

final report

Project code:

L.EQT.1620

Prepared by: Dr Rod Polkinghorne Polkinghornes Pty Ltd

Date published:

15/09/2019

PUBLISHED BY Meat and Livestock Australia Limited Locked Bag 1961 NORTH SYDNEY NSW 2059

Product Collection for Future MSA Eating Quality Research

Meat & Livestock Australia acknowledges the matching funds provided by the Australian Government to support the research and development detailed in this publication.

This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA.

Executive summary

MSA consumer sensory testing and the resulting ability to predict consumer satisfaction for individual beef meal portions has been a major driver of industry change. This change being to a consumer focus with measurable revenue improvement to all sectors through the delivery of superior value.

Accurate prediction however, can only be built on substantial data and as MSA has expanded to support branding of a greater number of cuts to new markets, requests have grown for MSA prediction of further muscles or cuts coupled with alternative cooking methods. This research project provides a major pillar from which to deliver expanded outcomes and improved prediction across the carcase in a new MSA model.

To avoid the risk of confounding new cut x cook results with cattle type or environmental effects it is important that any testing be spread across a sufficiently diverse range of cattle. Further benefit is gained by testing a large array of muscles and treatments "within animal" as any environmental or genetic effect is common to all samples removing prediction variation.

The project objective was to collect a large number of samples from each carcase over a number of diverse cattle types and sources. The utilisation of progeny from three Beef Information Nucleus (BIN) programs provided an ideal base for the research. Eighteen head, in turn subdivided into three subgroups of 6 head with differing criteria, were utilised from each of the Northern BIN (Brahman, Droughtmaster and Santa Gertrudis), the Hereford crossbred BIN (black baldy Hereford over Angus, Angus over black baldy) and an Angus BIN (Low and High growth and myostatin). The Hereford BIN were grass fed in Tasmania whereas the Northern BIN were 100 day grainfed in Queensland and the Angus BIN 168 days on feed in NSW. The project was designed to sample cuts across a diverse cattle range with known genomic information: it was not designed to compare breeds.

Cuts were collected from both sides of the 54 head, all MSA compliant, selected from much larger groups. The cuts were processed down to individual muscles from 55 to 64 muscles collected from each carcase resulting in sampling of 67 different muscles, 26 of which had no prior MSA testing. Many of these were selected to enable MSA grading of the majority of product codes listed in the Handbook of Australian Meat. Fabrication of the muscles produced 7,261 consumer samples each to be evaluated by 10 consumers.

Further data value was delivered by the use of 8 alternative cooking methods, including sous-vide and osso bucco, to compare to the existing slow cook protocol, moist heat roasting relative to the standard dry roasting protocol and comparison of chuck and short rib cuts cooked on the bone to the component muscles from the other carcase side cooked boneless. In addition, the new samples provided current data for cuts that had either very low existing data or which had not been tested for many years. An ageing comparison was made to strengthen or establish estimates for cuts and to evaluate potential cooking interaction with ageing.

The consumer test results combined with the extensive data available through BIN records, MSA grading inputs and fabrication of the extensive muscle range and cooking methods have been a major source of data addition to the AUSBlue database and provided critical input to the development of a new generation of MSA prediction model.

This is expected to deliver increased value to the Australian beef industry through superior consumer prediction and an increased range of alternative muscle and cook alternatives that can be adopted to meet specific branding and market requirements.

Table of contents

Backg	ground	4
Proje	ct objectives	5
Meth	odology	5
8.1 C	Collection Planning	5
3.1.1	Grading and Cut collection	9
3.1.2	MSA Sample preparation	15
3.1.3	Pick Design	23
3.1.4	Picking & Posting	23
Resul	lts	24
Discu	ission	25
Concl	lusions/recommendations	25
-	-	
	Proje Meth 3.1 (3.1.1 3.1.2 3.1.3 3.1.4 Resul Discu Conc Key n	3.1.1 Grading and Cut collection

1 Background

The increased adoption of MSA grading across all Australian beef industry segments has assisted in building industry returns through a focus on consumer evaluation, providing improved value indication. As demand for MSA based brands has expanded, together with higher pricing, there has been increased interest in marketing further cuts as MSA graded together with evaluation of alternative cooking methods that are either relevant to specific markets or which could lead to improved eating quality for various cuts.

A partial driver to this has been the desire to apply an MSA standard to the full range of muscle codes in the Handbook of Australian Meat (HAM) (Anon.2005). In many cases the HAM definitions cover cut codes that encompass more than one muscle. Under MSA practice the multiple muscles can be graded and marketed with the grade assigned to the lowest MQ4 score muscle within the cut. At project inception there were a substantial number of muscles which had not been MSA evaluated and which were consequently ineligible for grading. This created difficulties where processors were promoting their MSA based brands but couldn't utilise the brands on some items sold in domestic and export markets.

Further cuts were previously evaluated only under a single cooking method which predicted a sensory outcome believed to be worse than that possible with alternative cooking techniques. There were also legitimate and important questions relating to a number of bone-in cuts and the potential difference to evaluation when cooked "off the bone".

In addition, a number of cooking methods; including Slow Cook and Stir Fry, had not been utilised in MSA testing for greater than 10 years. This lead to questions as to their currency with consumers and further, numbers tested within some cooking methods and muscle combinations were low, restricted to particular cattle types and/or had little to no ageing data from which to build prediction.

MSA is delivered by applying a predicted cook outcome for a nominated cut x cook combination which will further vary according to the source animal characteristics and treatments. Typical variations relate to animal type, Hormonal Growth Promotant (HGP) use, production background and/or age. The prediction models require extensive data gathered under controlled conditions to be robust. This robustness is increased when a wide range of muscles and muscle x cook combinations are drawn from a single carcase, or common group of carcases, as the "within animal" control reduces the potential confounding between animal or environmental impacts.

The acceleration of genomic application also makes cattle, with known genetic makeup and raised within common environments, highly desirable as a research resource. The project was designed to collect an extensive range of cuts from three Beef Improvement Nucleus (BIN) projects to provide three distinct cattle populations, representing breed differences. Multiple cooking styles, boneless and bone-in cooking and a range of cut ageing was planned to derive maximum value from the project through consumer testing of an extreme range of cattle with extensive animal background data.

A clear understanding of within animal cut differences across various contrasting cattle populations provided a strong base from which to examine relationships and incorporate in new prediction models.

2 Project objectives

The project objectives were listed as "facilitate the collection, cut up and picking and posting of product" from 3 separate kills.

Results will aim to:

- Improve model accuracy on cuts with limited information
- Expand the MSA model with new cut x cook combinations within the existing cook methods
- Create new cut x cook methods with novel cook methods
- Test existing cook methods, which may not have been tested recently, to see whether consumer sensory preferences have changed

3 Methodology

3.1 Collection Planning

The total project plan encompassed three separate BIN sources: Northern, Hereford (Black Baldy) and Angus BIN groups. To maximise the sample interconnection across the project and remain within budget it was decided to restrict each BIN group to 18 animals, with essentially all cuts collected from both sides of each to in turn provide the maximum possible comparison of cook type and ageing within muscle with sufficient replication across the total 54 head.

To further control range within the groups, 6 head were to be selected from each of 3 subsets within each of the BIN groups.

Within the Northern BIN 6 x Brahman, 6 x Santa Gertrudis and 6 x Droughtmaster carcases were to be selected based on their northern short fed production system. The Hereford BIN was located in Tasmania and designed to assess common Hereford commercial crosses with Hereford sires over Angus cows, first cross Hereford x Angus cows and pure Angus progeny sub populations from a southern grass fed production system. Six head were to be selected from each. The Angus BIN included high and low feedlot growth plus myostatin gene subsets, again with 6 head to be selected from each.

Original planning was based on a reference table, utilised in previous MSA research, to assign MSA muscle codes to muscles within cuts. The table, originally assembled by Alan Gee of Cosign Pty Ltd, combined the HAM Alphabetical List of Muscle Names with yield data published by Butterfield and May (1966) and other sources.

Portions of many muscles are present across multiple cuts. The MSA convention is to utilise a 6 digit alphanumeric code to relate the source cut in industry terminology (the first 3 letters) with the component muscles (the following 3 digits reflecting the HAM muscle number). As an example CHK045, CUB045 and STR045 together with STA045 and STP045 all denote the *M.longissimus dorsi* within the chuck, cube roll, striploin or anterior and posterior striploin respectively. This enables a test of muscle position effects in addition to muscle relationships to eating quality.

Table 1 presents the original source table with additions and includes muscles currently not sensory tested. A calculated weight for a 300Kg carcase is shown and was observed in initial selection of possible new muscles worthy of testing due to their mass and potential to be individually harvested if found to have sensory merit.

MSA consumer sensory protocols require 10 consumers per sample, which dictates a minimum sample size, varying somewhat with cooking method. For smaller muscles it was planned to make a single sample after combining a muscle from both carcase sides.

HAM No	H.A.M. Muscle Name	Body %	HAM	HAM	%inPr	F/H	Ngt@30	MSA Code
1	M.adductor femoris	1.90%	Topside/cap off	2000, 2001	100%	Hind	1.767	TOP001
2	M.anconaeus	0.10%	Blade	2300	80%	Fore	0.074	
3	M.articularis genu	0.08%	Thick Flank	2060	100%	Hind	0.074	
4	M.biceps brachii	0.67%	Fore Shin	2360, 2365	100%	Fore	0.623	FQS004
5	M.biceps femoris (syn. gluteobiceps	7.29%	Full Rump, Rump Cap	2080, 2091	19%	Hind	1.288	RMP005
5	M.biceps femoris (syn. gluteobiceps	7.29%	Silverside, Outside	2020, 2030	81%	Hind	5.492	OUT005
6	M.brachialis	0.48%	Blade	2300	20%	Fore	0.089	
6	M.brachialis	0.48%	Chuck	2260	20%	Fore	0.089	
6	M.brachialis	0.48%	Fore Shin	2360, 2365	60%	Fore	0.268	FQS006
7	M.brachiocephalicus	1.46%	Chuck	2260	100%	Fore	1.358	CHK007
8	M.coracobrachialis	0.15%	Blade	2300	100%	Fore	0.140	
9	M.cutaneus omobrachialis						0.000	
10	M.cutaneus trunci	1.63%	Brisket	2320	24%	Fore	0.364	
10	M.cutaneus trunci	1.63%	Chuck	2260	7%	Fore	0.106	
10	M.cutaneus trunci	1.63%	Rib Set	2223	9%	Fore	0.136	
10	M.cutaneus trunci	1.63%	Thick Flank	2060	5%	Hind	0.076	
10	M.cutaneus trunci	1.63%	Thin Flank	2200	55%	Fore	0.834	
11	M.deltoideus	0.50%	Blade	2300	100%	Fore	0.465	BLD011
12	M.diaphragma	0.10%	Brisket	2320	61%	Fore	0.057	515011
12	M.diaphragma	0.10%	Chuck	2260	31%	Fore	0.029	
13	M.extensor carpi obliquus	0.02%	Fore Shin	2360	100%	Fore	0.019	
14	M.extensor carpi radialis	0.73%	Blade	2300	33%	Fore	0.224	
14	M.extensor carpi radialis	0.73%	Fore Shin	2360	67%	Fore	0.455	FQShin
15	M.extensor carpi ulnaris	0.29%	Fore Shin	2360	100%	Fore	0.270	r qomi
16	M.extensor digiti quarti proprius	0.21%	Fore Shin	2360	100%	Fore	0.195	
17	M.extensor digiti quarti proprius (pe		Hind Shank	2360	100%	Hind	0.233	OUT017
18	M.extensor digiti tertii proprius	0.12%	Fore Shin	2360	100%	Fore	0.112	001017
19	M.extensor digiti tertii proprius (ped		Hind Shank	2360	100%	Hind	0.233	
20	Mextensor digitorum communis	0.23%	Fore Shin	2360	100%	Fore	0.233	
20	M.extensor digitorum longus	0.25%	Hind Shank	2360	100%	Hind	0.233	
21	M.flexor carpi radialis	0.23%	Fore Shin	2360	100%	Fore	0.200	
23	M.flexor carpi ulnaris	0.15%	Fore Shin	2360	100%	Fore	0.102	
23	M.flexor digitorum longus	0.20%	Hind Shank	2360	100%	Hind	0.140	
24	M.flexor digitorum profundus	0.64%	Fore Shin	2360	100%	Fore	0.595	FQShin
26	M.flexor digitorum profundus (pedis		TOTE STILL	2300	100 %	1016	0.000	rqənin
20	M.flexor digitorum sublimis	0.36%	Fore Shin	2360	100%	Fore	0.335	
27 27a	M.flexor digitorum sublimis (pedis)	0.30 %	Silverside	2020	100%	Hind	0.335	
27a 28	M.flexor hallucis longus	0.44 %	Hind Shank	2360	100%	Hind	0.409	HQShin
28 29	•					Hind	1.925	
	M.gastrocnemius	2.07%	Silverside, Outside	2020, 2030	100%			OUT029
30	M.gluteus accessorius	0.28%	Full Rump	2080	100% 94%	Hind	0.260	RMP030
31	M.gluteus medius	3.82%	Full Rump	2080	94%	Hind	3.339	RMP031
31	M.gluteus medius		Rostbiff	2110	_			RMP131 (2/3 portion
31	M.gluteus medius	0.000/	Rostbiff	2110		112 - 2	0.010	RMP231 (1/3 portion
31	M.gluteus medius	3.82%	Striploin	2140	6%		0.213	DN (2022
32	M.gluteus profundus	1.25%	Full Rump	2080	100%	Hind	1.163	RMP032
33	M.gracilis	1.40%	Topside, Topside Cap	2000, 2002	100%	Hind	1.302	TOP033

Table 1. HAM muscles & numbers, MSA codes and estimated weight for a 300Kg carcase.

HAM No	H.A.M. Muscle Name	Body %	HAM	HAM	%inPr	F/H	Ngt@30(MSA Code
34	M.iliacus	0.88%	Tenderloin, Butt Tenderloin	2150, 2170	100%	Hind	0.818	TDR034
35	M.iliocostalis	0.46%	Rib Set	2223	63%	Fore	0.270	
35	M.iliocostalis	0.46%	Rib Set	2223	19%	Fore	0.081	
35	M.iliocostalis	0.46%	Striploin	2140	18%	Hind	0.077	
36	M.infraspinatus	2.02%	Blade, Oyster Blade	2300, 2303	90%	Fore	1.691	OYS036
36	M.infraspinatus	2.02%	Rib Set	2223	10%	Fore	0.188	
37	M.intercostales externus and intern	2.59%	Brisket	2320	22%	Fore	0.530	
37	M.intercostales externus and intern	2.59%	Chuck	2260	14%	Fore	0.337	CHK037
37	M.intercostales externus and intern	2.59%	Rib Set	2223	42%	Fore	1.012	RIB037
37	M.intercostales externus and internu		Intercostals	2430				INT037
37	M.intercostales externus and intern	2.59%	Striploin	2140	5%	Hind	0.120	
37	M.intercostales externus and intern	2.59%	Thin Flank	2200	17%	Fore	0.409	
38	M.intertransversarii cervicis	0.46%	Chuck	2260	100%	Fore	0.428	
39	M.intertransversarius longus	0.28%	Chuck	2260	100%	Fore	0.260	
40	M.ischiocavernosus	0.10%	Topside	2000	100%	Hind	0.093	
41	M.latissimus dorsi	2.04%	Blade	2300	18%		0.341	BLD041
41	M.latissimus dorsi	2.0470	Chuck	2000	1070	1 010	0.041	CHK041
41	M.latissimus dorsi	2.04%	Rib Set	2223	80%	Fore	1.518	RIB041
41 42	M.laussimus dorsi M.levatores costarum	2.04 /0	Rib Set	2223	100%	Fore	0.000	1/10/41
42 43		0.32%	Chuck	2223	100%	Fore	0.000	
	M.longissimus cervicis	0.32%		2260	100%	Fore	0.298	
44 45	M.longissimus capitis et atlantis		Chuck	2260, 2275	2%	Fore	0.260	CHK045
	M.longissimus dorsi	6.55%		,	_			
45	M.longissimus dorsi	6.55%	Cube Roll	2244	28%	Fore	1.706	CUB045 STR045
45	Mlongissimus dorsi	6.55%	Striploin	2140	70%	Hind	4.264	51K045
46	M.longus capitis	0.23%	Chuck	2260	100%	Fore	0.214	CU 1/0 47
47	M.longus colli	0.82%	Chuck	2260	100%	Fore	0.763	CHK047
48	M.multifidi cervicis	0.25%	Chuck	2260	100%	Fore	0.233	CHK048
49	M.multifidi dorsi	0.86%	Chuck	2260	18%	Fore	0.144	
49	M.multifidi dorsi	0.86%	Rib Set	2223	18%	Fore	0.144	
49	M.multifidi dorsi	0.86%	Striploin	2140	64%	Hind	0.512	STR049
50	M.obliquus capitus caudalis	0.34%	Chuck	2260	100%	Fore	0.316	
51	M.obliquus externus abdominis	2.17%	Brisket	2320	37%	Fore	0.747	
51	M.obliquus externus abdominis	2.17%	Thin Flank	2200	63%	Hind	1.271	TFL051
52	M.obliquus internus abdominis	1.63%	Full Rump	2080	20%	Hind	0.303	
52	M.obliquus internus abdominis	1.63%	Thin Flank, Flap Meat	2200, 2206	80%	Hind	1.213	TFL052
53	M.obturator externus and internus	0.58%	Topside	2000	100%	Hind	0.539	
54	M.omotransversarius	0.53%	Chuck	2260	100%	Fore	0.493	
55	M.pectineus	0.63%	Topside	2000	100%	Hind	0.586	TOP055
56	M.pectoralis profundus	3.72%	Brisket, Pectoral	2320, 2328	77%	Fore	2.664	BRI056
56	M.pectoralis profundus	3.72%	Chuck	2260	23%	Fore	0.796	CHK056
57	M.pectoralis superficialis	1.50%	Brisket, Profundis	2320, 2332		Fore	1.325	BRI057
57	M.pectoralis superficialis	1.50%	Chuck	2260	_	Fore	0.070	
58	M.peronaeus longus	0.10%	Hind Shank	2360	100%	Hind	0.093	
59	M.peronaeus tertius	0.25%	Hind Shank	2360	100%	Hind	0.233	HQS059
60	M.popliteus	0.29%	Hind Shank	2360	100%	Hind	0.270	
61	M.protractor praeputii	0.05%	Brisket	2320	100%	Fore	0.047	
62	M.psoas major	1.70%	Tenderloin	2150	100%	Hind	1.581	TDR062
63	M.psoas minor	0.34%	Tenderloin	2150	100%	Hind	0.316	
64	M.rectus abdominis	2.13%	Brisket	2320	48%	Fore	0.951	
64	M.rectus abdominis	2.13%	Thin Flank	2200	52%	Fore	1.030	TFL064
65	M.rectus capitis dorsalis major	0.05%	Chuck	2260	100%	Fore	0.047	
66	M.rectus femoris	2.12%	Thick Flank	2060, 2067	100%	Hind	1.972	KNU066
67	M.rectus thoracis	0.14%	Brisket	2320	100%	Fore	0.130	
68	M.rhomboideus	1.45%	Chuck, Chuck Crest	2260, 2278	70%	Fore	0.944	CHK068
68	M.rhomboideus	1.45%	Rib Set	2223	_	Fore	0.405	
69	M.sacrococcygeus dorsalis et latera		Full Rump	2080	50%		0.065	
69	M.sacrococcygeus dorsalis et latera		Scrap	2080	50%		0.065	
70	M.sartorius	0.39%	Thick Flank	2060	50%		0.181	
70	M.sartorius	0.39%	Topside	2000	_	Hind	0.181	

HAM No	H.A.M. Muscle Name	Body %	НАМ	HAM	%inPr	F/H	Ngt@30(MSA Code
71	M.scalenus dorsalis	0.17%	Chuck	2260	100%	Fore	0.158	
72	M.scalenus ventralis	0.58%	Chuck	2260	100%	Fore	0.539	
73	M.semimembranosus	5.24%	Topside, Cap Off	2000, 2001	100%	Hind	4.873	TOP073
74	M.semispinalis capitis	1.55%	Chuck, Chuck Eye Roll	2260, 2275	88%	Fore	1.269	CHK074
74	M.semispinalis capitis	1.55%	Rib Set	2223	12%	Fore	0.173	
75	M.semitendinosus	2.59%	Silverside, Eye Round	2020, 2040	100%	Hind	2.409	EYE075
76	M.serratus dorsalis caudalis	0.12%	Rib Set	2223	95%	Fore	0.106	
76	M.serratus dorsalis caudalis	0.12%	Striploin	2140	5%	Fore	0.006	
77	M.serratus dorsalis cranialis	0.13%	Chuck	2260	5%	Fore	0.006	
77	M.serratus dorsalis cranialis	0.13%	Rib Set	2223	95%	Fore	0.115	
78	M.serratus ventralis cervicis	3.12%	Chuck	2260	100%	Fore	2.902	CHK078
79	M.serratus ventralis thoracis	1.34%	Brisket	2320	29%	Fore	0.361	
79	M.serratus ventralis thoracis	1.34%	Chuck	2260	23%	Fore	0.287	
79	M.serratus ventralis thoracis	1.34%	Rib Set	2223	48%	Fore	0.598	RIB078
80	M.soleus	0.10%	Silverside	2020	100%	Hind	0.093	
81	M.spinalis dorsi	1.64%	Chuck, Chuck Eye Roll	2260, 2275	31%	Fore	0.473	CHK081
81	M.spinalis dorsi	1.64%	Rib Set, Cube Roll	2223, 2244	60%	Fore	0.915	CUB081
81	M.spinalis dorsi	1.64%	Striploin	2140	9%	Hind	0.137	
82	M.splenius	0.77%	Chuck	2260	100%	Fore	0.716	
83	M.sternocephalicus	0.05%	Brisket	2320	15%	Fore	0.007	
83	M.sternocephalicus	0.05%	Chuck	2260	85%	Fore	0.040	
84	M.subscapularis	1.17%	Blade	2300, 2304	95%	Fore	1.034	BLD084
84	M.subscapularis	1.17%	Rib Set	2223	5%	Fore	0.054	
85	M.supraspinatus	1.52%	Chuck Tender	2310	100%	Fore	1.414	CTR085
86	M.tensor fasciae antibrachii	0.16%	Blade	2300	100%	Fore	0.149	
87	M.tensor fasciae latae	1.36%	Full Rump, Tri-Tip	2080, 2131	72%	Hind	0.911	RMP087
87	M.tensor fasciae latae	1.36%	Thick Flank	2060	28%	Hind	0.354	
88	M.teres major	0.46%	Blade	2300	100%	Fore	0.428	BLD088
89	M.teres minor	0.20%	Blade	2300	100%	Fore	0.186	
90	M.tibialis anterior	0.12%	Hind Shank	2360	100%	Hind	0.112	
91	M.tibialis posterior	0.12%	Hind Shank	2360	100%	Hind	0.112	
92	M.transversus abdominis	1.21%	Brisket	2320	45%	Fore	0.506	
92	M.transversus abdominis	1.21%	Thin Flank	2200	55%	Hind	0.619	
93	M.trapezius cervicalis	0.54%	Chuck	2260	100%	Fore	0.502	
94	M.trapezius thoracis	0.52%	Chuck	2260	15%	Fore	0.073	
94	M.trapezius thoracis	0.52%	Rib Set	2223	85%	Fore	0.411	
95	M.triceps brachii caput laterale	0.65%	Blade	2300	100%	Fore	0.605	BLD095
96	.Mtriceps brachii caput longum	3.13%	Blade	2300	100%	Fore	2.911	BLD096
97	M.triceps brachii caput mediale	0.10%	Blade	2300	100%	Fore	0.093	BLD097
98	M.vastus intermedius	0.70%	Thick Flank	2060	100%	Hind	0.651	KNU098
99	M.vastus lateralis	2.59%	Thick Flank	2060	100%	Hind	2.409	KNU099
100	M.vastus medialis	0.70%	Thick Flank	2060	100%	Hind	0.651	KNU100

Prior MSA testing, and the associated cooking, had been conducted after removal of all bone to provide a consistent muscle preparation and presentation protocol. However, questions had arisen regarding cooking "on the bone" and possible flavour benefits. To provide a test of this possibility it was planned to cook some rib and shin cuts, in both bone-in and boneless form, with the bone removed after cooking and prior to serving, to provide a consumer comparison. For the shin cuts the alterative cooks were coded as SC2 (Slow Cooked for 2 hours – the standard protocol) and OSO (Osso Bucco). As the lower shin portion contains many small muscles, these were not separated in either form.

For the rib and chuck cuts however, the bone-in alternatives required multiple muscles (intercostals and covering profundus, serratus or latissimus) to be cooked as a single piece which might or might not be impacted by the presence of bone or, alternatively, by being cooked as a common mass. To provide data and assess these possibilities, the bone-in comparison designated cooking the cut and included muscles from one carcase side bone-in with those from the paired side to be cooked with the same muscles without bone, but bound together with netting. Muscle codes were created by adding a first 1 integer for those cooked bone-in and a 2 integer for those cooked as a group without bone. *Table 2* provides an overview of the coding used.

HAM description and Code	No	CODE	Muscle	Preparation Notes
Spare ribs 1695	37	CHK137	M.intercostales externus and internus	When prepared bone in as spare ribs (intercostales only muscle included)
Chuck short ribs 1631	56	СНК156	M.pectoralis profundus	When prepared as chuck rib (ribs 1 to 2/3) with rib bones, profundus & intercostales included.
Chuck short ribs 1631/Chuck rib meat 1696	78	CHK178	M.serratus ventralis cervicis	When prepared as chuck rib (ribs 3 to 5) with rib bones, serratus & intercostales included
	37	INT237	M.intercostales externus and internus	When cooked boneless with intercostales (position unknown) & covering muscles separated after cooking
Chuck rib meat 2640/chuck meat square 2645	56	СНК256	M.pectoralis profundus	Matched boneless equivalent to 156 chuck rib (ribs 1 to 2/3), profundus & intercostales included.
Chuck rib meat 2640/chuck meat square 2645	78	СНК278	M.serratus ventralis cervicis	Matched boneless equivalent to 178 chuck rib (ribs 3 to 5), serratus & intercostales included.
	37	СНК337	M.intercostales externus and internus	Intercostales separated after cooking on bone with covering muscles as Chuck Ribs
Spare ribs 1695	37	RIB137	M.intercostales externus and internus	When prepared bone in as spare ribs (intercostales only muscle included)
Short ribs 1694	41	RIB141	M.latissimus dorsi	When prepared as short ribs with rib bones, latissimus & intercostales muscles included
	37	INT237	M.intercostales externus and internus	When cooked boneless with intercostales (position unknown) & covering muscles separated after cooking
Rib meat square 2650	41	RIB241	M.latissimus dorsi	Matched boneless equivalent to 141 short rib with latissimus & intercostales included.
	37	RIB337	M.intercostales externus and internus	Intercostales separated after cooking on bone with covering muscles as Short Ribs

Table 2. Codes used to identify common muscles cooked as bone-in or boneless cuts.

Further cooking alternatives were also planned to evaluate moist roasting in a Combi oven (COM) relative to the dry roasting (RST) protocol and to compare a sous-vide (SVD) slow cooking method to the standard SC2. It was also agreed that stirfry (SFR) and yakinku (YAK) should be contrasted with the SC2 and SVD prepared within muscle, where size permitted. This was also included to update consumer response to SC2, YAK and SFR cooking methods.

A final agreed design overlay was to contrast ageing within, in particular, the slow cooking methods (SC2 and SVD). This arose from recent data analysis indicating that ageing effects were significantly reduced for SC2 samples. If upheld by more data this had implications for prediction modelling as ageing estimates may need to interact with cook type in addition to muscle, a fundamental revision to the SP2009 and earlier models which applied common ageing to a muscle across all cook types.

Mr Greg Butler and Mr Steve Humphries, both highly experienced butchers and trainers in research and industry muscle identification and boning practice, were engaged in the cut up and sample preparation to assist in muscle identification. Both have been key contributors to developing MSA sample preparation protocols over many years. Janine Lau, Jessira Perovic and Rod Polkinghorne also assisted in defining consumer sample preparation standards. The final collection and MSA sample preparation within each kill was marginally modified to account for muscle size, and in light of experience with previous groups.

3.1.1 Grading and Cut collection

The Northern BIN group were harvested at a Southern Queensland plant on February 27th, 2017, the Hereford BIN at a Tasmanian plant on March 14th, 2017 and the Angus BIN at the same Southern Queensland plant on April 5th, 2017.

All cattle were steers and none were HGP treated. Each of the BIN groups had been fattened together providing uniform environmental conditions within each BIN but different across the three locations which were in Queensland (Northern and grain fed 100 days), NSW (Angus and grainfed for 168 days) and Tasmania (Hereford and grass fed). All carcases were AT hung. *It should be emphasised that the purpose of the research was not to compare breeds* but rather to ensure that the consumer samples, prepared from an extensive muscle range, were representative of a diverse cattle population to reduce the risk of confounding muscle and cook results with breed or environmental effects.

On each occasion the 18 head, and the subsets of 6 within the 18, were selected from much larger numbers after MSA grading and reference to pH and temperature decline data to ensure all carcases utilised complied with MSA criteria.

Tables 3 to 5 display the principal grading inputs for each of the BIN groups and sub groups.

SUBGROUP		HSCW	Epbi	Hump	Ema	Ossification	Ausmeat Marbling	Msa Marbling	RibFat	Ph	MSAIndex
Brahman	Min	334	100	140	76	130	0	150	4	5.41	52.24
100% TBC	Average	345	100	174	85	147	1	283	8	5.51	53.80
	Max	358	100	210	91	170	1	330	9	5.58	55.04
	StdDev	10.15	100	28.53	5.19	15.06	0.52	68.61	2.07	0.07	1.24
Droughtmaster	Min	342	50	85	75	130	0	190	5	5.45	56.10
50% TBC	Average	347	50	104	85	138	1	265	9	5.50	57.15
	Max	353	50	125	100	150	1	340	13	5.54	57.95
	StdDev	5.17	50	17.72	9.41	7.53	0.55	68.63	2.83	0.04	0.79
Santa Gertrudis	Min	367	37.5	85	88	120	0	200	5	5.47	57.59
37.5% TBC	Average	375	37.5	105	93	142	0	277	9	5.53	58.34
	Max	384	37.5	120	104	190	1	350	13	5.60	59.50
	StdDev	7.20	37.5	13.04	5.79	24.83	0.52	54.28	2.58	0.06	0.76
ALL Northern	Min	334	37.5	85	75	120	0	150	4	5.41	52.24
	Average	356		128	88	142	1	275	8	5.51	56.27
	Max	384	100	210	104	190	1	350	13	5.60	59.50
	StdDev	16.04		39.00	7.71	16.65	0.51	60.80	2.45	0.06	2.23
** All groups Ma	ile, 100 Day	rs on Feed	l, No H	GP and AT	hung						

Table 3. Grading inputs for Northern BIN carcases selected for sensory sampling

Table 4. Grading inputs for Hereford BIN carcases selected for sensory sampling

SUBGROUP		Dentition	HSCW	P8 Fat	Hump	Ema	Ossification	Ausmeat Marbling	Msa Marbling	RibFat	Ph	MSAIndex
Hereford x Angus	Min	0	292	5	65	74	120	0	230	3	5.47	58.21
	Average	1	306	5	68	83	135	0	293	5	5.60	59.76
	Max	4	321	7	70	97	150	1	340	7	5.70	60.78
	StdDev	1.67	12.06	0.82	2.58	8.07	12.25	0.52	43.67	1.47	0.10	0.94
Angus x (Hereford x Angus)	Min	0	286	5	60	72	120	0	260	3	5.43	58.97
	Average	0	301	8	70	77	135	1	313	6	5.50	59.96
	Max	0	310	10	85	83	140	3	530	8	5.57	63.17
	StdDev	0.00	8.81	1.75	10.49	4.85	8.37	1.22	106.33	1.72	0.05	1.61
Angus	Min	0	290	4	55	70	130	1	300	3	5.44	58.94
	Average	0	298	7	72	77	133	1	323	5	5.52	59.99
	Max	0	312	9	80	81	140	1	350	7	5.63	60.93
	StdDev	0.00	8.81	1.76	9.83	4.89	5.16	0.00	18.62	1.41	0.08	0.76
ALL Hereford BIN	Min	0	286	4	55	70	120	0	230	3	5.43	58.21
	Average	0	302	7	70	79	134	1	310	5	5.54	59.90
	Max	4	321	10	85	97	150	3	530	8	5.70	63.17
	StdDev	1.03	10.01	1.72	8.04	6.45	8.56	0.78	64.44	1.52	0.09	1.10
*** Note all cattle Male, gras	s fed. HGP	free and A	THung									

The Angus BIN cattle were sourced from a long running research herd in which cattle had been continually selected for high and low muscling and for myostatin gene amplitude providing a well documented herd with extensive variation. The subgroups selected were based on the highest and lowest feedlot growth rates for two subgroups with myostatin the third.

SUBGROUP		HSCW	Hump	Ema	Ossification	Ausmeat Marbling	Msa Marbling	RibFat	Ph	MSAIndex
High Growth	Min	317	75	76	110	1	340	10	5.47	63.11
	Average	360	87	81	122	2	412	14	5.52	64.03
	Max	403	100	90	140	3	510	19	5.55	65.57
	StdDev	28.61	11.25	5.08	11.69	0.75	59.47	3.76	0.03	1.04
Low Growth	Min	311	65	66	100	1	320	10	5.47	60.56
	Average	335	74	81	128	1	382	13	5.52	63.64
	Max	350	80	90	170	3	530	17	5.69	65.94
	StdDev	13.16	5.85	8.13	24.83	0.82	74.68	2.93	0.08	2.28
Myostatin	Min	291	70	83	130	1	320	7	5.48	59.58
	Average	331	81	92	155	1	335	11	5.52	60.47
	Max	368	85	105	180	1	350	14	5.61	61.90
	StdDev	33.19	5.85	8.38	18.71	0.00	10.49	2.48	0.05	0.86
ALL ANGUS BIN	Min	291	65	66	100	1	320	7	5.47	59.58
	Average	342	81	85	135	1	376	13	5.52	62.71
	Max	403	100	105	180	3	530	19	5.69	65.94
	StdDev	28.09	9.22	8.63	23.33	0.70	61.37	3.25	0.06	2.18
*** All Male, No	HGP, 168 Da	vs on Feed	and AT Hu	ng						
	·	_								

Table 5. Grading inputs for Angus BIN carcases selected for sensory sampling

Subsequent management of the selected carcases, and cuts within each collection, was effected by CutUpDeveloper (CUD) files produced from standard MSA software as described by Polkinghorne and Gee (2006). In brief, the CUD software provided a means to develop a design designating the linkage from BIN group : to sub group : to body : to side : to primal : to muscle : to muscle position : to individual consumer sample. Each sample was further designated for cooking method and days of ageing post mortem. The software was also utilised to produce control files and identification labels for the sides, primal and final samples, which were assigned unique 4 digit alphanumeric EQSRef codes, used for sample identification through to serving of the 10 consumers to which each sample was assigned.

Figure 1 displays a portion of the CUD input in which groups and subgroups are defined and the required muscles designated. Further processes designate muscle positions, cooking method(s) and ageing as partially depicted in *Figure 2*. From this point the software was used as an aid to develop a balanced design to ensure carcase side and muscle position was balanced across cook and ageing.

The software also produced an Acquisition Sheet for each kill that pre-assigned primal number identification to the primals to be collected with those for the left side of one body displayed in *Figure 3*.

Jump to Model Jump to Dis Cut Up Master Group		Jump to Input sht		Create a Body						nd Ki el for					Gro	ups	5	(Gro	ups	5				
Number	(Gre	oup)		Kill D	Date		-	\ba	ttoi	r or	W	ork	s		Inc	orp			So	olo					
492	4	92	Т	hu 23	Feb	17			Wa	arwi	ck								3	6					
														Т	otal	Side	es	То	otal	Sid	es				
GROUP DESC	G R O U P	N oS .I D cE fS		L or R or LR or L/R	H A N G	S T I M	B L D 8 4	B L D 8 8	B L D 0 9 5	B L D 0 9 6	C T R 0 8 5	S T R O 4 5	O Y S 0 3 6	C H K 0 7	C H K 0 4 1	C H K 0 4 7	C H K 0 6 8		CHK078	C H K 0 8 1	C H K 0 8 2	Ι	R I B 0 4 1	R I B 0 7 9	R I B 1 3 7
BBBB	492.1	12		LR	AT	LVES	у	у	у	у	у	у	у	у	у	у	у	у	у	у	у	у	у	у	у
DMDM	492.2	12		LR	AT	LVES	у	у	у	у	у	у	у	у	у	у	у	у	у	у	у	у	у	у	у
SGSG	492.3	12		LR	AT	LVES	у	у	у	у	у	у	у	у	у	у	у	у	у	у	у	у	у	у	у
Group Totals of BodySic	des	36																							

Figure 1. Portion of CUD design input allocating group, subgroup and muscle requirements

Figure 2. Portion of CUD design input designating muscle position, cook and days ageing

M S	Jum	p to Kill			Dis	Jump play (o to Cut Up					Model Cut Up	s	R O T A					Ac	Publis quisit Shee	tion t	R O T		
T R		С	D	C E			C U	s					U M	T E							N o	A T		
		0	E	\mathbf{L}			Т	U														Е		
G	G	GM	G	\mathbf{L}	S			М					C	C										
R	R	RМ			Ι		N		P	Р	P	Р	0	0							Α	Α	Α	Α
0	0	ОЕ	F	Q	D		Α	Р	0	0	0	0	0	0	G	R	S	Y	S	s	G	G	G	G
U	Ū	UN	R	Ť	Е		М	0	S	S	S	S	K	K	R	S	F	Α	C	0	Е	Е	Е	Е
P	P	РТ	D	Ŷ	s		Е	Š	ĩ	2	3	4	s	s	L	T	R	ĸ	2	Ŭ	s	s	1	2
492	492.1	BBBB	12	12	12		BLD084	1	С	_	-	-	1	~	-	-	1		_	-	1	~	10	-
492	492.1	BBBB	12	12	12		BLD088	1	C				1		1		-				1		10	
492	492.1	BBBB	12	12	12		BLD095	1	C				1		-		1				1		10	
492	492.1	BBBB	36	12	12		BLD096	3	T	C1	C2		3			1	1	1			1		10	
492	492.1	BBBB	24	12	12		CTR085	2	н	Т			2		1	1					1		10	
492	492.1	BBBB	48	12	12		STR045	4	A1	A2	P3	P4	5		1	2	1	1			1		10	
492	492.1	BBBB	36	12	12		OYS036	3	н	С	Т		3				1		1	1	1		10	
492	492.1	BBBB	12	12	12		CHK007	1	С				1						1		1		10	
492	492.1	BBBB	24	12	12		CHK041	2	C1	C2			2			1			1		1		10	
492	492.1	BBBB	12	12	12		CHK047	1	С				1						1		1		10	
492	492.1	BBBB	24	12	12		CHK068	2	C1	C2			2						1	1	2		10	28
492	492.1	BBBB	12	12	12		CHK074	1	С				1			1					1		10	
492	492.1	BBBB	36	12	12		CHK078	3	C1	C2	C3		3		1			1		1	1		10	
492	492.1	BBBB	12	12	12		CHK081	1	С				1		1						1		10	
492	492.1	BBBB	12	12	12		CHK082	1	С				1				1				1		10	
492	492.1	BBBB	48	12	12		RIB037	4	C1	C2	C3	C4	4			1	1		1	1	1		10	
492	492.1	BBBB	24	12	12		RIB041	2	C1	C2			2			1			1		1		10	
492	492.1	BBBB	12	12	12		RIB079	1	С	_			1					1			1		10	
492	492.1	BBBB	24	12	12		RIB137	2	C1	C2			2			2					1		10	
492	492.1	BBBB	24	12	12		RIB141	2	C1	C2			2			2					1		10	
492	492.1	BBBB	12	12	12		TFL051	1	C				1				1				1		10	
492	492.1	BBBB	12	12	12		TFL052	1	C				1				1				1		10	
492	492.1	BBBB	12	12	12		TFL064	1 4	C	NIC	112	N 14	1		-		1				1		10	
492	492.1	BBBB	48	12	12		BRI056		N1	N2	N3	N4	4		-		1	1	1	1	2		10	28
492	492.1 492.1	BBBB	48	12 12	12 12		BRI057	4	P1 C	P2	P3	P4	4				1	1	1	1	1		10	
492			_	12	12		ARM006	1	C				1		-		-				1		10	$\left - \right $
492 492	492.1 492.1	BBBB	12	12	12		FQSHIN HQSHIN	1	C				1		-				1		1		10 10	$\left \right $

GroupComment	Group	AnimalID	CUD ref	Works Body No.	Side	Hang	Stim	Primal	Primal ID
ввв	492.1		1	100	L	AT	LVES	BLD	52317
ввв	492.1		1		L	AT	LVES	CTR	52318
ввв	492.1		1		L	AT	LVES	STR	52319
ввв	492.1		1		L	AT	LVES	OYS	52320
ввв	492.1		1		L	AT	LVES	СНК	52321
BBBB	492.1		1		L	AT	LVES	RIB	52322
BBBB	492.1		1		L	AT	LVES	TFL	52323
ввв	492.1		1		L	AT	LVES	BRI	52324
BBBB	492.1		1		L	AT	LVES	FQS	52325
BBBB	492.1		1		L	AT	LVES	HQS	52326
ввв	492.1		1		L	AT	LVES	INT	52327
BBBB	492.1		1	100	L	AT	LVES	TDR	52328
BBBB	492.1		1		L	AT	LVES	RMP	52329
BBBB	492.1		1		L	AT	LVES	KNU	52330
BBBB	492.1		1		L	AT	LVES	OUT	52331
BBBB	492.1		1		L	AT	LVES	EYE	52332
BBBB	492.1		1		L	AT	LVES	ТОР	52333

Figure 3. Portion of CUD Acquisition Sheet allocating Primal ID for cut collection from one side at boning.

To maximise the number of samples within budget parameters it was elected to collect cuts from both carcase sides, where muscles were either small or which were poorly represented or non-existent in the AUSBlue database. The upper portion of *Figure 3* lists those collected from both sides.

The cuts at the lower portion of *Figure 3* were well represented in existing data and were only collected from a single side to provide connection, while reducing cost. The cube roll was not included, as the striploin was regarded as an adequate representation of the *M.longissimus* muscle. Sides were alternated for the single cut collection.

For each collection a written instruction regarding cuts required, boning specification, transport and billing arrangements was emailed to the plant prior to the kill date. An example is shown in *Figure 4*.

Laminated 20 x 8 cm brightly coloured tickets were then produced to identify carcase sides with the tickets prominently displaying a CUD number of 1 to 18 and LEFT or RIGHT. The tickets were secured to the loin by 150mm stainless steel pins to provide highly visible identification for sorting from the chiller and through the boning process. At a later point the actual plant body numbers were substituted for the CUD number within AUSBlue.

Figure 4. Example list of primals required as advised to the plant.

Primals to collect

Primals (to collect from 18 carcases)	Pieces per body (left & right sides)	Piece Count
Blade (subscap retained)	2	36
Chuck tender	2	36
Full chuck including neck	2	36
Ribset (Fleece only, we do not want the cube roll)	2	36
Short ribs	2	36
Full brisket (if size permits otherwise NE & PE with deckle retained)	2	36
Thin Flank (flank steak, internal & external flank plates)	2	36
FQ Shin	2	36
HQ Shin	2	36
Striploin	2	36
Silverside (outside flat, eyeround & heel)	1	18
Rump	1	18
Knuckle	1	18
Topside	1	18
Tenderloin s/s off	1	18

A further set of laminated coloured labels, 50 x 50 mm, were produced with each continuing ID for each primal. A representative portion of a Primal label file is shown in *Figure 5*. Each label includes the carcase CUD number and side (2 R in the example) and a further unique 5 digit number that was used in subsequent primal fabrication to consumer samples. Research personnel were positioned at boning stations to observe boning and to note the CUD ID on the large carcase side tickets. As a required cut was boned and sliced the related Primal ticket for that cut was placed within the vacuum bag to maintain ID.

The primals were chilled overnight and then transported by refrigerated transport to the University of New England (UNE) meat laboratory for fabrication into consumer samples.

The same procedures were utilised for each of the three collections other than carcase quarter tickets being utilised to suit the quarter chain boning in Tasmania. For this collection, cuts were shipped to Melbourne after collection and moved by road transport to Armidale.

52362	52365	52369
Body #2 R	Body #2 R	Body #2 R
BLADE	OYSTER BLADE	BRISKET
52363	52366	52372
Body #2 R	Body #2 R	Body #2 R
CHUCK TENDER	СНИСК	INTERCOSTALS
52364	52368	
Body #2 R	Body #2 R	
STRIPLOIN	THIN FLANK	

Figure 5. Example of Primal Labels used to maintain cut ID

3.1.2 MSA Sample preparation

All fabrication of consumer samples from the collected primals was conducted in the UNE meat laboratory by research and University personnel. Fabrication was conducted according to MSA protocols (Gee, 2006 and summarised in Anon, 2008).

In brief each primal was removed from vacuum packaging and placed on a tray with its identifying ticket. For some primals, particularly the chucks and briskets which had often been cut into pieces post collection due to carton size or weight limits, this required carefully aligning the portions in order to follow muscle seams. The butchers then fully denuded each primal including silverskin and separated the component muscles where appropriate. The denuded single muscle portions were then placed back on a tray/s with the identifying Primal ticket and passed to a recording station.

Further CUD software files were utilised by the recorder to relate the Primal ticket ID with subsequent EQSRef individual sample ID for each portion nominated within each of the muscles and positions within all muscles from that primal. An example of the CutUpSheet control file is shown in *Figure 6* and a portion of the associated CutUpLabels Avery 7160 self adhesive label file displayed in *Figure 7*. Both were printed and bound prior to commencing the cutup.

The Primal Ticket 5 digit number was referenced in the CutUpSheet control file which provided detail of all consumer sample sets to be prepared from each muscle and position within the source primal.

Seq	EQS	Primal	Cut	Cook	Age	Pos	Kill	<u>0</u>	Check
AUS91432	P3Y8	52317	BLD088	GRL	10	с	Thu 23 Feb 17	у	
AUS91622	H0A0	52317	BLD096	RST	10	C1	Thu 23 Feb 17		
AUS92251	F4Q8	52317	BLD084	SFR	10	с	Thu 23 Feb 17	у	
AUS92252	Q6Q4	52317	BLD095	SFR	10	с	Thu 23 Feb 17	у	
AUS92610	K9C0	52317	BLD096	YAK	10	т	Thu 23 Feb 17	у	
AUS92611	T7E6	52317	BLD096	YAK	10	C2	Thu 23 Feb 17		
AUS91623	K6J3	52318	CTR085	RST	10	Н	Thu 23 Feb 17	у	
AUS91803	E8B7	52318	CTR085	SC2	28	т	Thu 23 Feb 17		

Figure 6. Portion of the CUD CutUpSheet file

In the *Figure 6* example a Blade primal, with a primal number ID of 52317 is to be fabricated into 4 muscles and further to 6 consumer samples. The recorder checked that the 4 muscles (BLD088, BLD096, BLD084 and BLD095) had been prepared by the butchers and arranged them in a standard orientation on the tray. Another primal, a chuck tender with a Primal Ticket number of 52318 then follows specifying 2 samples to be prepared from a single muscle. Where an objective sample for laboratory use is required a Y is present in the Obj column.

The 52317 Primal number was then referenced in the CutUpLabels, displayed in *Figure 7*, which carried information related to each row of the CutUpSheet. The labels were removed and lightly attached to the tray edge with the position (C, C1, T, C2 or H in the example) aligned with the muscle as laid out on the tray. Additional labels indicated that spare muscle was to be collected for objective laboratory analysis.

After marking the CutUpSheet Check column to record that a sample had been obtained the tray and labels was passed to slicers equipped with a cutting jig and sample blocks to indicate the required size and grain direction for each cooking method. The cutting jig was set to 25mm for samples designated as GRL (grill).

The slicer utilised the labels as instruction on muscle fabrication with the position designating the location of each sample within the muscle and the cook code SC2 requiring preparation of 22 cubes of standard size, SFR a standard size and shape muscle portion for subsequent slicing, GRL five individual 70 x 35 mm x 25 mm thick steaks and so on.

	OBJECTIVE	AUS92251 F4Q8
52317	52317 - BLD084	52317 SFR C
	F4Q8 0503	BLD084 0503
OBJECTIVE	AUS91432 P3Y8	OBJECTIVE
52317 - BLD088	52317 GRL C	52317 - BLD095
P3Y8 0503	BLD088 0503	Q6Q4 0503
AUS92252 Q6Q4	AUS91622 H0A0	OBJECTIVE
52317 SFR C	52317 RST C1	52317 - BLD096
BLD095 0503	BLD096 0503	K9C0 0503
AUS92610 K9C0	AUS92611 T7E6	
52317 YAK T	52317 YAK C2	52318
BLD096 0503	BLD096 0503	
OBJECTIVE	AUS91623 K6J3	AUS91803 E8B7
52318 - CTR085	52318 RST H	52318 SC2 T
K6J3 0503	CTR085 0503	CTR085 2303

Figure 7. Self adhesive labels produced from the CUD CutUpLabels file

If a sample could not be fabricated the label was returned to the recorder who marked the CutUpFile accordingly.

The tray, complete with all fabricated samples, self adhesive labels and original Primal Ticket, was then passed to packers who placed each label on a vacuum pouch and packed the associated sample within the pouch which was then vacuum sealed. Each of the 5 steaks within a grill sample were individually wrapped in freezer wrap to prevent them sticking together when frozen.

The labels again provided instruction for sorting post sealing with the 4 digit code in the right bottom label corner designating a freeze on date. Samples were sorted into freeze down dates within cooking method. They were stored chilled until freezing date then laid single depth for rapid freezing. Post freezing samples were packed in foam and stored at -20°C.

The unique Sequence and EQSRef codes assigned by the CUD software formed the primary identification for all subsequent sample management through to the individual consumer plate ID labels.

Table 6 presents the number of consumer samples fabricated from each of the 3 BIN collections, in all 7261 representing 67 individual source muscles, 26 of which had not been previously tested and identified within the "NEW" column. The 5 cook types presented in *Table 6* summarise further subdivisions of Osso Bucco (OSO) and Sous-Vide (SVD) within the SC2 counts and moist heat roasting (COM) plus bone-in and boneless forms within the RST counts.

					NORT	HERN E	BIN				HERE	FORD	BIN		Γ			ANG	GUS BIN						ALL BIN	I GROU	PS		1 [NEW
MUSCLE	CODE	Bone	GRL	RST	SC2	SFR	YAK	TOTAL	GRL	RST	SC2	SFR	YAK	TOTAL		GRL	RST	SC2	SFR	үак	TOTAL	GR	L	RST	SC2	SFR	ҮАК	TOTAL	-	NEW
M.deltoideus	BLD011	-													Γ			16		16	32	0		0	16	0	16	32	1 [Y
M.latissimus dorsi	BLD041																	36			36	0		0	36	0	0	36		
M.subscapularis	BLD084				9	18	9	36			12	12	12	36				12	11	11	34	0		0	33	41	32	106		Y
M.teres major	BLD088		34					34	18					18		16					16	68	3	0	0	0	0	68		
M.triceps brachii caput laterale	BLD095					36		36				36		36				12	12	12	36	0		0	12	84	12	108		
M.triceps brachii caput longum	BLD096		6	12	30	12	12	72	6	24	24	6	12	72		12	24	13	11	12	72	24	Ļ	60	67	29	36	216		
M.triceps brachii caput mediale	BLD097				18	9	9	36			24	6	6	36				12	12	12	36	0		0	54	27	27	108		Y
M.pectoralis profundus	BRI056			36	72			108		34	80	7	14	135			36	90	9	9	144	0		106	242	16	23	387		
M.pectoralis superficialis	BRI057				36	17	17	70			58	16	14	88				36	18	18	72	0		0	130	51	49	230		
M.brachiocephalicus	СНК007																	27			27	0		0	27	0	0	27		Y
M.intercostales externus and internus	СНК037									1				1								0		1	0	0	0	1		Y
M.latissimus dorsi	CHK041			1	1			2														0		1	1	0	0	2		Y
M.longus colli	CHK047				3			3			6			6				36			36	0		0	45	0	0	45		Y
M.multifidi cervicis	CHK048				25			25			26			26				36			36	0		0	87	0	0	87		Y
M.pectoralis profundus	CHK056																			9	9	0		0	0	0	9	9		Y
M.rhomboideus	CHK068				72			72			53			53				65			65	0		0	190	0	0	190		
M.semispinalis capitis	СНК074		7	7	14		7	35	6	3	21	3	3	36		12	18	34			64	25		28	69	3	10	135		
M.serratus ventralis cervicis	CHK078		9	26	36		18	89	29	24	37		18	108		9	17	45	18	27	116	47	,	67	118	18	63	313		
M.spinalis dorsi	CHK081		9		9	9	9	36	9		9	9	9	36		9		9	9	9	36	27	,	0	27	27	27	108		
M.splenius	CHK082				18	18		36			18	17		35				18	18		36	0		0	54	53	0	107		
M.trapezius cervicalis	CHK093																	36			36	0		0	36	0	0	36		Y
M.intercostales externus and internus	CHK137	Y		18				18		18				18			18				18	0		54	0	0	0	54		Y
M.pectoralis profundus	CHK156	Y		9				9		9				9			9				9	0		27	0	0	0	27		Y
M.serratus ventralis cervicis	CHK178	Y		9				9		9				9			9				9	0		27	0	0	0	27		Y
M.pectoralis profundus	CHK256			9				9		9				9			9				9	0		27	0	0	0	27		Y
M.serratus ventralis cervicis	CHK278			9				9		9				9			9				9	0		27	0	0	0	27		Y
M.intercostales externus and internus	CHK337			16				16		18				18			18				18	0		52	0	0	0	52	┥┝	Y
M.supraspinatus	CTR085		3	15	54			72	3	15	52			70	_	12	24	35			71	18	8	54	141	0	0	213	┥┝	
M.semitendinosus	EYE075			18	35	9	9	71		18	36	9	9	72			12	34	12	12	70	0		48	105	30	30	213	┥┝	
M.biceps brachii	FQS004				18			18			18			18				36			36	0		0	72	0	0	72		Y
M.brachialis	FQS006				17			17			17			17				36			36	0		0	70	0	0	70		Y
Flexor/extensor muscle group surrounding the radius	FQSHIN	v			36			36			71			71				55			55	0		0	162	0	0	162		
M.peronaeus tertius	HQS059	У			18			18			18			18				28			28	0		0	64	0	0	64	1 -	Y
Muscle group surrounding the tibia	HQSHIN	у			36			36			64			64				56			56	0		0	156	0	0	156		
M.intercostales externus and internus	INT037			31		14		45		25	5	1		31			35	18	18		71	0		91	23	33	0	147		
M.intercostales externus and internus	INT237			36				36		36				36			36				36	0		108	0	0	0	108		Y
M.rectus femoris	KNU066			18	18			36		18	18			36			18	18			36	0		54	54	0	0	108		
M.vastus intermedius	KNU098				8	9		17			9	9		18				9	9		18	0		0	26	27	0	53		
M.vastus lateralis	KNU099			18	35		9	62		18	35		4	57			18	36		9	63	0		54	106	0	22	182		

M.vastus medialis	KNU100	<u> </u>			9	9	18				9	9	18					9	9	18	Ш	0	0	0	27	27	54	┤┝
M.biceps femoris (syn. gluteobiceps)	OUT005	9	18	36		9	72	11	18	36		9	74		7	18	36		9	70		27	54	108	0	27	216	
M.flexor digitorum sublimis	OUT027																12			12		0	0	12	0	0	12	Y
M.gastrocnemius	OUT029		18	18			36		18	18			36			17	18			35		0	53	54	0	0	107	
M.infraspinatus	OYS036	23	23	20	13	11	90	27	27	12	15	9	90		24	24	18	12	12	90		74	74	50	40	32	270	
M.latissimus dorsi	RIB041									9		9	18				18	9	9	36		0	0	27	9	18	54	
M.serratus ventralis thoracis	RIB078			4	9	7	20											9	9	18		0	0	4	18	16	38	
M.intercostales externus and internus	RIB137 y		18				18		18				18			18				18		0	54	0	0	0	54	Y
M.latissimus dorsi	RIB141 y		18				18		18				18			18				18		0	54	0	0	0	54	Y
M.latissimus dorsi	RIB241		18				18		18				18			18				18		0	54	0	0	0	54	Y
M.intercostales externus and internus	RIB337		20				20		18				18			18				18		0	56	0	0	0	56	Y
M.biceps femoris (syn. gluteobiceps)	RMP005	9	9		9	9	36	5	6		12	11	34		8	7		9	8	32		22	22	0	30	28	102	
M.gluteus accessorius	RMP030										11	1	12					7		7		0	0	0	18	1	19	
M.gluteus profundus	RMP032				9	9	18			3			3									0	0	3	9	9	21	
M.tensor fasciae latae	RMP087		6		6	6	18								4	5		7	2	18		4	11	0	13	8	36	
M.gluteus medius	RMP131	9	18		9	9	45	10	16		8	9	43		9	18		9	9	45		28	52	0	26	27	133	
M.gluteus medius	RMP231	9	18		9	9	45	3	15		9	9	36		4	18		7	7	36		16	51	0	25	25	117	
M.longissimus dorsi	STR045	67	36	72			175	72	36	72			180		36	67	36	18	18	175		175	139	180	18	18	530	
M.multifidi cervicis	STR049																17			17		0	0	17	0	0	17	Y
M.iliacus	TDR034	18					18	18					18		18					18		54	0	0	0	0	54	
M.psoas major	TDR062	12	36		12	12	72	3	36		7	12	58		9	34		9	8	60		24	106	0	28	32	190	
M.obliquus externus abdominis	TFL051			12	12	12	36			12	12	12	36				12	12	12	36		0	0	36	36	36	108	
M.obliquus internus abdominis	TFL052			12	12	12	36			12	12	12	36				12	12	12	36		0	0	36	36	36	108	
M.rectus abdominis	TFL064			12	12	12	36			12	11	12	35				12	12	12	36		0	0	36	35	36	107	
M.adductor femoris	TOP001			12	12	12	36			12	11	11	34				12	12	12	36		0	0	36	35	35	106	
M.gracilis	TOP033			36			36										36			36		0	0	72	0	0	72	
M.pectineus	TOP055				9	9	18											9	9	18		0	0	0	18	18	36	
M.semimembranosus	TOP073	18	36	72		18	144	17	34	67		17	135		18	36	72		18	144		53	106	211	0	53	423	┤┝
	TOTAL	242	580	924	293	264	2303	237	566	976	248	243	2270	2	207	626	1205	319	331	2688		686	1772	3105	860	838	7261	26

Further detail on the cooking methods utilised within the HAM code and muscle subdivisions is provided in *Table 7*. A greater breakdown of ageing periods by BIN group is available in *Table 8*. The variation in first ageing dates relates to the logistics of transport time to have meat available at UNE post kill and also to the extreme volume of samples fabricated. Where possible cuts known to have higher ageing rates were fabricated first to provide maximum ageing variation relative to the 28 day final benchmark.

After fabrication the CUD CutUpSheet files were processed to confirm all samples that were successfully prepared, identify any that were not obtained or modify any that were incorrectly cut or frozen on a different date. These files were then transferred by the final CUD software step into the AUSBlue database and marked Available enabling their selection for sensory testing.

Cut & HAM Collected	Cut Derivatives & HAM	MSA Code	-		H.A.M. Muscle Name	COOK CODES PREPARED
CHUCK 2260		CHK007	7		brachiocephalicus	SC2
		CHK041			latissimus dorsi	COM, SC2
	Neck chain 2460	CHK047	47		longus colli	SC2
Needs to be left on d	uring dressing	CHK048			multifidi cervicis	SC2
	cl l 12270	CHK056			pectoralis profundus	17 113
	Chuck crest 2278	CHK068 CHK074			rhomboideus	SC2, SVD
					semispinalis capitis	GRL, RST, SC2, SFR, SVD, YAK
		CHK078			serratus ventralis cervicis	COM, GRL, RST, SC2, SFR, SVD, YAK
		CHK081 CHK082			spinalis dorsi splenius	GRL, SC2, SFR, YAK SC2, SFR
					trapezius cervicalis	SC2, SFR
	Spare ribs 1695	CHK093 CHK137			intercostales externus and internus	COM, RST
	Chuck short ribs 1631	CHK137 CHK156			pectoralis profundus	COM, RST
	Chuck short ribs 1631/Chuck rib meat 1696	CHK178			serratus ventralis cervicis	COM, RST
		INT237			intercostales externus and internus	COM, RST
	Chuck rib meat 2640/chuck meat square 2645	СНК256			pectoralis profundus	COM, RST
	Chuck rib meat 2640/chuck meat square 2645	CHK278			serratus ventralis cervicis	COM, RST
		CHK337			intercostales externus and internus	COM, RST
CHUCK TENDER 2310	Chuck Tender 2310	CTR085			supraspinatus	COM, GRL, RST, SC2, SVD
BLADE 2300		BLD011			deltoideus	SC2, YAK
		BLD011 BLD041			latissimus dorsi	SC2
	Blade Undercut 2304	BLD084			subscapularis	SC2, SFR, YAK
		BLD088			teres major	GRL
	Bolar Blade 2302	BLD095			triceps brachii caput laterale	SC2, SFR, YAK
	Bolar Blade 2302	BLD096			triceps brachii caput longum	COM, GRL, RST, SC2, SFR, SVD, YAK
	Bolar Blade 2302	BLD097			triceps brachii caput mediale	SC2, SFR, SVD, YAK
OYSTER BLADE 2304	Oyster Blade 2304	OYS036			infraspinatus	COM, FLT, GRL, RST, SC2, SFR, SVD, YA
RIBSET 2223	Intercostals 2430	INT037			intercostales externus and internus	COM, RST, SC2, SFR
	Rib cap 2470	RIB041	41	М	latissimus dorsi	SC2, SFR, SVD, YAK
	Short rib meat 2465	RIB078	79	М	serratus ventralis thoracis	SC2, SFR, YAK
	Spare ribs 1695	RIB137			intercostales externus and internus	COM, RST
	Short ribs 1694	RIB141	41	М.	latissimus dorsi	COM, RST
		INT237	37	М.	intercostales externus and internus	COM, RST
	Rib meat square 2650	RIB241			latissimus dorsi	COM, RST
		RIB337	37	М.	intercostales externus and internus	COM, RST
BRISKET 2323		BRI056	56	М	pectoralis profundus	COM, RST, SC2, SFR, SVD, YAK
		BRI057	57	М	pectoralis superficialis	SC2, SFR, SVD, YAK
FQ Shin 1682	Shin/shank forequarter 1682/2360/2365/Group F	FQSHIN	Flexo	or/e	extensor muscle group surroundi	ng SC2, OSO
	Armbone shin 1685/ Shin special trim C conical muscle	FQS004	4	Μ	biceps brachii	SC2, SVD,
	Armbone shin 1685/ Shin special trim E	FQS006	6	М	brachialis	SC2, SVD,
TENDERLOIN 2150	Butt Tenderloin 2170	TDR034	34	М	iliacus	GRL
	Tenderloin 2150	TDR062	62	М	psoas major	COM, GRL, RST, SFR, YAK
STRIPLOIN 2140		STR045	45	Μ	longissimus dorsi	COM, GRL, RST, SC2, SFR, SVD, YAK
		STR048	48		multifidi cervicis	SC2
RUMP 2090	Rump Cap 2091	RMP005	5	М	biceps femoris (syn. gluteobiceps)	GRL, RST, SFR, YAK
		RMP030	30	М	gluteus accessorius	SFR, YAK
		RMP032	32	Μ	gluteus profundus	SC2, SFR, YAK
	Tri-Tip 2131	RMP087			tensor fasciae latae	GRL, RST, SFR, YAK
	Rostbiff 2110/D-Rump 2100 (sets grade for both)	RMP131			gluteus medius	COM, GRL, RST, SFR, YAK
	Rostbiff 2110	RMP231	_	_	gluteus medius	COM, GRL, RST, SFR, YAK
SILVERSIDE 2020	Outside Flat 2050/Outside meat 2033	OUT005	5		biceps femoris (syn. gluteobiceps)	COM, GRL, RST, SC2, SFR, SVD, YAK
				M	flexor Digitorum Superficialis	SC2
	FDS	OUT027				
	Heel Special Trim 2365 Group B	OUT029	29	М	gastrocnemius	COM, RST, SC2, SVD
EYE ROUND 2040		OUT029 EYE075	29 75	M	semitendinosus	COM, RST, SC2, SFR, SVD, YAK
EYE ROUND 2040 TOPSIDE 2000	Heel Special Trim 2365 Group B Eye Round 2040/Inside meat 2035	OUT029 EYE075 TOP001	29 75 1	M M	semitendinosus adductor femoris	COM, RST, SC2, SFR, SVD, YAK SC2, SFR, YAK
EYE ROUND 2040	Heel Special Trim 2365 Group B	OUT029 EYE075 TOP001 TOP033	29 75 1 33	M M M	semitendinosus adductor femoris gracilis	COM, RST, SC2, SFR, SVD, YAK SC2, SFR, YAK SC2, SVD
EYE ROUND 2040	Heel Special Trim 2365 Group B Eye Round 2040/Inside meat 2035 Topside Cap 2002	OUT029 EYE075 TOP001 TOP033 TOP055	29 75 1 33 55	M M M M	semitendinosus adductor femoris gracilis pectineus	COM, RST, SC2, SFR, SVD, YAK SC2, SFR, YAK SC2, SVD SFR, YAK
EYE ROUND 2040 TOPSIDE 2000	Heel Special Trim 2365 Group B Eye Round 2040/Inside meat 2035 Topside Cap 2002 Cap off Topside 2001/Inside meat 2035	OUT029 EYE075 TOP001 TOP033 TOP055 TOP073	29 75 1 33 55 73	M M M M	semilendinosus adductor femoris gracilis pectineus semimembranosus	COM, RST, SC2, SFR, SVD, YAK SC2, SFR, YAK SC2, SVD SFR, YAK COM, GRL, RST, SC2, SVD, YAK
EYE ROUND 2040	Heel Special Trim 2365 Group B Eye Round 2040/Inside meat 2035 Topside Cap 2002 Cap off Topside 2001/Inside meat 2035 M.rectus femoris 2067	OUT029 EYE075 TOP001 TOP033 TOP055 TOP073 KNU066	29 75 1 33 55 73 66	M M M M M	semilendinosus adduchor femoris gradilis pedineus semimembranosus reclus femoris	COM, RST, SC2, SFR, SVD, YAK SC2, SFR, YAK SC2, SVD SFR, YAK COM, GRL, RST, SC2, SVD, YAK COM, RST, SC2, SVD
EYE ROUND 2040 TOPSIDE 2000	Heel Special Trim 2365 Group B Eye Round 2040/Inside meat 2035 Topside Cap 2002 Cap off Topside 2001/Inside meat 2035 M.rectus femoris 2067 M.vastus intermedius 2069	OUT029 EYE075 TOP001 TOP033 TOP055 TOP073 KNU066 KNU098	29 75 1 33 55 73 66 98	M M M M M	semiendinosus adduchr femoris gradiis pectineus semimembranosus reclus femoris vastus intermedius	COM, RST, SC2, SFR, SVD, YAK SC2, SFR, YAK SC2, SVD SFR, YAK COM, GRL, RST, SC2, SVD, YAK COM, RST, SC2, SVD SC2, SVD SC2, SVD
EYE ROUND 2040 TOPSIDE 2000	Heel Special Trim 2365 Group B Eye Round 2040/Inside meat 2035 Topside Cap 2002 Cap off Topside 2001/Inside meat 2035 M.rectus femoris 2067	OUT029 EYE075 TOP001 TOP033 TOP055 TOP073 KNU066 KNU098 KNU099	29 75 1 33 55 73 66 98 99	M M M M M M	semiendinosus adducbr femoris gradiis pechieus semimembranosus rectus femoris vastus intermedius vastus laterratius	COM, RST, SC2, SFR, SVD, YAK SC2, SFR, YAK SC2, SVD SFR, YAK COM, GRL, RST, SC2, SVD, YAK COM, RST, SC2, SVD SC2, SFR COM, RST, SC2, SVD
EYE ROUND 2040 TOPSIDE 2000 KNUCKLE 2070	Heel Special Trim 2365 Group B Eye Round 2040/Inside meat 2035 Topside Cap 2002 Cap off Topside 2001/Inside meat 2035 M.rectus femoris 2067 M.vastus intermedius 2069 M. vastus lateralis 2068	OUT029 EYE075 TOP001 TOP033 TOP055 TOP073 KNU066 KNU098 KNU099 KNU100	29 75 1 33 55 73 66 98 99 100	M M M M M M M	semiendinosus adductor femoris gradiis pectineus semimembranosus rectus femoris vastus intermedius vastus intermedius vastus intermedias	COM, RST, SC2, SFR, SVD, YAK SC2, SFR, YAK SC2, SVD SFR, YAK COM, GRL, RST, SC2, SVD, YAK COM, RST, SC2, SVD SC2, SFR COM, RST, SC2, SVD, YAK SFR, YAK
EYE ROUND 2040 TOPSIDE 2000 KNUCKLE 2070	Heel Special Trim 2365 Group B Eye Round 2040/Inside meat 2035 Topside Cap 2002 Cap off Topside 2001/Inside meat 2035 M.rectus femoris 2067 M.vastus intermedius 2069 M. vastus lateralis 2068 External flank Plate 2204	OUT029 EYE075 TOP001 TOP033 TOP055 TOP073 KNU066 KNU098 KNU099 KNU100 TFL051	29 75 1 33 55 73 66 98 99 100 51	M M M M M M M M	semiendinosus adductor femoris graciis pectineus semimembranosus rectus femoris vastus intermedius vastus intermedius vastus ateralis obliquus externus abdominis	COM, RST, SC2, SFR, SVD, YAK SC2, SFR, YAK SC2, SVD SFR, YAK COM, GRL, RST, SC2, SVD, YAK COM, RST, SC2, SVD SC2, SFR COM, RST, SC2, SVD, YAK SFR, YAK SC2, SFR, YAK
EYE ROUND 2040 TOPSIDE 2000	Heel Special Trim 2365 Group B Eye Round 2040/Inside meat 2035 Topside Cap 2002 Cap off Topside 2001/Inside meat 2035 M.rectus femoris 2067 M.vastus intermedius 2069 M. vastus lateralis 2068 External flank Plate 2204 Internal Flank Plate 2203 & Flap Meat 2206	OUT029 EYE075 TOP001 TOP033 TOP055 TOP073 KNU066 KNU098 KNU099 KNU100 TFL051 TFL052	29 75 1 33 55 73 66 98 99 100 51 52	M M M M M M M M	semiendinosus adducbr femoris gradiis pecheus semimentbranosus rectus femoris vastus internedius vastus lateralis vastus lateralis obliguus externus abdominis	COM, RST, SC2, SFR, SVD, YAK SC2, SFR, YAK SC2, SVD SFR, YAK COM, GRL, RST, SC2, SVD, YAK COM, RST, SC2, SVD, YAK SC2, SFR COM, RST, SC2, SVD, YAK SC2, SFR SC4, YAK SFR, YAK SC2, SFR SC2, SFR, YAK SC2, SFR, YAK SC2, SFR, YAK
EYE ROUND 2040 TOPSIDE 2000 KNUCKLE 2070	Heel Special Trim 2365 Group B Eye Round 2040/Inside meat 2035 Topside Cap 2002 Cap off Topside 2001/Inside meat 2035 M.rectus femoris 2067 M.vastus intermedius 2069 M. vastus lateralis 2068 External flank Plate 2204	OUT029 EYE075 TOP001 TOP033 TOP055 TOP073 KNU066 KNU098 KNU099 KNU100 TFL051	29 75 1 33 55 73 66 98 99 100 51 52 64	M M M M M M M M M M	semiendinosus adductor femoris graciis pectineus semimembranosus rectus femoris vastus intermedius vastus intermedius vastus ateralis obliquus externus abdominis	COM, RST, SC2, SFR, SVD, YAK SC2, SFR, YAK SC2, SVD SFR, YAK COM, GRL, RST, SC2, SVD, YAK COM, RST, SC2, SVD SC2, SFR COM, RST, SC2, SVD, YAK SFR, YAK SC2, SFR, YAK

Table 7. Cooking methods utilised within muscle and source primal cut from 3 BIN cut collections

D			NORTH	ERN BIN				HEREFO	ORD BIN		А	NGUS B	IN
Days Aged	7	8	10	11	28	TOTAL	7	8	28	TOTAL	4	28	TOTA
BLD011			-		-			-		-	18	14	32
BLD041											18	18	36
BLD084		36				36	27		9	36	18	16	34
BLD088		34				34	18			18	16		16
BLD095		36				36	18		18	36	18	18	36
BLD096		59			13	72	48		24	72	36	36	72
BLD097		36				36	18		18	36	18	18	36
BRI056		72			36	108	83		52	135	81	63	144
BRI057		52			18	70	56		32	88	37	35	72
CHK007		52			10	70	50		52	00	16	11	27
							1			1	10	-11	21
CHK037				2		2	1			1			
CHK041		2		2		2	2			6	40	40	26
CHK047		3				3	2		4	6	18	18	36
CHK048				24	1	25	12		14	26	18	18	36
CHK056											9		9
CHK068		36			36	72	26		27	53	32	33	65
CHK074		35				35	26		10	36	32	32	64
CHK078		89				89	72		36	108	63	53	116
CHK081		36				36	24		12	36	18	18	36
CHK082		36				36	23		12	35	18	18	36
CHK093											18	18	36
CHK137		18				18	18			18	18		18
CHK156		9				9	9			9	9		9
CHK178		9				9	9			9	9		9
CHK256		9				9	9			9	9		9
CHK278		9				9	9			9	9		9
CHK337		16				16	18			18	18		18
		43		2	27	72			27	70	36	25	71
CTR085		45	5.4	Z	27		43		27			35	_
EYE075			54		17	71	54		18	72	37	33	70
FQS004			18			18	9		9	18	18	18	36
FQS006			17			17	8		9	17	18	18	36
FQSHIN	36					36	71			71	55		55
HQS059	18					18	9		9	18	12	16	28
HQSHIN	36					36	46		18	64	56		56
INT037		45				45	31			31	71		71
INT237		36				36	36			36	36		36
KNU066			36			36	36			36	20	16	36
KNU098			17			17	18			18	12	6	18
KNU099			57		5	62	39		18	57	36	27	63
KNU100			18			18	18			18	12	6	18
OUT005			54		18	72	50		22	72	42	30	72
OUT027											5	7	12
OUT029			36			36	36			36	23	12	35
OYS036		90	50			90	90			90	44	46	90
		90				90							
RIB041		20				20	18			18	24	12	36
RIB078		20				20					12	6	18
RIB137		18				18	18			18	18		18
RIB141		18				18	18			18	18		18
RIB241		18				18	18			18	18		18
RIB337		20				20	18			18	18		18
RMP005			36			36		34		34	16	16	32
RMP030								12		12	2	5	7
RMP032			18			18		3		3			
RMP087			18			18					11	7	18
RMP131	1		45			45		43		43	22	23	45
RMP231			45			45		36		36	17	19	36
STR045	121		-		54	175	108		72	180	103	72	175
STR049	1				5.		_30				8	9	17
TDR034			18			18	18			18	9	9	18
TDR054			72			72	58			58	32	28	60
TFL051		36	12			36	24		12	36	32 18	18	36
TFL052		36				36	24		12	36	18	18	36
TFL064		36				36	23		12	35	18	18	36
TOP001			36			36	34			34	18	18	36
TOP033			36			36					18	18	36
TOP055			18			18					12	6	18
TOP073			108		36	144	93		42	135	73	71	144
	_												
TOTAL	211	1046	757	28	261	2303	1592	128	548	2268	1610	1080	2690

Table 8. Ageing periods applied by muscle within three BIN cut collections

Days Aged			NORTH			TOTAL			ORD BIN		ANGUS BIN					
24,07.804	7	8	10	11	28	TOTAL	7	8	28	TOTAL	4	28	TOTA			
BLD011											18	14	32			
BLD041											18	18	36			
BLD084		36				36	27		9	36	18	16	34			
BLD088		34				34	18			18	16		16			
BLD095		36				36	18		18	36	18	18	36			
BLD096		59			13	72	48		24	72	36	36	72			
BLD097		36				36	18		18	36	18	18	36			
BRI056		72			36	108	83		52	135	81	63	144			
BRI057		52			18	70	56		32	88	37	35	72			
CHK007		52			10	70	50		52	00	16	11	27			
							4			4	10	11	21			
CHK037							1			1						
CHK041		_		2		2				-						
CHK047		3				3	2		4	6	18	18	36			
CHK048				24	1	25	12		14	26	18	18	36			
CHK056											9		9			
CHK068		36			36	72	26		27	53	32	33	65			
CHK074		35				35	26		10	36	32	32	64			
CHK078		89				89	72		36	108	63	53	116			
CHK081		36				36	24		12	36	18	18	36			
CHK082		36				36	23		12	35	18	18	36			
CHK093											18	18	36			
CHK137		18				18	18			18	18		18			
CHK157 CHK156		9				9	9			9	9		9			
CHK156 CHK178		9				9	9			9	9		9			
		9				9	9			9	9		9			
CHK256							-			-	-					
CHK278		9				9	9			9	9		9			
CHK337		16				16	18			18	18		18			
CTR085		43		2	27	72	43		27	70	36	35	71			
EYE075			54		17	71	54		18	72	37	33	70			
FQS004			18			18	9		9	18	18	18	36			
FQS006			17			17	8		9	17	18	18	36			
FQSHIN	36					36	71			71	55		55			
HQ\$059	18					18	9		9	18	12	16	28			
HQSHIN	36					36	46		18	64	56		56			
INT037		45				45	31			31	71		71			
INT237		36				36	36			36	36		36			
KNU066			36			36	36			36	20	16	36			
KNU098			17			17	18			18	12	6	18			
					5				10							
KNU099			57		5	62	39		18	57	36	27	63			
KNU100			18			18	18			18	12	6	18			
OUT005			54		18	72	50		22	72	42	30	72			
OUT027											5	7	12			
OUT029			36			36	36			36	23	12	35			
OYS036		90				90	90			90	44	46	90			
RIB041							18			18	24	12	36			
RIB078		20				20					12	6	18			
RIB137		18				18	18			18	18		18			
RIB141		18				18	18			18	18		18			
RIB241		18				18	18			18	18		18			
RIB337		20				20	18			18	18		18			
RMP005			36			36		34		34	16	16	32			
RMP000			33					12		12	2	5	7			
RMP030			18			18		3		3	~	5	· /			
								3		3	11	7	10			
RMP087			18			18		40		42	11	7	18			
RMP131			45			45		43		43	22	23	45			
RMP231			45			45		36		36	17	19	36			
STR045	121				54	175	108		72	180	103	72	175			
STR049											8	9	17			
TDR034			18			18	18			18	9	9	18			
TDR062			72			72	58			58	32	28	60			
TFL051		36				36	24		12	36	18	18	36			
TFL052		36				36	24		12	36	18	18	36			
TFL064		36				36	23		12	35	18	18	36			
TOP001			36			36	34			34	18	18	36			
TOP033			36			36	34			34	18	18	36			
TOP055			18		26	18			40	4.27	12	6	18			
TOP073			108		36	144	93		42	135	73	71	144			
TOTAL	211	1046	757	28	261	2303	1592	128	548	2268	1610	1080	2690			

3.1.3 Pick Design

Under MSA protocols (Gee, 2006) a "Pick" represents 42 consumer samples that are served to 60 consumers with each consumer being served 7 samples and each sample being assessed by 10 consumers. The first sample served to all consumers is designated a "Link" and designed to be a mid eating quality to align the consumers at a mid point on the scales. 10 consumers each taste a common link sample so that 6 of the 42 samples tested within a pick are links. The data from these is identified and while utilised in full to assess consumer characteristics is not mixed with subsequent sample data used for prediction modelling.

The principles involved in designing picks are described in Anon, 2008 with key aspects around the use of a 6x6 Latin square to control presentational order of 6 products, each comprising 6 samples. While the products are allocated to ensure a wide expected quality range the samples within product are selected to be as uniform as possible. As every consumer is served one sample from each product (but in balanced Latin square defined order) each consumer is expected to receive a discernible quality range.

Further detail is that consumers are paired with 5 GRL, RST or COM samples halved after cooking to serve 10 consumers or, in the case of SC2, SVD, OSO and SFR each pair served from the same sample bain marie pan at the same time. Yakiniku samples are individually cooked but also duplicated within pairs who are served in different groups.

Each of the 5 servings for any sample are in five different serving orders between 2 and 7 and within a different subset of 12 consumers, ensuring that all samples are distributed across the group and serving order in addition to fully balanced presentation at the product level.

A total of 183 consumer picks were designed with a majority entirely composed of BIN samples with some combined with other product collections to ensure linkage within the AUSBlue data.

3.1.4 Picking & Posting

Picking relates to the sorting of samples into picks as designated by the pick designs which utilise AUSBlue programs to select a sample, allocate to a product and then produce operational files to manage and record the sorting / picking process. These processes are further described by Gee (2006) and summarised by Anon (2008). When all samples have been confirmed as 'found', further software routines allocate the samples to their Latin square order and to individual consumers. The software also produces files from which to print labels used on the consumer questionnaires and plates together with files to check and process the results back into AUSBlue and the sensory files. This process was conducted for all the BIN product.

The process following picking varied with the cooking method. For SC2 and SVD samples the 42 bags (samples) selected moved directly to cooking with the cubes within each bag browned and cooked for 2 hours in a broth for SC2 or cooked directly for 2 hours in the bag using a water bath for SVD prior to transfer to 1/9th bain marie pans for serving. Some protocol modifications were developed to manage the SVD method and enable serving of paired SC2 and SVD samples within a common pick (group of consumers).

The RST and COM samples were transferred directly to cooking once picked as no further preparation was required.

The SFR and YAK samples were further processed by slicing the prepared sample blocks into 22 Stirfry pieces, notionally 10 x 10 x 75mm or to 20 Yakiniku slices notionally 20 x 50 x 4mm prior to cooking.

The GRL picks required a standard "Posting" process in which the 5 steaks within each sample were arranged into specific order and positions on 21 vacuum packed A4 Round Sheets to control cooking and serving order. To conduct a post, the 42 sample bags were laid out on a table in alphanumeric order adjacent to a vacuum packing machine and opened. A Round Sheet with 10 EQSref and matching Sequence numbers was placed within a plastic sleeve in turn within a 250 x 350mm vac bag and secured by the closed end to a clipboard. One person was then positioned with the clipboard and called one of the 10 EQSRef numbers. A second person positioned near the 42 open sample bags then located the EQSRef and called back the Sequence number. Once confirmed the sample bag was correct by the cross calling procedure a single steak (of 5) was passed to the caller and placed on top of the EQSRef printed on the Round sheet. This process was repeated until 10 steaks were located to ensure the steaks were held in position in the standard 3 - 4 - 3 orientation. The process was repeated until all 21 rounds were posted at which point all round sheets had 10 steaks and all 42 sample bags were empty.

This procedure was utilised to deliver the required presentational order. The Round sheets are laid against the grill during cooking in order from Round 1 to 7 for each group of 20 consumers within a pick. Following a timer the 10 steaks are transferred to the grill in a strict left to right, top to bottom pattern which maintains ID from raw to cooked.

4 Results

The result, as specified in the project objectives, was successfully achieved with the final milestone completed with the picking and posting of samples. The sensory testing and resulting data are reported within an associated project (L.EQT.1720) and have been of fundamental importance in developing the next generation MSA prediction model.

The project successfully identified and collected 26 muscles, not previously tested by MSA, together with dramatically expanding data on other muscles either not tested for a long period and/or with very low existing data. In all, 7,261 consumer samples were fabricated from up to 67 muscles, drawn from each of the 54 source cattle. Samples were prepared for paired evaluation of new cooking methods, to strengthen ageing data across muscles and to compare consumer response to selected cuts cooked on the bone relative to boneless.

5 Discussion

The scale and complexity of this project demanded detailed planning and extensive cooperation between multiple parties including the three BIN management groups, other research interests to be accommodated within each group, MSA staff, the abattoirs, UNE and contract staff. The need for extremely detailed muscle identification demanded highly skilled butchers, more akin to dissectionists, with the control of samples and preparation also well beyond more typical cut collection and fabrication projects.

The project could not have been successfully planned and delivered without engaging a highly experienced and motivated team over a three month period and their prioritising this work despite many other demands on their time. This dedication and commitment is appreciated.

The engagement of students, including a French graduate, is considered a benefit providing the opportunity for early career scientists and students to engage in highly complex research activity in conjunction with experienced senior researchers and industry experts. This should be of great value in building industry understanding and knowledge of experimental design and protocol delivery under challenging industry conditions.

Cooperation was excellent at all sites and the assistance of all parties is gratefully acknowledged.

6 Conclusions/recommendations

The project highlighted a number of challenges related to both scale and complexity. These were successfully met but relied heavily on a very experienced team from MSA and external contractors. The need for extremely detailed planning and communication with abattoir staff both before and during on plant activities was reinforced and should be noted as an essential component of any future similar project.

Some practical problems were realised which related to very large primal cuts being subdivided during packing due to carton size or programmed weight limits at the abattoir after the initial bagging. This required additional primal tickets and created challenges in "reassembling" the primal at UNE. In future, this could be reduced by either alternative packaging solutions or by cut reduction along muscle seams in a specified manner.

7 Key messages

Given this project related to the collection and preparation of consumer samples with results primarily to be used in MSA prediction modelling, the key messages relate to process rather than ultimate industry value, although they created a sound and critical base for ensuing research activity.

Key messages are:

- 54 cattle from 3 different BIN projects were utilised to provide a wide range of cattle types from which to collect primal cuts for MSA consumer sample fabrication. This countered the risk of individual muscle differences being confounded with specific cattle types or environments.
- 7,261 consumer samples, each to be evaluated by 10 consumers, were fabricated from up to 67 muscles collected from each carcase.
- Sample fabrication included 26 muscles not previously tested by MSA.
- Many other muscles with little existing or current data were also collected.
- Samples were prepared to enable testing of new MSA cook methods including sous-vide and moist heat (combi oven) roasting together with comparison of cooking on and off the bone with boneless shin compared to osso bucco and chuck and short rib portions cooked as a bone-in piece compared to paired boneless samples from the other carcase side.
- The extensive muscle linkage within animal provides extremely powerful data for use in prediction modelling and will be a major contributor to development of MSA models.

7.1 Bibliography

Anon (2005). Handbook of Australian Meat 7th Edition "International Red Meat Manual". AUS-MEAT Ltd. ISBN 0 9578793 69.

Anon (2008). Accessory Publication: MSA sensory testing protocols. Aust. J. Exper. Agric. 48(11), 1360-1367.

Butterfield, R.M and May N.D.S. (1966). Muscles of the Ox. University of Queensland Press., Brisbane, Australia.

Polkinghorne, R. and Gee, A. (2006). Protocol Book 1. Cut Up Developer (CUD) software for modelling consumer tests for MSA beef.

Gee, A. (2006). Protocol Book 3. Fabricating, freezing and storage of taste test samples of Beef for MSA Pathway trials.