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Abstract 
 

The project explores the feasibility of using satellite imagery and climatic data to predict and identify 

pasture dieback (PD) infestation. We acquired 187 PD sites and conducted a time series analysis on 

Landsat and Sentinel 2 imagery to estimate PD occurrence date. We then used the binary 

generalized extreme value additive model (BGEVA) to identify the probability (i.e., chance) of PD 

occurrence relative to the climatic conditions. The BGEVA model reveals that a combination of 

monthly average maximum temperature between 15-20 oC and monthly average rainfall between 8-

10 mm results in the highest chance of PD occurrence. Seven UAV surveys were conducted, and the 

resulting high-resolution UAV imagery was used to train a machine learning model. The model 

classifies unhealthy/dead grass and can be applied to Sentinel 2 images for large scale analysis. 

Satellite imagery and SILO’s gridded weather data were employed to create a Random Forest (RF) 

model predicting pasture’s potential growth. The RF model identifies whether the unhealthy pasture 

is due to unfavourable weather conditions or other disturbances such as changes in land 

management or pest infestation. Finally, we created different proof-of-concept web apps 

demonstrating how our models can be deployed for PD warning and detection at scale. 
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Executive summary 

Background 

Pasture dieback (PD) is causing widespread damages to pastures and beef production in Queensland. 

However, PD causal agents are still poorly understood. This project integrates remotely sensed 

imagery and publicly available climatic data for cost-effective identification, mapping and monitoring 

of pasture dieback infestation over time at scale. 

Objectives 

The main objectives of the project are to: 

• Characterise PD spectral signature using high resolution hyperspectral camera. 

• Develop a predictive model for PD proliferation based on UAV, satellite imagery, and 

environmental variables. 

• Engage and communicate across stakeholder groups to discuss digital delivery platform (s) 

suitable to meet industry needs. 

Methodology 

Time series analysis and statistical modelling were used to predict the chances of PD occurrence 

based on climatic conditions. Machine learning models were used for PD classification based on 

satellite and UAV imagery inputs. 

 

Results/key findings 

• Three difference models were built to (1) predict the chances of PD occurrence relative to 

climatic conditions, (2) classify unhealthy grass, and (3) identify if the unhealthy grass was 

due to unfavourable weather conditions or other disturbances such as changes in land 

management or pest infestation. 

• The models performed well based on the data they were trained on. However, more training 

data are required for model applications across multiple climatic regions and pasture 

species. 

• Engagement with stakeholders shows interests for model deployment on an on-demand and 

easy-to-setup platforms or web applications. 

Benefits to industry 

Our research showcases the usefulness of satellite and gridded climate data in monitoring and 

predicting PD occurrence. Our models could help graziers plan to mitigate the likely impacts of PD on 

livestock management and grazing. 

Future research and recommendations 

Future research needs to focus on acquiring more data to improve the model performance as well as 

building platforms for deployment of the resulting models at scale. 
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1. Background 

Pasture dieback (PD) is a condition that kills sown and native summer growing pastures. It causes ill 

thrift and death in a range of introduced and native grasses across Queensland and into northern 

NSW, resulting in large losses in beef production areas. However, PD symptoms and causal agents 

are still poorly understood. For many producers and industry advisors the accurate identification of 

PD from other pasture conditions remains fraught. The Pasture Dieback Science Forum (June 2020) 

rated the development of accurate identification, mapping and prediction tools for PD to be a very 

high priority. 

Geographically referenced soil, climate and management information on the infected areas is critical 

when developing predictive spatial modelling tools for accurate identification, monitoring and 

assessing the impact of mitigation strategies. 

Mapping and predicting disturbances allow stakeholders to prioritise management actions at 

particular locations of concern over large areas. The field of remotely sensed observations to 

discriminate outbreaks in plant populations has rapidly evolved over the past 10 years with the 

continued deployment of new airborne and satellite-based platforms offering high resolution hyper 

spectral and multi spectral data products. These products have been used to detect a range of 

diseases in agricultural systems in Australia and abroad. Spectral signatures are specific to a species 

or the biochemical composition of leaves and can be used to identify PD outbreaks. 

Remote sensing also provides a cost-effective non-bias, objective assessment of infections and 

outbreaks. Time series analysis of remotely sensed pasture data at sub-field resolution could 

potentially be performed on a regular (weekly to monthly) basis using publicly available and 

commercial data products once a protocol has been developed. Using multi-layer Geographic 

Information Systems (GIS) combined with spatially explicit remotely sensed data products provides 

the opportunity to better understand the distribution (when and where) and environmental factors 

associated with pasture dieback outbreaks in Australia. 

One of the most challenging issues in remote sensing is the accurate identification of an infection at 

scale. Whilst UAV borne sensors with finer spatial resolution and increased spectral bandwidth offer 

greater accuracy for detection at the plant level (Sandino et al., 2018) they cannot rival satellite-

based data in terms of spatial extent and cost effectiveness. However, both Unmanned Aerial 

Vehicles (UAVs) e.g., drone, and satellite-based imagery are entirely compatible and when used 

together provide a valuable technology for accurate disease detection at scale (Dash et al., 2018). 

Satellites offer the ability to cover large distances, at various timesteps. Historical datasets such as 

Landsat (30m2 by 30m2 and 10-day capture) and Sentinel (10m2 by 10m2 and 5-day capture) can be 

combined with new services such as Planet (3m2 by 3m2 and daily capture). Hyperspectral and 

multispectral imagery from UAVs can be used to calibrate satellite-based imagery leading to greater 

accuracy at scale. 

Spectral phenotyping is a cost-effective method for the non-destructive characterisation of a plant’s 

biochemical and physiological status. Its full potential of this data product is realised in combination 

with bioclimatic and soil chemical and physical properties and the development of robust predictive 

causal relationships of dieback in space and time. The performance of predictive modelling 

approaches not only depends on the abiotic conditions but also the distribution of sampled 

observations, which are critical for effective model calibration and validation of the statistical model. 

Whilst traditional generalised linear models have been used for species distribution modelling, the 
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choice of analytical approach in predictive model development also depends on the availability of 

relevant data and the biological understanding of the phenomena. In the case of PD the biological 

understanding is still not fully resolved, therefore multiple statistical approaches are required.  

This proof-of-concept project integrated remotely sensed imagery from Unmanned Aerial Vehicles 

(UAVs) and satellite-based platforms to identify spectral signatures of pasture dieback for cost 

effective identification, mapping and monitoring over time and at scale using satellite-based 

systems. Once developed this capability will also allow further monitoring of the impact and 

mitigation practices to reduce infestations. Remotely sensed imagery was combined with soil and 

climate data to develop a predictive model of PD in space and time for forecasting risk – this may 

shed light on likely environmental triggers (biotic and abiotic) that cause episodic outbreaks of PD.  

2. Objectives 

The project specifically addresses the MLA pasture dieback program objectives of “technologies to 
enable early detection and subsequently monitoring processes that would enable detection at 
grazing property level and regional scale”. This short proof of concept project aims to combine high 
spatial resolution UAV imagery (collected with narrow- band hyperspectral/multispectral camera) 
with broad-band satellite imagery to provide enhanced predictive capability for detecting, 
monitoring and forecasting changes in PD at scale. The specific project’s objectives include: 
 

- Determine the effectiveness of both UAV and satellite imagery for the detection of pasture 
dieback. 

- Analysis of satellite-based time series imagery and gridded climatic conditions to identify 
environmental conditions when the plant is susceptible to infection or to identify infected 
plants prior to complete senescence. 

- Develop a predictive spatial-statistical model for PD proliferation based on optimal design 
combining both in situ and remotely sensed data collected at regional sites. Calibration of 
the predictive model using characterised and sites that are bio-climatically diverse. 

- Engage and communicate across stakeholder groups to discuss digital delivery platform (s) 
that provide multiple levels of interpretation and interrogation suitable to meet industry 
needs. 
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3. Methodology 
An overview of our methodological approach is presented in Fig. 1.  

 

Fig. 1. Overview of the methodological approach. 

3.1 PD ground truth data collection  

The ground truth dataset consists of 187 locations that were reported with PD infestation at some 

point in time (Fig. 2, Appendix 8.1). These locations were acquired through ground surveys or 

provided to us from other representatives of the Pasture Dieback research program, such as Matrix 

professionals, AgForce Queensland, QUT, and UQ.  Since the extent of PD infestation were not 

reported for these sites, they were identified as points with latitude and longitude coordinates in our 

ground truth dataset. There were 95 sites where only property addresses were reported instead of 

the dieback coordinates. These sites were, therefore, only used for our climate correlation analysis 

and were excluded from our time series analysis with satellite imagery. We further excluded 24 

ground truth sites from our initial analysis due to either lack of cloud-free satellite data or unclear PD 

occurrence history. This resulted in a set of 56 PD sites that were used for our time series and 

segmentation analyses. Majority of these sites are located in Central Queensland around the Banana 

region (Fig. 2). The whole PD ground truth collection and the final set of PD sites used for analysis 

can be explored using the “PD_sites.html” file. 

https://drive.google.com/file/d/1txsZLUt6q8jglRb2jc8VD4mjfR25NG9y/view?usp=sharing
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Fig. 2. Maps of Pasture dieback ground truth sites. 

3.2   UAV surveys and imagery analysis 

3.2.1 UAV imagery analysis   

We conducted seven UAV surveys (or data collection campaigns) across five locations in southeast 

and central QLD, and northern NSW. The flight campaigns occurred from the 5th of February to the 

21st of April 2021 because of suboptimal weather conditions to fly the aircraft and payloads. The 

sites were selected after consultation and feedback from landowners of Pasture Dieback (PD) at 

various grass species, and in collaboration with QUT researchers who have regularly analysed the 

grasses for biological tests. An illustration of the locations and specific flight test details are shown in 

Fig. 3 and Table 1. 



B.PAS.0510 - Spatio-temporal prediction of pasture dieback using UAVs and remote sensing 

 
 

Page 10 of 63 

 
 

 

Fig. 3. Selected sites for Pasture Dieback (PD) analysis using UAV imagery. 

 

Table 1. Properties of surveyed sites using UAVs. 

Test Date Location Processed Area Dominant Grass Sp. 

1 2021-02-05 Maudsland, QLD 6.62 Hectares Rhodes, Setaria 

2 2021-02-11 
Nobbys Creek, 

NSW 
2.82 Hectares Narrow leaf paspalum 

3 2021-02-23 Banana, QLD 6.05 Hectares Buffel, Urochloa 

4 2021-02-24 Biggenden, QLD 5.00 Hectares Bisset Bluegrass 

5 2021-02-25 Kin Kin, QLD 7.86 Hectares Setaria, Kikuya 

6 2021-03-09 Maudsland, QLD 6.62 Hectares Rhodes 

7 2021-04-21 
Nobbys Creek, 

NSW 
2.82 Hectares Narrow leaf paspalum 

 

The data was collected between 10:00 a.m. and 2:00 p.m. using a DJI M600-Pro hexa-rotor UAV. The 

UAV was tuned on site to operate under three different payload (or camera) configurations: 1) high-

resolution RGB; 2) multispectral; and 3) hyperspectral. The order of the scans per flight campaign 

and relevant settings are detailed in Table 2. 
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Table 2. Properties of surveyed sites using UAV technology. 

Flight Sensor Type Spectral 
Bands 

Altitude 
AGL (m) 

Resolution 
(cm/px) 

Overlapping 
(%) 

1 
Headwall 

Nano 
Hyperspect

ral 

274 
(400nm to 
1000nm) 

40 5.9 10 to 20 

2 
Headwall 

Nano 
Hyperspect

ral 

274 
(400nm to 
1000nm) 

60 8.9 10 to 20 

3 
Micasense 
RedEdge 

Multispectr
al 

5 (Blue, 
Green, Red, 

RedEdge, 
NIR) 

60 2.7 70 

4 Canon 5DSR 
High-

resolution 
RGB 

3 (Red, 
Green, 
Blue) 

60 0.7 70 

 

UAV campaigns applied the following workflow to ensure compliance with CASA and QUT 

regulations, and achieve high-quality data: 

1) Single communication point to seek authorisation from every landowner to collect imagery 

for research purposes (i.e., objective 1). 

2) Design of flight missions highlighting surveyed areas and access routes of each property 

using projected satellite rasters and polygons (Fig. 4). 

3) Compilation of the approval letter attaching the flight mission and other relevant data that 

ensures transparency in the research activities on each property. 

4) Placement of physical Ground Control Points (GCPs) around the surveyed areas to generate 

high-fidelity mosaics (Fig. 5).  

5) In-site sensor calibration (Fig. 5). 
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Fig. 4. Flight mission and polygon drawings for UAV data collection at Maudsland, QLD. The 
yellow, green and red polygons outline the property boundaries, covered area by UAV data and 

exclusion trials for ground surveys. 

  

Fig. 5. (left) Placement of a Ground Control Point (GCP) at Nobbys Creek. A minimum of five 
GCPs must be placed across the extent of the surveyed area. (right) Collection of white 
reference at Nobbys Creek to correct atmospheric disturbances in spectral imagery. 
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Georeferenced mosaics of high-resolution RGB, multispectral and hyperspectral data have generated 

more than 4.6 TB of data. All research data is stored and protected at a dedicated QUT Research 

Data Storage Service (RDSS) that complies with the QUT MOPP D/2.8. 

3.2.2 UAV imagery analysis  

The processing and analysis of UAV data is individually applied to each site, owing to the various land 

conditions and grass species present there. The analysis workflow applied covers the following 

methods: 

1. Spectral correlation analysis between resistant pasture and pasture with dieback symptoms. 

These correlations are generated by collecting statistics on raw spectral response and 

common vegetation indices found in the literature.  

2. Spatial analysis of affected areas by tuning a Machine Learning (ML)-based model which 

provides a classification map of surveyed areas by the UAV. The model requires labelling key 

scene blobs represented in the imagery with a list of defined classes to identify PD. This 

labelling process is also known as the ground truth. 

3. Comparison and usage of tuned models to upscaled satellite data. 

A high-level illustration of the workflow is shown in Fig. 6. 

 

Fig. 6. Overview of the UAV data processing pipeline to detect Pasture Dieback (PD). 

The ability to label the correct projected areas (or pixels) of pasture for spectral analysis is essential 

to run the methods mentioned above. Labelling specific regions for PD presented a particular 

labelling challenge because of; 1) The nature of how dieback is observed on the grass in early stages, 

where dispersed colourisation changes happen at the grass leaftops; and 2) Low image resolution 

captured from multispectral and especially hyperspectral sensors, as shown in Fig. 7. 

https://www.mopp.qut.edu.au/D/D_02_08.jsp
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Fig. 7. (left) Early stages of dieback symptoms visible on the plant leaftops in Nobbys Creek, 
NSW. (right) Visual projection of the surveyed area using high-resolution RGB imagery (left) and 
its georeferenced hyperspectral image (right). Due to a decrease in resolution in hyperspectral 
imagery, precise labelling of areas with dieback is essential for the spectral analysis. 

The labelling challenges on UAV data were addressed by applying a data-fusion approach that 

consists of: 

1.) Processing the high-resolution RGB dataset to generate high-fidelity georeferenced mosaics 

using and EMLID RTK GNSS device in Agisoft Metashape processing software. 

2.) Correcting raw hyperspectral transects in radiance and reflectance and applying an 

orthorectification process using IMU data in Headwall SpectralView processing software. 

3.) Georeferencing the orthorectified hyperspectral transects using GCPs and spline 

transformations in ArcGIS Pro. 

4.) Labelling the regions of interest (areas with clear distinction of PD) with cross-validation 

from ground experts’ feedback in ENVI processing software. 

To simplify the spectral analysis, a total of five classes were compiled for PD assessments as shown 

in Table 3Error! Reference source not found.. An example of the georeferencing and labelling 

outputs are illustrated in Fig. 8Error! Reference source not found.. In ML theory, the labelling 

process and its outputs (and referred from here onwards) are known as the ‘ground truth’ for 

supervised classification. 
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Table 3. Number and description of classes for PD analysis. 

Class ID Name Description 

1 Healthy/Reflective Grass Areas resistant or unaffected by dieback (including grass 
with mechanical damages). 

2 Purple Leaftops Areas displaying symptoms of dieback at early stages 

3 Yellow/Dead Grass Grass with “gold” colouration or unrecoverable grass at 
advanced/long-term stages of dieback. 

4 Soil Areas displaying any types of bare soil. 

5 Non-grass Areas containing other vegetation species in the grassland 
such as weeds and trees. Shadowed areas are also included 
here. 

 

 

  

Fig. 8. (left) Georeferenced high-resolution RGB region from Biggenden, QLD. (right) PD 
labelling process on top of the overlayed and corrected hyperspectral transect. The labelled 
regions per class were evaluated in collaboration with biological experts by photo-interpreting 
the high-resolution UAV scans. 

In addition to processing spectral response values in reflectance, a set of spectral indices commonly 
found in the literature were also calculated and included in the analysis. This assessment estimates the 
mean values of each spectral index from the ‘ground truth’ labelled regions to identify key indices with 

direct correlation of PD. The complete list of indices is shown in  

 

 

Table 4. 
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Table 4. List of vegetation indices applied to the SHW tool. 

Index Description Reference 

NDVI Normalized Difference Vegetation Index (Harris Geospatial, 2021a) 

SRI Simple Ratio Index (Harris Geospatial, 2021e) 

MSAVI Modified Soil Adjusted Vegetation Index 2 (Harris Geospatial, 2021a) 

EVI Enhanced Vegetation Index (Harris Geospatial, 2021a) 

ARVI Atmospherically Resistant Vegetation Index (Harris Geospatial, 2021e) 

RENDVI 
Red Edge Normalized Difference Vegetation 
Index 

(Harris Geospatial, 2021e) 

MRESRI Modified Red Edge Simple Ratio Index (Harris Geospatial, 2021e) 

MRENDVI 
Modified Red Edge Normalized Difference 
Vegetation Index 

(Harris Geospatial, 2021e) 

SGI Sum Green Index (Harris Geospatial, 2021a) 

VRI1 Vogelmann Red Edge Index 1 (Harris Geospatial, 2021e) 

REPI Red Edge Position Index (Harris Geospatial, 2021e) 

PRI Photochemical Reflectance Index (Harris Geospatial, 2021e) 

SIPI Structure Insensitive Pigment Index (Harris Geospatial, 2021) 

RGRI Red Green Ratio Index  (Harris Geospatial, 2021) 

CRI1 Carotenoid Reflectance Index 1 (Harris Geospatial, 2021c) 

CRI2 Carotenoid Reflectance Index 2 (Harris Geospatial, 2021c) 

ARI1 Anthocyanin Reflectance Index 1 (Harris Geospatial, 2021c) 

ARI2 Anthocyanin Reflectance Index 2 (Harris Geospatial, 2021c) 

WBI Water Band Index (Harris Geospatial, 2021b) 

GCI Green Chlorophyll Index (Harris Geospatial, 2021a) 

 

The ‘ground truth’ data was fed into a supervised classifier model in order to map and visualise 

trends of PD distribution on the area. The model is based on extreme gradient boosting, or XGBoost 
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(Chen & Guestrin, 2016), a bleeding-edge decision tree-based model. An advantage of using XGBoost 

compared to other ML models is that XGBoost provides relevance metrics to the input data the 

model was fit. This information eases the understanding for the end-user on what were the features 

that the model relies the most to find correlations on the data. 

 

3.3   Time series analysis of satellite imagery 

3.3.1 Satellite imagery acquisition 

For each ground truth site, we created a buffer area of 0.0055 decimal degree (~150 ha) (area 

buffer) around the reported coordinate. Sentinel 2 and Landsat 5, 7, 8 satellite data were acquired, 

clipped to the buffering area, and corrected for various distortion effects on the reflectance before 

being used in the time-series analysis. The correction series involves atmospheric correction to 

compute surface-leaving radiance, bi-directional reflectance modelling to remove the effects of 

topography and angular variation in reflectance, and adjustments for terrain illumination. Fmask1 

algorithm was used to detect and mask out clouds, cloud shadows and water from the acquired 

satellite images. The time series of noisy satellite images were merged to create monthly geo-

median composites which are largely free of clouds and other noisy data. To further ensure the input 

image quality, we only retained the monthly composites with less than 5% of invalid pixels within 

the buffering area. Invalid pixels are pixels identified as cloud, cloud shadow, water, or snow. The 

process was performed on a virtual machine (VM) on the National Computational Infrastructure 

(NCI) through the Open Date Cube (ODC) (Dhu et al., 2019), an open-source geospatial data 

management and analysis software. 

3.3.2 Time series analysis 

The time series analysis of satellite imagery was carried out to track plant vigour and landscape 

dynamics at each ground truth location. This helps identify when dieback infestation might occur at 

each ground truth site as well as specific spectral patterns associated with the occurrence of 

dieback.  

Several Vegetation Indices (VIs) were calculated based on the acquired satellite data, including 

Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI), Modified Soil-

adjusted Vegetation Index (MSAVI). These VIs are good indicators for plant vigour and were plotted 

for each ground truth site over time to inspect abnormal trends. 

Since the PD infestation extents are not available, we created a smaller analysis buffer of 0.0005 

decimal degree (~1.3 ha) around each ground truth site coordinate (latitude/longitude). This analysis 

buffer was deemed as an area of interest (AOI) for the analysis. We used time series data to identify 

when this AOI was first infested with dieback by tracking abnormal values or patterns in their 

corresponding VIs over time. To eliminate the influences of bare soil and low-growth periods, we 

retained only periods where the average EVI of the area buffer is above its 50th percentile of the whole 

time series. An example of time series plots of green band, EVI, MSAVI, and near infra-red band is 

 
1 http://www.pythonfmask.org/en/latest/ 

http://www.pythonfmask.org/en/latest/
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shown in Fig. 9 while the full analysis for all ground truth sites can be viewed in the 

“TimeSeries_Sentinel_raw.html” file. 

 

Fig. 9. An Illustration of the analysis buffer (smaller yellow square), area buffer (larger yellow 

square) and time series plots of different VIs. 

 

On the plots, the dashed line is the date that PD first reported at the site. The blue lines are VI values 

of the analysis buffer area. The red lines are the z-scores of the VIs. The Z-score shows how the average 

VI of the analysis buffer area compared to the mean VI of the larger area buffer. Z-score below 0 

indicates the analysis buffer is less productive than the landscape average. Z-score was calculated 

using the Eq. (1) 

Z-score = 
𝑉𝐼−𝑉𝐼𝑎

𝑠𝑡𝑑𝑉𝐼𝑎
  Eq. (1), 

where, VI and VIa are the mean vegetation index value of the analysis buffer and area buffer, 

respectively, and the stdVIa is the standard deviation of the vegetation index of the area buffer. 

3.3.3 Tracking spatial and temporal anomalies of VIs 

VI raw values and VI z-scores (i.e., a pixel value relative to its neighbouring pixels) only indicate 

the short-term patterns of plant vigour that might be influenced by the current climatic conditions at 

the PD sites. We further calculated the anomalies of VIs to assess how the current VIs compared to 

their long-term averages. Landsat 5, 7, 8 imageries (30x30m resolution) for the period from 1986 - 

2010 were acquired, resampled to a 10x10m resolution, and spatially aligned with Sentinel-2. The 

imageries were then filtered based on the 50th percentile of EVI for consistency with the data 

processing procedure used for Sentinel 2 before being used to compute the long-term averages of the 

VIs.  We calculated VI temporal and spatial anomalies for the analysis area using the Eq. (2) and (3). 

The temporal anomaly (TA) indicates how the VI value of the analysis area differs from its long-term 

average (across all time t) (Marshall et al., 2014) while the spatial anomaly (SA) depicts how the VI 

https://drive.google.com/file/d/1vDXorG6j2iHzleZnA_2R6lwZo0nArq6l/view?usp=sharing
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value of the analysis area differs from its surrounding areas on the landscape. The anomaly values 

below 0 indicate that the area is less productive at the current period than its long-term trend. An 

example of time series plots of temporal and spatial anomalies of green band, EVI, MSAVI, and near 

infra-red band is shown in Fig. 10  while the full analysis for all ground truth sites can be viewed in the 

“TimeSeries_Sentinel_anomalies.html” file.  

𝑇𝐴 =
𝑉𝐼−𝑉𝐼𝐿𝑇

𝑠𝑡𝑑𝑉𝐼𝐿𝑇
    Eq. (2) 

𝑆𝐴 =
𝑧𝑠𝑐𝑜𝑟𝑒𝑉𝐼−𝑧𝑠𝑐𝑜𝑟𝑒𝑉𝐼𝐿𝑇

𝑠𝑡𝑑𝑧𝑠𝑐𝑜𝑟𝑒𝑉𝐼𝐿𝑇
  Eq. (3), 

where, VI, zscoreVI, are the raw and Z-score values of a vegetation index of the analysis area; VILT, 

zscoreVILT, are the analysis area’s long-term average VI and its Z-score values; stdVILT and stdVILT are 

the standard deviation of the VILT, zscoreVILT. 

 

 
Fig. 10. An example of comparing Sentinel 2 and Landsat 8 as the satellite source for the anomaly 

analysis. 

 

The analysis for all PD sites using Landsat satellite imagery can be viewed in the 

“TimeSeries_Landsat_raw.html” and “TimeSeries_Landsat_anomalies.html” files. 

 

3.4   PD occurrence analysis 

Based on the time series analysis, we estimated the PD occurrence date for the PD ground truth 

locations. The occurrence of PD was considered as the date near the reported date with large dips in 

both temporal and spatial anomalies on the time-series line charts. In many cases where these dips 

were not observed, expert opinion was sought to help identify the occurrence date. More 

information on PD occurrence dates can be found in the Appendix 8.1. PD occurrence dates plus 

https://drive.google.com/file/d/1vDXorG6j2iHzleZnA_2R6lwZo0nArq6l/view?usp=sharing
https://drive.google.com/file/d/1xJ0Euk5ahrPBmSxjtlKaotj3a8rB3wJ_/view?usp=sharing
https://drive.google.com/file/d/1yhmUt33H7mu1wK09mbMvJE8m0vUyVBnb/view?usp=sharing
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climatic data were used to train a model to predict the probability of pasture dieback occurrence 

(model 2). 

Daily climate data were acquired from SILO2 (5 km resolution) for the period from 1980 to 2021 and 

were averaged to the monthly time step. For each climate variable, we calculated its climatic 

anomaly using Eq. (4). The climatic anomaly compares the weather at a particular period to its long-

period average. The measure unit of anomaly is the number of standard deviation from the long-

term mean. The long-term period used in our anomaly calculation is 1980 – 2010. Monthly raw data 

and monthly anomalies up to 24 months prior to the PD occurrence date were used in our 

probability analysis. 

𝑚𝑖− 𝑀𝑖

𝑆𝑖
   (Eq. 4) 

where, mi is mean of current period (i.e., week/month), Mi is mean of the corresponding long-term 

period (i.e., week/month), and Si is standard deviation of the corresponding long-term period 

(week/month) for climatic variable i (e.g., rainfall, min temperature).  

The most commonly used approach to analyse the occurrence of a particular event (e.g., pasture 

dieback outbreak) is the logistic regression. However, on spatial and temporal scales, a pasture 

dieback outbreak represents a rare event. Given the highly skewed distribution of rare events, with 

the classical logistic regression, the probability of a rare event is underestimated as the response 

curve approaches zero at the same rate it approaches one. To overcome this problem, the binary 

generalized extreme value additive model was used to predict the probability of pasture dieback 

occurrence using only environmental variables. This approach was selected with the aim to identify 

environmental factors that contribute to the PD proliferation and also to develop a PD outbreak 

early warning system that provides an indication of PD occurrence risk at scale. 

The environmental variables used as predictors were monthly averages of maximum temperature 

and daily rainfall obtained from 93 locations for 24 months prior to the observed pasture outbreak. 

Maximum average monthly temperature and average daily rainfall were selected to test the 

existence of a biological threshold of PD incidence at different levels of temperature and rainfall.  

Additional analyses were performed to assess the influence of climatic anomalies on PD extend 

(affected area at farm scale). A functional generalised additive model was used to analyse the effect 

of max temperature and rain anomalies on the on-farm PD outbreaks extend (ha). The time series 

anomalies have been included in the model as functional terms. 

3.5   Predicting potential vegetation growth  

Detecting abnormal biomass growth using EVI temporal and spatial anomalies can be 

computationally challenging for larger areas since we need to acquire and process a large amount of 

time-series satellite data to calculate the long-term average as well as using moving window 

technique to calculate the spatial anomaly (i.e., how a pixel performs relative to its neighbours).  As 

a result, we used machine learning to examine a less computationally intensive approach. For this, 

we trained a Random Forest model to predict the maximum EVI (maxEVI) of a summer growing 

season for each pixel based on the corresponding weather conditions (Model 3). The model’s inputs 

 
2 https://www.longpaddock.qld.gov.au/silo 
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are the weather data of the current summer along with the maximum EVI of the two previous 

summers and their corresponding weather data (see Appendix 8.4 for the complete list of model’s 

predictors). Our preliminary model training indicated that adding soil-related variables from SLGA 

did not improve the model performance while substantially increasing the complexity of the model’s 

input preparation for large-scale analyses. We, therefore, excluded these variables from our model 

training. The predicted maxEVI defines the potential growth of a pixel given a specific weather 

condition of a summer growing season and how it performed over the previous two growing 

seasons. The predicted maxEVI will then be compared with the observed maximum EVI of the season 

to identify areas with abnormal biomass growth. Large differences between the climate-driven 

potential maximum EVI and the actual maximum EVI indicate disturbances (e.g., changes in land 

management or pest infestation) to the landscape rather than unfavourable weather conditions. 

To create the training dataset for the Random Forest modelling, we sampled 200 random BOM’s 

weather cells (5km x 5km) along the coastal area of Queensland (Fig. 11). For each sampled cell, we 

defined an Area of Interest (AOI) of 169 Landsat pixels (~ 15 ha). Landsat 8 data from 2013 to 2021 

were acquired and processed for each pixel, and the EVI and other weather statistics were also 

calculated. For each pixel, the maxEVI was identified as the maximum value of EVI of that pixel 

across all summer months for a particular year. The sampling resulted in 202,800 (200 cells x 169 

pixels x 6 years) data points for the machine learning model training. 

 

 

Fig. 11. Creating the training dataset for the Random Forest model to predict maximum EVI of a 

growing season. 
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4. Results 

4.1   Spectral signature of PD  

Owing to the high variety in geographical properties and weather conditions in the studied sites 

from UAV data, this section presents and discusses the combined mean spectral response from; 1) 

all the seven locations; 2) from ‘coastal’ locations (i.e., Maudsland, Nobbys Creek and Kin Kin); and 3) 

from ‘Mainland Central QLD’ locations (i.e., Banana Station and Biggenden). Spectral responses of 

individual locations can be found in Appendix 8.2. 

4.1.1 Spectral Response in Reflectance 

The combined mean spectral responses from the “ground truth” labelled areas are shown in Fig. 12. 

 
(a) 
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(b) 

 
(c) 

Fig. 12. Mean spectral response for (a) all the sites; (b) “coastal” locations; and (c) “mainland 
QLD” locations. 

 

Several patterns were observed from the output signatures from healthy grass to dead grass. In 

coastal locations, a substantial decrease in the visible green (560 nm), red edge (717 nm) and near 

infrared (840, 930 nm) bands, and an increase in the visible red (668 nm) bands were found between 
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the “healthy” and “purple leaftop” classes. However, the trend for yellow/dead grass followed a 

different trend with reports of higher reflectance values in the near infrared range, despite such 

grass to be under advanced exposure to dieback or no longer recoverable. The spectral responses at 

mainland QLD locations also differed from coastal sites. Even though the “healthy” and “purpling” 

grass recorded similar variations in the above-mentioned wavelength ranges, the reflectance values 

of the “yellow/dead” class surpassed the recorded values of the “healthy” class in all the spectral 

domain. Intra-class variations between the 930 nm and the 1000 nm range were lower for mainland 

QLD locations compared to coastal sites. 

4.1.2 Spectral Index Values 

The combined mean normalised spectral index values from the “ground truth” labelled areas are 

illustrated in Fig. 20. 

 
(a) 
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(b) 

 
(c) 

Fig. 13. Mean normalised spectral index values for (a) all the sites; (b) “coastal” locations; and 
(c) “mainland QLD” locations. 

Overall, the spectral indices that aided tracking the sequence of PD symptomatology (1. 

Healthy/Reflective Grass, 2. Purple Leaftops, 3. Yellow/Dead Grass) were NDVI, GNDI, PRI, GCI, CRI1. 

The CRI2 and WBI indices particularly reported higher values for the “purple leaftop” class over the 

“healthy” class and followed by the “yellow/dead” class, whose order differ from most of the 

remaining indices. Variations for some spectral index values were high among locations (complete 
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plots shown in Appendix 8.2). The variance plot illustrated in Fig. 14. suggests that CRI2, ARI2, PRI 

and WBI spectral indices could be used for a generic analysis at various grass species. 

 

Fig. 14. Variance of normalised spectral index values for all the sites. 

4.2   Time-series analysis of PD  

The overall pasture vigour was successfully captured for each ground truth location using time-series 

satellite imagery (Fig. 15). We compared the three vegetation indices (VIs) (including, EVI, NDVI, and 

MSAVI) and the two spectral bands (including, green and near infra-red (NIR)) in capturing the 

vegetation dynamics of the analysis area. The three VIs showed very similar patterns over time. Of the 

two spectral bands, NIR showed more resembling signals to the VIs while being less sensitive to cloud 

and noisy data than the green band. Repeating the analysis using Landsat 8 imagery showed similar 

patterns for VIs and NIR (Fig. 10). This indicates that coarser resolution Landsat imagery can be used 

as the satellite source for the landscape dynamic analysis to increase the data availability and reduce 

the computational burden and data storage requirement. 

Using the raw values of vegetation indices for the time series analysis showed no distinct abnormal 

patterns between the period when PD was first reported and those before that. However, 

comparing VIs with their long-term values (VI anomalies) did show dips on the time-series plots at or 

around the reported dates of first PD observation for many PD sites. This indicates that VIs 

anomalies are potential indicators for PD identification.  Given the coarse resolutions of satellite 

imagery, it is only possible to identify unhealthy or dead pasture on homogeneous landscapes when 

their extend are large enough, often in hectares. It is not easy to spot PD occurrence and its early-

stage dynamics using satellite imagery from Sentinel 2 and Landsat even with the support from 

pasture experts in addition to using higher resolution imagery from Planet Scope. 
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Fig. 15. An example of visual assessment of Sentinel 2 time series imagery at a PD ground truth site. 

Although satellite scenes have been processed with the state-of-the-art cloud detection algorithms, 

there were several scenes with undetected cirrus clouds. 

 

Using image segmentation based on VI anomalies helped identify the extend of abnormal pasture 

growth at many PD sites (Fig. 16). The sensitivity analysis on the hyperparameters of the Quick Shift 

segmentation algorithm revealed an optimal kernel size of 5 and a cut-off threshold of -0.5 for 

Sentinel 2 while those for Landsat are 5 and -0.6, respectively. The kernel size defines the smoothing 

of the sample density. Higher kernel size means fewer clusters will be created. The cut-off threshold 

defines the anomaly value to separate between healthy and unhealthy pasture. The EVI spatial 

anomaly (i.e., EVI value of a pixel relative to its neighbouring pixels) is a better metric for the 

segmentation as compared to the raw EVI value and its temporal anomaly (i.e., EVI value of a pixel 

relative to its long-term average). Using Landsat as the imagery source for the segmentation did 

provide quite similar segmentation results. 
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Fig. 16. An example of image segmentation (kernel size = 5) of EVI temporal and spatial anomalies 

(upper plots) and filtering of segments of low anomaly values at the cut-off threshold of -0.5 and 

below (lower plots). 

 

4.3   Classification of PD 

A dedicated XGBoost model per site was created and tuned using the “ground truth” labelled data. 

Table 5 shows a summary of the performance metrics. A comprehensive classification report can be 

found at Appendix 8.3.  
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Table 5. Accuracy summary of trained ML classifiers per surveyed site using UAVs and 
hyperspectral imagery.  

Class 
Maudsland 
(2021-02-

05) 

Maudsland 
(2021-03-

09) 

Nobbys 
Creek 
(2021-
02-11) 

Nobbys 
Creek 
(2021-
04-21) 

Banana 
Station 

Biggenden Kin Kin 

Healthy/Reflective 
Grass 

91% 98% 95% 97% 96% 96% 99% 

Purple Leaftops 96% 97% 97% 100% 95% 76% 99% 

Yellow/Dead 
Grass 

91% 98% 91% 90% 97% 96% 93% 

Soil 90% 83% 91% 100% 100% 96% 99% 

Non-grass 98% 98% 89% 95% 99% 80% 100% 

Mean accuracy 96% 98% 94% 97% 99% 94% 99% 

 

Despite image registration challenges between high-resolution RGB and hyperspectral datasets, the 

tuned XGBoost classifers achieved an overall accuracy above 94% at the surveyed sites. Models of 

collected data at Maudsland, QLD (2021-02-05), Nobbys Creek, NSW (2021-02-11) and Biggenden 

QLD were less performant owing to unoptimal weather and illumination conditions which negatively 

impacted the quality of the collected data. From a pasture class perpective, Healthy/Reflective grass 

was the class with the highest accuracy outputs, followed by yellow/dead grass and purple leaftops. 

A reduction in accuracy in the Biggenden model was caused by the challenging labelling process of 

sampling purple leaftops, represented for most of the hyperspectral scans on a pixel-scale. 

Once the models were tuned using the “ground truth”, class predictions were applied to unlabelled 

data to validate general class distribution on the studied exclusion trials and ground assessments 

from biological experts. An illustration for Maudsland, QLD, Nobbys Creek, NSW, and Banana 

Station, QLD are shown below: 

 

 

Fig. 157. Predicted classification map of Maudsland, QLD (2021-02-11). 
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Fig. 168. Predicted classification map of Maudsland, QLD (2021-03-09) 

 

 

Fig. 19. Predicted classification map of Nobbys Creek, QLD (2021-02-11) 
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Fig. 20. Predicted classification map of Nobbys Creek, QLD (2021-04-21) 

 

 
(a) 



B.PAS.0510 - Spatio-temporal prediction of pasture dieback using UAVs and remote sensing 

 
 

Page 32 of 63 

 
 

 

 
(b) 

Fig. 17. Banana Station classification map. (a) Hyperspectral samples overlayed at high-
resolution RGB mosaic (b) Predicted classes. 

The generated classification maps illustrated not only affected regions by PD, but also land 

occupation by non-grass species in former grasslands. For example, recent in-site inspections by 

biological experts at Banana Station (Fig. 17) on early May 2021 have reported plant invasions from 

Parthenium hysterophorus sp. and Spinifex sp. 

4.3.1 Image Registration to Satellite Data  

A second model tuning has been proposed to compare PD detection between UAV and available 

Sentinel 2 Satellite data using multispectral imagery. The input data for this model are the 

corresponding vegetation indices that can be calculated from the Red, Green, Blue and NIR bands. 

The “ground truth” generated for hyperspectral data was reused for the second model as the 

datasets are georeferenced. The classification report of the fit model on multispectral data is shown 

in Table 6.  
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Table 6. Classification report on PD classes on multispectral data. 

Class Precision Recall 
F1-

score 
Support 

Healthy/Reflective 
Grass 

99% 99% 99% 3160 

Purple Leaftops 93% 89% 91% 830 

Yellow/Dead Grass 96% 96% 96% 1345 

Non-grass 98% 99% 99% 7858 

Soil 100% 98% 99% 382 
     

Accuracy   98% 13575 

Macro average 97% 96% 97% 13575 

Weighted average 98% 98% 98% 13575 

 

 

The overall accuracy for the multispectral classifier is 98% from a total of 13575 labelled samples. 

Despite achieving lower precision and recall scores for Purple Leaftops of 93% and 89% respectively, 

these initial results are encouraging considering the decrease in spectral data compared to 

hyperspectral imagery. Nevertheless, further is required to observe consistency on these findings.  

The trained XGBoost classifier also outputs a ranking of relevant features for the classifier for PD and 

a visualisation of the predicted map, which are shown below. The GNDVI, SIPI MSAVI and EVI 

vegetation indices reported the highest relevance for the model to distinguish the defined PD classes. 

 

Fig. 18. Ranking of relevant data to find PD correlations on multispectral data. 
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Fig. 193. Predicted map at the studied trial in Maudsland, QLD using multispectral data. 

 

4.4 Association of climatic conditions with PD occurrence 

4.4.1 Climate anomalies at the PD sites 

Analysis of the climate anomalies of the PD sites reveals higher monthly average maximum and 

minimum temperature, but lower monthly average solar radiation for the period of 2015-2020 as 

compared to the corresponding 30-year long-term averages (Fig. 24). Particularly, higher 

temperature, lower radiation and rainfall are observed for the winter months at the PD sites. 

However, despite the clear climatic trends at the PD sites, only the radiation in June is statistically 

lower than its long-term mean.  

 

Fig. 24. Climate anomalies for the period of 2015 – 2020 (relative to 30-year-average data from 

1980-2010)  
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4.4.2 PD Occurrence analysis  

The probability model (model 2) fitted with observed climatic variables showed the highest 

probability (56%) of pasture dieback occurrence (Fig. 25) observed at an average monthly maximum 

temperature between 15 and 20 oC in combination with a monthly average rainfall between 8 to 10 

mm. Increasing temperature drastically decreases the probability (i.e., lower the chance) of PD 

occurrence. The lower probability in PD occurrence was also observed with increases in rainfall, but 

to a lesser extent as compared to changes in temperature.  

 

Fig. 25. Effect of average monthly rain and max temperature on PD occurrence. 

 

The probability model was also fitted using the climate anomaly variables for the period of 2015-

2020. While our analysis shows increases in temperature at the PD sites (positive anomalies) (Fig. 

24), the highest probability of PD occurrence was only observed for the months with temperature 

anomaly below -0.5 and rainfall anomaly below -0.25 (Fig. 26).  
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Fig. 26. Effect of long-term rain and max temperature anomalies on PD occurrence. 

 

The analysis of the factors influencing the extend of PD showed that rainfall and maximum 

temperature below long-term averages tend to increase the PD infested extend (Fig. 27). However, 

at high max temperature and high rainfall anomalies, the land area affected by PD is limited. This is 

highly in agreement with our probability model.  
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Fig. 27. Effect of rain and max temperature anomalies on the extension of PD affected area (ha). 

 

The results suggest the existence of a particular climatic threshold that favours PD development. 

These results might help in identifying causal agents responsible for the severe outbreaks observed 

in the past years. 

4.5  Prediction of potential pasture growth 

A random forest machine learning model was created to predict potential vegetation growth (max 

EVI) of a summer growing season based on the season’s weather condition and historical vegetation 

growth (model 3). The random forest model shows good performance with the accuracy of 93%, 

root mean squared errors of 0.04, and coefficient of determination (R2) of 0.89 (Fig. 28). The top 

three most important predictors of the machine learning model are max EVI of the two previous 

summers (EVI_1 and EVI_2), and total rainfall in January (Fig. 29). Partial independent plots showing 

how maximum EVI varies with variations in these predictors are reported in Appendix 8.4 (Fig. 37). 

This model can be applied on a landscape to help identify areas with large differences between the 

potential and the actual vegetation growth. These differences signal disturbances (e.g., changes in 

land management or pest infestation) to the landscape rather than just unfavourable weather 

conditions. 
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Fig. 28. Performance of random forest model predicting potential summer vegetation growth. a) 

Predicted vs. observed max EVI values; b) Prediction error of max EVI 

 

 

Fig. 29. Top three most important variable of the random forest model predicting potential 

summer vegetation growth. 

 

4.6  Demonstration of large-scale applications of PD detection and 
prediction algorithms 

The following section demonstrates how our findings and algorithms can be applied to larger 

landscapes to help identify and predict PD. 

4.6.1 PD risk analysis for Queensland pasture 

We applied our PD occurrence probability model (model 2) to the whole Queensland state (excluding 

desert region) to identify areas and period of the year that are more susceptible to PD outbreaks. The 

model trained with observed monthly average maximum temp and rainfall was applied to BOM’s 
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gridded climate data for 2017 and 2020 (Fig. 30). The results show that during May 2017 and 2020 

coastal areas from Rockhampton to Townsville had the highest probability of PD occurrence. These 

results align well with the recent observed PD outbreaks.  

 

Fig. 30. Mapping the probability of PD for Queensland’s pastures in (a) 2017 and (b) 2020 
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4.6.2 Identification of potential unhealthy pasture growth 

Our potential pasture growth model (model 3) was applied to a study area of 2,500 ha in Banana, 

QLD around the Dawson Mine where we have PD ground truth data (Fig. 31a). The model computed 

the difference between the actual pasture growth and the potential growth based on the weather 

conditions in summer 2018 using on a cloud-free Landsat 7 imagery composite from January 2018 to 

April 2018 (Fig. 31b). The results show a strong agreement between the PD ground truth locations 

(green pins) and the areas of abnormally low pasture growth (dark blue). 

 

Fig. 31. a) Study site for Random Forest model application, b) Cloud-free composite of max EVI for 

the first 4 months in 2018. 
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Fig. 32. Mapping of abnormal pasture growth unrelated to weather conditions. The green dots are 

reported PD sites in 2017. The dark red areas are cultivated crops that were barren over the last 2 

summers. Dark blue areas are regions supposed to be highly productive based on the weather 

conditions and the past performance. However, actual pasture growth reveals abnormal low 

biomass productivity. 

 

4.6.3   Classification of unhealthy pasture 

We conducted a demonstration that extrapolates the trained classifiers from UAV data into Sentinel 

datasets. The following layers were used as inputs for the trained model: NDVI, MSAVI, EVI, GNDVI, 

SRI, ARVI, SIPI and GCI spectral indices. For this case study, raw reflectance bands were not included 

(Red, Green, Blue, NIR) as there were mismatches in the reported intensity on both datasets. The 

predicted classification map of the Banana region in 2017 is depicted below. 
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Fig. 33. Classification predictions of tuned hyperspectral data using the coarser spatial resolution 

Sentinel 2 data. 

 

The current model was able to successfully distinguish between bare soil, grasslands, and other 

regions likely to grow other vegetation apart from grass. However, the current model was unable to 

discriminate between healthy grass and reported areas with dieback. Further research is necessary 

to expand on algorithms to correct reflectance differences between UAV and satellite data to 

upscale trained models for different sites and grass species. 
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4.7   Stakeholder engagement and benefits to industry 

Several meetings have been organised with different stakeholders to discuss methodology 

improvement, data collection, and options for result presentation. These stakeholders include 

different research groups from QUT and UQ who are working on PD, staff from QDAF and AgForce, 

and local farmers. The majority of the stakeholders were keen to see broader applications of the 

resulting models for PD warning and detection. However, they emphasised the need for an on-

demand and easy-to-setup platforms/applications.  

Successful implementation data platforms/applications will provide landholders with information on 

the spatial extent of pasture dieback on their properties without having to rely on visual 

assessments over large tracts of land. It will also provide graziers with information on the climatic 

conditions that contribute to the development of PD so that they can plan ahead to mitigate the 

likely impacts of dieback on livestock management and grazing. Based on these discussions, we 

created different web applications to facilitate the employment of our models for analysis on 

different regions with no complicated setup. These pilot applications are by no mean in their mature 

form. They only serve as a proof-of-concept and thus require future development and maintenance. 

The list of the web applications is provided below: 

a. Google Earth Engine application for continuous change detection and classification (time-

series analysis – model 3) (Fig. 34): 

https://code.earthengine.google.com/b6c5288a7cbabde35cba1259f808ffe6 

 

Fig. 34. Pilot web application for time series analysis of pasture growth. 

 

b. Classification of unhealthy/dead grass (model 1): 

https://colab.research.google.com/drive/1T8PI4_nSF5EmKjhTHb2KXNQHz2d0mVal  

 

https://code.earthengine.google.com/b6c5288a7cbabde35cba1259f808ffe6
https://colab.research.google.com/drive/1T8PI4_nSF5EmKjhTHb2KXNQHz2d0mVal
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c. Prediction of potential biomass growth and identify pasture disturbance (model 3): 

https://colab.research.google.com/drive/1PUQ-PXyfwTKCg7qMQ8fcNdfS-pIUtQ0I    

 

d. Acquisition of soil, weather, elevation, wind speed data: 
https://colab.research.google.com/drive/1zgZ_PjCPxops-7xUSt1ww8HwlxgfhkxQ  

 

5. Conclusion  
  
The keys findings of the research on spatial-temporal prediction of pasture dieback using UAVs and 

remote sensing: 

• The NDVI, GNDI, PRI, GCI and CRI1 spectral indices indicated the highest correlation to track 

PD symptomatology on the surveyed sites using UAV data. The CRI2 and WBI spectral indices 

particularly displayed higher values to track early stages of PD (purpling leaf tops). Important 

spectral wavelengths that could expand PD detection from Sentinel 2 imagery are bands at 

510nm, 531 nm, 570 nm, 700nm, 900nm and 970 nm. 

• There were differences in the PD spectral signature for different sampling locations. In 

coastal locations, a substantial decrease in the visible green (560 nm), red edge (717 nm) 

and near infrared (840, 930 nm) bands, and an increase in the visible red (668 nm) bands 

were found between healthy and early stages of PD. Yellow and dead grass followed a 

different trend with reports of higher reflectance values in the near infrared range. In 

surveyed locations at Central QLD (Biggenden and Banana Station), the reflectance values of 

yellow and dead grass surpassed the recorded values of healthy grass in all the spectral 

domain. Intra-class variations between the 930 nm and the 1000 nm range were lower at 

Central QLD locations compared to coastal sites in SE QLD and Northern NSW. 

• Due to the highly variable spectral signature at each ground truth site, tuning a generalised 

PD classification model from UAV data that can be applied on sentinel 2 imagery was 

infeasible at each UAV surveyed site, which contained a different dominating grass species, 

displayed different colourisation changes (symptomatology) and spectral signatures for PD. 

• Time series analysis of temporal and spatial anomalies of vegetation indices is useful to help 

identify unhealthy or dead pasture. However, given the coarse resolution of satellite imagery 

and the patchy nature of PD, it is not possible to detect PD occurrence and its early-stage 

dynamics using Sentinel 2 and Landsat.  

 

• Analysis on the correlation of PD onset and climate reveals that a combination of average 

monthly maximum temperature between 15 and 20 oC and monthly average rainfall 

between 8 to 10 mm results in the highest chance of pasture dieback occurrence. 

 

• Machine learning approach can be used to predict potential vegetation growth for a growing 

season and identify disturbances (e.g., changes in land management or pest infestation) to 

the landscape rather than just unfavourable weather conditions.  

 

https://colab.research.google.com/drive/1PUQ-PXyfwTKCg7qMQ8fcNdfS-pIUtQ0I
https://colab.research.google.com/drive/1zgZ_PjCPxops-7xUSt1ww8HwlxgfhkxQ
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• More ground truth data are needed to improve the performance of the statistical and 

machine learning models created in this project. 

 

• Application of the resulting models at the landscape and regional scales are of interest to 

stakeholders. Such applications are required to be on-demand and need not involve 

complicated setup on the user’s end. 

 

6. Future research and recommendations  

Since PD can develop through many stages, the identification of PD stages for UAV surveys as well as 

timely UAV flights are important to improve the UAV classification models (model 1). Repeated flights 

are also required to cover various stages of PD development. Besides, awareness of the dominant 

grass species prior to UAV or satellite image analysis is recommended as it helps ground and aerial 

teams recognise the grass symptomatology, select a corresponding classification model for mapping 

PD and label new data. Due to the nature of how purpling leaftops appear on pasture species, 

obtaining precise coordinates (with GNSS RTK-based devices) of small grass regions where dieback is 

visualised is essential as such areas are likely to be projected as single or several pixels in multispectral 

and hyperspectral images. Any additional information from the ground that provides context of the 

location and nearby vegetation will ease the labelling process. For future research, better coordination 

between the airborne sensing team, biological scientists, and pasture specialists is recommended. This 

ensures the availability of all data in developing algorithms of PD presence, including more timely and 

optimised flights and the more accurate labelling and validation of collected UAV imagery. 

The results of the PD occurrence probability/risk are highly affected by the uncertainty related to the 

estimation of PD occurrence, the accuracy of interpolated gridded weather data, as well as the 

intrinsic uncertainty associated with the model predictions. Furthermore, our time series analysis 

suggested that the variation of spatial or temporal patterns around the reported dates of PD in several 

PD ground truth sites indicates great uncertainties in PD identification (e.g., inaccurate coordinates or 

confusion of different conditions for PD). Compared with other studies that used a similar approach 

to investigate the occurrence or rare events, the entire dataset used in this study was relatively small. 

Therefore, more ground truth data with better identification of PD and estimation of PD occurrence 

date are required to improve the probability model performance (model 2). 

Satellite data are often contaminated by clouds. While we have used the state-of-the-art cloud 

detection and masking algorithms to process the satellite scenes before analysis, many scenes 

significantly covered with clouds have been problematic. This affects our time series analysis as well 

as the accuracy of the model predicting the potential EVI (model 3). To create a reliable time series 

for our analysis, we used a combination of Landsat 5, 7, 8 and Sentinel 2 imagery to reduce the data 

gap. Data from these sources were only aligned geographically (i.e., based on geo-location) in this 

project. However, given the differences in the satellite sensors and the spectral ranges that these 

sensors cover, spectral correction and alignment might need to be carried out before conducting 

analysis to ensure fair comparisons. Alternatively, we can employ derived metrics from the raw 

satellite values as indicators for detecting abnormal pasture growth in replacement of using the raw 

data. Examples of these metrics include phenology, length of growing season, percent difference 

between maximum and minimum vegetation growth. 
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The Random Forest model for potential growth (model 3) was only trained using Landsat 8 data based 

on the historical growth of the previous growing seasons. As a result, the model performance is highly 

sensitive to the pixel quality. Missing data (e.g., due to clouds) in one season could result in inaccurate 

estimation of potential growth for the predicting season. Future research should focus on training a 

machine learning model that can use a combination of Landsat 7, 8 and Sentinel 2 imagery as inputs 

to reduce the uncertainty associated with missing data. 

Our findings and models are only practical if they can be employed by the landowners and other 

stakeholders. The proof-of-concept applications presented in section 4.8 demonstrate examples of 

how our models can be deployed at different levels from no setup and no maintenance platforms for 

simple simulations to supported platforms that run on high-performance computer clusters for large-

scale and more frequent analyses. It is highly recommended that such implementations are prioritised 

in future projects to bring our research outcomes to fruition. 
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8. Appendix 

8.1  Ground truth dataset  

Latitude Longitude Extend (ha) Date 
Observed 

Species Site Status Estimated PD 
occurrence Date 

-24.4664 150.1185 
 

2015-11 No data Acton No data 2015-11 

-24.5035 150.26 
 

2017-04 No data Acton No data 2017-02 

-24.5101 150.2599 
 

2017-04 No data Acton No data 2016-01 

-24.5101 150.2518 
 

2017-04 No data Acton No data 2016-01 

-24.4147 150.246 
 

2017-03 No data Allawah No data 2017-03 

-24.4559 150.2587 
 

2017-03 No data Allawah No data 2016-06 

-24.4614 150.2565 
 

2017-03 No data Allawah No data 2017-03 

-24.4663 150.2626 
 

2017-03 No data Allawah No data 2017-03 

-23.674 149.9528 
 

2017-03 No data Balcarres No data 2016-06 

-24.5826 150.0643 
 

2017-11 No data Tremere No data 2017-01 

-24.588 150.0662 
 

2017-11 No data Tremere No data 2016-12 

-24.5879 150.0691 
 

2017-11 No data Tremere No data 2017-03 

-24.5818 150.0681 
 

2017-11 No data Tremere No data 2017-03 

-24.5601 150.0782 
 

2017-11 No data Tremere No data 2017-05 

-24.5535 150.0893 
 

2017-11 No data Tremere No data 2017-05 

-24.5582 150.09 
 

2017-11 No data Tremere No data 2017-05 

-24.5629 150.0945 
 

2017-11 No data Tremere No data 2017-05 

-24.5672 150.0962 
 

2017-11 No data Tremere No data 2017-05 

-24.5705 150.0976 
 

2017-11 No data Tremere No data 2017-05 

-24.5729 150.0888 
 

2017-11 No data Tremere No data 2017-05 

-24.5716 150.0869 
 

2017-11 No data Tremere No data 2017-05 

-24.5893 150.0974 
 

2017-11 No data Tremere No data 2017-05 

-24.593 150.0951 
 

2017-11 No data Tremere No data 2017-05 

-24.5963 150.1 
 

2017-11 No data Tremere No data 2017-05 

-24.5946 150.1052 
 

2017-11 No data Tremere No data 2017-05 

-24.5853 150.1119 
 

2016-11 No data Namgoori No data 2016-04 

-24.5891 150.1113 
 

2016-11 No data Namgoori No data 2016-04 

-24.5879 150.1153 
 

2016-11 No data Namgoori No data 2016-04 

-24.5759 150.1153 
 

2016-11 No data Namgoori No data 2016-04 

-24.5795 150.1171 
 

2016-11 No data Namgoori No data 2016-04 

-24.1086 150.4342 
 

2017-04 No data Maynard No data 2017-04 

-24.1054 150.4374 
 

2017-04 No data Maynard No data 2017-04 

-24.052 150.4019 
 

2017-06 No data Maynard No data 2017-04 

-24.0622 150.4154 
 

2017-06 No data Maynard No data 2017-04 

-24.0664 150.4205 
 

2017-06 No data Maynard No data 2017-04 

-24.0617 150.4416 
 

2017-06 No data Maynard No data 2017-04 

-24.1112 150.4899 
 

2017-11 No data Maynard No data 2017-04 

-24.1238 150.4888 
 

2017-11 No data Maynard No data 2017-04 
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-24.1282 150.4914 
 

2017-11 No data Maynard No data 2017-04 

-24.1309 150.4803 
 

2017-11 No data Maynard No data 2017-04 

-24.1296 150.4656 
 

2017-11 No data Maynard No data 2017-04 

-24.1401 150.4619 
 

2017-11 No data Maynard No data 2017-04 

-24.152 150.4857 
 

2017-11 No data Maynard No data 2017-04 

-24.1407 150.4771 
 

2017-11 No data Maynard No data 2017-04 

-24.0444 151.2142 
 

2017-09 No data LSBjorn No data 2016-05 

-24.043 151.2155 
 

2016-05 No data LSBjorn No data 2016-05 

-24.0439 151.2188 
 

2017-09 No data LSBjorn No data 2016-05 

-24.0574 151.2267 
 

2017-04 No data LSBjorn No data 2016-05 

-24.0588 151.2268 
 

2017-04 No data LSBjorn No data 2016-05 

-24.867 150.1452 
 

2016-10 No data Loma No data 2016-03 

-24.8617 150.1511 
 

2016-03 No data Loma No data 2016-03 

-24.8671 150.154 
 

2016-03 No data Loma No data 2016-03 

-24.8472 150.1613 
 

2016-11 No data Loma No data 2016-03 

-24.8528 150.1743 
 

2017-01 No data Loma No data 2016-03 

-24.8585 150.1759 
 

2017-01 No data Loma No data 2016-03 

-24.8636 150.174 
 

2017-01 No data Loma No data 2016-03 

-24.6174 150.7 
 

2016-12 No data Fieldview No data 2016-08 

-24.6287 150.7019 
 

2016-08 No data Fieldview No data 2016-08 

-24.1911 150.4498 
 

2017-03 No data Windswept No data 2016-04 

-24.1897 150.4573 
 

2017-03 No data Windswept No data 2016-04 

-24.1889 150.4584 
 

2017-03 No data Windswept No data 2016-04 

-24.1905 150.4559 
 

2017-03 No data Windswept No data 2016-04 

-24.4516 150.6692 
 

2016-05 No data Glenlivet No data 2016-04 

-24.4566 150.6939 
 

2016-05 No data Glenlivet No data 2016-04 

-25.3875 151.2221 
 

2016-02 No data Bullock Dead 2016-02 

-24.9851 151.1725 
 

2016-02 No data Panicum Dead 2016-02 

-24.4654 149.78 
 

2016-02 No data Denby - 
Chalks- 

Affected 2016-02 

-24.3223 149.9805 
 

2016-02 No data Baralaba- Affected 2016-02 

-24.8684 151.7596 
 

2016-02 No data Takilberan- Dead 2016-02 

-27.5603 152.3344 
 

2018-08 No data Gatton Affected 2018-08 

-27.549 152.3327 
 

2020-09 No data Gatton Affected 2020-09 

-27.5437 152.3379 
 

2018-03 No data Gatton Affected 2018-03 

-27.9169 153.2713 
 

2020-07 No data Maudsland 
Creek 

Recovering 2020-07 

-27.9189 153.2737 
 

2020-07 No data Maudsland 
Paddock 

Recovering 2020-07 

-28.2834 153.3347 
 

2020-07 No data Sutton 
Park NSW 

Recovering 2020-07 

-22.1635 148.2281 
  

Buffel  Winchester 
Downs 
(Emily's) 

Regrown 2015-11 

-22.1499 148.2616 
  

Buffel replaced by native  Winchester 
Downs 
(Emily's) 

Dead 2015-11 

-22.1721 148.26 
  

Buffel replaced 
parthenium weed 

Winchester Downs (Emily's) 2015-11 
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-22.1815 148.2578 
  

Buffel  Winchester 
Downs 
(Emily's) 

Regrown 2015-11 

-22.2051 148.2624 
  

Buffel  Winchester Downs (Emily's) 2015-11 

-24.155 150.471 
  

No data Jambin 
 

2017-06 

-24.733 149.997 
  

No data Theodore 2016-05 

-25.595 152.127 
  

No data Biggenden 2018-03 

-24.815 151.6 
  

No data Gaeta 
 

2016-03 

-24.2642 148.6474 
 

2015-12 No data Lowesby 
 

2015-12 

-24.3434 148.6949 
 

2015-12 No data Lowesby  
 

2015-12 

-23.4934 150.0549 
 

2015-12 No data Weir Park 2015-12 

-23.5037 150.0623 
 

2015-12 No data Weir Park 2015-12 

-23.5138 150.0502 
 

2021-01 No data Weir Park - moving fast 2021-01 

-23.5111 150.0347 
 

2021-01 No data Weir Park - moving fast 2021-01 

-27.0369 151.9926 
 

2021-03 No data Mount Binga 2021-03 

-27.0414 151.9707 
 

2021-03 No data Mount Binga 2021-03 

-27.0504 151.9916 
 

2021-03 No data Mount Binga 2021-03 

-20.1602 146.329 2 2012-01 Buffel Farm 
Addresses 

No data 2012-01 

-23.2374 150.2102 150 2014-01 Bluegrass Farm 
Addresses 

No data 2014-01 

-24.145 151.0873 40 2014-02 Bluegrass Farm 
Addresses 

No data 2014-02 

-23.1126 150.7037 20 2014-06 Bluegrass Farm 
Addresses 

No data 2014-06 

-21.2356 149.1869 5 2014-11 Pangola and callide 
rhodes grass 

Farm 
Addresses 

No data 2014-11 

-23.0414 150.6629 3 2015-03 Bisset Farm 
Addresses 

No data 2015-03 

-24.6161 150.0641 200 2015-05 Buffel Farm 
Addresses 

No data 2015-05 

-24.527 150.1956 250 2015-12 Buffel Farm 
Addresses 

No data 2015-12 

-24.4088 150.4823 8000 2015-12 All Introduced species of 
grasses 

Farm 
Addresses 

No data 2015-12 

-25.4671 152.0778 6 2016-01 Bluegrass Farm 
Addresses 

No data 2016-01 

-27.3527 152.9202 10 2016-01 Kikuyu Farm 
Addresses 

No data 2016-01 

-19.7516 147.4966 100 2016-01 A little in buffel mainly in 
UROCHLOA grass 

Farm 
Addresses 

No data 2016-01 

-23.4972 150.2534 100 2016-01 Buffel Farm 
Addresses 

No data 2016-01 

-24.8137 151.6002 100 2016-01 Bissett,Rhodes, giant rat's 
tail possibly signal 
(dieback stopped too 
seen as  a result of cool 
weather to be sure), 
native bluegrass and 
black spear, 

Farm 
Addresses 

No data 2016-01 

-24.167 149.9763 100 2016-01 Buffel Farm 
Addresses 

No data 2016-01 

-24.3634 150.3547 160 2016-01 All 3 varieties of buffel 
and blue grass 

Farm 
Addresses 

No data 2016-01 

-23.8374 150.949 12 2016-03 Bluegrass Farm 
Addresses 

No data 2016-03 

-24.9778 152.1045 30 2016-03 Bisset Bluegrass and 
Pangola 

Farm 
Addresses 

No data 2016-03 
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-24.9723 152.1082 100 2016-03 Bisset Bluegrass and 
Pangola 

Farm 
Addresses 

No data 2016-03 

-25.4037 151.9705 100 2016-03 Bisset Bluegrass and 
Pangola 

Farm 
Addresses 

No data 2016-03 

-24.5297 150.6324 120 2016-03 Nodata Farm 
Addresses 

No data 2016-03 

-22.8136 149.8025 60 2016-04 Buffel Farm 
Addresses 

No data 2016-04 

-25.1058 151.9567 80 2016-04 Bluegrass Farm 
Addresses 

No data 2016-04 

-25.3847 152.0149 150 2016-04 Bluegrass Farm 
Addresses 

No data 2016-04 

-24.5658 150.5844 250 2016-04 Bluegrass and Buffel Farm 
Addresses 

No data 2016-04 

-24.4941 149.5082 400 2016-04 Buffel Farm 
Addresses 

No data 2016-04 

-25.3536 151.9882 50 2016-05 Bluegrass Farm 
Addresses 

No data 2016-05 

-24.0442 151.2156 1 2016-06 Bluegrass Farm 
Addresses 

No data 2016-06 

-24.527 149.4379 100 2016-06 Buffel Farm 

Addresses 

No data 2016-06 

-24.4785 150.1163 1200 2016-06 Buffel Farm 
Addresses 

No data 2016-06 

-23.084 150.4288 10 2016-07 Indian couch, Medway 
couch 

Farm 
Addresses 

No data 2016-07 

-24.52 150.1266 50 2016-07 Buffel Farm 
Addresses 

No data 2016-07 

-23.7219 150.6486 100 2016-07 both buffel and 
bluegrass. 

Farm 
Addresses 

No data 2016-07 

-24.6224 150.7103 5 2016-08 Buffel Farm 
Addresses 

No data 2016-08 

-24.1102 150.2039 20 2016-08 Buffel Farm 
Addresses 

No data 2016-08 

-23.4946 149.8552 100 2016-08 Plus Other Native 
species,Buffel 

Farm 
Addresses 

No data 2016-08 

-24.8189 151.5377 15 2016-09 Roads grass Farm 
Addresses 

No data 2016-09 

-25.2066 151.9396 50 2016-09 Nodata Farm 
Addresses 

No data 2016-09 

-24.1566 149.9521 1040 2016-09 Buffel Farm 
Addresses 

No data 2016-09 

-17.3937 145.6326 9 2016-10 Setaria and Brachiaria 
Pastures 

Farm 
Addresses 

No data 2016-10 

-25.2299 152.2496 50 2016-10 Bluegrass , Couch , Kikuyu 
, Rhodesgrass 

Farm 
Addresses 

No data 2016-10 

-25.5125 152.0316 20 2016-11 Bluegrass Farm 
Addresses 

No data 2016-11 

-27.7859 152.4345 45 2016-11 Bluegrass Farm 
Addresses 

No data 2016-11 

-23.4922 150.0154 250 2016-11 Buffel Farm 
Addresses 

No data 2016-11 

-24.4083 150.4831 1000 2016-11 buffel and bluegrass Farm 
Addresses 

No data 2016-11 

-24.9593 151.0934 10 2016-12 Rhodes Grass 
(Katombora) 

Farm 
Addresses 

No data 2016-12 

-25.0218 152.0512 35 2016-12 Bisset Bluegrass Farm 
Addresses 

No data 2016-12 

-23.6837 149.9305 60 2016-12 USA Buffel,Gayndah 
Buffel, Green panic, 
creeping blue grass, Qld 
blue grass, Urochloa,  

Farm 
Addresses 

No data 2016-12 

-23.9058 150.1158 400 2016-12 USA Buffel,Gayndah 
Buffel, Green panic, 
creeping blue grass, Qld 
blue grass, Urochloa,  

Farm 
Addresses 

No data 2016-12 
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-24.5628 150.7089 10 2017-01 Panic Buffel Farm 
Addresses 

No data 2017-01 

-26.415 152.8527 10 2017-01 Bluegrass Farm 
Addresses 

No data 2017-01 

-25.2059 152.0129 20 2017-01 Bluegrass Farm 
Addresses 

No data 2017-01 

-26.3142 152.6103 30 2017-01 Bluegrass Farm 
Addresses 

No data 2017-01 

-24.5627 150.709 50 2017-01 Green panic Farm 
Addresses 

No data 2017-01 

-25.5748 152.0018 100 2017-01 Bluegrass Farm 
Addresses 

No data 2017-01 

-27.3342 152.9822 1.2 2017-02 rhodes and native Farm 
Addresses 

No data 2017-02 

-24.5672 149.2977 1 2017-03 Bluegrass Farm 
Addresses 

No data 2017-03 

-27.8191 152.7026 1 2017-03 forest Blue Farm 
Addresses 

No data 2017-03 

-24.9506 152.2167 3 2017-03 Bisset Creeping Blue 
Grass,Bluegrass 

Farm 
Addresses 

No data 2017-03 

-22.5386 149.504 5 2017-03 Bluegrass Farm 

Addresses 

No data 2017-03 

-25.1763 151.9553 10 2017-03 Blue grass, Rhodes, Signal Farm 
Addresses 

No data 2017-03 

-24.9703 152.0895 25 2017-03 callide rhodes, green 
panic, kikuyu, 

Farm 
Addresses 

No data 2017-03 

-24.5714 151.9068 45 2017-03 Callide rhodes/stylo 
mixed some black spear 
and Baihai grass 

Farm 
Addresses 

No data 2017-03 

-24.5392 150.6275 70 2017-03 Buffel Farm 
Addresses 

No data 2017-03 

-25.1018 149.9422 200 2017-03 Buffel, green panic and 
Secca stylo legume. 

Farm 
Addresses 

No data 2017-03 

-24.8458 152.4109 0.5 2017-04 Bluegrass Farm 
Addresses 

No data 2017-04 

-24.1895 150.4462 25 2017-04 Buffel, Gatton panic, 
Indian Couch and 
strangely Reeds around a 
dam 

Farm 
Addresses 

No data 2017-04 

-26.4423 152.8542 60 2017-04 Native Paspalum, Giant 
Paspalum, Green panic 
and Gatton Panic.  

Farm 
Addresses 

No data 2017-04 

-26.447 152.8643 60 2017-04 Native Paspalum, Giant 
Paspalum, Green panic 
and Gatton Panic.  

Farm 
Addresses 

No data 2017-04 

-24.4548 150.6508 100 2017-04 Buffel Farm 
Addresses 

No data 2017-04 

-24.5346 150.6102 300 2017-04 Buffel Farm 
Addresses 

No data 2017-04 

-23.7146 150.0012 20 2017-05 Buffel Farm 
Addresses 

No data 2017-05 

-25.0109 152.1081 30 2017-05 Bluegrass Farm 
Addresses 

No data 2017-05 

-26.0086 151.8082 100 2017-05 Buffel Farm 
Addresses 

No data 2017-05 

-24.8128 152.1756 1.5 2017-07 Rhodes grass Farm 
Addresses 

No data 2017-07 

-17.4381 145.4161 2 2017-07 Bluegrass Farm 
Addresses 

No data 2017-07 

-24.8578 150.1681 100 2017-07 green panic Farm 
Addresses 

No data 2017-07 

-24.9899 152.1571 12 2017-09 Rhodes Farm 
Addresses 

No data 2017-09 

-26.2559 152.8748 4 2017-10 paspalm Farm 
Addresses 

No data 2017-10 

-25.5116 151.4542 7 2017-10 Bluegrass Farm 
Addresses 

No data 2017-10 
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-26.2361 152.859 10 2017-11 Broad leaf paspalum, 
Signal grass 

Farm 
Addresses 

No data 2017-11 

-25.2172 152.2685 14 2017-11 Bluegrass & Rhodes Grass Farm 
Addresses 

No data 2017-11 

-26.4512 152.8641 15 2017-11 paspalum Farm 
Addresses 

No data 2017-11 

-25.5064 151.4798 3 2017-12 Bluegrass Farm 
Addresses 

No data 2017-12 

-25.5625 152.5561 5 2017-12 Bluegrass Farm 
Addresses 

No data 2017-12 

-26.2846 152.8669 5 2017-12 kikua couch rhodes Farm 
Addresses 

No data 2017-12 

-25.5697 152.5457 25 2017-12 Bluegrass Farm 
Addresses 

No data 2017-12 

-24.9948 152.1606 30 2017-12 rhodes;Bluegrass Farm 
Addresses 

No data 2017-12 

-25.9742 152.5564 30 2017-12 Rodes grass,  Farm 
Addresses 

No data 2017-12 

-25.9245 152.5395 12 2018-01 killed Bluegrass affected 
Rhodes and Bahia 

Farm 
Addresses 

No data 2018-01 

-25.1658 152.2112 0.5 2018-02 Bluegrass Farm 

Addresses 

No data 2018-02 

-26.3873 152.7749 1 2018-03 Paspalum Farm 
Addresses 

No data 2018-03 

-24.7592 151.0157 180 2018-03 Gayndah and American 
Buffel,Green Panic, 
creeping Blue Grass 

Farm 
Addresses 

No data 2018-03 

-24.7855 151.0086 180 2018-03 Gayndah and American 
Buffel,Green Panic, 
creeping Blue Grass 

Farm 
Addresses 

No data 2018-03 
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8.2  Spectral responses of PD per UAV surveyed site  

Spectral responses of relevant pasture classes per site are illustrated in Fig..  

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 
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(f) 

 
(g) 

Fig.35. Individual spectral response of selected pasture classes for PD analysis. (a) Maudsland, QLD (2021-
02-05). (b) Maudsland, QLD (2021-03-09). (c) Nobbys Creek, NSW (2021-02-11). (d) Nobbys Creek, NSW 

(2021-04-21). (e) Banana Station, QLD. (f) Biggenden, QLD. (g) Kin Kin, QLD. 

Normalised spectral index values of relevant pasture classes per site are illustrated in Fig. 20.  
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(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

 
(f) 
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(g) 

Fig. 20. Individual normalised spectral index values of selected pasture classes for PD analysis.  (a) 
Maudsland, QLD (2021-02-05). (b) Maudsland, QLD (2021-03-09). (c) Nobbys Creek, NSW (2021-02-11). (d) 

Nobbys Creek, NSW (2021-04-21). (e) Banana Station, QLD. (f) Biggenden, QLD. (g) Kin Kin, QLD. 
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8.3  Performance metrics of PD classifiers 

Detailed performance metrics of PD using hyperspectral data are shown below. 

Table 7. Performance metrics of ML classifier for Maudsland, QLD (2021-02-05). 

Class Precision Recall F1-score Support 

Healthy/Reflective Grass 95% 88% 91% 286 

Purple Leaftops 97% 96% 96% 97 

Yellow/Dead Grass 92% 89% 91% 123 

Soil 97% 84% 90% 37 

Non-grass 97% 99% 98% 1254 
     

Accuracy   96% 1797 

Macro avg 95% 91% 93% 1797 

Weighted avg 96% 96% 96% 1797 
 

Table 8. Performance metrics of ML classifier for Maudsland, QLD (2021-03-09). 

Class Precision Recall F1-score Support 

Healthy/reflective grass 97% 99% 98% 89 

Purple leaftops 97% 97% 97% 31 

Yellow/dead grass 96% 100% 98% 52 

Soil 100% 71% 83% 7 

Non-grass 99% 97% 98% 115      

Accuracy 
  

98% 294 

Macro avg 98% 93% 95% 294 

Weighted avg 98% 98% 98% 294 

 

Table 9. Performance metrics of ML classifier for Nobbys Creek, NSW (2021-02-11). 

Class Precision Recall F1-score Support 

Healthy/reflective grass 92% 97% 95% 365 

Purple leaftops 95% 99% 97% 235 

Yellow/dead grass 97% 86% 91% 110 

Soil 94% 88% 91% 72 

Non-grass 93% 86% 89% 132      

Accuracy 
  

94% 914 

Macro avg 94% 91% 93% 914 

Weighted avg 94% 94% 94% 914 
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Table 10. Performance metrics of ML classifier for Nobbys Creek, NSW (2021-04-21). 

Class Precision Recall F1-score Support 

Healthy/reflective grass 95% 100% 97% 70 

Purple leaftops 100% 100% 100% 30 

Yellow/dead grass 100% 82% 90% 11 

Soil 100% 100% 100% 4 

Non-grass 100% 90% 95% 20      

Accuracy 
  

97% 135 

Macro avg 99% 94% 96% 135 

Weighted avg 97% 97% 97% 135 

 

Table 11. Performance metrics of ML classifier for Banana, QLD. 

Class Precision Recall F1-score Support 

Healthy/reflective grass 97% 95% 96% 110 

Purple leaftops 97% 93% 95% 42 

Yellow/dead grass 96% 97% 97% 113 

Soil 100% 100% 100% 643 

Non-grass 99% 100% 99% 682      

Accuracy 
  

99% 1590 

Macro avg 98% 97% 98% 1590 

Weighted avg 99% 99% 99% 1590 

 

Table 12. Performance metrics of ML classifier for Biggenden, QLD. 

Class Precision Recall F1-score Support 

Healthy/reflective grass 97% 95% 96% 114 

Purple leaftops 74% 79% 76% 33 

Yellow/dead grass 96% 96% 96% 272 

Soil 92% 100% 96% 66 

Non-grass 100% 67% 80% 18      

Accuracy 
  

94% 503 

Macro avg 92% 87% 89% 503 

Weighted avg 94% 94% 94% 503 
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Table 13. Performance metrics of ML classifier for Kin Kin, QLD. 

Class Precision Recall F1-score Support 

Healthy/reflective grass 99% 99% 99% 348 

Purple leaftops 99% 99% 99% 188 

Yellow/dead grass 91% 96% 93% 93 

Soil 100% 97% 99% 35 

Non-grass 100% 99% 100% 691      

Accuracy 
  

99% 1355 

Macro avg 98% 98% 98% 1355 

Weighted avg 99% 99% 99% 1355 
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8.4  Input features of Random Forest model of maxEVI  

The climatic variables are notated as follows: <variable>_<season>_<month>. For example,  

• T.Max_0_Oct: Monthly average maximum temperature in Oct of the previous year 

• T.Max_0_Apr: Monthly average maximum temperature in April of the prediction year 

• T.Max_1_Oct: Monthly average maximum temperature in Oct of the season before the previous 

season T.Max_1_Apr: Monthly average maximum temperature in April of the previous year 

A subset of the training data is available here. 

Variable Definition 

EVI Maximum EVI of the predicting season (target) 

EVI_1 Maximum EVI of the previous season 

EVI_2 Maximum EVI of the season before the previous season 

T.Max_0_(Oct-Apr) Monthly average maximum temperature of the predicting season. 

T.Min_0_(Oct-Apr) Monthly average minimum temperature of the predicting season. 

Rain_0_(Oct-Apr) Monthly average rainfall of the predicting season. 

Evap_0_(Oct-Apr) Monthly average evaporation of the predicting season. 

Radn_0_(Oct-Apr) Monthly average radiation of the predicting season. 

VP_0_(Oct-Apr) Monthly average vapor pressure of the predicting season. 

T.Max_1_(Oct-Apr) Monthly average maximum temperature of the previous season. 

T.Min_1_(Oct-Apr) Monthly average minimum temperature of the previous season. 

Rain_1_(Oct-Apr) Monthly average rainfall of the previous season. 

Evap_1_(Oct-Apr) Monthly average evaporation of the previous season. 

Radn_1_(Oct-Apr) Monthly average radiation of the previous season. 

VP_1_(Oct-Apr) Monthly average vapor pressure of the previous season. 

T.Max_2_(Oct-Apr) Monthly average maximum temperature of the season before the previous 
season. 

T.Min_2_(Oct-Apr) Monthly average minimum temperature of the season before the previous 
season. 

Rain_2_(Oct-Apr) Monthly average rainfall of the season before the previous season. 

Evap_2_(Oct-Apr) Monthly average evaporation of the season before the previous season. 

Radn_2_(Oct-Apr) Monthly average radiation of the season before the previous season. 

VP_2_(Oct-Apr) Monthly average vapor pressure of the season before the previous season. 

 

 

https://drive.google.com/file/d/11T2LnG3Wb_1U97bc51bORCADO8alTA78/view?usp=sharing
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Fig. 37. Partial dependence plots of Random Forest model for MaxEVI 
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