poyen = exp(0.220+0.8244 In(Py,,,)) R*=0.89 N

These conversions were applied whenever samples were inadvertently not analysed by all 3
methods. Available sulfur (S) was measured by the method of Blair et al. (1991) and available
potassium (K) by ammonium acetate extraction (Rayment and Higginson 1992, method 15D3),
with a conversion factor to give values equivalent to the method of Skene (1956). Soil pH was
measured in calcium chloride using a 1:5 soil:solution ratio (Rayment and Higginson 1992, method
4B2). A list of the symbols used in this paper is contained in the Appendix.

Plant growth indices were calculated from plant-available soil nutrient data to indicate the
likelihood of responses. These relationships were based on response relationships reported by
Cayley et al. (2002), Blair ef al. (1991 and 1997), and Gourley (1989) for P, S and K, respectively.
The equations used were:

P index = 1-exp(-0.177 Poisen) (5
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Sindex = 1-exp(-0.3542 S,,) (6)

K index = 1-exp(K,,(-0.0334-(0.00041 %clay))) (N

where Py, = Olsen P, S, = plant-available 8, K, = plant-available K, and Goclay =
percentage clay (0-10 cm) taken from the soil descriptions. Each index was calculated from soil
test data for the 0-10 cm layer, and ranged between O (no growth) and 1 (unrestricted growth). A
nutrient was considered non-limiting when its growth index exceeded 0.95. The primary limiting

nutrient was considered to be that with the lowest plant response index.

Positive on—site effects of intensification
Animal carrying capacity and proportion of legume. To quantify the benefits of

intensification, carrying capacity was estimated in dry sheep equivalent (DSE/ha) using stocking

rate data over the period 1998 to 2000, with allowances for carryover feed and supplementary feed

as descr_ibed by Grabam ef al. (2003). In the pastures at each Site the percentage of legume (mainly
subterranean clover) by dry weight was used to assess N impacts on the pasture. These pasture
assessments were conducted at least 4 times per year by the BOTANAL technique (Tothill ez al.
1992), with more frequent assessments during spring when pasture growth was more rapid. Farther
details are given by Andrew and Lodge (2_003) and relevant Site papers in this special Journal
issue.

The percentage legume required to balance N export in product, termed the ‘benchmark

legume percentage’ (B, %) was estimated as:

B =100 E x C/(Npx x G) (8)

where C = carrying capacity (DSE/ha), G = herbage accumulation (t/ha.year), E =N
exported in wool and meat (kg N/DSE.year), and N, = kilograms of N fixed per tonne of above-
ground legume growth. Values of C and G for the SGS NE were reported by Graham et al. (2003)
and Sanford ef al. (2003). The value of £ was estimated as 1 kg N/DSE.year based on the expected
export of N in wool and meat from a ewe-lamb enterprise (McCaskill and Cayley 2000). Data
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from Peoples er al. (1998) indicate that each tonne/hectare of above-ground legume growth

_ contains 25 kg N/ha that is fixed from the atmosphere. A glasshouse experiment by McNeill ef al.

(1997) found that in addition to N in the plant tops, a further 11-15% was contributed in the roots
and root exudates. The value of Ny, was therefore estimated as 25 x 1.12 = 28 kg N/ha fixed for
each tha of legume growth. An altemative method of estimating G used a feed intake I (kg/day) of
1 kg of dry matter per DSE per day, and assume a pasture utilisation rate I/ (kg eaten per kg grown)

so that;

G=3651x C/1000 U 9)

A utilization rate of 50% was assumed for the North-West Slopes Sites and Wagga Wagga,
and 80% for other Sites. This method was used for the Wagga Wagga, Maindample, Ruffy, and
Esperance Sites, and some treatments on North-West Slope Sites, where pasture growth rate was

not measured.

Negative on-site effects of intensification

Nitrate leaching. To examine the potential impact of pasture management on the rate of
NO; leaching, using information from across a range of Sites, simulations with the SGS Pasture
Model (Johnson er al. 2003) compared 4 pasture types with widely different abilities to control
NO;" leaching: (1) a redgrass (Bothriochloa macra)- subterranean clover pasture to represent a
summer active species of moderate control of NOj leaching, (2) an annual pasture consisting of
annual ryegrass (Lolium rigidum Gaudin) and subterranean clover to represent poor NO; leaching
control, (3) a phalaris-subterrancan clover to represent intermediate control, and (4) a kikuyu
{(Pennisetum clandestrinum Hochst. ex Chiov.)-subterranean clover pasture to represent the best
possible control of NO;y leaching using a pasture species. These simulations were conducted using
climate data for 6 of the SGS NE Sites for 31 years (1971-2001) obtained from the SILO database,
as described by Andrew and Lodge (2003). Soil properties derived from the Yellow Sodosol at
Vasey (representative of a wide area of the HRZ) were used for all simulations. Nutrient
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concentrations in the soil profile were initialised using data from the soil cores collected from
contro} treatments in 2001. Further details of these simulations were provided by Andrew and
Lodge (2003).

To determine the cumulative impact of treatments on mineral N in the soil profile, soil
cores were collected from at least 2 contrasting treatments at each Site in 2001. Cores from the
Maindample and Ruffy Sites were sampled in April 2001, while the remaining Sites were sampled
between October and December 2001. Cores were collected to a depth of 1.2 m at Manilla,
Barraba, Nundle (3 cores per treatment), Maindample (minimum of 20 cores per treatment), Ruffy
(at least 14 cores per treatment) and Vasey Sites (12 cores per treatment); to 1.0 m at Carcoar (9
cores per treatment) and Wagga Wagga (2 cores per treatment); to 1.5 m on the kikuyu treatment at
Esperance; and to 0.75 m on the annual treatment (5 cores per treatment). Cores were dissected to
give samples at depths of 0-10 cm, 10-20 cm and then in 20 cm increments, and analysed for
mineral N {the sum of nitrate-N (NO5-N) and ammonium-N (NH,*-N)]. Mineral N was extracted
in 1 M KCl solution and analysed by colorimetry (Rayment and Higginson 1992, method 7C2).
Where concentrations were below the laboratory detection limit (0.25 mg/kg and 0.7 mg/kg for
NO:-N and NH,"-N, respectively), a value of 50% of the detection limit was substituted in
statistical analyses. Data from the Barraba, Manilla, Carcoar, Maindample, Ruffy, Vasey and
Esperance Sites were statistically analysed by a linear mixed model that included cubic splines of
depth (Verbyla ez al. 1999). This form of analysis was designed to detect treatment differences
across all depths, and differences in the distribution of N within the profile. The model was fitted

to data for nitrate and total mineral N to test for treatment effects, while allowing for random

effects of plot or sampling position. At the Maindample, Ruffy and Esperance Sites, plots were not

replicated but sampling position was replicated, and differences may have been due to position in
the landscape. Statistical analysis was not possible for Nundle and Wagga Wagga, due to the
unreplicated experimental or sampling designs at those Sites.

The soil core samples were also analysed for exchangeable aluminium (AI**), using the

method of Gillman and Sumpter (1986). Exchangeable AI** was expressed as a proportion of the
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effective cation exchange capacity (ECEC), defined here as the sum of Ca™, Mg®*, K*, Na* and
A" (Gillman and Sumpter 1986).

Soil acidification. To assess the sensitivity of soils to acidification, we measured the pH
buffering capacity (pHBC, Noble et al. 1997) on surface soil cores (0-10 cm) collected in spring
2000 from sampling positions representing soil typical of a Site. Since the 4-year experimental
period was too short to generate measurable changes in pH, we estimated the time for pH decline to
occur using the soil bulk densities from the Sites and the equation developed by Helyar and Porter

(1989):
T=ApHxpHBCx BDx V/A (10)

where T = time (years), ApH = change in pH; pHBC = pH buffering capacity (cmol H'/kg.pH), BD
= bulk density (10° kg/m3), V = s0il volume for 1 ha to 10 cm depth (10° m®) and A = acidification
rate (10° cmol H'/ha.year).

We did three éalculations. First the acidification rate was calculated from the sum of
animal product removal and modelled nitrate leaching results. Product removal was estimated from
the stocking rate values, and a conversion factor of 0.6 kmol H* per 10 DSE (Slattery et al. 1991).
Nitrate leaching (kg N/ha.year) estimates as derived for each site from the SGS model were
converted to kmol values (dividing kg N by 14 to convert to kmol H). Product removal and nitrate
leaching values were then summed to estimate the acidification rate. The simulated annual pasture
was used to represent the Control treatment for the Maindample, Vasey and Albany Sites, and the
simulated redgrass (Bothriochloa macra) pasture for the Control treatment at Barraba, Carcoar
and Wagga. Simulations for Barraba were used for Manilla and Nundle Sites, and Maindample
simulations for Ruffy.

Next, we estimated the time to change pH by 1 unit (assuming that acidification only
occurred in the top 10 cm), by solving equation 10 for time and the acidification rate as calculated

above. Finally we estimated the time for soils to acidify to pH 4.2, through solving equation (10).
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A pH of 4.2 was used because this is the level below which high concentrations of exchangeable
aluminium may significantly depress growth of phalaris (Phalaris aguatica 1..) in some soils

(Ridley er al. 1992).

Negative off-site effects - P and N in surface runoff

Data on the concentration of total P and N in surface runoff were available for Sites on the
North-West Slopes of New South Wales and at Carcoar, Wagga Wagga, North-East Victoria and
Vasey. Atmost Sites, water quality data were collected from 1998 to 2000, but at Carcoar they
were only available for the 12 months from September 2001 to August 2002. Runoff plots at the
North-West Slopes and Carcoar Sites had a surface area of 0.01 ha, and were set within larger
grazing plots, whereas at Wagga Wagga and North-East Victoria small catchments of 1.8 to 13.7 ha
were used for runoff measurements. At Vasey, runoff was measured on a separate set of 0.5 ha
plots adjacent to the main experiment. Water samples v\lrere collected within 1-2 days of each
runoff event and were either analysed immediately, or preserved in acid or frozen until analysis.
Sarnples for total P were digested using persulphate (Hosomi and Sudo 1986). At some Sites, more
detailed fractionation was conducted, but ‘in this paper only total P and N are reported. Further
details of sampling and analytical methods at each Site were given by Murphy (2002), Michalk et
al. (2003), Johnston ef al. (2003), Ridley et al. (2003) and Melland (2002), respectively. For each
Site, the flow-weighted average P concentration was calculated for each plot and year. Where
there were more than 5 flow events for a plot in each year, a flow-weighted standard error was
calculated by bootstrapping using S-Plus 2000 (MathSoft, Inc. 1999), using events and replicates
(where available) to estimate variance. Runoff quantity was compared with records from nearby
stream gauging stations, and runoff quality was compared with stream quality guidelines (Anon.
2000c). The 31-year simulations for the phalaris-subterranean clover pasture were used to assess
the timing of surface runoff and deep drainage events because these are drivers of P and N
movement. .

To determine the relative risks of P loss through erosion across the SGS NE Sites, the soil
core samples collected in 2001 were also analysed for total P by mitric-perchloric digestion
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followed by Inductively Coupled Plasma Emission Spectroscopy using the 177.495 nm spectrum
{Carter 1993). Potential P losses through erosion were estimated assuming the loss of 1 mm of soil

from the 0-10 cm layer and a Phosphorus Enrichment Ratio (PER, Sharpley 1980) of 3.5.

Results and Discussion

Positive on-site effects — the benefits of improved fertility

Surface soil fertility. At most Sites, the plant availability indices (Equations 5-7) indicated |
that P was the primary limiting nutrient (Table 2), followed by S at 2 sites (Barraba and

Manilla). The P index for High treatments was less than the 0.93 threshold growth limiting

value at Manilla, Maindample, Ruffy and Esperance (kikuyu). The S index was also below

this threshold value at Manilla, Carcoar, Ruffy and Esperance. Only the Barraba, Wagga

Wagga, Vasey and Albany Sites had both non-limiting levels of P and S on the High
treatment. Levels of K were sufficient to ensure this nutrient was not the primary growth
limitation. However, at Carcoar Maindample, Vasey, Esperance and Albany Sites, soil K
status was marginal (Table 2), and potash would normally be recommended when
deficiencies in other nutrients were fully corrected. It is likely that additional gains in
carrying capacity could have been obtained by correcting deficiencies for treatments where

P, K and S were limiting.

Insert Table 2 near here

Carrying capacity increased between 18% and 215% through intensification
(Table 3). The magnitude of this increase was greatest where the control was an

unimproved system, and was compared with a fully intensified system. At Albany for
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example, the Control was at a moderate level of fertility, and the pasture dominated by
introduged species suited to high fertility (Tables 1 and 2). Only a modest gain in carrying
capacity of 47% was made Jthrough further intensification. At Carcoar, the High intensity
treatment reported here achieved only a 39% improvement in carrying capacity relative to
the unfertilised native pasture Control. The High treatment at Carcoar was a flexibly
grazed sown pasture with a lax grazing regime designed to maximise pasture perenniality
and water use. However, another sown pasture at Carcoar designed to maximisé animal
production had a carrying capacity of 13.6 DSE/ha in 2001, which was nearly 90% higher
than the Control (Michalk ez al. 2003). Further benefits of improved fertility were detailed
in the Pasture, Animal and Water Theme papers (Sanford et al. 2003; Graham et al. 2003;
White et al. 2003).

Legume contents accounted for <25% of herbage mass acrosé all Sites apart from
the Vasey Medium treatment, and the annual pastures at Albany and Esperance (Table 3).
At Nundle, Maindample, and Vasey, where the most intensive treatment was based on a
sown phalaris-subterranean clover pasture, the legume percent increased substantially
relative to the control (Table 3). However, at Esperance and Albany where the intensive
treatment was based on kikuyu, legume content decreased by 50% and 32%, respectively,
relative to the annual pasture. At Barraba and Manilla, the intermediate treatment, which
consisted of rotational grazing of native grasses and naturalised legumes, resulted in

legume contents <1%.
Insert Table 3 near here

At 5 Sites the legume content required to balance N exports (benchmark legume

percentage) was calculated (Table 3) from measured herbage accumulation. Three of these
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Sites (Barraba, Manilla, and Carcoat) had legume contents below that for N balance, while
the Vasey Medium and the annual and kikuyu pastures at Albany were very much above
the benchmark. Where herbage accumulation was estimated from carrying capacity and
utilisation rate using Equation (9), the benchmark legume percentage was calculated to be
4.9% for a utilisation rate of 50% (typical of northern pastures), or 7.8% for a utilisation
rate of 80% (typical of southern intensive systems). Most of the remaining Sites had
legume contents around these benchmarks apart from the intensive treatment at Nundle,

where legume comprised 18% of the pasture.

Negative on-site effects

Impact of management on N leakiness. Nitrate leaching predicted by the SGS
Pasture Model is shown in Figure 1. Leaching from the annual pasture ranged from 34 kg
N/ha.year at Wagga Wagga to 58 kg N/ha.year at Carcoar. The redgrass-subterranean
clover pasture was well below the annual pasture at Barraba and Wagga Wagga, but had
similar estimated leaching to annual pasture at Carcoar, Maindample, Vasey and Albany.
This is because redgrass growth would be under a strong temperature constraint during the
main rainfall season at the latter sites, and that the simulated pastures would be dominated
by subterranean clover, and thus similar to the annual pasture. At all Sites NO3™ leaching
was much less for the perennial phalaris-based pasture (< 11 kg/ha.year) and smaller again
with the deeper-rooted kikuyu pasture <3 kg N/ha.year). Some of this effect was because
the perennials reduced the quantity of water leaking below the root zone (White ez al.
2003).

The only Site where simulated NOs-leaching was compared with measured data
was at Maindample. Here, NOg— leaching by deep drainage in the Medium and High

treatment averaged 1 and 4 kg N/ha.year respectively between 1998 and 2000 (Ridley ez al.
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2003) compared to the model estimate for the phalaris pasture of 3 kg N/ha.year for the
same period. For the Control treatment, the measured leaching loss was 4 kg I;T/ha.year for
1998-2000, whereas the simulated loss from annual pasture averaged 34 kg N/ha.year. The
SGS Pasture Model is thus likely to have over-predicted NO5™ leaching from annual
pastures. Further evidence that the SGS model has over-predicted NQs leaching comes
from work in southern N.S.W. where Ridley ez al. (2001) measured N losses of 9 and 6 kg
N/ha.year under unlimed annual and perennial pastures over a 3 year period. Higher losses
(up to 33 kg N/ha on limed annual pasture) occurred in a particularly wet vear.

Mineral N. The quantity of mineral N in the top 1 m of the soil profile was highes
at Maindample and Ruffy, where soils were sampled in autumn, than at the other Sites that
were sampled in spring, except for Vasey, Medium input (Table 4,' Fig. 2). Sites sampled
in autumn also had a greater proportion of their mineral N as NO;". Because of this
difference in sampling time it was not possible to compare among Sites, other than to note
that the results confirm previous work of mineral N being higher in summer-autumn than
spring (Joshua ez al. 1998; Ridley e al. 2001). Instead, treatments were compared within
Sites. At Ruffy there was significantly more NO3™ and mineral N in the Medium and High
treatments than the Control (P <0.001). The Esperance Site also had clear treatment
differences, with significantly less NO;” and mineral N in kikuyn pastures than annual
pastures (£ <0.001). At Barraba there was significantly (P <0.001) more NOs- in the
profile of the High treatment (native pasture + sub clover) than the Control, but no
significant differences in total mineral N. Vasey had significantly more total mineral N in
the Medium treatment than the High (P <0.001). At other Sites where statistical analysis
was possible (Manilla, Carcoar and Maindample), treatment differences were not

significant. No statistical analysis was possible on data from Nundle or Wagga Wagga, but
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at these Sites treatment differences were below those required for significance at other

Sites.

Insert Table 4 near here

Insert Fig 2 near here

At al] Sites there was a significant (P <0.001) effect of depth on mineral N
distribution within the soil profile (Fig. 2), with highest concentrations in the top 10 cm,
except for Carcoar and the VaSey Medium treatment where there was evidence of
accumulation deeper in the profile. At Vasey, full intensification through greater P fertility
and rotational grazing resulted in a relatively low mineral N concentration under the High
treatment of 55 kg N/ha compared with 105 kg N/ha under the Medium (Table 4). The
reasons for this are likely to be due to rotational grazing favouring the phalaris componeﬁt,
thus resuliing in a greater capacity of N uptake (and hence lower measured mineral N) than
the Medium treatment (Chapman et al. 2003).

There was little evidence from this study that the higher intensity treatments were
any more at risk of nitrate leaching than the controls. There was, however, some evidence
that some of the intermediate treatments appeared to carry a higher risk than either control
or fully intensified systems. The only Sites and treatments where N fixed was substantially
more than N exported in product were the Medium pasture at Vasey and the annual and
kikuyu pastures in Western Australia (Table 2). There was evidence that the kikuyu-based
pastures in Western Australia reduced the risk of N leaching compared with the annual

pasture system, because of their lower legume percentages and soil mineral N content
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(Tables 3 and 4). For all other Sites and treatments, legume percentages were generally
close to or below that required to balance N export in meat and wool.

While high levels of mineral N can be a warning sign of potential NOs- leaching
problems, there are compensating mechanisms within pastures whereby fertility-responsive
species {(e.g. chicory) can utilise the increased mineral N stores early in the growing
season. To be more certain of the longer term sustainability of the N cycle for intensified
systems requires more detailed measurements than were made in this study. Measurements
should include soil solution sampling for NOs™ below the root zone, and soil coring in
autumn, as were conducted at the Maindample and Ruffy Sites (Ridley et al. 2003).

Soil aluminium: Exchangeable AI** comprised >20% of ECEC at Carcoar,
Maindample and Ruffy (Fig. 3) and <7% at other Sites. Highly acid-sensitive plants
experience growth limitations at Al** levels of 8%, and only highly acid-tolerant species
grow without Jimitation at AI** levels >21% (Fenton 1995). At the Carcoar Site, for
example, the more acid-tolerant cocksfoot (Dactylis glomeratum L.) became dominant
even though a cocksfoot phalaris pasture had been sown (Michalk e al. 2003). Al toxicity
is already a major constraint for pastures in North-East Victoria and southern and central
New South Wales, and to overcome this, lime is recommended for establishment and
maintenance of introduced species such as phalaris (Ridley ez al. 1992). The high AI** at
the Sites in this region indicate that further acidification would lead to large decreases in

production.

Insert Fig. 3 near here

Acidification. Due to the time frame of the experiments, pH differences between

treatments were generally small, except at Maindample and Carcoar where lime
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application on the high intensity treatments increased pH values (Table 5). Soil pHBC
values ranged from 0.9 cmol H'/kg soil at Albany to 5.3 cmol H'/kg on the Ruffy High
treatment. Except for the sandy-textured soil at Albany, which had very low pHBC values,
buffering capacities were lower for the northern Sites (Manilla, Barraba, and Nundle) than

the southern Sites.
Insert Table 5 near here

High acidification rates (over 4 kmol H*/ha.year) were estimaféd 6nl.(5..f)ntrol
treatments at Carcoar, Maindample and Ruffy (Table 5), due to the large amount of nitrate
leaching estimated from the SGS model. Lowest acidification rates were estimated at the
northern NSW sites (0.2-0.9 kmol H'/ha.year) due to low nitrate leaching estimated from
the modelling and comparatively low stocking rates.

The time for a pH decline of 1 unit varied between 3 and 117 years (Table 5).
Longest times occurred at Barraba and Manilla Control sites due to the low acidification
rates. Time for a 1 unit pH decline was also high on the Wagga Wagga High site (86
years), due to a higher pHBC than for northern NSW sites in addition to a low acidification
rate. Shortest times occurred at Albany, the Carcoar Control, Maindample Control and
Ruffy Control treatments (all less than 15 years) due to the high acidification rates
(resulting from high estimated nitrate leaching), and in the case of Albany, due to the very
low pHBC values.

The time to acidify to pH 4.2 was primarily dependent on the current pH value,
but was exacerbated by low pHBC values. Unlimed Cbntrol soils at Maindample and
Ruffy were already at pH 4.2, Other sites with less than a 10 year time frame to acidify to

pH 4.2 were the Carcoar Control, Vasey High and Albany.
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Since the SGS model is likely to have over-predicted the nitrate leaching from the
annual pasture, because of the discrepancies between measured results at the Maindample
Site, acidification rates would also be over-estimated for this treatment. Nevertheless, the
conclusions about the severity of the soil acidity problem still hold, as without lime
Maindample and Ruffy already have a soil pH of 4.2 and thus are likely to be limited by Al
toxicity.

The rate of soil pH change depends on the rate of net acid input and the pHBC of
the soil. In grazing systems, the rate of net acid input reflects the balance between the rate
of acid input from the atmosphere, weathering of soil minerals, leaching of nitrate, and
input of supplements, and rate of removal through plant and animal products. The pHBC
values reported here are a measure of the short-term resistance of the soil to acid inputs (or
alkali removal), determined over a 1-week laboratory equilibration period. The method
underestimates the contribution of slow reactions through dissolution of aluminium and
silica (Noble et al. 1997). For this reason, the actual times to acidify the soil are likely to
be greater than the estimates in Table 5.

Several studies have reported pHBC values under pastures in the HRZ in
southeast Australia, such as that of Ridley et al. (1990a) who reported values ranging
between 2.6-6.0 cmol H/kg (mean 3.6). Results from Carcoar, Wagga, Maindample,
Ruffy and Vasey all fall within this range. The pHBC values from the North-West Slopes
Sites and Western Australia Sites were less, falling within a range of 1.4-2.1 cmol H'/kg
for Sites in North-West Slopes and 1.2-2.4 cmol H'/kg for Western Australia Sites. Noble
et al. (1998) reported pHBC values of 2.4 cmol H'/kg, under leucaena (Leucaena
leucocephala) forage tree pasture systems in south-eastern Queensland, but other than this,

pHBC data for northern Ppastures are scarce.
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Timing of deep drainage. For a simulated phalaris-based pasture, the SGS Pasture
Model prediéted <5 mm/month of deep drainage for the Barraba and Wagga Wagga Sites
(Fig. 4). At other Sites there was a clear peak of drainage in late winter and early spring
when soils were most likely to be saturated. These simulations were for drainage below a
depth of 3 m, whereas the simulated rooting depth of phalaris was 1.2 m. For a saturated
hydraulic conductivity of 60 mm/day (Melland 2003), the simulated water front would
therefore take 30 days to move from the 1.2 m to 3 m depths. For this reason, the water
front would leave the root zone of phalaris about 1 month earlier than the drainage peaks

shown in Fig. 4. Deeper-rooted species thus have greater opportunity to capture deep NOsz’

At Victorian Sites, the autumn break occurs between early March and early June
(Clark et al. 2003}, leaving a period of 1-4 months for plants to recover from dormancy,
commence growth and take up NO3™ prior to the commencement of drainage. An early
autumn break thus allows greater opportunity for plants to grow and take up N, as opposed

to seasons where the break occurs later.
Insert Fig. 4 near here

Negative off-site effects

P in surface runoff. The concentration of total P measured in runoff ranged from
0.15 to 1.99 mg P/L across the Sites and seasons represented (Table 6). The highest values
(> 1 mg P/L) occurred at Barraba in 2000 and on the Maindample High treatment in both
1998 and 1999. At the North-West Slopes Sites, there was no relationship between soil
fertility, as measured by the Olsen P value (0-10 cm), and the P concentration in surface

runoff. There was, however, a strong relationship (R’=0.87) between total P and
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suspended sediment concentration (Murphy 2002). Both these variables were strongly
related to the quantity of runoff. In the long-term, treatments with greater ground cover
and biomass would generate less surface runoff, and consequently less P movement. Other
studies in the same region by Lang and McCaffrey (1984) found that for individual events,
ground cover was not correlated with erosion, but that in the long-term, soil loss rates were

correlated with ground cover.
Insert Table 6 near here

At the southern Sites (excluding Wagga Wagga, for which flow-weighted nutrient
concentration data were not available), there was a significant relationship (P < 0.001)

between soil fertility and runoff P concentration ([P], mg P/L).
[P]=-0.12+0.051 ngse,_l R? = 0.50; n =230 (10)

This relationship encompassed a wide range of pasture, soil, slope, and runoff
event types including high-intensity storms producing infiltration-excess mnoff, and long
duration saturation-excess runoff during winter (Gregory and Walling 1973). Similar
relationships have been developed from other studies (e.g. Nexhip and Austin 1998).
Melland (2002) found a stronger correlation (R? = 0.57) between runoff P concentrations
and soil P fertility (0-5 cm Olsen P) for data pooled from the Maindample, Ruffy and
Vasey runoff Sites. Furthermore, as fertility level increased, the soluble P concentration in
the runoff increased, but fhe particulate P concentration did not. At Vasey for example, the
proportion of dissolved reactive P (the form most readily available for algal uptake)

increased from 54% to 74% of total P, as P fertility increased (Melland et al. 2001).
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Intensification through higher P fertility therefore increased the proportion of runoff P that
was readily available to aquatic organisms and most liable to cause eutrophication
problems.

These findings were consistent with the hypothesis that detachment of fine
particles is the dominant process in the northern Sites, contrasting with the southern Sites
where a combination of dissolution and fine particulate movement are the dominant
processes. Therefore in environments where particulate P losses dominate runoff, a
response in runoff concentrations to P fertility may not occur because of compensating
mechanisms such as increased ground cover that both increases water i;lfiltfat‘i;)n-al;dn
reduces the kinetic energy of water flowing across the ground surface. However in
environments where soluble losses dominate, intensification through improved P fertility
can be expected to increase P losses. This has important implications in southern Australia,
especially Victoria, where land prices are relatively high and there is pressure for
intensification to maintain viability.

Concentration of total P in surface flow from all Sites (Table 6) exceeded the
maximum desirable P levels for healthy streams, above which action should be taken to
assess if there is a potential impact (Australian and New Zealand Guidelines for Fresh and
Marine Water Quality, Anon. 2000c). This is cause for concern for both extensive and
intensive pasture-based livestock production. However, these levels are set at
conservatively low values, and are intended for use during low flow conditions when
surface flow from paddocks would not be a direct contributor to streamflow. When water
is running over the ground surface the creeks are likely to be flowing strongly.
Nevertheless, where P concentrations exceed these levels it is recommended that in-stream
monitoring and research be undertaken on minimally disturbed reference systems to more

accurately define water quality standards for each system (Anon. 2000¢).
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Nin Surface. runoff. Large variations in N concentration were observed between
years within Sites (Table 6). Average N concentrations always exceeded the stream trigger
levels even for native pasture treatments, often by more than 10-fold (Table 6). There was
no consistent relationship between level of intensification and the N concentration of
runoff water, except at Ruffy where the concentration from the Medium level of
intensification exceeded the Control (Table 6). Indeed, at Ruffy, the runoff N
concentration for the Medium treatment also exceeded that of the hi ghest level of
intensification in 2000. Thus N concentration in run-off would appear to be largely
independent of management, which makes empirical sense, given that rain falling on
pastures does not come into contact with the NO3™ in soil, unless the rain infiltrates soil.
The data indicate that there is little a landholder can do via paddock management to
achieve these water quality targets, and that more accurate definition of the target levels is

warranted.

Runoff generation.: The annual runoff rates measured for the plots at the North-
West Slopes Sites, Carcoar, North-East Victoria and Vasey was often well below that
recorded in the reference streams (Table 7). There was also high spatial variation in
surface runoff generation (data not shown), through variation in topography, soil
characteristics, and surface cover. At the Vasey runoff Site, for example, an arca of
convergent topography representing less than 2% of the total landscape contributed up to
80% of the runoff (Melland et ol. 2001). In the SGS NE there was no attempt to define
which parts of the landscape contributed to streamflow. However, other Australian and
United States studies have found that areas of convergent topography and close to drainage
lines contribute much of the surface runoff (Barling e al. 1994, Western et al. 1999,

Gburek and Sharpley 1998), while areas far from drainage lines rarely contribute directly

22




568

569

570

571

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

to streamflow. In choosing experimental locations for the SGS NE, drainage lines were
avoided because of high spatial variation, and because these parts of the landscape are not
often converted to sown pasture. On a catchment scale, discharge of groundwater would
contribute additional streamflow, as would flow from parts of the catchment with higher
rainfall. For example, the catchment where the Nundle Site was located exhibited steep
rainfall gradients (data not presented), with areas higher in the catchment than the SGS NE
Site likely to contribute most of the flow to the reference stream. Thus, in order to
minimise the P accessions in whole sub-catchments, there is scope to identify source areas
contributing most of the runoff, and to manage these as low-P systems. This approach is
currently used as the basis of extension programs to reduce P levels in waterways in the
United States (Sharpley et al. 1999), and could easily be modified to achieve similar

outcomes in Australia.

Insert Table 7 near here

Recommended practices for the meat and wool industries need to have at least no
greater negative impacts on the environment than the current standard practice. At the
North-West Siopes Sites, higher fertility and pasture accumulation increased ground cover,
thus off-setting direct effects of labile soil P on runoff P concentration. At the southern
Sites, nearly all runoff occurred at times of high ground cover on all treatments, and yet
higher soil fertility was associated with increased P concentration in surface runoff. To
compensate for this effect, intensification of pasture-based systems needs to be
accompanied by measures that maximise the trapping of nutrients, and the dilution of flow
with runoff from low-P areas (Melland 2002). Much of this would occur anyway through

the presence of farm dams on drainage lines, which trap nutrients, and fencing off areas
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adjacent to drainage lines. Indeed, it is often only through intensification that landowners
can afford to fence off and retire from production the riparian areas most at risk of

contributing to P movement into waterways.

Total P in the profile. Three distinct patterns of total P were observed in the soil
profile (Fig 5). At Carcoar, Maindample, Ruffy and Vasey, P concentrations were high in
the top 10 cm (>200 mg P/kg), and lower in the remainder of the profile (<100 mg Prkg).
At Esperance, P concentrations were low throughout the profile (<20 mg P/kg), whereas at
the North-West Slopes and Wagga Wagga Sites, P concentrations were consistently high

throughout the profile (125-595 mg P/kg).

Insert Fig 5 near here

The high total P concentrations in the top 10 cm highlight the importance of
protecting topsoil from erosion. Comparison with Table 2 indicated that 6n1y 1.5-30% of
topsoil P was in plant-available forms. Much of the unavailable P would be tightly bound
to iron-containing minerals such as haematite and goethite (Taylor and Schwertmann
1974). While this P is regarded as being unavailable to plants, transport of the Fe-
containing minerals into waterways following erosion can cause P to be released in soluble
forms capable of sustaining algal blooms (Bostrém et al, 1988). A similar concentration of
P was observed in the Long-term Phosphate Experiment at Hamilton, Victoria, where 55%
of P applied over an 18-year period accumulated in the top 10 cm of soil, doubling the total
P concentration from 340 to 680 mg/kg (McCaskill and Cayley 2000). Within the 0-10 cm

layer, 62% of total P was in the top 5 cm, indicating that P was concentrated near the
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surface. The only SGS NE Site where 0-5 cm samples were collected (Carcoar) showed a
similar level of concentration toward the surface (data not shown).

Total soil P concentrations were highest for the North-West Slopes Sites (Fig. 5),
where the risk of surface water movement in summer was the greatest of all SGS NE Sites.
Indeed, the Nundle Site is located upstream of the Chaffey Dam, which has experienced
major algal bloom problems since its opening in 1979. Detailed studies have traced the
dam sediments to streambank erosion (50%) and sheet erosion of basalt-derived soils from
an area comprising <1% of the total catchment (Caitcheon ef al. 1994). ’Iihes,j: soi‘l_s contain
up to 10,000 mg P/kg, which is much greater than the 425 mg P/kg in the topsoil of the
Nundle Site. Thus the P in the dam sediments was related to natural sources rather than to
fertiliser inputs.

Because P is held mainly on clay particles that are more readily moved by water
than the larger particles (Sharpley 1980), the total P concentration of eroded material is
often greater than that of the soils from which it is derived. Calculation of the PER using
total P in the 0-10 cm layer accounts for the tendency for P to be concentrated toward the
top of this layer, where there is greatest risk of it being displaced by moving water.
Melland (2002) measured PERs (based on 0-10 cm total P) of 2.0 at Vasey and 4.5-8.0 at
Maindample. Assuming a PER of 3.5 in the middle of this range, potential P losses
through erosion of 1 mm of soil were calculated to range from 9.5 kg P/ha at Carcoar to
31.9 kg P/ha at Barraba (Table 8). Comparison with P loads in runoff measured during the
SGS NE showed this was equivalent to between 31 and 1370 years of runoff P losses under
well-managed conditions. Johnston et al. (1999) have noted that most of the runoff and
sediment lost over time from plots and catchments occurs in response to infrequent high
intensity events, such as heavy drought-breaking rain. Thus the 1998-2000 data (Table 8),

which did not encompass the infrequent high-intensity events and showed low rates of P
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loss due to water movement, are almost certainly underestimates of the the fonger term

rates of loss,
Insert Table 8 near here

Timing of runoff. Mean monthly surface runoff, as predicted by the SGS Pasture
Model over a 31-year period for a phalaris-based pasture on a Yellow Sodosol, showed a
summer peak at Barraba, summer and spring peaks at Cazcoar, and peaks in late antumn
and early winter at the other Sites (Fig. 6). At southern Sites, coincidence of the runoff
peak with the period when pasture mass is likely to be at a minimum emphasised the need
to maintain at least 70% ground cover at all times of the year to reduce the risk of erosion
(Costin 1980). These conditions are more likely to be met by perennial than annual
pastures; indeed, a study at Wagga Wagga by Heng ef al. (2001) showed that perennial
phalaris-based pastures carried greater ground- cover in the autumn than annual pastures,

and had less surface runoff in automn.
Insert Fig. 6 near here

General discussion

The data set collected within the Nutrient Theme of the NE was not as
comprehensive as that collected in Water, Pastures and Animal Themes. This was due
both to reasons of expense and that nutrient expertise was not strong across all Site teams.
Additionally, analysis of the SGS model results with the limited measurements did not

occur until “late in the day” within SGS. In hindsight, placing greater emphasis and
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generating ownership of the importance of nutrients with in SGS and integrating modelling
analysis with Site data was warranted.

There are still significant gaps in our understanding of how nutrients applied to
pastures impact on the environment. Firstly, the stream water standards for P and N appear
to be set too conservatively, such that even if no nutrients are applied the water quality
standards are not met. More appropriate standards need to be determined, together with
management systems that can meet the new standards. Secondly, findings that only a
small proportion of a catchment contributes to surface runoff need to be_developed in_to a
decision support framework whereby landholders can identify the contributing areas, so the
non-contributing areas can be managed primarily for productive purposes. Thirdly, the
lack of evidence in this paper that intensive pasture systems leak any more NO; than
unimproved systems is based on limited data, most of which was collected for other
purposes. More intensive study of NO3” movement is necessary, particularly for pastures

that exceed the benchmark legume percentage.

Conclusions

For N and acidification issues, there was little evidence from this study that fully
intensified pasture systems were any less sustainable than the control, unimproved
systems. This was because the perennial grass in the intensified systems was able to
exploit the extra fertility, particularly N. There was, however, evidence that intermediate
levels of intensification (that encourage a high percentage of legume), carry a higher risk
of N loss and acidification. The risk factors include much greater amounts of N fixed than
required to balance product export in meat and wool, and greater stores of mineral N in the
soil profile. For P issues, there was evidence from southern Sites that the higher the soil P

fertility, the greater the concentration of P in runoff waters. The off-site negative impacts
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691  of P loss need to be balanced against the 2-3 fold increases in carrying capacity of high P
692 input systems relative to unimproved control pastures (Table 2). It is often only through
693  capturing the positive benefits of intensification that landowners can afford to fence off
694  and retire from production the riparian areas most at risk of contributing to P movement
695  into waterways. Clearly the area of nutrient loss and off-site impacts from agricultural
696  land use will become increasingly important. Research into nutrient losses conducted at a
697  realistic scale is expensive and needs to be conducted over a range of seasons, as major
698  events cocur only occasionally. This will be a major challenge given the current funding
699  constraints and short-term nature of field based agricultural research being conducted in
700  Australia generally.
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Table 3. Carrying capacity, pasture legume content, averaged over 1998-2000, and the benchmark

MM

18/02/2003

legume percentage required to balance N exports in wool and meat

Site Treatment Carrying Increase in Legume Increase in Benchmark
description capacity carrying  content legume legume
(DSE/ha) capacity® (%) content”™  content”
(%) (%) (%)
Barraba Control 33 1.5 4.9
Medium 5.9 79 0.6 -60 114
High 10.4 215 55 267 4.9
Manilla Control 3.4 0.9 4.9
Medium 4.3 26 07 - -22 6.1
High 8.0 135 6.9 667 4.9
Nundle Control 13.1 5.8 4.9
High 15.5 18 18.0 - 210 49
Carcoar © Control 7.0 3.6 7.7
High 9.7 39 5.0 39 6.6
Wagga Control 4.3 21.9 3.9
Wagga
High 7.7 79 17.0 -22 4.2
Maindample Control 12.9 55 7.8
Medium 17.4 35 13.6 147 7.8
High 20.9 62 11.6 111 7.8
Ruffy Control 8.8 6.4 7.8
Medium 10.7 22 4.5 -30 7.8
High 17.8 102 6.2 -3 7.8
Vasey Control 8.2 6.3 4.1
Medium 17.3 111 31.0 392 9.2
High 24.0 193 15.3 143 11.1
Esperance ©  Annual 34.1 7.8
Kikuyu 17.1 -50 7.8
Albany Annual 13.1 38.2 4.7
Kikuyu 19.2 47 26.1 -32 6.8

A Calculated for each Site as 100*(value for treatment)/(value for control)-100

® Sites and treatments where G was calculated using Equation (9) are shown in italics.
€ 1999 to 2001

D 1997 and 1998 only
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Table 4. Mineral N (kg/ha) in the soil profile (0-100 cm).

NO;™N
Month of Mineral N proportion of
sampling  0-100 cm mineral N
Site Treatment in 2001 (kg/ha) - (%)

Barraba Control Nov. 23 9
High Nov. 25 44

Manilla Control Nov. 41 24
High Nov. 27 22

Nundle Control Oct. 21 24
High Oct. 27 26

Carcoar Control Dec. 55 22
High Dec., 43 21

Wagga Wagga Control Dec. 27 7
High Dec. 47 43

Maindample Control Apr. 102 78
Medium Apr. 125 59

High Apr. 138 84

Ruffy Control Apr. 42 62
Medium  Apr. 113 84

. High Apr. 84 77
Vasey Medium Qct. 105 37
High Oct. 55 38

_Esperance Kikuyu* Dec. 31 23

A Esperance annual not shown because sampling was only to 75 cm.
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Table 6. Average flow-weighted totai P and N concentrations (mg/L + s. e.) in runoff water collected at

northern (Barraba, Manilla and Nundle) and southern (Carcoar, Wagga Wagga, Maindample, Ruffy

and Vasey) Sites, and the Australian stream water quality “trigger values”, above which further

investigation of risks is recommended (Anon 2000c)

Total P Total N
Site Treatme 1998 1999 2000 1998 1999 2000
nt
Barraba Control 0.594 1.24 1.994 1.60% 2.52 2.644
Medium 0414 0.73% 1.034 1.30% 1.23% 1.37%
High - - 1.364 - - 1.41%
Manilla Control 0.194 - 0.474 0.824 - 2.024
Medium 0.454 - 0.334 0.704 - 1.394
Nundle Control 0.154 - 0.644 2.00% - 2.26%
High 0.15 - 0.45 - - 10.44
Carcoar® Control 0.22:+0.06 2.51+0.34
: High 0.56+0.15 4.47£0.52
Wagga Control 0.24 1.8
Wagga®
High 1.0 2.3
Maindample  Comtrol  0.32+0.085 0.25+0.02  0.32+0.01 2.65£0.25 2.45+024  4.00+0.12
Medium 0.31x0.033 0.18+0.00  0.12+0.01 5.71+0.34 2.80+0.11  2.93+0.11
7
High 1.50£0.14  1.23+0.02 0.76 5.6020.60 2.82+0.16 4.48
Ruffy Control  0.28+0.020 0.23x0.01  0.34+0.01 2.85+0.15 3.17£0.14  10.8320.96
Medium  0.49+0.024 0.3620.05 0.77+0.03 6.35£0.95 4.38+0.50  4.26+0.09
High 0.76+0.15 - 0.26 6.83+1.48 - 1.61
Vasey Medium  0.1920.02 - 0.22+.03 2.40 - 2.88+0.33
runoff High 0.34+0.06 - 0.38+0.07 2.32+0.27 - 4.1220.44
Australian water quality NSW 0.050 0.600
trigger levels® Victoria 0.032 0.422

* based on single flow event; - no flow event ; ® Carcoar data were for 1 September 2001 to 31 August 2002, ¢

Wagga data are median concentrations 1998-2000, not flow-weighted, and not separated according to years;

Anon. (2000¢) for lowland rivers

NB Confidence intervals only calculated if 5 or more runoff events occurred in a year
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Table 7. Measured surface runoff (mm/yr) for some SGS NE sites and streamflow from nearby

gauged watercourses, over the period 1998-2000

SGS NE Site Surface flow (mm/yr) Streamflow Reference stream gauging station

Plot with  Plot with {mr/yr)
least flow  greatest
flow
Barraba 1 28 29 Manilla River at WoodsReef (419047)*
31 Manilla River at BlackSprings (419053) 4

Manilla 1 11 32 Manilla River at BraBri (419020) #
Nundle 1 14 197 Pecl River at Taroona (419081) #
Carcoar® 2 26 19 Belubula River at Blayney (412105)°
Wagga Wagga 2 12 87 Kycamba Creek at Book Book (410156)°
Maindample 84 158 103 Brankeet Creek at Ancona (405251)%
Ruffy 6 20 119 Hughes Creek at Tarcombe Rd (405228)°
Vasey runoff 1 45 20 Dundas River at Cavendish (238220B)"

ANSW Department of Laqd Water Conservation, Barwon Region, Tamworth NSW 2340
B September 2001 to August 2002

CNSW Department of Land and Water Conservation, Orange, NSW

D Garry Carr, NSW Department of Land and Water Conservation, Tumut, NSW

£ Data source for Victorian streams Department of Natural Resources and Environment,

www.vicwaterdata.net
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Appendix. List of acronyms and symbols used in this paper

18/02/2003

Acronym or symbol Meaning

A

B

BD
Joclay

[P]
Ppray
Pcoerl
PER

pHBC
P Olsen
Sav
SGS
T

U

|4

acidification rate, 10° cimol H*ha.year
benchmark legume percentage

bulk density, 10° m®

percentage clay

Carrying capacity, DSE/ha

change in pH

dry stock equivalent

N export in wool and meat, kg N/DSE.year
effective cation exchange capacity
Herbage accumulation, t/ha.year

Available potassium, mg/kg

National Experiment

kg N fixed per tonne of legume above-ground growth
P concentration in surface runoff, mg/litre
Bray P, mg P/kg

Colwell P, mg P/kg

Phosphorus Enrichment Ratio

pH buffering capacity, cmol H'7kg.pH
Olsen P, mg P/kg

Available sulfur, mg S/kg

Sustainable Grazing Systems

Time, years
Pasture utilization rate, kg eaten per kg grown

soil volume for 1 ha to 10 ¢m depth
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Fig. 1. Long-term nitrate leaching predicted by the SGS model.

Page 47 of 54

Albany

18/02/2003




G Jo 6¥ 98ed

5 &'}

aouelads] (1) Ayny (6) 80

414 0¢

aidwepuieny (3) reoote) (p)

c’l

a|puny (o} eqeneq (e) 80
70
L 1 : L . 00
Gl Ot g 0 Gl Ol g 0 GH ol g 0
(Bx/N Bw) uonenusouod N
NN €002/20/31 saIngL{ pue SI[qE.L SWOYL, JUILNON

Oy o s R s T S N s S T e T s T e R - s




Nutrient Theme Tables and Figures 18/02/2003

MM
Figure 2 Mineral N concentration in 2001 at (a) Barraba, (b) Manilla, {c) Nundle, (d) Carcoar, (e)
Wagga Wagga, (f) Maindample, (g) Ruffy, and (h) Vasey, and (i) Esperance. Nitrate-N is
represented as dashed lines with open symbols, and mineral N (nitrate + ammonium) as solid lines
and filled symbols. 1 m Control oeMedium A A High treatment. For Esperance o# Annual A A

Kikuyu treatment.

{This Figure was prepared in Excel and composited in Powerpoint. When taken into Word, the y-axis

label was changed from vertical to horizontal lettering. ]
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Fig. 3. Aluminium as a percentage of ECEC + SE for (a) northern sites 4 Barraba, A Manilla,

o Nundle (b) Carcoar 4 limed (no SE) and ,A unlimed, and (c) southern sites m Maindample,

A Ruffy, o Vasey and ¢ Esperance.
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Figure 4. Monthly drainage predicted by the SGS model over a 31-year period for 4 Barraba, A

Carcoar, 0 Wagga Wagga, m Maindample, © Vasey, and ¢ Albany.
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Soil total P {(mg P/kg)
0 200 400 600

Figure 5. Total P in the soil profile for (a) ¢ Barraba, A Manilla, o0 Nundle and © Wagga Wagga, and
(b) A Carcoar, m Maindample, ® Ruffy, o Vasey, and ¢ Esperance. Bars indicate the SE of

observations.
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Figure 6. Mean monthly surface runoff predicted by the SGS model over a 31-year period for 4

Barraba, A Carcoar, 0 Wagga Wagga, m Maindample, o Vasey, and  Albany.
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