

10:40604 M CMHN.016

THE OMEGA 3 CONTENT OF LEAN RED MEAT

Final Report to Meat & Livestock Australia

Project CMHN.016

March 2003

Report Prepared by Department of Food Science RMIT University

Final Report to Meat & Livestock Australia

Project Number	CMHN.016
Project Title	The Omega 3 Content of Lean Red Meat
Organisation	RMIT University, Melbourne
Project Supervisors	Professor Andrew Sinclair Dr Neil Mann
Project staff	Ms Yolande Yep Dr Eric Ponnampalam Department of Food Science RMIT University GPO Box 2476V, Melbourne 3001 Phone 03 9925 2899 Fax 03 9925 5241

Report Date

March 2003

MLA - Project CMHN.016 Final Report (March 2003)

<u>,</u> ...

Objectives

Objectives	<u>Part A:</u> To provide a full report for beef omega 3 fatty acid and other major fatty acid concentrations from grass (pasture) and short-grain fed animals.
	Samples from C3 grass fed, C4 grass fed and short grain fed beef cattle (Bos Indicus and Bos Taurus in the domestic class and Bos indicus and Bos taurus in the Jap ox class).
	The aim of the research was:
	 To define the omega 3 fatty acid, saturated fatty acid content and trans fatty acid content of beef. To determine if there was there a difference in omega 3 fatty acid content, saturated fatty acid content and trans fatty acid content between feeding regime (grass versus grain feeding). To determine whether breed type influenced the different fatty acids in beef. To determine whether the omega 3 fatty acid content of beef met the FSANZ requirements to be considered as a source or a good source of these fatty acids.
	Part A involved only the analysis of two cuts per animal since preliminary studies showed that rump and striploin had different omega 3 contents.
	Part B:

To provide a full report for the beef omega 3 fatty acid and other major fatty acid concentrations from grass (C3 pasture), short-grain fed and long-grain fed animals (all Bos Taurus genotype).

Samples from C3 grass fed were sourced from northern and central New South Wales and the short grain fed and long grain fed beef cattle were sourced from feedlots in southern Queensland.

The aims of Part B were the same as in Part A, except that three cuts per animal were analysed in order to obtain a more representative sampling of the meat sold for consumption.

Studies

Objectives	To provide a full report for the beef omega 3 fatty acid content and other major fatty acid concentration from grass (pasture) and short-grain fed animals.
Methods	As described in the studies in Appendix 1.

PART A

3

Samples

Samples from C3 grass fed, C4 grass fed and Short grain fed beef cattle (Bos Indicus, Jap ox). In each case 15 animals and two cuts per animal were analysed (rump and striploin).

Class	Genotype	C3	C4	Short fed
	Bos	1 Bankisia		5 Warwick
	Taurus	beef		Meats
Domestic		Diff. Pro.		Diff. Pro.
		complete		Complete
	Bos	2 ACC		6 Stanbroke
	indicus	Diff. Pro.		Diff. Pro.
		Complete		Complete
	Bos			7 IMTP
	Taurus			Diff. Pro.
Jap Ox				Complete
	Bos	3 Brigalow	4 Stanbroke	8 Stanbroke
	Indicus	Diff. Pro.	Diff. Pad	Comm. Pro.
		complete	complete	Complete

PART B

Samples were obtained Mr Shane Blakely from C3 grass fed, short grain fed and long grain-fed beef cattle In each case, there were 18 animals per feed-type and three cuts per animal were analysed (rump, blade and striploin).

Samples from C3 grass fed were sourced from northern and central New South Wales and the short grain fed and long grain fed beef cattle were sourced from feedlots in southern Queensland. All animals were Bos Taurus genotype.

Omega 3 Fatty Acid Content of Lean Red Meat Project CMHN.016

Key findings:

- 1. In general, rump across all animals or feed types had more omega 3 FA, omega 6 FA, trans 18:1 FA, saturated and monounsaturated FA and CLA than striploin.
- 2. Grass-fed cattle had more omega 3 FA (short and long chain omega 3) than short grain-fed across all animal types; this finding was especially true for rump (significantly higher total n-3 FA for grass fed than grain fed), but less obvious for strip loin (no consistent significant difference between grass fed and grain fed, though the highest value for n-3 FA in striploin was in C3 grass fed and the lowest in domestic short grain fed).
- 3. For rump and striploin, there were no major or significant differences in omega 3 FA between C3 and C4 grasses.
- 4. The C4 grass fed animals had the highest CLA value in rump (not striploin), however this probably reflected the fact that this group for rump had the highest total FA content.
- 5. For rump and striploin, there were no significant differences between Bos indicus and Bos taurus values for domestic C3 fed, there were few significant difference for domestic short grain fed (total n-6 FA and trans FA), while the short grain fed Jap ox had significantly higher FA values for most FA classes except CLA.
- 6. Moisture: For rump, the values ranged from 73 to 75%, while for striploin the values ranged from 73 to 74%. There were no consistent differences between species or feed type.
- 7. RUMP & STRIPLOIN Total LCPn-3 values ranged from 40 to 118 mg/100g lean beef. This should allow lean beef to be counted as a 'source of long chain omega 3 fatty acids' as per ANZFA. However, beef and lamb have quite a high level of DPA (docosapentaenoic acid n-3) which ANZFA <u>do NOT count</u> in their category for LCPn-3. DPA levels are approximately 33 to 66 mg/100g for rump and 23 to 42 mg/100 g for striploin. Only grass fed rump EPA+DHA would consistently reach the ANZFA target of >30 mg/100g, independent of breed, but not always for short grain-fed (3/4 were). For striploin, only 3 of 8 groups exceeded the 30 mg/100 g value (the three were C3 grass-fed).
- 8. RUMP Long chain omega 3 (LCPn-3, 20:5, 22:5 & 22:6) in grass-fed in range 110-118 mg/100 g lean rump; in short grain-fed the values were significantly lower at 62 86 mg/100 g lean rump. These values, especially for the grass-fed are in the range for values for some white fish.
- 9. RUMP Alpha-linolenic acid (ALA) values for grass-fed 60-88mg/100g lean rump; in short grain-fed values were significantly lower at 16-32 mg/100g lean rump.
- 10. RUMP CLA in grass fed animals showed a trend (non significant) to be higher than in short grain fed.
- 11. RUMP trans 18:1 in grass fed animals showed a trend (non-significant) to be lower than in short grain fed animals.
- 12. RUMP EPA + DHA values in grass fed (51-55 mg/100g) were significantly higher than short grain fed animals (28-35 mg/100g).
- 13. STRIPLOIN Long chain omega 3 (LCPn-3) in grass-fed in range 61-75 mg/100 g lean striploin; in short grain-fed the values are 40-62 mg/100 g lean striploin (some significant differences).
- 14. STRIPLOIN Alpha-linolenic acid (ALA) values for grass-fed 32-58 mg/100g lean striploin; in short grain-fed values were significantly lower at 11-19 mg/100g lean striploin.
- 15. STRIPLOIN CLA in grass fed animals showed no significant difference from the short grain fed animals.
- 16. STRIPLOIN trans 18:1 in grass fed animals showed a trend (mostly significant) to be lower than in short grain fed animals.

MLA - Project CMHN.016 Final Report (March 2003)

17. STRIPLOIN EPA + DHA values in grass fed (26-34 mg/100g) were not significantly different to the short grain fed animals (17-26 mg/100g).

18. More research is required on DPA to show it should be "counted" as a LCPn-3.

1

MLA - Project CMHN.016 Final Report (March 2003)

Variable		C3			C4 Short grain			
	Do	Domestic		JAP	Don	nestic	JAP	
	Taurus	Indicus	Indicus	Indicus	Taurus	Indicus	Taurus	Indicus
Total SFA	1500ª	1298ª	1335ª	2564 ⁶	1114 ^a	1036ª	2110 ^b	1394ª
Total MUFA	1574 ^b	1315 ^{ab}	1420 ^{ab}	3229 ^d	953ª	989 ^{ab}	2349°	1492 ^{ab}
Total n-3 FA	175 ^{cd}	165°	206 ^d	202 ^d	92ª	78ª	114 ^b	95ª
Total n-6FA	316 ^{ab}	268ª	320 ^{ab}	347⁵	352 ^b	259 ^a	467°	367 ^b
Total trans 18:1	67^{ab}	50ª	79^{ab}	161 ^{bc}	166 ^{bc}	101^{ab}	227°	127 ^b
Total CLA	26 ^b	18 ^b	30 ^b	63°	9 ^a	13 ^a	26 ^b	17 ^{ab}
Moisture	74.5°	73.5 ^b	74.1 ^{bc}	72.6ª	74.2 ^{bc}	74.6°	73.1 ^{ab}	73.5 ^b

Summary Tables

Table 1. Total saturated, monounsaturated, omega-3, omega-6, C18:1 trans fatty acid, CLA concentration, and moisture content of Rump¹

¹Values are expressed in mg/100 g of meat sample and an average of 15 observations (analysed in duplicate). For moisture, values expressed as g/100g meat. ^{*a,b,c,d*} Within a row, means without a common superscript letter differ (P < 0.05).

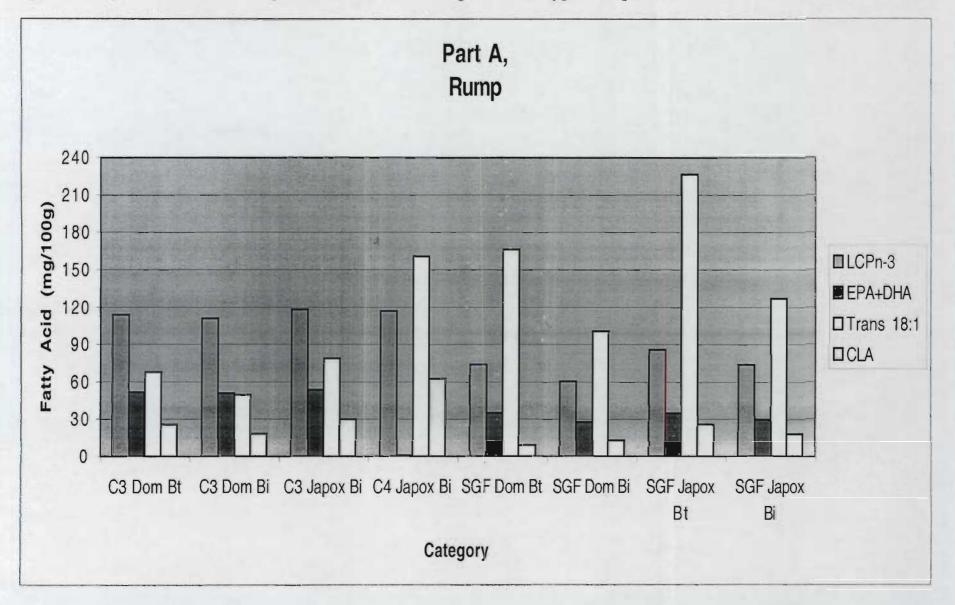

. .

Table 2. Total saturated, monounsaturated, omega-3, omega-6, C18:1 trans fatty acid, CLA
concentration, and moisture content of Strip Loin ¹

Variable		C3		C4			Short grain		
	Dor	nestic	JAP	JAP	Don	nestic	JAP		
	Tauru	Indicus	Indicus	Indicus	Taurus	Indicus	Taurus	Indicus	
	S								
Total SFA	1112 ^{ab}	917 ^{ab}	1230 ^b	1150 ^{ab}	974 ^{ab}	873 ^a	1670°	1186 ^{ab}	
Total MUFA	1084^{ab}	871 ^{ab}	1246 ^b	1217 ^b	822 ^{ab}	755ª	1704°	1120 ^{ab}	
Total n-3 FA	114°	101 ^{bc}	132 ^d	93 ^{bc}	64 ^{ab}	50 ^a	80 ^b	63 ^{ab}	
Total n-6FA	195 ^{ab}	153 ^a	205 [♭]	149 ^a	221 ^b	150 ^a	295°	236 ^b	
Total trans 18:1	45 ^{ab}	30^{a}	59 ^{ab}	52 ^{ab}	150°	87 ^b	189°	113 ^b	
Total CLA	15 ^{ab}	11 ^{ab}	22 ^b	19 ^ь	7ª	8^{a}	17 ^{ab}	12 ^a	
Moisture	74.1 ^d	73.8 ^{cd}	73.2 ^{bc}	73.5 ^{bcd}	73.5 ^{bcd}	73.8 ^{cd}	72.5 ª	73.0 ^{ab}	

¹Values are expressed in mg/100 g of meat sample and an average of 15 observations(analysed in duplicate). For moisture, values expressed as g/100g meat.

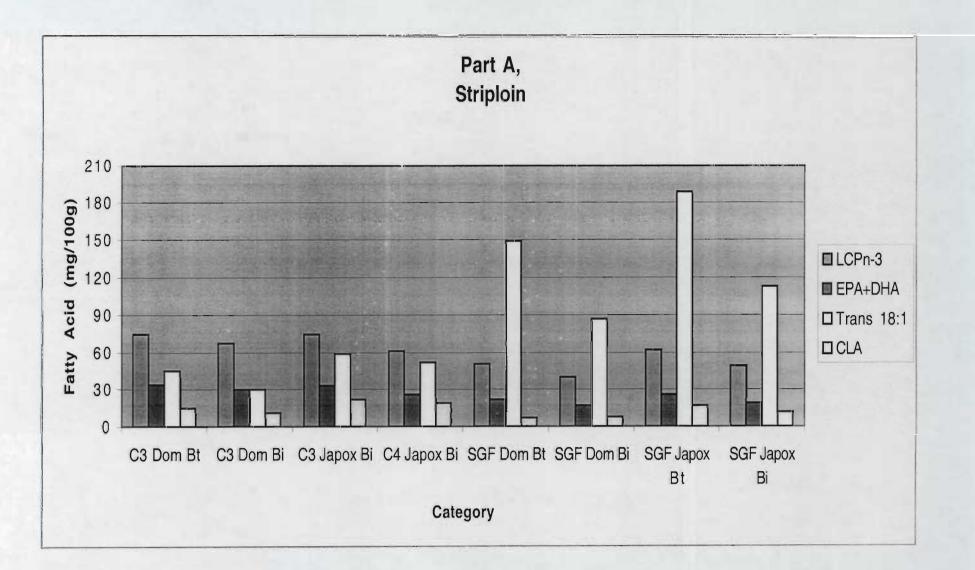
a,b,c,d Within a row, means without a common superscript letter differ (P < 0.05).

8

Figure 1. Fatty Acid content of rump from different beef categories (feed type and species)

MLA - Project CMHN.016 Final Report March 2003

Feeding regimes affect fatty acid composition in Australian beef cattle N.J.Mann, EN.Ponanampalam, YYep and AJ.Sinclair Department of Food Science R.M.I.T University, VIC, 3000


Background - There is growing evidence that red meat contributes significantly to the intake of omega 3 long chain PUFA in western diets. The type of feeding regime used in animal production, can influence the lipids in red meat due to the fatty acid composition of the feed. Pasture feed being relatively rich in α -linolenic acid (18 3n-3), while grain is relatively rich in linoleic acid (18:2n-6). **Objective** - To determine the effect on beef fatty acid profile of varying length of grain feeding compared with grass feeding.

Design - Samples of rump, strip loin and blade cuts were obtained from eighteen cattle from each of three feeding regimes (pasture fed, short term grain feeding STGF, and long term grain feeding LTGF). All samples were analysed in triplicate as lean tissue only, using a standard chloroform – methanol extraction and capillary column gas-chromatograph fatty acid quantification.

Outcomes - Total fat, saturated and monounsaturated fatty acids were all significantly higher in the LTGF animals. The grass fed animals had high levels of omega 3 PUFA in all three cuts, with combined EPA + DHA reaching levels in blade and strip loin that would meet Australian Food Standards classification as a "source" of omega-3, with the rump cut reaching this level in the STGF group also. Rump from the grass fed animals was a relatively rich source of EPA + DHA and would qualify as a "good source" of omega 3.

Conclusions - This study was able to show that pasture feeding of Australian cattle maximises omega-3 PUFA content and minimizes trans 18:1 fatty acid levels relative to grain feeding. Furthermore, LTGF results in elevated total fat and saturated fat content relative to STGF or grass feeding in lean cuts of Australian beef.

H:\Vero\Research projects\Omega 3 - grass vs grain\Abstract for NSA Dec 2003.doc

9

Figure 2. Fatty Acid content of striploin from different beef categories (feed type and species)

MLA - Project CM/HN.016 Final Report March 2003

		C3		C4		SHORT G	RAIN-FED	
	DOME		JAPANESE	JAPANESE	DOM	ESTIC	JAPA	NESE
	Taurus ²	Indicus ²	Indicus ²	Indicus ²	Taurus ²	Indicus ²	Taurus ²	<u>Indicus²</u>
ALA 18:3n-3	60.73 ± 8.36 °	54.79 ± 12.17 °	88.42 ± 7.32^{d}	84.63 ± 3.73 ^d	18.41 ± 1.08 $^{\rm a}$	16.49 ± 1.62 ^a	31.18 ± 8.23 ^{ab}	20.97 ± 5.06^{a}
EPA 20:5n-3	$43.70\pm5.02~^{\text{b}}$	$41.63\pm5.46^{\text{ b}}$	46.18 ± 2.21 ^b	40.21 ± 3.94 $^{\rm b}$	$27.72\pm2.67~^{a}$	$21.48\pm2.45^{\text{ a}}$	$27.41 \pm 5.21^{\text{ a}}$	$22.84\pm4.43~^{\text{a}}$
DPA 22:5n-3	62.04 ± 5.01 ^b	60.02 ± 6.28^{b}	63.48 ± 3.68^{b}	66.16 ± 8.94 ^b	39.35 ± 2.39^{a}	$33.48\pm3.77^{\text{ a}}$	$50.81\pm7.01~^{ab}$	43.60 ± 8.91 ª
DHA 22:6n-3	8.69 ± 1.42^{a}	9.31 ± 1.74 ^a	$8.20\pm1.24^{\text{ a}}$	10.76 ± 2.09 ^a	$6.91\pm0.95^{\text{ a}}$	$6.51\pm0.46^{\text{a}}$	7.32 ± 0.96^{a}	7.39 ± 1.85 $^{\rm a}$
EPA+DHA	52.39 ± 6.37 ^b	50.94 ± 6.76^{b}	54.37 ± 3.11 ^b	$50.97\pm5.80^{\text{ b}}$	$34.63\pm3.19^{\text{a}}$	$27.99\pm2.82^{\text{ a}}$	$34.73\pm5.60^{\text{ a}}$	30.21 ± 6.07^{n}
Total n-3	114.44 ± 11.30 ^b	110.96 ± 12.48	117.85 ± 6.39^{b}	117.13 ± 13.35^{b}	73.98 ± 5.35^{a}	61.48 ± 6.14 ^a	$85.54\pm12.50^{\text{ a}}$	73.81 ± 14.96 ^a
LCPUFA		b						
Total n-3 PUFA	$175.17 \pm 15.12^{\rm cd}$	165.83 ± 22.41	206.27 ± 9.21	$201.77\pm16.54~^{\text{d}}$	92.39 ± 6.20^{a}	77.71 ± 7.19^{a}	114.07 ± 18.68	$94.78\pm19.58\ensuremath{^{\mathrm{a}}}$
		с	d				b	
CLA 18:2	$25.69\pm7.88~^{\mathrm{b}}$	18.47 ± 3.01 ^b	29.85 ± 3.34 ^b	63.25 ± 8.12 °	9.47 ± 2.10 ^a	13.17 ± 3.55 ^a	26.46 ± 9.93^{b}	17.76 ± 2.61 ^{ab}
18:1Trans	66.70 ± 16.07 ^{ab}	$50.35\pm7.64^{\text{ a}}$	78.53 ± 15.70	$160.74 \pm 19.95^{\rm bc}$	$166.26 \pm$	100.91 ± 16.57	227.16 ± 80.96	127.47 ± 48.02
			ab		22.27 ^{bc}	ab	c	b

Table 3. Rump fatty acid concentration (mg/100g wet weight)¹

		C3		C4		SHORT GI	RAIN-FED	
	DOMI	ESTIC	JAPANESE	JAPANESE	DOM	ESTIC	JAPA	NESE
	Taurus ²	Indicus ²	Indicus ²	Indicus ²	Taurus ²	Indicus ²	Taurus ²	Indicus ²
ALA 18:3n-3	39.36 ± 6.57 ^b	33.95 ± 5.56 ^b	57.53 ± 5.89 °	32.24 ± 7.23 ^b	13.69 ± 0.73 *	10.97 ± 0.64 ^a	19.29 ± 4.84 ^a	14.59 ± 4.29 ^a
EPA 20:5n-3	28.52 ± 3.37 °	$24.42\pm4.98b~^{\circ}$	27.73 ± 1.74 b $^{\circ}$	21.38 ± 3.67 $^{\text{b}}$	18.20 ± 2.53 ^{ab}	12.86 ± 0.91 $^{\rm a}$	$20.18\pm3.96~^{\text{b}}$	14.83 ± 4.01 $^{\rm a}$
DPA 22:5n-3	$37.38\pm8.10~^{\text{b}}$	41.08 ± 5.63 ^b	$41.89 \pm 1.12~^{\text{b}}$	$34.86\pm6.48~^{\text{b}}$	$28.15\pm1.85~^{ab}$	$22.59\pm1.09~^{a}$	36.27 ± 5.98 ^b	$29.38\pm7.70~^{\mathrm{at}}$
DHA 22:6n-3	5.11 ± 0.92 $^{\rm a}$	5.73 ± 1.81 $^{\rm a}$	4.92 ± 0.68 $^{\text{a}}$	4.75 ± 0.42 $^{\rm a}$	4.19 ± 0.78 $^{\rm a}$	4.11 ± 0.29 $^{\rm a}$	5.68 ± 0.76 ª	4.54 ± 1.50 °
EPA+DHA	33.63 ± 4.15 $^{\rm b}$	30.15 ± 6.71 $^{\rm b}$	32.65 ± 1.65 ^b	$26.13\pm4.09~^{\text{b}}$	$22.39\pm2.89~^{ab}$	16.98 ± 1.16 $^{\rm a}$	25.86 ± 4.61 ^b	19.37 ± 5.48 at
Total n-3	74.71 ± 9.54 °	67.53 ± 14.67 ^b	74.55 ± 2.74 b $^\circ$	61.00 ± 10.23 $^{\rm b}$	50.53 ± 4.47 ^{ab}	39.57 ± 1.62 ^a	62.13 ± 10.46	48.76 ± 13.17
LCPUFA							b	ab
Total n-3 PUFA	114.06 ± 13.50 °	101.48 ± 18.83	$132.07\pm6.70_{d}$	93.24 ± 16.83 bc	64.22 ± 4.92 ^{ab} .	50.54 ± 1.44 ^a	80.01 ± 14.21 b	63.35 ± 17.41 ab
CLA 18:2	15.45 ± 4.91 ^{ab}	11.45 ± 2.18 ^{ab}	22.11 ± 2.75 ^b	18.66 ± 8.81 ^b	7.34 ± 1.24 ^a	8.46 ± 1.43 $^{\rm a}$	16.99 ± 3.71 ^{ab}	12.12 ± 3.46 $^{\rm a}$
18:1Trans	44.74 ± 10.13 ^{ab}	30.05 ± 7.97 a	$58.55\pm9.02~^{ab}$	$52.19\pm25.37~^{ab}$	149.55 ± 26.98	87.47 ± 11.10 ^b	189.45 ± 26.51	113.10 ± 42.65 ь
					c		c	U

Table 4. Strip loin fatty acid concentration $(mg/100g wet weight)^1$

THE OMEGA 3 CONTENT OF LEAN RED MEAT (Part B)

The aim of Part B was to compare the fatty acids in meat (rump, blade and striploin) from C3 grass-fed, short grain-fed and long grain-fed beef cattle.

ł

Studies

ObjectivesTo provide a full report for the beef omega 3 fatty acid content
and other major fatty acid concentration from grass (C3
pasture), short grain-fed and long grain-fed animals.

ί

Methods

ωя,

u.,

As described.

Samples

there were 3 groups of 6 animals per feed-type and three cuts per animal were analysed (rump, blade and striploin).

Samples were obtained Mr Shane Blakely from C3 grass fed, short grain fed and long grain-fed beef cattle In each case,

Samples from C3 grass fed were sourced from northern and central New South Wales and the short grain fed and long grain fed beef cattle were sourced from feedlots in southern Queensland. All animals were of the Bos Taurus genotype.

i,

Omega 3 Fatty Acid Content of Lean Red Meat Project CMHN.016

Key findings:

- Japanese ox, long grain-fed had the highest total fatty acid content for all three cuts. As a consequence, this beef had the highest saturated, monounsaturated, n-6 polyunsaturated and 18:1-trans fatty acid content for all three cuts examined, compared with domestic grass and short grain-fed beef.
- Domestic, short grain-fed beef had the same total fatty acid, saturated, monounsaturated, n-6 polyunsaturated content as domestic grass-fed beef.
- Domestic, short grain-fed beef had significantly lower long chain n-3 fatty acids and CLA and significantly higher levels of 18:1-trans fatty acid content for all three cuts compared with domestic grass fed beef.
- Domestic grass-fed beef had the highest level of EPA plus DHA, long chain n-3 fatty acids and total n-3 fatty acids for all three cuts, compared with short grain-fed and long grain-fed beef.
- 5. Rump across all feed types had significantly more omega 3, omega 6, trans 18:1, saturated and monounsaturated fatty acids and CLA than blade and striploin. In some cases, striploin contained the lowest level of omega 3 fatty acids.
- 6. The total omega 3 fatty acid content ranged from 49 to 155 mg/100g lean meat (wet weight).
- 7. The long chain omega 3 content ranged from 38 to 105 mg/100g lean meat (wet weight).
- 8. EPA plus DHA ranged from 15 to 48 mg/100g lean meat (wet weight).
- 9. Grass-fed and short grain-fed cattle had less saturated, monounsaturated and trans-18:1 than long-grain fed animals for all three cuts of meat. There was a step-wise increase in trans-18:1 from C3 to short grain-fed to long grain-fed.

MLA - Project CMHN.016 Final Report March 2003

- 10. All cuts of meat and all feed types had more than 30 mg of long chain n-3 FA (EPA plus DPA plus DHA), Figure 3.
- 11. All feed types for rump had more than 30 mg of EPA plus DHA, however none of the strip loins exceeded 30 mg and only the C3 grass-fed for blade exceeded the 30 mg of EPA plus DHA, Figure 3.

Are there plausible explanations for the findings?

The highest fat content was found in Japanese ox. As animals age and with long-term grain feeding, there is an increase in fat accumulation in meat. As the fat content increases, so the components of total fat increase (that is, the typical triglyceride fatty acids). Therefore, saturated, monounsaturated and 18:1-trans fatty acid contents would be higher in this group of animals.

The domestic grass-fed animals had the highest omega 3 fatty acid content. This group of animals would be expected to have the highest dietary intake of omega 3 fatty acids from the grass. Typically, grass contains 60% omega 3 fatty acids (as alpha-linolenic acid) and 10-20% omega 6 fatty acids (as linoleic acid). In contrast, almost all grain is typically rich in omega 6 fatty acids and contains low levels of omega 3 fatty acids.

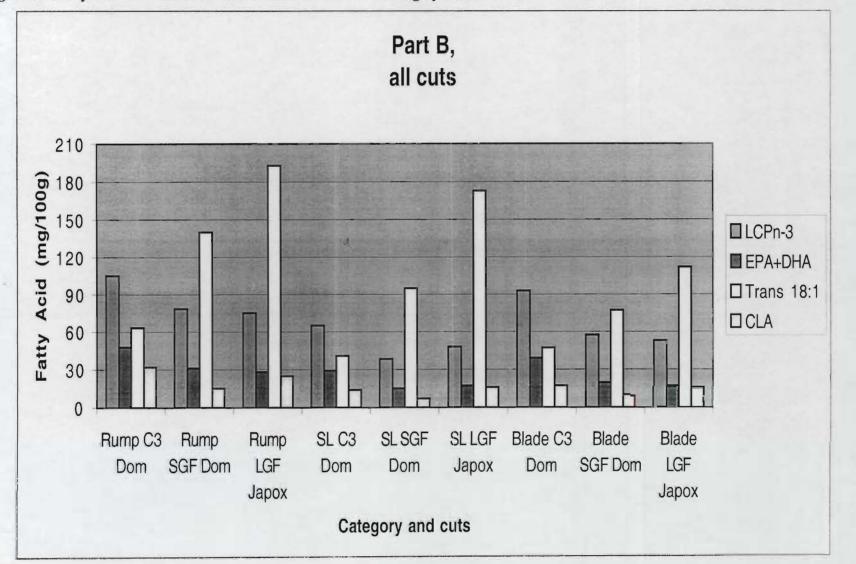
Grass-fed beef had a higher CLA level than short grain-fed beef.

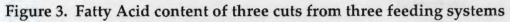
The literature reveals that the major product of rumen hydrogenation of PUFA in grass (linolenic and linoleic acids) is *trans*-11 18:1 (vaccenic acid). Once this fatty acid is absorbed, it is the substrate for CLA production in adipose or mammary tissue via the action of the delta-9 desaturase. Cattle fed pasture have higher levels of *trans*-11-18:1 than concentrate-fed cattle and also higher levels of CLA (Griiniari and Bauman 1999, Advances in Conjugated Linoleic Acid Research Volume 1, pp 180-200, 1999, AOCS Press, Champaign IL). Furthermore, it has been found that *trans*-10 18:1 is a major *trans* fatty acid in US beef (basically grain-fed) compared with European beef where the major trans isomer is *trans*-11 18:1 (Griiniari and Bauman 1999). The trans-10 isomer is not an effective substrate for CLA production. The data obtained in this study show that the % CLA of total fatty acids in rump steak was 1.15% for

grass-fed, 0.55% for short grain-fed and 0.52% for long grain-fed, which is consistent with the literature cited here.

Grain-fed beef had a higher 18:1-trans fatty acid content than grass-fed beef.

In this study, all *trans* isomers of 18:1 are grouped together because this is the nature of collection of the data in the technology we are using. The concentration of *trans*-18:1 increases from grass-fed, through short grain-feeding to long grain-fed samples. The % *trans*-18:1 in rump steak shown in Table 5, was 2.3% for grass-fed, 5.1% for short grain-fed and 4.0% for long grain-fed, suggesting that grain feeding increases the proportion of all *trans*-18:1 isomers. The increased content of *trans*-18:1 is consistent with literature reports (for example, Marmer, Maxwell & Williams, J Anim Sci 59, 109-120, 1984) and is perhaps due to the increased intake of linoleic acid in grain feeding compared with grass feeding.


Comparison between Part A and Part B data


Figures 4 and 5 depict selected fatty acids in rump and strip loin from each of the two parts of this project. Fatty acids shown are LCP n-3, EPA+DHA, trans-18:1 and CLA.

The data in Figure 4 (for rump) shows that both part A and B found similar levels of these four fatty acids (groups). In particular, for EPA+DHA, the C3 domestic cattle had values of approx. 50 mg/100 g lean meat, while for the short grain-fed cattle the EPA+DHA values were approx. 30 mg/100 g lean meat.

The data in Figure 5 (for strip loin) shows that both part A and B found similar levels of these four fatty acids (groups). In particular, for EPA+DHA, the C3 domestic cattle had values of 65-75 mg/100 g lean meat, while for the short grain-fed cattle the EPA+DHA values were 15-20 mg/100 g lean meat.

MLA - Project CMHN.016 Final Report March 2003

MLA - Project CMHN.016 Final Report March 2003

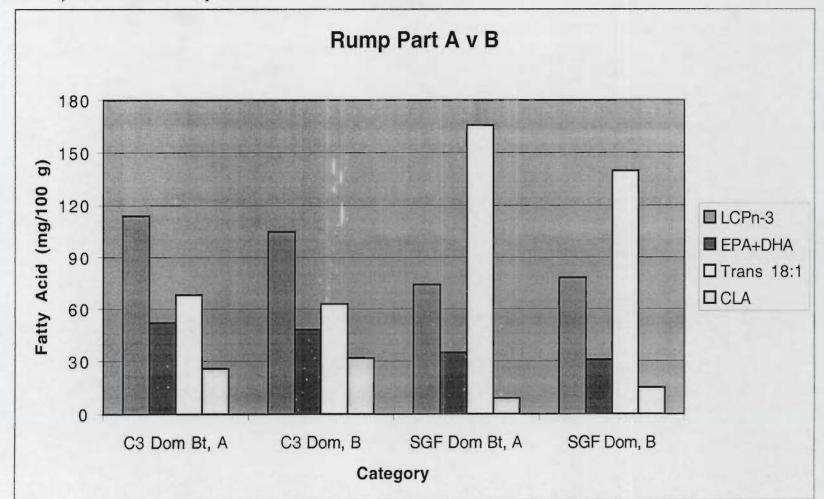


Figure 4. Fatty Acid content of Rump from Part A and Part B studies

MLA - Project CMHN.016 Final Report March 2003

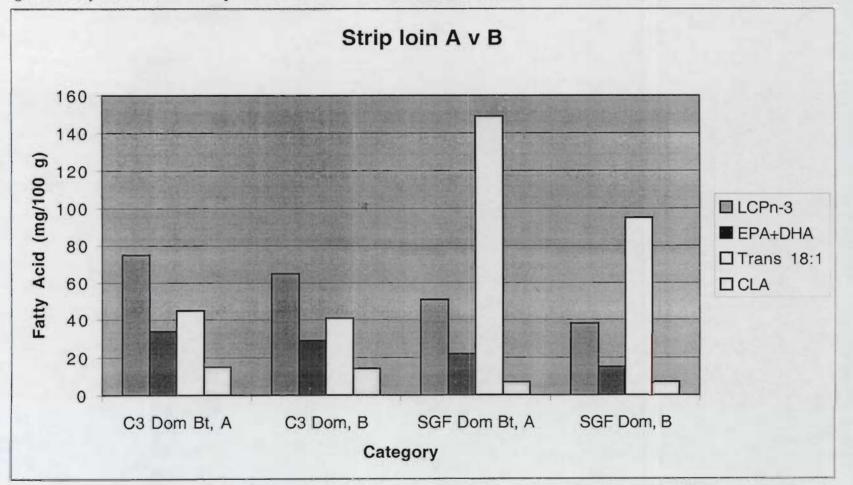


Figure 5. Fatty Acid content of Strip Loin from Part A and Part B studies

MLA - Project CMHN.016 Final Report March 2003

Part B

Summary Tables

Comparison between feeding systems for different cuts (Tables 5 to 10)

Table 5: Total saturated, monounsaturated, omega-3 and omega-6 fatty acid concentration in Rump steaks of cattle fed grass, short-term grain (80 days) and long-term grain (150- 200 days)

	Domestic C3 Grass	Domestic Short Grain	Japanese Ox Long Grain	S.E.M	P-value
Total SFA	1117 ^a	1067 ^a	1865 ^b	162.7	0.001
Total MUFA	1185 ^a	1218ª	2463 ^b	237.4	0.001
Total n-3 PUFA	155 ^b	97ª	97ª	11.9	0.01
Total n-6 FA	334 ^a	354 ^{ab}	399 ^b	25.6	0.04
18:1-trans	63ª	140 ^b	1 93°	19.7	0.001
CLA	32 ^b	15 ^a	25^{ab}	6.5	0.05
Total FA	2792ª	2736ª	4824 ^b	411	0.001
Moisture	73.9 ^b	73.7 ^b	71.6ª	0.32	0.001

Values are expressed in mg/100 g of muscle sample and an average of 18 observations (3 x 6 animals analysed in duplicate).

^{a,b}Within a row, means without a common superscript letter differ (P < 0.05).

S.E.M = Pooled standard error means are shown.

Table 6: Total saturated, monounsaturated, omega-3 and omega-6 fatty acid concentration in Strip Loin of cattle fed grass, short-term grain (80 days) and long-term grain (150- 200 days)

	Domestic	Domestic	Japanese Ox	S.E.M	P-value
	C3 grass	<u>Short Grain</u>	Long Grain		
Total SFA	900 ^a	677ª	1568 ^b	167.8	0.001
Total MUFA	930 ^a	639ª	1729 ^b	208.6	0.01
Total n-3 PUFA	98 ^b	49 ^a	63 ^a	7.5	0.01
Total n-6 FA	192ª	173ª	254 ^b	15.7	0.01
18:1-trans	41 ^a	95 [⊾]	173°	18.9	0.001
CLA	14 ^b	7ª	16 ^b	2.3	0.01
Total FA	2120ª	1538 ^a	3614 ^b	383	0.001
Moisture	73.6 ^b	73.5 ^b	71.2ª	0.35	0.001

Values are expressed in mg/100 g of muscle sample and an average of 18 observations (3 x 6 animals analysed in duplicate).

^{a,b,c}Within a row, means without a common superscript letter differ (P < 0.05).

S.E.M = Pooled standard error means are shown.

	Domestic C3 grass	Domestic Short Grain	Japanese Ox Long Grain	S.E.M	P-value
Total SFA	801ª	644ª	1172 ^b	98.6	0.001
Total MUFA	943ª	, 781ª	1663 ^b	156	0.01
Total n-3 PUFA	135 ^b	70 ^a	68ª	8.9	0.001
Total n-б FA	258	242	272	17.8	NS
18:1-trans	47 ^a	77 ^b	112°	13.1	0.001
CLA	17 ^b	10^{a}	16 ^b	2.3	0.01
Total FA	2138ª	1738ª	3175 ^b	265	0.001
Moisture	75.0 ^b	74.8 ^b	73.2ª	0.25	0.001

Table 7: Total saturated, monounsaturated, omega-3 and omega-6 fatty acid concentration in **Blade** of cattle fed grass, short-term grain (80 days) and long-term grain (150- 200 days)

Values are expressed in mg/100 g of muscle sample and an average of 18 observations (3 x 6 animals analysed in duplicate).

^{a,b}Within a row, means without a common superscript letter differ (P < 0.05).

S.E.M = Pooled standard error means are shown.

	Domestic C3 Grass	Domestic Short Grain	Japanese Ox Long Grain	S.E.M	P-value
ALA 18:3n-3	49 ^b	17 ^a	21 ^a	5.1	0.001
EPA 20:5n-3	40^{b}	23ª	21 ^a	3.2	0.001
DPA 22:5n-3	57 ^b	47 ^a	48 ^a	4.4	0.05
DHA 22:6n-3	8	8	7	0.97	NS
EPA + DHA	48 ^b	31ª	28 ^a	3.63	0.001
Total LCn-3 PUFA	105 ^b	$\overline{78^{a}}$	75 ^a	7.8	0.001
Total n-3 PUFA	155 ^b	97 ^a	97ª	11.9	0.01
CLA	32 ^b	15ª	25^{ab}	6.5	0.05
18:1-trans	63ª	140 ^b	193°	19.7	0.001

 Table 8: Individual fatty acid concentration in Rump steaks

 of cattle fed grass, short-term grain (80 days) and long-term grain (150- 200 days)

Values are expressed in mg/100 g of muscle sample and an average of 18 observations (3 x 6 animals analysed in duplicate).

^{a,b,c}Within a row, means without a common superscript letter differ (P < 0.05).

S.E.M = Pooled standard error means are shown.

3

 Table 9: Individual fatty acid concentration in Strip Loin

 of cattle fed grass, short-term grain (80 days) and long-term grain (150- 200 days)

	Domestic C3 Grass	Domestic Short Grain	Japanese Ox Long Grain	S.E.M	P-value
ALA 18:3n-3	32 ^b	10 ^a	15 ^a	3.2	0.001
EPA 20:5n-3	25 ^b	11 ^a	13 ^a	1.9	0.001
DPA 22:5n-3	37°	24 ^ª	32 ^b	2.6	0.001
DHA 22:6n-3	4	4	4	0.44	NS
EPA + DHA	29 ^b	15ª)	17^{a}	2.2	0.001
Total LCn-3 PUFA	65°	38ª	48 ^b	4.7	0.001
Total n-3 PUFA	98 ^b	49 ^a	63ª	7.5	0.01
CLA	14 ^b	$7^{\rm a}$	16 ^b	2.3	0.01
18:1-trans	41 ^a	95 ^b	173°	18.9	0.001
** 1	11.0.0				

Values are expressed in mg/100 g of muscle sample and an average of 18 observations (3 x 6 animals analysed in duplicate).

^{a,b,c}Within a row, means without a common superscript letter differ (P < 0.05). S.E.M = Pooled standard error means are shown.

MLA - Project CMHN.016 Final Report March 2003

	Domestic C3 Grass	Domestic Short Grain	Japanese Ox Long Grain	S.E.M	P-value
ALA 18:3n-3	42 ^b	14 ^a	15 ^a	4.0	0.001
EPA 20:5n-3	32 ^b	15 ^a	12^{a}	2.3	0.01
DPA 22:5n-3	54 ^b	37 ^a	36 ^a	3.2	0.001
DHA 22:6n-3	7 ^b	5 ^a	4ª	0.48	0.01
EPA + DHA	39 ^b	20^{a}	17^{a}	2.5	0.001
Total LCn-3 PUFA	93 ^b	57 ^a	53ª	5.4	0.001
Total n-3 PUFA	135 ^b	70^{a}	68ª	8.9	0.001
CLA	17 ^b	10^{a}	16 ^b	2.3	0.01
18:1-trans	47 ^a	77 ^b	112°	13.1	0.001

 Table 10: Individual fatty acid concentration in Blade

of cattle fed grass, short-term grain (80 days) and long-term grain (150-200 days)

Values are expressed in mg/100 g of muscle sample and an average of 18 observations (3 x 6 animals analysed in duplicate).

^{a,b,c}Within a row, means without a common superscript letter differ (P < 0.05).

S.E.M = Pooled standard error means are shown.

Comparison between Strip loin, rump and blade cuts (Tables 11 to 16)

	Strip Loin	Rump	Blade	S.E.M	P-value
Total SFA	901 ^{ab}	1118 ^b	801 ^a	131.1	0.05
Total MUFA	930	1185	943	172.8	NS
Total n-3 PUFA	97.6ª	154.7 ^b	135.2 ^b	13.4	0.001
Total n-6 FA	192ª	334°	258 ^b	18.7	0.001
18:1-trans	40.5 ^ª	63.3 ^b	47.0 ^{ab}	8.6	0.05
Total FA	2120ª	2792 [⊾]	2138ª	312	0.05

 Table 11: Total saturated, monounsaturated, omega-3 and omega-6 fatty acid concentration in Strip loin,

 Rump, and Blade cuts of cattle fed C3 grass

Values are expressed in mg/100 g of muscle sample and an average of 18 observations (3 x 6 animals analysed in duplicate).

^{a,b}Within a row, means without a common superscript letter differ (P < 0.05).

S.E.M = Pooled standard error means are shown.

 Table 12: Total saturated, monounsaturated, omega-3 and omega-6 fatty acid concentration in Strip Loin,

 Rump and Blade cuts of cattle fed short-term grain (80 days)

	Strip Loin	Rump	Blade	S.E.M	P-value
Total SFA	676ª	1067	644ª	80.1	0.001
Total MUFA	639 ^a	1218 ^b	781 ^a	113.3	0.001
Total n-3 PUFA	48.6ª	96.8°	70.4 ^b	6.1	0.001
Total n-6 FA	173 ^a	354°	243 ^b	18.3	0.001
18:1-trans	94.9ª	139.5 ^b	76.5ª	17.3	0.01
Total FA	1538ª	2736 ^b	1738 ^a	193	0.001
					10 1

Values are expressed in mg/100 g of muscle sample and an average of 18 observations (3 x 6 animals analysed in duplicate).

^{a,b,c}Within a row, means without a common superscript letter differ (P < 0.05).

S.E.M = Pooled standard error means are shown.

 Table 13: Total saturated, monounsaturated, omega-3 and omega-6 fatty acid concentration in Strip loin,

 Rump and Blade cuts of cattle fed long-term grain (150- 200 days)

	Strip Loin	Rump	Blade	S.E.M	P-value
Total SFA	1567 ^b	1865 ^b	1172 ^a	201.8	0.01
Total MUFA	1729 ^a	2463 ^b	1663ª	285.4	0.01
Total n-3 PUFA	63.3ª	96.6 ^b	67.8 ^a	7.6	0.001
Total n-6 FA	254ª	399 ^b	272 ^a	23.2	0.001
18:1-trans	172.9 ^b	192.7 ^b	111.6 ^a	23.2	0.01
Total FA	3614ª	4824 ^b	3175 ^a ·	501	0.01

Values are expressed in mg/100 g of muscle sample and an average of 18 observations (3 x 6 animals analysed in duplicate).

^{a,b}Within a row, means without a common superscript letter differ (P < 0.05).

S.E.M = Pooled standard error means are shown.

	Strip Loin	Rump	Blade	S.E.M	P-value
ALA 18:3n-3	32.4ª	49.8 ^b	42.1 ^{ab}	6.4	0.05
EPA 20:5n-3	24.5 ^a	39.8 ^b	32.0 ^ª	3.8	0.001
DPA 22:5n-3	36.5ª	57.4 ^b	54.0 ^b	3.9	0.001
DHA 22:6n-3	4.2 ^a	7.7 ^b	7.1 ^b	0.65	0.01
EPA + DHA	28.8^{a}	47.5°	39.1 ^b	4.0	0.001
Total LCn-3 PUFA	65.2ª	104.9 ^b	93.0 ^b	7.6	0.001
Total n-3 PUFA	97.6 ^a	154.7 ^b	135.2 ^b	13.4	0.001
CLA 18:2n-6	14.3 ^a	31.5 ^b	17.0 ^ª	6.4	0.05
18:1-trans	40.5 ^a	63.3 ^b	47.0 ^{ab}	8.6	0.05

 Table 14: Individual fatty acid (important) concentration in Strip loin, Rump and Blade cuts of cattle fed

 C3 grass

Values are expressed in mg/100 g of muscle sample and an average of 18 observations (3 x 6 animals analysed in duplicate).

^{a,b,c}Within a row, means without a common superscript letter differ (P < 0.05).

S.E.M = Pooled standard error means are shown.

8

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

ļ,

E

Table 15: Individual fatty acid (important) concentration in Strip Loin, Rump and Blade cuts of cattle
short-term grain (80 days)

	Strip Loin	Rump	Blade	S.E.M	P-value
ALA 18:3n-3	10,3ª	18.6°	13.5 ^b	1.7	0.001
EPA 20:5n-3	11.0ª	23.3 ^b	14.7 ^a	2.5	0.001
DPA 22:5n-3	23.6 ^a	46.9°	36.9 ^b	3.2	0.001
DHA 22:6n-3	3.7 ^a	7.9°	5.3 ^b	0.72	0.001
EPA + DHA	14.8ª	31.2°	20.0 ^b	2.1	0.001
Total n-3 PUFA	48.6 ^a	96.8°	70.4 ^b	6.1	0.001
Total n-6 FA	173ª	354°	243 ^b	18.3	0.001
CLA 18:2n-6	6.8ª	15.0°	9.6 ^b	1.45	0.01
18:1-trans	94.9 ^a	139.5 ^b	76.5 ^ª	17.3	0.01

Values are expressed in mg/100 g of muscle sample and an average of 18 observations (3 x 6 animals analysed in duplicate).

a,b,c Within a row, means without a common superscript letter differ (P < 0.05).

S.E.M = Pooled standard error means are shown.

MLA - Proiect CMHN.016 Final Report March 2003

	Strip Loin	Rump	Blade	S.E.M	P-value
ALA 18:3n-3	14.9ª	21.4 ^b	15.1ª	3.0	0.06
EPA 20:5n-3	13.1ª	20.9 ^b	13.2 ^a	1.5	0.001
DPA 22:5n-3	31.6 ^a	47.6 ^b	36.2ª	3.4	0.001
DHA 22:6n-3	3.7 ^a	6.8 ^b	4.2ª	0.65	0.001
EPA + DHA	16.8 ^ª	27.7 ^b	16.5ª	2.0	0.001
Total LCn-3 PUFA	48.4 ^a	75.3 ^b	52.8ª	5.3	0.001
Total n-3 PUFA	63.3ª	96.6 ^b	67.8ª	7.6	0.001
CLA 18:2n-6	16.1ª	25.2 ^b	15.6ª	3.1	0.01
18:1-trans	172.9 ^b	192.7 ^ь	111.6 ^a	23.2	0.01

 Table 16: Individual fatty acid (important) concentration in Strip loin, Rump and Blade cuts of cattle long-term grain (150- 200 days)

Values are expressed in mg/100 g of muscle sample and an average of 18 observations (3 x 6 animals analysed in duplicate).

^{a,b,c}Within a row, means without a common superscript letter differ (P < 0.05). S.E.M = Pooled standard error means are shown.

8

8

1

1

1

Ť

í ---

Appendix

MLA - Project CMHN.016 Final Report March 2003

8

۰.

	011017BkB ²	011030BkB ²	011114BkB ²
ALA 18:3n-3	48.08 ± 11.89 ª	75.98 ± 72.21 ª	58.15 ± 13.97 ª
EPA 20:5n-3	35.68 ± 8.38 ^a	42.47 ± 3.64 ^{ab}	52.96 ± 8.91 $^{\rm a}$
DPA 22:5n-3	43.65 ± 10.62 ^a	70.54 ± 8.16 ^a	71.93 ± 13.54 ^{ab}
DHA 22:6n-3	6.92 ± 1.28 ^a	8.41 ± 0.83 ^a	10.75 ± 3.53 $^{\rm a}$
EPA+DHA	42.60 ± 9.62 ^a	50.88 ± 3.97^{ab}	63.71 ±. 12.32 ^b
Total n-3 LC PUFA	86.26 ± 19.65 ^a	121.42 ± 12.00^{b}	135.3 ± 25.76^{b}
Total n-3 PUFA	134.34 ± 30.0 ^a	197.40 ± 37.64 ^b	193.78 ± 22.30^{b}
CLA 18:2	$22.80\pm8.47^{\text{a}}$	32.10 ± 18.43 ^a	22.17 ± 5.34^{a}
18:1Trans	53.60 ± 20.16^{a}	85.75 ± 38.28 ^a	60.75 ± 15.33 ª

Table 1a. Rump fatty acid concentration (mg/100g wet weight) of C3 grass-fed, domestic Bos Taurus.

¹Values are expressed as mean \pm standard deviation. Different superscript letters indicate significant difference between mean values within the same row (Tukey HSD, P<0.05). ² n=5 beasts x duplicate analyses

	011018-1ACC ²	011018-2ACC ²	011018-3ACC ²
ALA 18:3n-3	50.51 ± 18.52 ª	7.63 ± 20.62 ^a	42.24 ± 13.52 ª
EPA 20:5n-3	36.72 ± 8.95 ^a	51.09 ± 4.86 ^b	37.07 ± 8.65 $^{\rm a}$
DPA 22:5n-3	54.70 ± 8.48 $^{\rm a}$	75.45 ± 7.69 $^{\rm b}$	49.92 ± 8.95 °
DHA 22:6n-3	7.28 ± 2.88 $^{\rm a}$	11.54 ± 2.33 ^a	9.13 ± 3.34 $^{\rm a}$
EPA+DHA	44.00 ± 10.09 ^a	$62.62\pm6.10^{\text{ b}}$	46.20 ± 10.15 ^a
Total n-3 LCPUFA	98.69 ± 17.36 ^a	138.07 ± .33 ^b	96.12 ± 18.98 $^{\rm a}$
Total n-3 PUFA	149.43 ± 35.13 ^a	209.70 ± 22.2 ^b	138.36 ± 30.60 $^{\rm a}$
CLA 18:2	$17.23 \pm .22$ ^a	20.28 ± 10.07 ^a	17.91 ± 4.58 $^{\rm a}$
18:1Trans	38.90 ± 13.12 ^a	55.79 ± 2.94 ^a	56.35 ± 9.88 $^{\rm a}$

Table 1b. Rump fatty acid concentration (mg/100g wet weight) of C3 grass-fed, domestic Bos Indicus.

¹Values are expressed as mean \pm standard deviation. Different superscript letters indicate significant difference between mean values within the same row (Tukey HSD, P<0.05). ² n=5 beasts x duplicate analyses.

8

8

46.27 ± 6.06 ª	108.13 ± 20.43 b	
	100.15 ± 20.45	110.86 ± 20.66 ^b
31.36 ± 7.45 ª	47.32 ± 5.1 ^b	59.84 ± 3.24 °
43.41 ± 9.01 ª	72.32 ± 5.28 ^b	74.72 ± 9.64 ^b
6.58 ± 1.74 ^a	9.92 ± 3.19 ^a	$8.09\pm0.82~^{\rm a}$
37.94 ± 9.05 °	57.25 ± 6.22 ^b	67.93 ± 3.38 ^b
81.35 ± 17.93 ^a	129.5 ± 10.19 ^b	142.64 ± 12.54 ^b
127.63 ± 23.30 ^a	237.69 ± 25.00 ^b	253.50 ± 31.0 ^b
23.49 ± 7.19 $^{\rm a}$	$37.20\pm7.87~^{\text{b}}$	$28.87\pm7.84~^{ab}$
63.89 ± 23.76 °	83.48 ± 26.44 ^a	88.22 ± 27.18 ª
	43.41 ± 9.01^{a} 6.58 ± 1.74^{a} 37.94 ± 9.05^{a} 81.35 ± 17.93^{a} 127.63 ± 23.30^{a} 23.49 ± 7.19^{a}	43.41 ± 9.01^{a} 72.32 ± 5.28^{b} 6.58 ± 1.74^{a} 9.92 ± 3.19^{a} 37.94 ± 9.05^{a} 57.25 ± 6.22^{b} 81.35 ± 17.93^{a} 129.5 ± 10.19^{b} 127.63 ± 23.30^{a} 237.69 ± 25.00^{b} 23.49 ± 7.19^{a} 37.20 ± 7.87^{b}

Table 1c. Rump fatty acid concentration (mg/100g wet weight) of C3 grass-fed, Japanese Bos Indicus.

¹Values are expressed as mean \pm standard deviation. Different superscript letters indicate significant difference between mean values within the same row (Tukey HSD, P<0.05). ² n=5 beasts x duplicate analyses.

	010808-2G ²	010809-2G ²	010810-2G ²
ALA 18:3n-3	77.81 ± 28.85 ª	82.01 ± 33.69 ª	94.08 ± 17.74 ^a
EPA 20:5n-3	35.03 ± 5.74 ª	37.13 ± 10.71 ^a	48.48 ± 9.79 ^a
DPA 22:5n-3	56.51 ± 13.42 ª	60.88 ± 27.28 ^a	81.10 ± 6.50 ^a
DHA 22:6n-3	10.61 ± 2.10 ª	8.66 ± 4.36 ^a	12.10 ± 4.37 ^a
EPA+DHA	45.65 ± 6.40 ª	45.78 ± 14.72 ^a	61.48 ± 13.69 ª
Total n-3 LC PUFA	102.16 ± 19.34 °	106.67 ± 41.80 ^a	142.58 ± 13.20 ^a
Total n-3 PUFA	179.97 ± 44.29 °	188.67 ± 72.49 ^a	236.66 ± 24.23 ª
CLA 18:2	58.86 ± 36.06 ª	62.83 ± 37.78 ^a	68.05 ± 13.23 ^a
18:1Trans	146.79 ± 73.45 °	162.67 ± 90.37 ^a	172.76 ± 43.38 ª

Table 1d. Rump fatty acid concentration (mg/100g wet weight) of C4 grass-fed, Japanese Bos Indicus.

¹Values are expressed as mean \pm standard deviation. Different superscript letters indicate significant difference between mean values within the same row (Tukey HSD, P<0.05). ² n=5 beasts x duplicate analyses.

± 2.42 ^a ± 5.53 ^a
± 5.53 ª
± 5.59 ª
: 1.15 ª
± 6.29 ª
= 11.79 ª
: 14.00 ^a
: 2.97ª
$\pm 47.63^{a}$
-

 Table 1e. Rump fatty acid concentration (mg/100g wet weight) of short grain-fed, domestic Bos

 Taurus.

٢

¹Values are expressed as mean \pm standard deviation. Different superscript letters indicate significant difference between mean values within the same row (Tukey HSD, P<0.05). ² n=5 beasts x duplicate analyses.

Table 1f. Rump fatty acid concentration (mg/100g wet weight) of short grain-fed, domestic Bos	
Indicus.	

	010807G ²	010808-1G ²	010810-1G ²
ALA 18:3n-3	13.42 ± 3.40^{a}	17.08 ± 3.46^{a}	18.98 ± 3.80^{a}
EPA 20:5n-3	16.61 ± 2.26^{a}	20.12 ± 4.04 ^a	$27.73\pm3.40^{\text{ b}}$
DPA 22:5n-3	$23.64\pm3.05^{\text{a}}$	34.22 ± 7.12^{b}	42.59 ± 4.04 ^b
DHA 22:6n-3	$4.24\pm0.61{}^{\text{a}}$	7.23 ± 1.31^{b}	8.07 ± 1.19 ^b
EPA+DHA	20.85 ± 2.35^{a}	$27.34 \pm 4.83~^{\text{b}}$	35.80 ± 2.3 °
Total n-3 LC PUFA	$44.48\pm5.03~^{\text{a}}$	61.57 ± 10.75^{b}	$78.39\pm.45^{\circ}$
Total n-3 PUFA	$57.90\pm8.13^{\text{a}}$	78.65 ± 14.17^{b}	96.57±4.71°
CLA 18:2	11.38 ± 8.72 a	12.54 ± 2.37 ^a	15.58 ± 5.69 ^a
18:1Trans	80.97 ± 40.82^{a}	114.96 ± 33.69 ^a	106.81 ± 40.52 ^a

Table 1g. Rump fatty acid concentration (mg/100g wet weight) of short grain-fed, Japanese BosTaurus.

2

	011012IMTP ²	011025IMTP ²	011112G ²
ALA 18:3n-3	24.47 ± 5.43 ^{ab}	21.64 ± 3.76^{a}	47.41 ± 24.51 ^b
EPA 20:5n-3	32.41 ± 6.83 ^a	23.32 ± 4.14 ^a	26.50 ± 7.38 $^{\rm a}$
DPA 22:5n-3	$51.56\pm9.68^{\text{ ab}}$	$39.32\pm5.65^{\text{a}}$	61.57 ± 9.27^{b}
DHA 22:6n-3	7.87 ± 1.01 ^a	6.81 ± 1.27^{a}	$7.28\pm0.96{}^{\rm a}$
EPA+DHA	40.28 ± 7.23 ^a	30.13 ± 5.16^{a}	33.78 ± 7.09^{a}
Total n-3 LC PUFA	91.83 ± 16.78^{ab}	$69.44\pm9.66^{\text{a}}$	95.35 ± 16.17^{b}
Total n-3 PUFA	108.38 ± 21.11 ^{ab}	91.09 ± 10.69^{a}	142.76 ± 39.65 ^b
CLA 18:2	25.09 ± 14.26^{ab}	$14.38\pm5.81^{\mathtt{a}}$	39.92 ± 13.04^{b}
18:1Trans	$109.14\pm48.83^{\text{a}}$	222.19 ± 116.57 ^{ab}	350.15 ± 137.03^{b}

¹Values are expressed as mean \pm standard deviation. Different superscript letters indicate significant difference between mean values within the same row (Tukey HSD, P<0.05). ² n=5 beasts x duplicate analyses.

Table 1h.	Rump fatty	y acid concentration	on (mg/100g wet	weight) of short	grain-fed, Japanese Bos
Indicus.					

	010809-1G ²	010906G ²	010912G ²
ALA 18:3n-3	13.65 ± 6.47 ^a	21.64 ± 12.52 ª	27.64 ± 8.01 ª
EPA 20:5n-3	$18.70\pm8.32^{\text{a}}$	$21.77\pm8.42^{\text{ a}}$	$28.05\pm3.64^{\text{ a}}$
DPA 22:5n-3	32.05 ± 17.25 ^a	40.67 ± 16.51 ^{ab}	$58.08\pm3.90^{\text{ b}}$
DHA 22:6n-3	5.56 ± 2.15^{a}	6.62 ± 2.74^{ab}	$9.93 \pm 1.74^{\text{ b}}$
EPA+DHA	$24.26\pm10.43^{\text{ a}}$	$28.39\pm11.15^{\text{a}}$	37.98 ± 1.94 ^a
Total n-3 LC PUFA	56.30 ± 27.62^{a}	$69.06\pm27.58^{\text{ ab}}$	$96.06\pm5.28^{\text{ b}}$
Total n-3 PUFA	69.95 ± 33.93 ^a	$90.70\pm39.52^{\text{ ab}}$	123.69 ± 12.58^{b}
CLA 18:2	12.77 ± 5.27 ^a	15.54 ± 10.93 ^a	$24.96\pm8.93^{\text{a}}$
18:1Trans	135.93 ± 77.98 ^a	145.60 ± 89.04^{a}	$100.88\pm41.69^{\text{ a}}$
	100.00 ± 11.00	140.00 ± 00.04	100.00 1 4

 Table 2a. Strip loin fatty acid concentration (mg/100g wet weight) of C3 grass-fed, domestic Bos

 Taurus.

-

	011017BkB ²	011030BkB ²	011114BkB ²
ALA 18:3n-3	25.69 ± 10.06 ª	57.31 ± 13.08 ^b	35.08 ± 10.62 ª
EPA 20:5n-3	17.22 ± 4.42^{a}	34.38 ± 4.96 ^b	33.94 ± 7.90^{b}
DPA 22:5n-3	24.01 ± 8.59^{a}	51.35 ± 5.42^{b}	$47.87\pm9.43~^{\text{b}}$
DHA 22:6n-3	3.30 ± 0.99^{a}	$5.56\pm1.32^{\text{ ab}}$	6.47 ± 2.55 ^b
EPA+DHA	$20.52\pm5.40^{\text{ a}}$	$39.95 \pm 5.43^{ \mathrm{b}}$	40.42 ± 10.14 ^b
Total n-3 LC PUFA	44.53 ± 13.73 ^a	91.30 ± 10.56^{b}	88.28 ± 19.43 ^b
Total n-3 PUFA	70.22 ± 23.03 ^a	148.60 ± 18.85 ^b	123.37 ± 21.16^{b}
CLA 18:2	$13.08\pm6.70^{\text{ a}}$	$20.60\pm10.54^{\text{a}}$	12.68 ± 1.74 ^a
18:1Trans	36.62 ± 14.57^{a}	60.01 ± 23.63 ^a	37.59 ± 3.71 ^a

¹Values are expressed as mean \pm standard deviation. Different superscript letters indicate significant difference between mean values within the same row (Tukey HSD, P<0.05). ² n=5 beasts x duplicate analyses

Table 2b. Strip loin fatty acid concentration (mg/100g wet weight) of C3 grass-fed, domestic Bos Indicus.

	011018-1ACC ²	011018-2ACC ²	011018-3ACC ²
ALA 18:3n-3	30.24 ± 10.06^{a}	42.54 ± 4.12 ª	29.05 ± 15.05 ª
EPA 20:5n-3	17.53 ± 5.36 ^a	31.10 ± 8.5 ^b	$24.62\pm7.44~^{ab}$
DPA 22:5n-3	28.63 ± 13.17^{a}	47.78 ± 7.13^{b}	35.73 ± 10.91 ^{ab}
DHA 22:6n-3	3.39 ± 1.53 ^a	7.45 ± 2.27 ^b	$6.36\pm2.07^{\text{ ab}}$
EPA+DHA	$20.92\pm6.00^{\text{a}}$	38.54 ± 10.73 ^b	$30.98\pm8.4^{\text{ ab}}$
Total n-3 LCPUFA	49.55 ± 19.17 ^a	86.32 ± 17.48^{b}	66.71 ± 19.26 ^{ab}
Total n-3 PUFA	79.80 ± 29.19^{a}	128.87 ± 15.65^{b}	95.77 ± 32.85 ^{ab}
CLA 18:2	$13.23\pm6.81^{\text{a}}$	10.67 ± 1.55^{a}	10.45 ± 1.73 $^{\rm a}$
18:1Trans	25.58 ± 22.65 ^a	29.57 ± 5.07^{a}	$34.99\pm5.56^{\text{a}}$

Table 2c. Strip loin fatty acid concentration (mg/100g wet weight) of C3 grass-fed, Japanese Bos Indicus.

_

~

	010816ROK ²	010823ROK ²	011019IMTP ²
ALA 18:3n-3	31.35 ± 5.34 ª	74.72 ± 13.31 ^b	66.50 ± 18.14 ^b
EPA 20:5n-3	$20.05\pm3.88^{\text{a}}$	28.04 ± 3.46^{ab}	35.11 ± 6.72^{b}
DPA 22:5n-3	31.99 ± 7.56^{a}	48.23 ± 3.60^{b}	45.46 ± 9.35^{b}
DHA 22:6n-3	$4.29\pm1.18^{\text{a}}$	5.75 ± 2.07^{a}	$4.72\pm0.98^{\text{a}}$
EPA+DHA	$87.69 \pm 17.44{}^{\mathtt{a}}$	156.75 ± 16.86 ab	151.78 ± 33.89^{b}
Total n-3 LCPUFA	56.33 ± 12.41 ^a	$82.02\pm7.76^{\text{ b}}$	85.29 ± 1.74 ^b
Total n-3 PUFA	87.69 ± 17.44 ^a	156.75 ± 16.86 ^b	151.78 ± 33.89^{b}
CLA 18:2	19.18 ± 6.92 ^a	$29.07\pm3.55^{\text{ b}}$	$18.09\pm5.98^{\text{ a}}$
18:1Trans	48.85 ± 21.14 ^a	70.73 ± 14.25 ^a	56.09 ± 17.81 ^a

¹Values are expressed as mean \pm standard deviation. Different superscript letters indicate significant difference between mean values within the same row (Tukey HSD, P<0.05). ² n=5 beasts x duplicate analyses.

Table 2d. Strip loin fatty acid concentration (mg/100g wet weight) of C4 grass-fed, Japanese Be)S
Indicus.	

	010808-2G ²	010809-2G ²	010810-2G ²
ALA 18:3n-3	28.24 ± 14.34^{a}	27.68 ± 5.95^{a}	40.81 ± 9.02 ^a
EPA 20:5n-3	12.90 ± 3.85 ^a	19.84 ± 6.50^{a}	31.41 ± 6.89^{b}
DPA 22:5n-3	22.78 ± 5.32 °	28.84 ± 10.83 ^a	52.97 ± 9.12^{b}
DHA 22:6n-3	$3.33\pm0.82{}^{\text{a}}$	3.79 ± 1.45 ^a	7.14 ± 1.47^{b}
EPA+DHA	16.23 ± 4.40 °	23.63 ± 7.82^{a}	38.55 ± 7.90^{b}
Total n-3 LC PUFA	39.01 ± 9.33 ^a	52.46 ± 18.28 ª	91.52 ± 14.00^{b}
Total n-3 PUFA	67.25 ± 22.93 °	80.15 ± 22.30^{a}	132.33 ± 22.54 ^b
CLA 18:2	20.71 ± 18.00^{a}	15.39 ± 6.11^{a}	19.8 ± 10.82^{a}
18:1Trans	66.34 ± 54.49^{a}	39.82 ± 9.71 ^a	50.40 ± 23.73 ^a

 Table 2e.
 Strip loin fatty acid concentration (mg/100g wet weight) of short grain-fed, domestic Bos

 Taurus.

	010929W ²	011004W ²	011011W ²
ALA 18:3n-3	12.61 ± 3.22 ^b	20.11 ± 2.00 °	8.34 ± 0.32^{a}
EPA 20:5n-3	15.64 ± 5.36^{a}	25.94 ± 3.15^{b}	13.01 ± 2.45 ^a
DPA 22:5n-3	$29.22\pm6.90^{\text{ b}}$	$34.17 \pm 3.18^{\mathrm{b}}$	21.05 ± 1.33 ^a
DHA 22:6n-3	3.16 ± 2.69^{a}	6.21 ± 1.27^{b}	3.20 ± 0.29^{a}
EPA+DHA	18.80 ± 7.59^{a}	$\textbf{32.15} \pm \textbf{4.13}^{\text{b}}$	16.21 ± 2.24 ^a
Total n-3 LC PUFA	$\textbf{48.02} \pm \textbf{14.28}^{\mathtt{a}}$	66.33 ± 6.91 ^b	37.26 ± 2.84 ^a
Total n-3 PUFA	60.64 ± 16.74 ª	86.43 ± 8.84 ^b	$45.60\pm3.03{}^{\text{a}}$
CLA 18:2	6.47 ± 2.19^{a}	9.50 ± 2.38^{a}	$6.04\pm1.44^{\text{ a}}$
18:1Trans	162.90 ± 48.77 ^a	172.65 ± 107.96 ^a	113.10 ± 35.56 °

¹Values are expressed as mean \pm standard deviation. Different superscript letters indicate significant difference between mean values within the same row (Tukey HSD, P<0.05). ² n=5 beasts x duplicate analyses.

Table 2f. Strip loin fatty acid concentration (mg/100g wet weight) of short grain-fed, domestic Bo	5
Indicus.	

	010807G ²	010808-1G ²	010810-1G ²
ALA 18:3n-3	7.87 ± 2.00^{a}	9.91 ± 1.68 ^a	15.13 ± 1.98 ^b
EPA 20:5n-3	$8.95\pm2.03~^{a}$	10.65 ± 2.35^{a}	18.99 ± 2.39^{b}
DPA 22:5n-3	14.57 ± 2.90 ^a	$19.88 \pm 1.64^{\text{ b}}$	33.31 ± 3.16°
DHA 22:6n-3	2.39 ± 0.55^{a}	4.13 ± 1.39^{ab}	5.83 ± 0.96^{b}
EPA+DHA	11.34 ± 2.37 ^a	$14.78\pm3.60^{\text{ a}}$	$24.82\pm2.74^{\text{ b}}$
Total n-3 LC PUFA	$25.90\pm5.07^{\text{a}}$	34.66 ± 4.83 ^a	58.14 ± 5.62 ^b
Total n-3 PUFA	33.77 ± 7.04 ^a	44.57 ± 6.33 ^a	$73.27\pm5.82^{\text{ b}}$
CLA 18:2	6.61 ± 3.51 ^a	$8.43 \pm 1.80^{\text{ a}}$	10.34 ± 3.95 °
18:1Trans	62.81 ± 27.02^{a}	98.63 ± 15.28^{a}	$100.98\pm40.08^{\text{a}}$

¹Values are expressed as mean \pm standard deviation. Different superscript letters indicate significant difference between mean values within the same row (Tukey HSD, P<0.05). ² n=5 beasts x duplicate analyses.

Table 2g. Strip loin fatty acid concentration (mg/100g wet weight) of short grain-fed, Japanese BosTaurus.

	011012IMTP ²	011025IMTP ²	011112G ²
ALA 18:3n-3	17.48 ± 2.66^{a}	14.76 ± 2.21 ª	25.65 ± 13.52 ª
EPA 20:5n-3	$21.73\pm3.89^{\mathtt{a}}$	18.51 ± 2.31 ^a	$20.29\pm7.55{}^{\mathtt{a}}$
DPA 22:5n-3	$37.17\pm5.85^{\text{a}}$	30.97 ± 4.84 ^a	40.68 ± 9.49 ^a
DHA 22:6n-3	5.51 ± 1.06^{ab}	$7.06\pm1.88^{\text{ b}}$	$4.49\pm0.98^{\rm a}$
EPA+DHA	$27.24\pm4.50^{\text{ a}}$	$25.57\pm3.26^{\mathtt{a}}$	24.77 ± 7.91 $^{\rm a}$
Total n-3 LC PUFA	64.41 ± 10.25^{a}	56.54 ± 6.87 ^a	$65.46\pm17.04^{\mathtt{a}}$
Total n-3 PUFA	$77.63\pm10.40^{\text{ a}}$	$71.30\pm8.57^{\text{a}}$	91.11 ± 29.71 ª
CLA 18:2	$14.19\pm2.48^{\text{a}}$	12.56 ± 3.37^{a}	$24.23\pm7.90^{\text{ b}}$
18:1Trans	87.44 ± 31.59 ^a	$208.85\pm80.45^{\text{ b}}$	$272.06\pm80.80^{\text{ b}}$

¹Values are expressed as mean \pm standard deviation. Different superscript letters indicate significant difference between mean values within the same row (Tukey HSD, P<0.05). ² n=5 beasts x duplicate analyses.

Table 2h. Strip loin fatty acid concentration (mg/100g wet weight) of short grain-fed, Japanese Bos Indicus.

	010809-1G ²	010906G ²	010912G ²
ALA 18:3n-3	9.19 ± 1.14^{a}	17.85 ± 11.13 ª	16.73 ± 5.15^{a}
EPA 20:5n-3	$9.46\pm1.62^{\text{ a}}$	$16.00 \pm 7.19^{\text{ ab}}$	19.03 ± 5.52 ^a
DPA 22:5n-3	17.93 ± 1.97^{a}	31.61 ± 13.10^{ab}	$\textbf{38.60} \pm \textbf{10.70}^{ b}$
DHA 22:6n-3	2.91 ± 0.77^{a}	4.67 ± 2.09^{a}	6.05 ± 2.32^{a}
EPA+DHA	39.50 ± 5.04^{a}	$70.13\pm33.37^{\text{ ab}}$	80.41 ± 22.26^{b}
Total n-3 LC PUFA	$30.31\pm4.02^{\text{ a}}$	52.28 ± 22.29 ^{ab}	63.68 ± 18.07 ^b
Total n-3 PUFA	39.50 ± 5.04^{a}	70.13 ± 33.37 ^{ab}	80.41 ± 22.26 ^b
CLA 18:2	10.53 ± 0.68 ^a	12.00 ± 9.93 ^a	13.83 ± 1.49 °
18:1Trans	148.35 ± 68.50^{a}	$119.28\pm74.83~^{\rm a}$	71.67 ± 17.38^{a}

¹Values are expressed as mean \pm standard deviation. Different superscript letters indicate significant difference between mean values within the same row (Tukey HSD, P<0.05). ² n=5 beasts x duplicate analyses.

Variable		C3		C4		Short	grain		SEM	Pvalue
	Don	nestic	JAP	JAP	Don	nestic	J	AP		
	Taurus	Indicus	Indicus	Indicus	Taurus	Indicus	Taurus	Indicus		
Total SFA	1500 ^a	1298ª	1335ª	2564 ^b	1114 ^ª	1036 ^a	2110 ^b	139 4ª	243	0.001
Total MUFA	1574 [⊾]	1315 ^{ab}	1420 ^{ab}	3229 ^d	953ª	989 ^{ab}	2349°	1492 ^{ab}	297	0.001
Total n-6FA	316 ^{ab}	268 ^a	320 ^{ab}	347 ^b	352 ^b	259 ^a	467°	367 ^b	38.8	0.001

Table 3a. Total saturated, monounsaturated, and omega-6 fatty acid concentration of Rump¹

¹Values are expressed in mg/100 g of meat sample and an average of 15 observations. ^{a,b,c,d}Within a row, means without a common superscript letter differ (P < 0.05).

Variable		C3		C4		Short	grain		SEM	Pvalue
	Don	nestic	JAP	JAP	Don	nestic	J	AP		
	Taurus	Indicus	Indicus	Indicus	Taurus	Indicus	Taurus	Indicus		
Total SFA	1112 ^{ab}	917 ^{ab}	1230 ^b	1150 ^{ab}	974 ^{ab}	873ª	1670°	1186 ^{ab}	177	0.001
Total MUFA	1084^{ab}	871 ^{ab}	1 246⁵	1 2 17 ^b	822 ^{ab}	755ª	1704°	1120 ^{ab}	198	0.001
Total n-6FA	195 ^{ab}	153 ^a	205 ^b	149 ^a	22 1 ^b	150 ^a	295°	236 ^b	24.5	0.001

¹Values are expressed in mg/100 g of meat sample and an average of 15 observations. ^{a,b,c}Within a row, means without a common superscript letter differ (P < 0.05).

MLA - Project CMHN.016 Final Report March 2003

Preliminary Studies (1)

Objectives

- 1. To determine the number of samples to be analysed per 'treatment' (by repeat analysis of fresh samples of beef and lamb, collected by RMIT from retail outlets),
- 2. To determine which cuts should be sampled (forequarter, hindquarter or both), based on the provision by MLA of samples from 6 different grass-fed beef cattle.

Methods

- Beef rump steak was purchased from a local supermarket, trimmed of visible fat and minced thoroughly. Ten samples of the rump mince were analysed for omega 3 fatty acids by the standard method and a streamlined method (streamlined to reduce the number of steps following extraction, using the standard method, otherwise all steps / procedures were identical. Rationale for the streamlined method was to save time and solvents).
- **2.** Samples of blade, striploin and rump from 6 grass-fed beef animals were analysed in triplicate for the omega 3 content.

MLA - Project CMHN.016 Final Report March 2003

Results

Determination of the number of meat samples to be assayed for omega 3 fatty acids

- The omega 3 content of supermarket rump steak (fattrimmed) is shown in Table 1. The coefficient of variation (CV) for the 10 rump samples ranged from 2 to 6% for the different omega 3 fatty acids. The streamlined method yielded results <u>not significantly different to the standard</u> <u>method</u>, with CV's in the same range of 2-6% (Table 1).
- Based on these data, we can be confident that we will be able to detect a difference of 5 mg omega 3 fatty acids/100g lean meat if we conduct future analyses of meat samples from 15 cattle per treatment (this is the number of samples for analysis, as noted in the agreement). Five mg equates to a difference in omega 3 content of approximately 10% (total omega 3 content in the beef samples analysed was in the range 38 to 59 mg/100g lean meat).

Determination of which cuts should be sampled

- The omega 3 fatty acid content was not significantly different between the blade and rump samples, however the values for striploin were significantly lower by approximately 31% (Table 2). As noted in Table 2, the standard deviations for total omega 3 fatty acids were relatively high (CVs of 6-15%) which indicates considerable variability between the six animals. This emphasises again the need to have a higher number of animals in each cell of the experiment (the budget allows for 15 animals, 2 sites, analyses in duplicate).
- Beef analyses for omega 3 fatty acids should be conducted on two samples of meat per beast (rump and striploin) and with 15 animals to be sampled per treatment/cell. Rump preferred to blade for ease of preparation for mincing and also since it is a high quality cut.
- 2. All omega 3 fatty acid analyses will be conducted in duplicate.

Lamb samples will be analysed to determine the variability in the assay of omega 3 fatty acids as per the above studies in beef, and subsequent to this the cuts to be sampled will also be investigated once we have been provided with the appropriate samples.

MLA - Project CMHN.016 Final Report March 2003

38

Recommendations

Lamb analyses

Table 1. Determination of the omega 3 fatty acid content of lean beef (rump):
Coefficient of variation of the standard and a streamlined method

Stream-lined method	Fatty acid (mg/100g meat)	Mean	SD	CV (%)
	18:3n-3	18.05	1.08	6.0
	20:5n-3	18.10	0.58	3.2
	22:5n-3	23.42	0.87	3.7
	22:6n-3	3.37	0.16	4.8
	Total n-3 FA	62.94	2.48	3.9
Standard Method				
	18:3n-3	17.19	1.03	
	20:5n-3	17.35	0.37	2.1
	22:5n-3	21.95	0.77	3.5
	22:6n-3	3.21	0.18	5.7
	Total n-3 FA	59.71	2.27	3.8

* Supermarket rump steak (trimmed, minced and frozen), n =10 analyses per method.

Table 2. Omega-3 fatty acid distribution in beef

~1

Fatty acid	Blade	Striploin	Rump
(mg/100g)			
18:3n-3	20.43±2.65ª	12.23±1.98 ^b	18.35±3.70ª
20:5n-3	13.11±2.37ª	9.51±0.83b	13.77 <u>+2</u> .29ª
22:5n-3	20.10±1.91ª	14.40±1.61 ^b	18.76±3.00ª
22:6n-3	2.47 <u>+2.</u> 47ª	1.69±0.24b	2.42±0.57ª
Total LC n-3 FA	35.68±3.27ª	25.60±2.00b	34.95±5.00ª
Total n-3 FA	56.11±3.73ª	37.83±3.82 ^b	53.29±8.36ª
Total FA's (g/100g)	2.39±0.61ª	1.47±0.45 ^b	1.76±0.66ªb
Total fat (g/100g)	2.61±0.66ª	1.60±0.49 ^b	1.92±0.73 ^{ab}
Moisture (%)	24.2+1.0	24.8±1.0	24.3±0.9

Data shown as mean±SD for triplicate analysis of 6 samples per cut.

Preliminary Studies (2)

Objectives

- 1. To determine the moisture content variability in minced meat samples (beef and lamb) using the CEM automated meat moisture instrument
- 2. To determine the coefficient of variation in lamb omega 3 fatty acids using the method modified to determine beef omega 3 fatty acids (see Report #1).

Methods

-

- Beef rump steak was purchased from Queen Victoria Market, trimmed of visible fat and minced thoroughly. Eleven samples of the rump mince were analysed for moisture using the CEM machine.
- 2. Lamb backstrap was purchased from Queen Victoria Market, trimmed of visible fat and minced thoroughly. Eleven samples of the lamb mince were analysed for moisture using the CEM machine.
- 3. Lamb backstrap was purchased from Queen Victoria Market or obtained from Mr David Quinnane (Damara lamb). The omega 3 fatty acids were analysed by the streamlined method discussed in report #1 (streamlined to reduce the number of steps following extraction, using the standard method, otherwise all steps /procedures were identical. Rationale for the streamlined method was to save time and solvents).

Results	 Determination of the moisture content of beef a lamb The moisture content was 74 and 71%, respectively, for bee and lamb. The coefficient of variation was very low (<1% i both cases) (Table 1). Based on these data, we can be confident that determining moisture on duplicate samples will be sufficient to obtain a accurate moisture content. Determination of the omega 3 content of lamb (minor The omega 3 fatty acid content was found to be 64-74mg/1 gram minced meat (Table 2). There was a higher CV than found previously for the analysis of beef using this method (report #1). Based on these data, it was determined to modify the meth for the analysis of the lamb, prior to conducting the full scalamb analyses. Some early trials on modifications have resulted in improved CVs.
Arrival of first shipment of beef samples	The 1 st batch of 90 beef samples (from 45 animals) arrived mid-August. These have been minced, moisture condetermined and extractions have started.
Decision on analysis	As noted in email to MLA this week (10/9/01), samples h been supplied from groups of animals outside the agr schedule (see Table 3). Shane Blakely has indicated believes these additional 45 animals (3 extra groups) sho be analysed. If
of extra samples Lamb samples	As noted in email to MLA ($10/9/01$), analysis of the additional samples will necessitate discussion of addition funding.
	As noted in email to MLA $(4/9/01)$, Dr Dave Pethick for Perth has indicated he may be able to provide sample lamb suitable for the determination of the omega 3 content

MLA - Project CMHN.016 Final Report (June 2002)

erips.

Ĵ

.

Table
 1
Samp 3.323 3.067 3.615 3.039 3.025 2.203 2.730 2.510 2.794 3.792 2.968
Rum
1
Samr 4.403 3.167 5.060 4.069 3.735 3.727 4.779 3.864 3.056 4.794 2.641

e 1. Moisture Contents

Lamb backstrap - ex Vic market Bag 1+2 of 3 (Constant Weight Mode: power 100%, interval time 5secs, differential weight 0.2mg)

nple weight (g)		% Moisture
237		71.49
577		71.4
154		71.38
396		71.45
255		70.94
)36		70.41
304		71.64
109		71.68
947		71.39
923		71.76
682		71.15
	Average	71.34
	Stdev	0.39
	CV (%)	0.5

p - ex Vic market Bag 5 of 6 (Constant Weight Mode: power 100%, interval time **5secs**, differential weight 0.2mg) alo wolabt (a)

	v.zmg)	
Sample weight (g)	•	% Moisture
4.4031		74.02
3.1679		74.2
5.0606		74.45
4.0692		74.41
3.7354		73.97
3.7273		73.89
4.7797		73.67
3.8643		74.14
3.0562		74.29
4.7943		74.33
2.6419		73.33
	Average	74.06
	Stdev	0.34
	CV (%)	0.5

Fatty acid	Sample #	Sample description	Amount	Mean	Stdev	CV (%)
			(mg/100g meat)			
18:3n-3	55	Backstrap ex. Vic market	44.41	42.38	2.30	5
	56		44.34		· .	ı.
	57		39.99			
	58		44.5			
	59		39.71			
	60		41.31			
	64	Backstrap ex. Interstate	19.02	23.9	4.25	18
	65	-	26.89			
	66		19.66			
	67		25.63			
	68		22.43			
	69		29.77			
20:5n-3	55	Backstrap ex. Vic market	14.11	14.73	0.77	5
	56	r	16.13	_		
	57		14.55			
	58		14			
	59		14.63			
	60		14.98			
	64	Backstrap ex. Interstate	11.81	13.61	1.59	12
	65	Daeksuap ex. interstate	14.4	15.01	1.57	14
	66		13.05			
	67		13.64			
	68		12.49			
	69		16.29			
22:5n-3	55	Backstrap ex. Vic market	13.84	13.53	0.88	7
22.JII-J	56	Backstrap ex. Vie market	13.77	15.55	0.00	/
	57		12.43			
	58		12.45			
	59		13.16			
	60	Destates Telescolo	13.02	17.50	0.75	16
	64	Backstrap ex. Interstate	14.01	17.56	2.75	16
	65		19.78			
	66		15.1			
	67 68		18.75			
	68		16.72			
22.6	69		21.03	4.60	0.6	10
22:6n-3	55	Backstrap ex. Vic market	5.11	4.53	0.6	13
	56		4.25			
	57		4.1			
	58		5.45			
	59		4.04			
	60		4.22	0.00		1.5
	64	Backstrap ex. Interstate	6.87	8.02	1.05	13
	65		9.09			
	66		6.86			
	67		8.46			
	68		7.65			
	69		9.17			

Table 2. Lamb omega 3 content

[#]

-

,

_

....

	-		•	
Table 2	Cummonted bee		I C N/	
таріе э.	Suggesten nee	a samnung nrom	roi trom IV	Ir Shane Blakely
1.00000	Suggested bet	a sempling proto		Li Onane Diakery

1

, **III**

F

-- ---

⇒

Feeding regime	Class	Bos indicus	Bos taurus
C4 grassfed	Domestic (200-250 kg)	15 samples	15 samples
C3 grassfed	Domestic (200-250 kg)	Not applicable	15 samples
C4 grassfed	Jap ox (300-340 kg)	15 samples 3 kills Grantham (ex Frankfield)	15 samples
C3 grassfed	Jap ox (300-340 kg)	15 samples 2 kills AMH Rockhampton (ex Brigalow Beef)	15 samples
Short grainfed	Domestic (200-250 kg)	15 samples 3 kills Grantham (ex Bottletree & Mort&Co)	15 samples
Short grainfed	Jap ox (300-340 kg)	15 samples 2 kills Grantham (ex Bottletree)	Not applicable
Long grainfed	Jap ox (300-340 kg)	Not applicable	15 samples

Suggested additional samples:

15 samples	C3 Jap Bos indicus
15 samples	C3 Jap Bos taurus
15 samples	100 day Jap Bos indicus

.

a feisionna Pitersen

·--

Class	C3	80d Grainfed	150/200d Grainfed
Domestic	021113 #145-168	020725 #1-24	
	Orange, NSW	Grantham	
	021115 #169-192	020830 #49-72	
	Gracemere, QLD	Grantham	
	021119 #193-216	020828 #97-120	
	Dalby, QLD	Bottletree feedlot	
Jap Ox			020725 #25-48
			Grantham
			020904 #73-96
			Stockyard
			021012 #121-144
			Kerwee feedlot

MLA - Project CMHN.016 Final Report (June 2002)