



# final report

Project code: B.CCH.1039

Prepared by: Malcolm McPhee, Clare Edwards, and Roger Hegarty New South Wales Department of Primary Industries and The University of New England

Date published: February 2012

PUBLISHED BY Meat & Livestock Australia Limited Locked Bag 991 NORTH SYDNEY NSW 2059

# Managing carbon in livestock systems: modelling options for net carbon balance (UNE/I&I NSW)

Meat & Livestock Australia acknowledges the matching funds provided by the Australian Government to support the research and development detailed in this publication.

This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA.

#### Abstract

The new carbon faming initiative (CFI) has raised a number of issues in regards to how producers may determine on-farm methane (CH4) and nitrous oxide (N2O) emissions. This project has modelled emissions of the green house gases (GHG) CH4 and N20 from lamb production and evaluated a 'do now' emissions management strategy across 50 years of variable climate (1961-2011). A measure of emissions intensity (kg CO2e/kg live weight) of lamb production on the Northern Tablelands of Australia for low and high productivity landscapes has been evaluated. The Sustainable Grazing Systems (SGS) pasture model and GrassGro have been used to perform 50 year simulations and FarmGas, an inventory calculator, was used to calculate emissions over a 1 year period. Differences between packages in growth and emissions estimates exist. SGS, over 50 years, estimated 15,330 vs. 8.410 kg CO2e/year of enteric CH4 emissions and 4.08 vs. 4.86 kg/kg emissions intensity for high and low productivity landscapes, respectively; and 10.39 vs. 3.42 t CO2e/ha/year of N2O for high and low productivity landscapes, respectively. GrassGro, over 50 years, estimated 24,154 vs. 11,510 kg CO2e/year of enteric CH4 and 8.53 vs. 9.50 kg /kg emissions intensity for high and low productivity landscapes, respectively. FarmGas, over 1 year, estimated 20,823 vs. 10,229 kg CO2e/year of enteric CH4 and 5.43 vs. 6.04 kg/kg emissions intensity for high and low productivity landscapes, respectively; and 3,267 vs. 1,584 kg CO2e/year of N2O for high and low productivity landscapes, respectively with a total intensity of 6.28 vs. 6.97 for high and low productivity landscapes, respectively. In conclusion, total emissions are higher for high productivity landscapes but in terms of intensity, high productivity landscapes produce less CH4 per product produced on more highly productive landscapes. This finding was consistent across all emissions calculators used, but the magnitude of emissions and of emission intensities varied with the calculator used.

#### Executive summary

This project developed a simulation of lamb production on the Northern Tablelands of Australia using: (1) the Sustainable Grazing Systems (SGS) pasture model (www.imj.com.au/sgs); and (2) the GrassGro (Donnelly et al. 1998) decision support tool; and (3) A 1 year inventory of GHG using The FarmGas (Australia Farm Institute, 2010) inventory calculator. In each of the packages, where possible, the total amount of enteric methane (CH4) and nitrous oxide (N2O) has been estimated. In this study lamb live weight (LW) at point of sale (i.e. 24 weeks old) is used as the product produced. An emissions intensity [emissions per product produced (kg CO2e/kg LW)] is calculated for high and low productivity landscapes. Simulations were conducted over 50 years (01/09/1961 to 21/03/2010). Where appropriate the observed values collected from the Trevenna project (B.CHH.1033) have been compared to the predictions from the simulations.

#### Results

#### <u>SGS</u>

Mean lamb weights at 24 weeks of age over a 50 year simulation were estimated at 39.13 *versus* 36.02 kg for high and low productivity landscapes, respectively. Stock respiration (kg CO2e/year) (i.e. enteric CH4) was 15,330 vs. 8.410 for high and low productivity landscapes, respectively; and the emissions intensity was 4.08 vs. 4.86 kg CO2e/kg LW for high and low productivity landscapes, respectively. N20 was 10.39 vs. 3.42 t CO2e/ha/year for high and low productivity landscapes, respectively.

#### <u>GrassGro</u>

Over a 50 year simulation mean wether lamb weights at 24 weeks of age were estimated at 31.10 *vs.* 26.73 kg for high and low productivity landscapes, respectively and ewe lamb weights at 24 weeks of age were estimated at 27.87 *vs.* 23.74 kg for high and low productivity landscapes, respectively. Total enteric CH4 production was 24,154 *vs.* 11,510 kg CO2e/year for high and low productivity landscapes, respectively; and the emissions intensity was 8.53 *vs.* 9.50 kg CO2e/kg LW for high and low productivity landscapes, respectively.

#### <u>FarmGas</u>

Total enteric CH4 production was 20,823 *vs.* 10,229 kg CO2e/year for high and low productivity landscapes, respectively; and the emissions intensity 5.43 *vs.* 6.04 for high and low productivity landscapes, respectively. N20 emissions of 3,267 *vs.* 1,584 kg CO2e/year for high and low productivity landscapes, respectively. Total emissions intensity was therefore 6.28 *vs.* 6.97 kg CO2e/kg LW for high and low productivity landscapes, respectively.

#### Discussion on modelling

The 3 packages (SGS, GrassGro, and FarmGas) all provide some important baseline figures for the Northern Tablelands of Australia. Differences between all packages did occur with GrassGro having the highest CH4 estimates followed by FarmGas and then SGS. The GrassGro and FarmGas methods of estimating CH4 are based on the Blaxter & Clapperton (1965) empirical equation and the SGS model is based on energy in CH4 per gross energy intake of: forage 6% and concentrate 4%. Both methods rely heavily on intake and therefore if the models get intake wrong then subsequently the estimates will be wrong. As reported in B.CCH.1033 the observed values from the FTIR study were approx. 20 g CH4/head/day. The observed values therefore give some credence to the estimated values from the packages. All 3 packages can be used to estimate CH4 production provided good input data is supplied. Both SGS and FarmGas report N20 emissions but it is difficult to determine the accuracy of estimated N2O and further data collection of N2O is required before solid comparisons can be made.

#### Conclusions

A 'do now' management strategy of improving pasture productivity, simulated across 50 years of variable climate, can reduce the amount of  $CH_4$  emitted per unit of lamb produced. The Trevenna project (B.CCH.1033) demonstrated this 'do now' management strategy over a 2 year period. Both the SGS and GrassGro 50 year simulations demonstrated that emissions intensity of lamb from high productivity landscapes is less than from low productivity landscapes. However, variation in estimates of total CH4 emissions and of live weight of lambs occurred between simulations. The FarmGas calculations of total CH4 emissions between these 2 simulation packages and the FarmGas inventory calculator need to be evaluated. The differences in total enteric CH4 in the simulations may be attributed to the methods of calculating enteric CH4 (Table 8 footnote and Table 9 footnote).

The average observed lamb LW for the flocks ranged from 33 to 40 kg and 39 to 45 kg on the 4<sup>th</sup> April 2011 for low and high productivity landscapes. When simulated over 50 years it would be expected that the average over 50 years would be lower than the observed values in 2011 due to the excellent season in 2011. GrassGro results as mentioned above were lower than the SGS results.

Each package used in this study is quite different and the question the user is addressing will ultimately determine which package should be used. Techniques to measure CH4 and N2O in the paddock are still under development therefore actual estimates of CH4 and N2O are highly variable. Hence, when actual measurements are scarce, estimates of CH4 and N2O from the 3 packages can provide some important baseline figures for the Northern Tablelands of Australia.

Knowledge has been gained through the simulations and inventory calculation: (1) in terms of how much enteric CH4 is emitted; (2) the variability between packages; and (3) consistency of the emission intensity result when simulated across 50 years.

#### Recommendations

The SGS package is highly suitable for research scientists to gain insight into animal production systems and GrassGro is a valuable tool that can assist livestock officers make management decisions. The differences in the prediction of lamb live weights in SGS and GrassGro need further investigation. This study demonstrated a 'do now' management strategy and the data validated against observed data (01/09/2010 to 21/03/2011) provides a valuable data set that could be used in future simulation studies to test carbon farming initiative (CFI) methodologies. Significant improvements have already been made in predicting pasture species on the Northern Tablelands but further developments are required.

#### Table of contents

| Background                                                           | 6            |
|----------------------------------------------------------------------|--------------|
| Project objectives                                                   | 6            |
| Methodology                                                          | 6            |
| Methods                                                              | 6            |
| Trevenna Demonstration Site                                          | 6            |
| Data Collection                                                      | 7            |
| SGS                                                                  | 7            |
| GrassGro                                                             | 8            |
| FarmGas                                                              | 8            |
| Units                                                                | 8            |
| Measure of intensity                                                 | 8            |
| Results                                                              | 8            |
| SGS                                                                  | 8            |
| GrassGro                                                             | 8            |
| FarmGas                                                              | 9            |
| Conference and Symposium Papers                                      | 39           |
| References                                                           | 39           |
| Acknowledgements                                                     | 40           |
| Appendix 1                                                           | 40           |
| GrassGro Low Productivity Landscape                                  | 40           |
| GrassGro High Productivity Landscape                                 | 67           |
| SGS High Productivity Landscape Paddock FA2, Flock 5                 |              |
| SGS Low Productivity Landscape Paddock HB3, Flock 1                  | 102          |
| FarmGas Calculations for Low Productivity Landscape                  | 110          |
| FarmGas Calculations for High Productivity Landscape                 | 113          |
| Impacts of a two degree increase in temperature on pasture growth in | the Northern |
| Tablelands of New South Wales                                        | 116          |
|                                                                      |              |

#### Background

There is considerable interest nationally and internationally in reducing methane emissions from livestock. A practical demonstration of methane management strategies (B.CCH.1033) for the sheep industry was established at the University of New England (UNE) field site, Trevenna, Armidale, NSW. Project B.CCH.1033 collected data on green house gases (GHG) (CH4, N2O and CO2 fluxes) for both low and high productivity sheep production systems and demonstrated at field days the technologies used to estimate methane (e.g. FTIR, SF6 canisters, and estimates of CH4 from decision support tools (e.g. GrazFeed, GrasGro, SGS, and FarmGas)) and the intensity of production (CH4/unit of production). In addition to GHG, soil composition, pasture biomass (green and dead), botanical composition and production data were collected.

#### **Project objectives**

Use the data collected from the Trevenna sheep production demonstration site (B.CCH.1033) to:

- 1) Simulate over 50 years the pasture and sheep production system on the Northern Tablelands and compare actual measured values with simulated values where available using:
  - GrassGro (CSIRO), and
  - SGS (IMJ consultants)
- 2) Calculate inventory C budgets using:
  - FarmGas (Australian farm C budget model. Farm institute site), and

Outcomes:

- $\circ~$  A study comparing the estimates of CH<sub>4</sub> as CO<sub>2</sub> equivalents (CO<sub>2</sub>e) using GrassGro and SGS.
- $\circ$  Estimates of CH<sub>4</sub> (CO<sub>2</sub>e) and N20 (CO<sub>2</sub>e) using FarmGas.

#### Methodology

A 36-hectare demonstration site at Trevenna, University of New England, Armidale on the Northern Tablelands of New South Wales was established to give livestock producers a practical insight into the magnitude of carbon fluxes, especially methane (CH<sub>4</sub>), associated with crossbred lamb production. A replicated study over two years was established to compare animal productivity and emissions of low (3.7 DSE/ha) and high (6.7 DSE/ha) productivity landscapes. Data collected (soil, pasture, sheep production, and GHG) from the 1<sup>st</sup> year (10th Sept 2010– 4<sup>th</sup> April 2011) has been used to enter initial values into the simulation packages (SGS and GrassGro) and challenge simulated values with observed values i.e., ground truth the package so that producers and research scientists can gain confidence in the results from the simulation. The FarmGas calculator is a static calculation over a specified period and is easier to use than the simulation packages. Again the data collected from the Trevenna site (B.CCH.1033) was used to perform the FarmGas calculations. The results from SGS and GrassGro over a 50 year simulation and the results from FarmGas over 1 year were used to estimate total on-farm CH<sub>4</sub> emissions and the intensity of emissions per unit product. The unit of product in this study is lamb live weight at time of sale.

#### Methods

#### Trevenna Demonstration Site

The Trevenna demonstration site, located at the University of New England, on the Northern Tablelands of New South Wales (30° 30'S 151° 40' E) comprises 36 ha, split between high and low productivity systems. An overview of the site has been described by McPhee et al. (2010). The 'Trevenna' demonstration site has been subdivided into 18 paddocks: 9 allocated for high productivity improved pastures and 9 allocated for low productivity

predominately native pastures. The paddocks averaged 2ha ranging from 1.8-2.2 ha. Each landscape was classified into classes (A, B and C) based on an EM38 electromagnetic induction survey. Within each class 3 paddocks were allocated. There were 6 flocks: 3 high and 3 low productivity flocks. Flocks were rotationally grazed through 3 paddocks so that each flock had a turn in each landscape class (A, B and C). The high productivity flocks were stocked at 6.7 DSE/ha (i.e. 32 ewes and single lambs rotationally grazing 6ha) and the low productivity flocks were stocked at 3.7 DSE/ha (i.e. 16 ewes and single lambs rotationally grazing 6ha).

#### Data Collection

Data was collected to feed into the GrassGro and SGS decision support systems to estimate the amount of methane produced. Data collected was also used as inputs to the FarmGas (2010) greenhouse inventory calculator. The measurements taken include:

- Soil moisture measurements taken on a weekly basis. Measurements were taken using a Diviner moisture probe (Sentek Technologies, Sydney). The moisture probe used was a capacitance probe that uses the electrical conductivity of a soil to determine the moisture content (Thomas, 1966). The access tubes were located within one paddock of each land class within each landscape. The measurements were taken in 10cm increments to a depth of 50cm.
- Herbage mass measurements were undertaken on a monthly basis when the animals were rotated between paddocks. Pre and post grazing measurements were undertaken using the median quadrat technique (Bell, 2007). A scan of each quadrat was taken using a Crop Circle (Holland Scientific equipment model ACS210) scanner. The data from the observed values and the scans have been used to develop a Normalised Difference Vegetation Index (Trotter et al., 2010)
- Botanical compositions were conducted 4 times per year, once per season using the method described by Tothill et al. (1992).
- Lambs were weighed on a monthly basis, when mobs were rotated between paddocks. These monthly lamb weights were recorded using their National Livestock Identification System Radio Frequency Identification tag. Condition score, fleece weights, and quality of fleece were also recorded.

#### <u>SGS</u>

The SGS model (Johnson, 2003) was used to perform a 50 year simulation of high and low productivity sheep production systems. The soil parameters in the SGS model were stabilised over a 10 year period from 1960 to 1970 before a full 50 year simulation from 1960-2010 was conducted. Each of the 2 landscapes was modelled separately for 3 flocks on each landscape that was rotational grazed across 3 paddocks from 1<sup>st</sup> September to 10<sup>th</sup> April (Tables 1 to 4) and in 5 paddocks during winter (Tables 2 and 4) using the information recorded from the Trevenna site (McPhee at al., 2010; B.CCH.1033). Data used from the site included: herbage mass, species composition and stocking density. Tables 1 to 5 were used to set up the simulation and a sigmoidal animal growth curve was selected.

Within the SGS model supplementary feeding was established to begin feeding when ewes dropped below 40kg liveweight. Below this weight forage and concentrate supplements were fed at a rate calculated by the model to produce liveweight gains. The implementation of supplementary feeding within the SGS model occurred when the pasture quantity and quality was insufficient to maintain liveweight. Actual on-farm supplementary feeding was supplied to ewes as per the UNE animal ethics requirements.

The simulation was run using historical weather data for Armidale Airport Automatic Weather Station, NSW (30.5°S 151.6°E) (BOM, 2011). The initial pasture availability at the beginning of September 2010 was used as the starting herbage mass 1st September, 1960. The botanical composition assessment conducted in September was used as inputs to the SGS model. The soil nutrients and water values were used from the normalised values obtained in the 10 year scenario (1960-1970). Following the simulation the data produced was processed using the statistical package R. To ensure accuracy of the model the baseline simulation was run from the 1st September 2010 through to the 31<sup>st</sup> of March 2011. This enabled the predicted values from the simulation to be compared to the observed values of herbage mass, botanical composition, soil moisture and lamb weights.

#### <u>GrassGro</u>

The GrassGro decision support system was used to perform a 50 year simulation of high and low productivity sheep production systems. Parameter values were stabilised during the acceptability run over 50 years from 1960-2011. Each of the 2 landscapes were modelled separately based on 1 flock on low productivity (ewes n=48) and high productivity (ewes n=96) landscape that were rotational grazed across 3 paddocks from 1<sup>st</sup> September to 10<sup>th</sup> April (Tables 1 to 3; and Table 5) and in 1 paddock during winter (Tables 2 and 4) using the information available from the Trevenna site (B.CCH.1033). The GrassGro simulation was based on a notional stocking rate of 2 ewes and 1 ewe/ha for high and low productivity landscapes, respectively; the total number of hectares for each landscape was 48 ha (i.e, the winter paddock was adjusted so that the total area was 48 ha for each landscape). The observed data over a 9 month simulation was used to check that the simulated values were a reasonably good fit. Full details of inputs are provided in Appendix 1. The CH4 production/year was calculated in excel that used the mean CH4 output per ewe and lamb over the 50 year simulation for each landscape.

#### FarmGas

FarmGas was used to calculate an estimate of methane and N2O output. Seasonal averages were taken (e.g. weights of ewes and lambs across seasons; Note: seasonal values for pasture availability were also entered based off the estimated total and green pasture availability reported in Tables 17 to 32) and entered into FarmGas

#### <u>Units</u>

The units used in this study are CO2e: 1 g CH4 ~ 21 g CO2e; and 1 g N2O ~ 310 g CO2e. Note: authors acknowledge that these figures have changed i.e. 1 g CH4 ~ 25 g CO2e is the new CO2e but results in this study are based on the old CO2e.

#### Measure of intensity

The measure of intensity in this study is derived as kg CO2e per kg LW.

#### Results

#### <u>SGS</u>

The production data results are given in Table 7. Mean lamb weights over a 50 year simulation were estimated at 39.13 *versus* 36.02 kg for high and low productivity landscapes, respectively. GHG emissions are reported in Table 8. Enteric CH4 (kg CO2e/year) was 15,330 vs. 8.410 for high and low productivity landscapes, respectively; and the lamb intensity 4.08 vs. 4.86 for high and low productivity landscapes, respectively.

#### <u>GrassGro</u>

The production data and GHG emission results are given in Table 9. Over a 50 year simulation mean wether lamb weights were estimated at 31.10 *versus* 26.73 kg for high and

low productivity landscapes, respectively and ewe lamb weights were estimated at 27.87 *versus* 23.74 kg for high and low productivity landscapes, respectively. Total enteric CH4 production (calculated as shown in Table 10; reported in Table 9) was 24,154 vs. 11,510 kg CO2e/year for high and low productivity landscapes, respectively; and the lamb intensity 8.53 vs. 9.50 for high and low productivity landscapes, respectively.

#### FarmGas

The CH4 and N2O values calculated in FarmGas are reported in Table 12. Total enteric CH4 production (Table 12) was 20,823 vs. 10,229 kg CO2e/year for high and low productivity landscapes, respectively; and the lamb intensity 5.43 vs. 6.04 for high and low productivity landscapes, respectively. N20 emissions of 3,267 vs. 1,584 kg CO2e/year for high and low productivity landscapes, respectively. Total intensity was therefore 6.28 vs. 6.97 for high and low productivity landscapes, respectively.

| Low pro    | ductivity | High produc | tivity    |
|------------|-----------|-------------|-----------|
| Paddock    | Area (ha) | Paddock     | Area (ha) |
| HA1        | 1.8       | FA1         | 2.2       |
| HA2        | 1.8       | FA2         | 2.1       |
| HA3        | 2.0       | FA3         | 2.1       |
| HB1        | 1.8       | FB1         | 2.1       |
| HB2        | 1.9       | FB2         | 2.1       |
| HB3        | 2         | FB3         | 2.2       |
| HC1        | 1.8       | FC1         | 2.1       |
| HC2        | 1.9       | FC2         | 2.0       |
| HC3        | 2.0       | FC3         | 1.9       |
| Total area | 17.0      | Total area  | 18.8      |

Table 1. Area of paddocks for low and high productivity landscapes.

Table 2. Area of paddocks used for winter grazing and predominant pasture species.

| Paddock   | Area (ha) | Species                      |
|-----------|-----------|------------------------------|
| D1        | 5         | C3                           |
| D2        | 2.5       | C3                           |
| S1        | 2.1       | C3                           |
| McMillian | 6.1       | Fescue/Paspalum              |
| Millgate  | 20        | Fescue/Phalaris <sup>1</sup> |

1. Estimate of 1,300 kg DM/ha of improved pasture

**Table 3.** Ewe and lamb stock numbers for low and high productivity landscapes in year1.

|       | Low productivity |      | High pro | oductivity |
|-------|------------------|------|----------|------------|
| Month | Ewe              | Lamb | Ewe      | Lamb       |
|       |                  |      |          |            |
| Jan   | 48               | 45   | 96       | 94         |
| Feb   | 48               | 45   | 96       | 94         |
| Mar   | 48               | 45   | 96       | 94         |
| Apr   | 48               | 44   | 96       | 93         |
| May   | 48               | -    | 96       | -          |
| Jun   | 48               | -    | 96       | -          |
| Jul   | 48               | -    | 96       | -          |
| Aug   | 48               | -    | 96       | -          |
| Sep   | 48               | 45   | 96       | 94         |
| Oct   | 48               | 45   | 96       | 94         |
| Nov   | 48               | 45   | 96       | 94         |
| Dec   | 48               | 45   | 96       | 94         |

| Da       | ate     | Flock Paddock |               | Flock | Paddock       |
|----------|---------|---------------|---------------|-------|---------------|
| In       | Out     | Low           | Low           | High  | High          |
| 1 Sep    | 9 Oct   | 1,2,3         | HB3, HC3, HA2 | 4,5,6 | FC3, FB3, FA3 |
| 10 Oct   | 31 Oct  | 1,2,3         | HC2, HA1, HB1 | 4,5,6 | FA1, FC2, FB1 |
| 1 Nov    | 30 Nov  | 1,2,3         | HA3, HB2, HC1 | 4,5,6 | FB2, FA2, FC1 |
| 1 Dec    | 31 Dec  | 1,2,3         | HB3, HC3, HA2 | 4,5,6 | FC3, FB3, FA3 |
| 1 Jan    | 31 Jan  | 1,2,3         | HC2, HA1, HB1 | 4,5,6 | FA1, FC2, FB1 |
| 1 Feb    | 29 Feb  | 1,2,3         | HA3, HB2, HC1 | 4,5,6 | FB2, FA2, FC1 |
| 1 Mar    | 31 Mar  | 1,2,3         | HB3, HC3, HA2 | 4,5,6 | FC3, FB3, FA3 |
| Winter g | grazing |               |               |       |               |
| 1 Apr    | 15 Apr  | All flocks    | D1            |       |               |
| 16 Apr   | 27 Apr  | All flocks    | D2            |       |               |
| 28 Apr   | 5 May   | All flocks    | D1            |       |               |
| 6 May    | 8 May   | All flocks    | S1            |       |               |
| 9 May    | 29 May  | All flocks    | McMillian     |       |               |
| 30 May   | 7 Aug   | All flocks    | Millgate      |       |               |
| 8 Aug    | 31 Aug  | All flocks    | D1            |       |               |

**Table 4.** Movement dates for flocks between paddocks across the low and high productivity landscapes

Table 5. Soil parameter values used in SGS simulations

| Variable                | Value                |
|-------------------------|----------------------|
| Soil                    |                      |
| Bulk Density            | 1.3q/cm <sup>3</sup> |
| Saturated point         | 48% of Volume        |
| Field Capacity          | 35% of Volume        |
| Permanent Wilting point | 16% of Volume        |

 Table 6. Soil parameter values used in GrassGro simulations

|                                                         | Low productivity |         | High pro | ductivity |
|---------------------------------------------------------|------------------|---------|----------|-----------|
|                                                         | Topsoil          | Subsoil | Topsoil  | Subsoil   |
| Cummulative depth (mm)                                  | 300              | 700     | 200      | 900       |
| Water content at F.C. (m <sup>3</sup> .m <sup>3</sup> ) | 0.27             | 0.30    | 0.27     | 0.30      |
| Water content at W.P. (m <sup>3</sup> .m <sup>3</sup> ) | 0.13             | 0.20    | 0.13     | 0.20      |
| Bulk density<br>(Mg/m3)                                 | 1.40             | 1.70    | 1.20     | 1.50      |
| Sat.hyd.conductivity<br>(mm/hr)                         | 30.00            | 3.00    | 30.00    | 10.00     |
| Initial water content (m <sup>3</sup> .m <sup>3</sup> ) | 0.15             | 0.23    | 0.15     | 0.23      |
| Soil evap.                                              | 3.3              | -       | 3.3      | -         |
| Soil albedo                                             | 0.17             | -       | 0.17     | -         |

**Table 7.** Mean values of production data over a 50 year SGS simulation for high and low productivity landscapes; mean  $(\pm SD)$ 

|                                    | High<br>Productivity | Low<br>Productivity |
|------------------------------------|----------------------|---------------------|
| Total Intake, kg/d/animal          | 0.97                 | 1.14                |
|                                    | (0.21)               | (0.10)              |
| ME past intake, MJ/d               | 10.61                | 11.70               |
|                                    | (2.22)               | (0.48)              |
| Ewe wt, kg                         | 49.79                | 49.82               |
| -                                  | (0.430               | (0.55)              |
| Lamb wt, kg                        | 39.13                | 36.02               |
|                                    | (0.92)               | (1.57)              |
| CW, kg                             | 17.33                | 16.03               |
|                                    | (0.39)               | (0.66)              |
| % live intake                      | 88.62                | 88.87               |
|                                    | (8.63)               | (8.49)              |
| % dead intake                      | 11.38                | 11.13               |
|                                    | (8.63)               | (8.49)              |
| Greasy fleece sheared: (kg/animal) | 2.45                 | 2.45                |
|                                    | (0.02)               | (0.02)              |

|                                                               | High         | Low          |
|---------------------------------------------------------------|--------------|--------------|
|                                                               | Productivity | Productivity |
| C fixed: (tC/ha/year)                                         | 154.22       | 127.28       |
|                                                               | (15.94)      | (13.66)      |
| C fixed: (tCO2e/ha/year)                                      | 565.47       | 466.7        |
|                                                               | (58.46)      | (50.09)      |
| Soil C fixed: (tC/ha/year)                                    | 139          | 103.89       |
|                                                               | (26.14)      | (23.01)      |
| Soil C fixed: (tCO2e/ha/year)                                 | 509.66       | 380.93       |
|                                                               | (95.88)      | (84.35)      |
| Soil C respiration: (tC/ha/year)                              | 136.57       | 103.08       |
|                                                               | (23.15)      | (19.41)      |
| Soil C respiration: (tCO2e/ha/year)                           | 500.77       | 377.96       |
|                                                               | (84.88)      | (71.17)      |
| N2O emission: (kgN/ha/year)                                   | 21.32        | 7.03         |
|                                                               | (7.21)       | (3.07)       |
| N2O emission: (tCO2e/ha/year) <sup>1</sup>                    | 10.39        | 3.43         |
|                                                               | (3.51)       | (1.49)       |
| Stock CO2 respiration: (tC/ha/year)                           | 9.83         | 5.08         |
|                                                               | (0.68)       | (0.31)       |
| Stock CO2 respiration: (tCO2e/ha/year)                        | 36.06        | 18.63        |
|                                                               | (2.46)       | (1.13)       |
| Stock CH4 respiration: (tC/ha/year)                           | 0.55         | 0.28         |
|                                                               | (0.04)       | (0.02)       |
| Stock CH4 respiration: (kg CO2e/year) <sup>2</sup>            | 15,330       | 8,410        |
| 2                                                             | (1.06)       | (0.54)       |
| Emissions intensity <sup>3</sup> (kg CO <sub>2</sub> e/kg LW) | 4.08         | 4.86         |
|                                                               | (-)          | (-)          |

**Table 8.** Mean values of GHG emissions over a 50 year SGS simulation for high andlow productivity landscapes; mean (±SD)

 Observed values in Autumn = 1.49 and 0.37 kg CO2e/ha/day on high and low productivity landscapes, respectively in Autumn; 0.97 kg and 0.074 kg CO2e/ha/day on high and low productivity landscapes, respectively in Winter (See BCCH 1033 report for more detail). Based on 310 CO2e = 1 g N2O.

 Equates to calculations based on energy in CH4 per gross energy intake of; forage 6%; concentrate 4%; equates to 19.89 and 13.26 g CH4 (kg d.wt intake)<sup>-1</sup>. Based on 1 g CH4 ~ 21 g CO2e

3. Intensity calculated as total stock CH4 respiration/(no lambs x lamb wts given in Table 7 above).

**Table 9.** Mean values of production data and GHG emissions over a 50 year GrassGro simulation for high and low productivity landscapes; mean (±SD)

|                                                           | High         | Low          |
|-----------------------------------------------------------|--------------|--------------|
|                                                           | Productivity | Productivity |
| Methane production main flock <sup>1</sup> (g/head/d)     | 24.52        | 23.86        |
|                                                           | (3.98)       | (3.53)       |
| Methane production Young sheep (g/head/d)                 | 16.43        | 14.68        |
|                                                           | (10.43)      | (9.34)       |
| Feed budget (Animal intake) <sup>2</sup> (kg/head/d)      | 1.34         | 1.18         |
|                                                           | (0.97)       | (0.37)       |
| Total ME intake (MJ/head)                                 | 10.44        | 9.93         |
|                                                           | (2.58)       | (2.16)       |
| Available herbage <sup>3</sup> (Green DM (P1)) (kg/ha)    | 2288.13      | 1002.50      |
|                                                           | (946.95)     | (369.75)     |
| Available herbage <sup>3</sup> (Dead+Litter (P1)) (kg/ha) | 4193.02      | 1732.81      |
| 2                                                         | (900.49)     | (358.35)     |
| Digestibility <sup>3</sup> (Green (P1)) (%)               | 56.48        | 58.28        |
|                                                           | (4.93)       | (5.57)       |
| Total animal methane <sup>4</sup> (kg CO₂e/year)          | 24,154       | 11,510       |
|                                                           | (-)          | (-)          |
| Sale weight (Wether Lambs) (kg)                           | 31.10        | 26.73        |
|                                                           | (-)          | (-)          |
| Sale weight (Ewe Lambs) (kg)                              | 27.87        | 23.74        |
| F                                                         | (-)          | (-)          |
| Lamb intensity <sup>°</sup> (kg CO <sub>2</sub> e/kg LW)  | 8.53         | 9.50         |
|                                                           | (-)          | (-)          |

 Estimate of methane based on Blaxter & Clapperton (1965) empirical equation

2. Notational stocking rate = 2 and 1/ha for high and low productivity landscapes, respectively, with 48ha total area across all paddocks for each landscape.

3. Only 1 of 4 paddocks reported

- 4. Total stock methane ((kg  $CO_2e$ /year) was calculated using the methane production values of main flock and young sheep reported in this table. A spread sheet calculated values for 3 within landscape classes and a winter paddock fro each landscape; total area = 48 ha (See Table 10)
- Intensity calculated as total animal methane/[no lambs x (avg of wether and lamb wts)]. Note total animal methane = no of ewes x CH<sub>4</sub> output of ewes + no. lambs x CH<sub>4</sub> output of lambs.

**Table 10.** Excel calculations for calculating total (T) stock methane emissions in kg CO2e across landscapes (LS) (low and high productivity) within landscape classes (A,B, and C) and during autumn/winter (W) grazing, for ewe (E) and lamb (L) numbers based off mean methane output (g/head) simulated over 50 years in GrassGro

|     |         |      |      |          |              | CH4 (g | /head) |         |                    | Total       |              |                     |
|-----|---------|------|------|----------|--------------|--------|--------|---------|--------------------|-------------|--------------|---------------------|
| LS  | Pdk     | ha   | days | Ewes (n) | Lambs<br>(n) | Е      | L      | g CH4   | (kg<br>CH4/<br>ha) | CO2e<br>(g) | (kg<br>CO2e) | (kg<br>CO2e)<br>/ha |
| Lov | v Prod  |      |      |          |              |        |        |         |                    |             |              |                     |
| Α   | HA3     | 5.6  | 59   | 48       | 48           | 23.86  | 14.68  | 109,145 | 19                 | 21          | 2,292        | 409                 |
| в   | HB3     | 5.7  | 71   | 48       | 48           | 23.86  | 14.68  | 131,344 | 23                 | 21          | 2,758        | 484                 |
| С   | HC3     | 5.7  | 53   | 48       | 48           | 23.86  | 14.68  | 98,046  | 17                 | 21          | 2,059        | 361                 |
|     | W       | 31   | 183  | 48       | 0            | 23.86  |        | 209,586 | 7                  | 21          | 4,401        | 142                 |
| т   |         | 48   | 366  |          |              |        |        |         | 66                 |             | 11,511       | 1,396               |
|     | High Pr | od   |      |          |              |        |        |         |                    |             |              |                     |
| Α   | FA3     | 6.4  | 59   | 96       | 96           | 24.52  | 16.43  | 231,941 | 36                 | 21          | 4,871        | 761                 |
| в   | FB3     | 6.4  | 71   | 96       | 96           | 24.52  | 16.43  | 279,115 | 44                 | 21          | 5,861        | 916                 |
| С   | FC3     | 6    | 53   | 96       | 96           | 24.52  | 16.43  | 208,354 | 35                 | 21          | 4,375        | 729                 |
|     | W       | 29.2 | 183  | 96       | 0            | 24.52  |        | 430,767 | 15                 | 21          | 9,046        | 310                 |
| Т   |         | 48   | 366  |          |              |        |        |         | 129                |             | 24,154       | 2,716               |

**Table11.** Weights of ewes and lambs across seasons for low and high productivity landscapes.

|        | Low          |      | High         |       |
|--------|--------------|------|--------------|-------|
|        | productivity |      | productivity |       |
| Season | Ewe          | Lamb | Ewe          | Lamb  |
| Spring | 42.33        | 16.9 | 44.98        | 16.71 |
| Summer | 43.46        | 29.0 | 45.08        | 31.35 |
| Autumn | 47.55        | 35.3 | 47.55        | 39.97 |
| Winter | 40.92        |      | 41.11        |       |

**Table 12.** Annual (1 Sept 2010 to 30 August 2011) Methane (CH4) and Nitrous Oxide (N20) values calculated using FarmGas

|                                              | High         | Low          |
|----------------------------------------------|--------------|--------------|
|                                              | Productivity | Productivity |
| Total CH4 (kg CO2e)                          | 20,823       | 10,229       |
| Total CH4 (CO2e/ha)                          | 1,108        | 602          |
| Total CH4 (CO2e/DSE)                         | 92           | 91           |
| Total CH4 (CO2e/ewe)                         | 217          | 218          |
| N20 (kg CO2e)                                | 3,267        | 1,584        |
| N20 (CO2e/ha)                                | 174          | 93           |
| N20 (CO2e/DSE)                               | 14           | 14           |
| N20 (CO2e/ewe)                               | 34           | 34           |
| Total (kg CO2e)                              | 24,094       | 11,815       |
| Total (CO2e/ha)                              | 1,282        | 695          |
| Total (CO2e/DSE)                             | 107          | 105          |
| Total (CO2e/ewe)                             | 251          | 251          |
| CH4 Intensity <sup>1</sup> (kg CO2e/kg LW)   | 5.43         | 6.04         |
| Total Intensity <sup>2</sup> (kg CO2e/kg LW) | 6.28         | 6.97         |

1. Intensity calculated as total CH4 from stock/(no lambs x lamb wts given in Table # above).

2. Intensity calculated as total (CH4 from stock plus N20)/(no lambs x lamb wts given in Table 11 above).

**Table 13.** Observed pasture for total herbage mass (THM) green herbage mass(GHM), dead herbage mass (DHM), and ratio of green to dead (RGT) acrosslandscapes at pasture assessment dates in year 1 from September to March; mean $(\pm SD)$ .

|            |        | Low pro | ductivity |          | - | High productivity |        |        |        |
|------------|--------|---------|-----------|----------|---|-------------------|--------|--------|--------|
| Date       | THM    | GHM     | DHM       | RGT      |   | THM               | GHM    | DHM    | RGT    |
| 8.09.2010  | 4911   | 184     | 4727      | 0.04     |   | 2988              | 1359   | 1629   | 0.49   |
|            | (1353) | (192)   | (1407)    | ( 0.05 ) |   | (801)             | (814)  | (1097) | (0.28) |
| 18.10.2010 | 3765   | 757     | 3088      | 0.2      |   | 2274              | 1981   | 293    | 0.84   |
|            | (1453) | (972)   | (1627)    | ( 0.28 ) |   | (940)             | (1098) | (511)  | (0.26) |
| 9.11.2010  | 5382   | 2936    | 2446      | 0.58     |   | 7330              | 6617   | 713    | 0.9    |
|            | (1444) | (1393)  | (1899)    | (0.29)   |   | (3039)            | (2910) | (790)  | (0.09) |
| 7.12.2010  | 6033   | 1193    | 4841      | 0.2      |   | 8793              | 3690   | 5103   | 0.45   |
|            | (1343) | (1080)  | (1580)    | (0.17)   |   | (3125)            | (3124) | (4208) | (0.36) |
| 1.02.2011  | 5077   | 1160    | 3917      | 0.23     |   | 6881              | 1271   | 5610   | 0.19   |
|            | (1601) | (810)   | (1443)    | (0.13)   |   | (1395)            | (691)  | (1380) | (0.11) |
| 9.03.2011  | 5147   | 1526    | 3621      | 0.3      |   | 6362              | 2017   | 4345   | 0.29   |
|            | (1413) | (978)   | (1390)    | (0.16)   |   | (1983)            | (1533) | (1083) | (0.17) |

**Table 14.** Pasture quality of green biomass in year 1 across paddocks at selected dates

|          |     |     |      |     |      | ME     |
|----------|-----|-----|------|-----|------|--------|
|          |     | NDF | CP   | DMD | DOMD | (MJ/kg |
| Date     | Pdk | (%) | (%)  | (%) | (%)  | DM)    |
| 18/10/10 | FA1 | 51  | 16.7 | 69  | 65   | 10.2   |
| 18/10/10 | FA3 | 56  | 13.8 | 66  | 63   | 9.7    |
| 18/10/10 | FB1 | 49  | 11.9 | 77  | 72   | 11.6   |
| 18/10/10 | FB3 | -   | -    | -   | -    | -      |
| 18/10/10 | FC2 | 53  | 18.7 | 65  | 62   | 9.5    |
| 18/10/10 | HA1 | 55  | 12.1 | 63  | 60   | 9.2    |
| 18/10/10 | HA2 | 49  | 16.4 | 75  | 71   | 11.4   |
| 18/10/10 | HB1 | 54  | 11.1 | 67  | 63   | 9.9    |
| 18/10/10 | HB3 | 52  | 16.8 | 65  | 62   | 9.6    |
| 18/10/10 | HC2 | 49  | 16.6 | 59  | 57   | 8.5    |
| 18/10/10 | HC3 | 55  | 13   | 63  | 60   | 9.3    |
| 1/02/11  | FA2 | 55  | 13.8 | 58  | 56   | 8.3    |
| 1/02/11  | FB1 | 61  | 12.8 | 53  | 52   | 7.5    |
| 1/02/11  | FC1 | 57  | 16.4 | 62  | 59   | 9      |
| 1/02/11  | FC2 | 64  | 11.6 | 58  | 56   | 8.3    |
| 1/02/11  | HA1 | 62  | 8    | 52  | 51   | 7.4    |
| 1/02/11  | HB1 | 61  | 5.8  | 52  | 51   | 7.3    |
| 1/02/11  | HC1 | 53  | 8.1  | 59  | 57   | 8.5    |
| 1/02/11  | HC2 | 60  | 3.6  | 55  | 53   | 7.8    |
| 9/03/11  | FA2 | 59  | 19.2 | 59  | 57   | 8.5    |
| 9/03/11  | FA3 | 59  | 12.9 | 56  | 55   | 8.1    |
| 9/03/11  | FB2 | 56  | 19.1 | 60  | 58   | 8.7    |
| 9/03/11  | FB3 | 54  | 15.6 | 61  | 59   | 8.9    |
| 9/03/11  | FC1 | 62  | 15.6 | 56  | 54   | 8      |
| 9/03/11  | FC3 | 53  | 16.1 | 62  | 59   | 9      |
| 9/03/11  | HA3 | 65  | 7.8  | 56  | 54   | 8      |
| 9/03/11  | HB2 | 64  | 7.1  | 53  | 51   | 7.4    |
| 9/03/11  | HC1 | 66  | 6    | 55  | 53   | 7.8    |

**Table 15.** Pasture quality of dead biomass in year 1 across paddocks at selected dates

|          |     |     |      |     |      | ME     |
|----------|-----|-----|------|-----|------|--------|
|          |     | NDF | CP   | DMD | DOMD | (MJ/kg |
| Date     | Pdk | (%) | (%)  | (%) | (%)  | DM)    |
| 18/10/10 | FA1 | -   | -    | -   | -    | -      |
| 18/10/10 | FA3 | 64  | 8.1  | 59  | 57   | 8.5    |
| 18/10/10 | FB1 | 73  | 6.2  | 39  | 39   | 4.9    |
| 18/10/10 | FB3 | 59  | 9.5  | 57  | 55   | 8.3    |
| 18/10/10 | FC2 | 73  | 8.3  | 43  | 43   | 5.7    |
| 18/10/10 | HA1 | 74  | 5.9  | 40  | 41   | 5.3    |
| 18/10/10 | HA2 | -   | -    | -   | -    | -      |
| 18/10/10 | HB1 | 67  | 7.9  | 44  | 44   | 6      |
| 18/10/10 | HB3 | 68  | 8.9  | 42  | 42   | 5.5    |
| 18/10/10 | HC2 | 76  | 6.2  | 39  | 38   | 4.3    |
| 18/10/10 | HC3 | -   | -    | -   | -    | -      |
| 1/02/11  | FA2 | 73  | 5    | 41  | 42   | 5.5    |
| 1/02/11  | FB1 | 78  | 7    | 41  | 41   | 5.4    |
| 1/02/11  | FC1 | 69  | 8.9  | 46  | 45   | 6.2    |
| 1/02/11  | FC2 | 68  | 8.8  | 44  | 44   | 6      |
| 1/02/11  | HA1 | 71  | 3.9  | 39  | 40   | 5.1    |
| 1/02/11  | HB1 | 69  | 4.8  | 44  | 44   | 5.9    |
| 1/02/11  | HC1 | 52  | 6.1  | 51  | 50   | 7.1    |
| 1/02/11  | HC2 | 63  | 4.2  | 45  | 45   | 6.1    |
| 9/03/11  | FA2 | 71  | 12.5 | 47  | 46   | 6.4    |
| 9/03/11  | FA3 | 68  | 9.8  | 50  | 49   | 7      |
| 9/03/11  | FB2 | 71  | 12.5 | 45  | 45   | 6.2    |
| 9/03/11  | FB3 | 58  | 13.5 | 54  | 52   | 7.6    |
| 9/03/11  | FC1 | 68  | 11.5 | 42  | 43   | 5.7    |
| 9/03/11  | FC3 | 70  | 10.8 | 45  | 45   | 6      |
| 9/03/11  | HA3 | 67  | 7.3  | 46  | 46   | 6.3    |
| 9/03/11  | HB2 | 70  | 5.9  | 46  | 46   | 6.4    |
| 9/03/11  | HC1 | 69  | 5.4  | 47  | 46   | 6.4    |

| Date      | Feed | DM<br>(%) | NDF<br>(%) | ADF<br>(%) | CP<br>(%) | IOA<br>(%) | OA<br>(%) | DMD<br>(%) | DOMD<br>(%) | ME<br>(MJ/<br>kg<br>DM) | CF<br>(%) |
|-----------|------|-----------|------------|------------|-----------|------------|-----------|------------|-------------|-------------------------|-----------|
| Year 1    |      |           |            |            |           |            |           |            |             |                         |           |
| 05-Aug-10 | LH   | 86.1      | 47         | 32         | 21.1      | 9          | 91        | 62         | 59          | 9                       | -         |
| 05-Aug-10 | FB   | 92.4      | 14         | 7          | 25.3      | 4          | 96        | 85         | 84          | 12.9                    | 1.4       |
| 07-Sep-10 | LH   | 87.7      | 44         | 31         | 22.2      | 10         | 90        | 67         | 64          | 10                      | -         |
| Year 2    |      |           |            |            |           |            |           |            |             |                         |           |
| 23-Aug-11 | LU   | 92.0      | 38         | 18         | 37        | 4          | 96        | 82         | 81          | 14.6                    | 9.3       |

 Table 16. Supplementary feed quality of lucerne hay (LH), faber beans (FB), and lupins (LU) fed to ewes in year 1 and year2

Tables 10 to 25 provide details of pasture biomass (total, green, and dead) at sampling dates based on botanical composition sampling dates for each paddock within a sample class.

**Table 17.** Total herbage biomass (THM) and green herbage biomass (GHM) based on Normalized Difference Vegetation Index (**NDVI**) conversion to biomass (kg DM/ha), botanical composition (01.09.2010) across species for paddocks (1 to 3) within land classes A, B, and C on low productivity landscapes (i.e., on the hills (H)) sampled 29.08.2010

|           | B.Comp     |       | Р   | asture E | Biomas | S     |     |  |
|-----------|------------|-------|-----|----------|--------|-------|-----|--|
|           | (%)        |       |     | (kg Dl   | M/ha)  |       |     |  |
|           | Land class | HA    | \1  | HA       | 2      | HA    | 3   |  |
| Species   | Α          | THM   | GHM | THM      | GHM    | THM   | GHM |  |
| C3 Native | 59         | 7876  | 315 | 7434     | 297    | 7567  | 303 |  |
| C4 Native | 37         | 4940  | 198 | 4662     | 186    | 4745  | 190 |  |
| P.Rye     | 2          | 267   | 11  | 252      | 10     | 256   | 10  |  |
| Other     | 2          | 267   | 11  | 252      | 10     | 256   | 10  |  |
| Total     | 100        | 13350 | 534 | 12600    | 504    | 12825 | 513 |  |
|           | Land class | HE    | 81  | HE       | 32     | HB3   |     |  |
| Species   | В          | THM   | GHM | THM      | GHM    | THM   | GHM |  |
| C3 Native | 61         | 8723  | 349 | 8235     | 329    | 6481  | 259 |  |
| C4 Native | 21         | 3003  | 120 | 2835     | 113    | 2231  | 89  |  |
| Other     | 18         | 2574  | 103 | 2430     | 97     | 1912  | 76  |  |
| Total     | 100        | 14300 | 572 | 13500    | 540    | 10625 | 425 |  |
|           | Land class | HC    | :1  | НС       | 2      | HC    | 3   |  |
| Species   | С          | THM   | GHM | THM      | GHM    | THM   | GHM |  |
| C3 Native | 18         | 3938  | 158 | 2578     | 103    | 2925  | 117 |  |
| C4 Native | 55         | 12031 | 481 | 7879     | 315    | 8938  | 358 |  |
| Phalaris  | 2          | 438   | 18  | 286      | 11     | 325   | 13  |  |
| Other     | 24         | 5250  | 210 | 3438     | 138    | 3900  | 156 |  |
| Annual    | 1          | 219   | 9   | 143      | 6      | 162   | 6   |  |
| Total     | 100        | 21875 | 875 | 14325    | 573    | 16250 | 650 |  |

**Table 18.** Total herbage biomass (THM) and green herbage biomass (GHM) based on NDVI conversion to biomass (kg DM/ha), botanical composition (01.09.2010) across species for paddocks (1 to 3) within land classes A, B, and C on high productivity landscapes (i.e., on the flats (F)) sampled 29.08.2010

|              | B.Comp     |      | Pa   | asture | Bioma | SS   |      |
|--------------|------------|------|------|--------|-------|------|------|
|              | (%)        |      |      | (kg D  | M/ha) |      |      |
|              | Land class | F۸   | 41   | F      | A2    | F۸   | 43   |
| Species      | Α          | THM  | GHM  | THM    | GHM   | THM  | GHM  |
| C3 Native    | 2          | 73   | 36   | 83     | 41    | 97   | 47   |
| C4 Native    | 1          | 37   | 18   | 42     | 20    | 48   | 24   |
| P Rye        | 93         | 3401 | 1667 | 3878   | 1900  | 4496 | 2203 |
| White Clover | 3          | 110  | 54   | 125    | 61    | 145  | 71   |
| Other        | 1          | 37   | 18   | 42     | 20    | 48   | 24   |
|              | 100        | 3657 | 1792 | 4169   | 2043  | 4835 | 2369 |
|              | Land class | FI   | 31   | FI     | B2    | FI   | B3   |
| Species      | В          | THM  | GHM  | THM    | GHM   | THM  | GHM  |
| C3 Native    | 1          | 49   | 24   | 29     | 14    | 33   | 16   |
| C4 Native    | 11         | 537  | 263  | 323    | 158   | 359  | 176  |
| P Rye        | 37         | 1808 | 886  | 1086   | 532   | 1208 | 592  |
| White Clover | 1          | 49   | 24   | 29     | 14    | 33   | 16   |
| Other        | 36         | 1759 | 862  | 1056   | 518   | 1176 | 576  |
| Annual Grass | 14         | 684  | 335  | 411    | 201   | 457  | 224  |
| Total        | 100        | 4886 | 2394 | 2935   | 1438  | 3265 | 1600 |
|              | Land class | F    | C1   | F      | C2    | F    | C3   |
| Species      | С          | THM  | GHM  | THM    | GHM   | THM  | GHM  |
| C3 Native    | 1          | 58   | 29   | 57     | 28    | 57   | 28   |
| C4 Native    | 6          | 349  | 171  | 342    | 167   | 344  | 168  |
| Phalaris     | 14         | 815  | 399  | 797    | 391   | 802  | 393  |
| P Rye        | 59         | 3435 | 1683 | 3361   | 1647  | 3380 | 1656 |
| Tall Fescue  | 7          | 408  | 200  | 399    | 195   | 401  | 196  |
| Paspalum     | 1          | 58   | 29   | 57     | 28    | 57   | 28   |
| Brome        | 3          | 175  | 86   | 171    | 84    | 172  | 84   |
| Other        | 9          | 524  | 257  | 513    | 251   | 516  | 253  |
| Total        | 100        | 5822 | 2853 | 5696   | 2791  | 5729 | 2807 |

**Table 19.** Total herbage biomass (THM) and green herbage biomass (GHM) based on NDVI conversion to biomass (kg DM/ha), botanical composition (01.09.2010) across species for paddocks (1 to 3) within land classes A, B, and C on low productivity landscapes (i.e., on the hills (H)) sampled 18.10.2010

|              | B.Comp     |       | Pasture Biomass |       |       |       |      |  |
|--------------|------------|-------|-----------------|-------|-------|-------|------|--|
|              | (%)        |       |                 | (kg D | M/ha) |       |      |  |
|              | Land class | HA    | 1               | H     | A2    | HA3   |      |  |
| Species      | Α          | THM   | GHM             | THM   | GHM   | THM   | GHM  |  |
| C3 Native    | 59         | 5694  | 1139            | 2997  | 599   | 5006  | 1001 |  |
| C4 Native    | 37         | 3570  | 714             | 1880  | 376   | 3139  | 628  |  |
| P Rye        | 2          | 193   | 39              | 102   | 20    | 170   | 34   |  |
| Other        | 2          | 193   | 39              | 102   | 20    | 170   | 34   |  |
| Total        | 100        | 9650  | 1930            | 5080  | 1016  | 8485  | 1697 |  |
|              | Land class | HE    | 31              | H     | B2    | HB3   |      |  |
| Species      | В          | THM   | GHM             | тнм   | GHM   | ТНМ   | GHM  |  |
| C3 Native    | 61         | 5212  | 1042            | 5280  | 1056  | 2544  | 509  |  |
| C4 Native    | 21         | 1794  | 359             | 1818  | 364   | 876   | 175  |  |
| Other        | 18         | 1538  | 308             | 1558  | 312   | 751   | 150  |  |
| Total        | 100        | 8545  | 1709            | 8655  | 1731  | 4170  | 834  |  |
|              | Land class | HC    | 21              | H     | C2    | НС    | ;3   |  |
| Species      | С          | THM   | GHM             | тнм   | GHM   | ТНМ   | GHM  |  |
| C3 Native    | 18         | 2392  | 478             | 1789  | 358   | 1902  | 380  |  |
| C4 Native    | 55         | 7310  | 1462            | 5467  | 1093  | 5811  | 1162 |  |
| Phalaris     | 2          | 266   | 53              | 199   | 40    | 211   | 42   |  |
| Other        | 24         | 3190  | 638             | 2386  | 477   | 2536  | 507  |  |
| Annual Grass | 1          | 133   | 27              | 99    | 20    | 106   | 21   |  |
| Total        | 100        | 13290 | 2658            | 9940  | 1988  | 10565 | 2113 |  |

**Table 20.** Total herbage biomass (THM) and green herbage biomass (GHM) based on NDVI conversion to biomass (kg DM/ha), botanical composition (01.09.2010) across species for paddocks (1 to 3) within land classes A, B, and C on high productivity landscapes (i.e., on the flats (F)) sampled 18.10.2010

|              | B.Comp             |      | Pa   | asture | Biomas<br>M/ba)        | SS   |      |
|--------------|--------------------|------|------|--------|------------------------|------|------|
|              | (^/)<br>Land class | E    | Δ1   |        | ۱۷۱/۱۱۵ <i>)</i><br>۵۶ | E    | ۵3   |
| Species      | A                  | ТНМ  | GHM  | тнм    | GHM                    | тнм  | GHM  |
| C3 Native    | 2                  | 146  | 123  | 150    | 126                    | 83   | 70   |
| C4 Native    | 1                  | 73   | 62   | 75     | 63                     | 42   | 35   |
| P Rye        | 93                 | 6810 | 5720 | 6987   | 5869                   | 3882 | 3261 |
| White Clover | 3                  | 220  | 185  | 225    | 189                    | 125  | 105  |
| Other        | 1                  | 73   | 62   | 75     | 63                     | 42   | 35   |
| Total        | 100                | 7323 | 6151 | 7513   | 6311                   | 4174 | 3506 |
|              | Land class         | FI   | 31   | FI     | B2                     | FI   | B3   |
| Species      | В                  | THM  | GHM  | ТНМ    | GHM                    | ТНМ  | GHM  |
| C3 Native    | 1                  | 63   | 53   | 47     | 39                     | 23   | 19   |
| C4 Native    | 11                 | 695  | 584  | 512    | 430                    | 248  | 208  |
| P Rye        | 37                 | 2339 | 1965 | 1722   | 1446                   | 834  | 700  |
| White Clover | 1                  | 63   | 53   | 47     | 39                     | 23   | 19   |
| Other        | 36                 | 2276 | 1912 | 1675   | 1407                   | 811  | 681  |
| Annual Grass | 14                 | 885  | 743  | 652    | 547                    | 316  | 265  |
| Total        | 100                | 6321 | 5310 | 4654   | 3909                   | 2254 | 1893 |
|              | Land class         | F    | C1   | F      | C2                     | F    | C3   |
| Species      | С                  | THM  | GHM  | THM    | GHM                    | THM  | GHM  |
| C3 Native    | 1                  | 79   | 66   | 70     | 59                     | 49   | 41   |
| C4 Native    | 6                  | 474  | 398  | 420    | 353                    | 295  | 248  |
| Phalaris     | 14                 | 1106 | 929  | 980    | 823                    | 689  | 578  |
| P Rye        | 59                 | 4660 | 3915 | 4129   | 3469                   | 2902 | 2438 |
| Tall Fescue  | 7                  | 553  | 464  | 490    | 412                    | 344  | 289  |
| Paspalum     | 1                  | 79   | 66   | 70     | 59                     | 49   | 41   |
| Brome        | 3                  | 237  | 199  | 210    | 176                    | 148  | 124  |
| Other        | 9                  | 711  | 597  | 630    | 529                    | 443  | 372  |
| Total        | 100                | 7899 | 6635 | 6999   | 5879                   | 4919 | 4132 |

**Table 21.** Total herbage biomass (THM) and green herbage biomass (GHM) based on NDVI conversion to biomass (kg DM/ha), botanical composition (01.09.2010) across species for paddocks (1 to 3) within land classes A, B, and C on low productivity landscapes (i.e., on the hills (H)) sampled 10.11.2010

|              | B.Comp     |      | Pasture Biomass |       |       |      |      |  |
|--------------|------------|------|-----------------|-------|-------|------|------|--|
|              | (%)        |      |                 | (kg D | M/ha) |      |      |  |
|              | Land class | H    | A1              | H     | A2    | HA3  |      |  |
| Species      | Α          | THM  | GHM             | THM   | GHM   | THM  | GHM  |  |
| C3 Native    | 59         | 1433 | 831             | 1511  | 876   | 2969 | 1722 |  |
| C4 Native    | 37         | 899  | 521             | 947   | 549   | 1862 | 1080 |  |
| P Rye        | 2          | 49   | 28              | 51    | 30    | 101  | 58   |  |
| Other        | 2          | 49   | 28              | 51    | 30    | 101  | 58   |  |
| Total        | 100        | 2429 | 1409            | 2560  | 1485  | 5033 | 2919 |  |
|              | Land class | Н    | B1              | H     | B2    | HB3  |      |  |
| Species      | В          | THM  | GHM             | ТНМ   | GHM   | ТНМ  | GHM  |  |
| C3 Native    | 61         | 1367 | 793             | 2083  | 1208  | 1518 | 880  |  |
| C4 Native    | 21         | 471  | 273             | 717   | 416   | 522  | 303  |  |
| Other        | 18         | 403  | 234             | 615   | 357   | 448  | 260  |  |
| Total        | 100        | 2241 | 1300            | 3416  | 1981  | 2488 | 1443 |  |
|              | Land class | H    | C1              | H     | C2    | H    | C3   |  |
| Species      | С          | THM  | GHM             | ТНМ   | GHM   | ТНМ  | GHM  |  |
| C3 Native    | 18         | 1096 | 635             | 736   | 427   | 767  | 445  |  |
| C4 Native    | 55         | 3347 | 1942            | 2247  | 1304  | 2345 | 1360 |  |
| Phalaris     | 2          | 122  | 71              | 82    | 47    | 85   | 49   |  |
| Other        | 24         | 1461 | 847             | 981   | 569   | 1023 | 594  |  |
| Annual Grass | 1          | 61   | 35              | 41    | 24    | 43   | 25   |  |
| Total        | 100        | 6086 | 3530            | 4086  | 2370  | 4264 | 2473 |  |

**Table 22.** Total herbage biomass (THM) and green herbage biomass (GHM) based on NDVI conversion to biomass (kg DM/ha), botanical composition (01.09.2010) across species for paddocks (1 to 3) within land classes A, B, and C on high productivity landscapes (i.e., on the flats (F)) sampled 10.11.2010

|              | B.Comp     |      | Pa    | asture | Bioma | SS   |       |
|--------------|------------|------|-------|--------|-------|------|-------|
|              | (%)        |      |       | (Kg D  | wina) | -    |       |
| 0            |            |      |       |        | 42    |      | 43    |
| Species      | <u> </u>   |      | GHIVI |        | GHIM  |      | GHIVI |
| C3 Native    | 2          | 97   | 87    | 126    | 114   | 141  | 127   |
| C4 Native    | 1          | 49   | 44    | 63     | 57    | 70   | 63    |
| P Rye        | 93         | 4517 | 4065  | 5867   | 5281  | 6551 | 5896  |
| White Clover | 3          | 146  | 131   | 189    | 170   | 211  | 190   |
| Other        | 1          | 49   | 44    | 63     | 57    | 70   | 63    |
| Total        | 100        | 4857 | 4371  | 6309   | 5678  | 7044 | 6340  |
|              | Land class | FI   | B1    | FI     | B2    | FI   | 33    |
| Species      | В          | THM  | GHM   | THM    | GHM   | THM  | GHM   |
| C3 Native    | 1          | 45   | 41    | 44     | 40    | 51   | 46    |
| C4 Native    | 11         | 496  | 446   | 485    | 437   | 557  | 501   |
| P Rye        | 37         | 1667 | 1500  | 1632   | 1469  | 1873 | 1686  |
| White Clover | 1          | 45   | 41    | 44     | 40    | 51   | 46    |
| Other        | 36         | 1622 | 1460  | 1588   | 1429  | 1823 | 1641  |
| Annual Grass | 14         | 631  | 568   | 617    | 556   | 709  | 638   |
| Total        | 100        | 4506 | 4055  | 4410   | 3969  | 5063 | 4557  |
|              | Land class | F    | C1    | F      | C2    | F    | C3    |
| Species      | С          | THM  | GHM   | THM    | GHM   | тнм  | GHM   |
| C3 Native    | 1          | 57   | 51    | 45     | 41    | 73   | 66    |
| C4 Native    | 6          | 340  | 306   | 271    | 244   | 437  | 393   |
| Phalaris     | 14         | 794  | 715   | 632    | 569   | 1019 | 917   |
| P Rye        | 59         | 3348 | 3013  | 2664   | 2398  | 4294 | 3864  |
| Tall Fescue  | 7          | 397  | 357   | 316    | 284   | 509  | 458   |
| Paspalum     | 1          | 57   | 51    | 45     | 41    | 73   | 66    |
| Brome        | 3          | 170  | 153   | 135    | 122   | 218  | 196   |
| Other        | 9          | 511  | 460   | 406    | 366   | 655  | 590   |
| Total        | 100        | 5674 | 5107  | 4516   | 4064  | 7278 | 6550  |

**Table 23.** Total herbage biomass (THM) and green herbage biomass (GHM) based on NDVI conversion to biomass (kg DM/ha), botanical composition (01.09.2010) across species for paddocks (1 to 3) within land classes A, B, and C on low productivity landscapes (i.e., on the hills (H)) sampled 08.12.2010

|              | B.Comp     |       | Pasture Biomass |        |       |       |      |  |
|--------------|------------|-------|-----------------|--------|-------|-------|------|--|
|              | (%)        |       |                 | (kg Dl | M/ha) |       |      |  |
|              | Land class | HA    | \1              | HA     | 2     | HA    | 13   |  |
| Species      | Α          | THM   | GHM             | THM    | GHM   | THM   | GHM  |  |
| C3 Native    | 59         | 6449  | 1290            | 6906   | 1381  | 10593 | 2119 |  |
| C4 Native    | 37         | 4044  | 809             | 4331   | 866   | 6643  | 1329 |  |
| P Rye        | 2          | 219   | 44              | 234    | 47    | 359   | 72   |  |
| Other        | 2          | 219   | 44              | 234    | 47    | 359   | 72   |  |
| Total        | 100        | 10930 | 2186            | 11705  | 2341  | 17955 | 3591 |  |
|              | Land class | HE    | 81              | HE     | 32    | HB3   |      |  |
| Species      | В          | THM   | GHM             | THM    | GHM   | THM   | GHM  |  |
| C3 Native    | 61         | 5783  | 1157            | 4740   | 948   | 7631  | 1526 |  |
| C4 Native    | 21         | 1991  | 398             | 1632   | 326   | 2627  | 525  |  |
| Other        | 18         | 1706  | 341             | 1399   | 280   | 2252  | 450  |  |
| Total        | 100        | 9480  | 1896            | 7770   | 1554  | 12510 | 2502 |  |
|              | Land class | HC    | :1              | НС     | 2     | НС    | ;3   |  |
| Species      | С          | THM   | GHM             | THM    | GHM   | THM   | GHM  |  |
| C3 Native    | 18         | 2640  | 528             | 3141   | 628   | 1464  | 293  |  |
| C4 Native    | 55         | 8066  | 1613            | 9598   | 1920  | 4474  | 895  |  |
| Phalaris     | 2          | 293   | 59              | 349    | 70    | 163   | 33   |  |
| Other        | 24         | 3520  | 704             | 4188   | 838   | 1952  | 390  |  |
| Annual Grass | 1          | 147   | 29              | 174    | 35    | 81    | 16   |  |
| Total        | 100        | 14665 | 2933            | 17450  | 3490  | 8135  | 1627 |  |

**Table 24.** Total herbage biomass (THM) and green herbage biomass (GHM) based on NDVI conversion to biomass (kg DM/ha), botanical composition (01.09.2010) across species for paddocks (1 to 3) within land classes A, B, and C on high productivity landscapes (i.e., on the flats (F)) sampled 08.12.2010

|              | B.Comp     |      | Pasture Biomass |      |      |       |      |  |
|--------------|------------|------|-----------------|------|------|-------|------|--|
|              | (%)        |      | (kg DM/ha)      |      |      |       |      |  |
|              | Land class | F/   | FA1 FA2         |      | FA   | \3    |      |  |
| Species      | Α          | THM  | GHM             | THM  | GHM  | THM   | GHM  |  |
| C3 Native    | 2          | 120  | 54              | 115  | 52   | 192   | 86   |  |
| C4 Native    | 1          | 60   | 27              | 58   | 26   | 96    | 43   |  |
| P Rye        | 93         | 5566 | 2504            | 5349 | 2407 | 8932  | 4019 |  |
| White Clover | 3          | 180  | 81              | 173  | 78   | 288   | 130  |  |
| Other        | 1          | 60   | 27              | 58   | 26   | 96    | 43   |  |
| Total        | 100        | 5984 | 2693            | 5751 | 2588 | 9604  | 4322 |  |
|              | Land class | FI   | B1              | FI   | B2   | FB    | 33   |  |
| Species      | В          | THM  | GHM             | THM  | GHM  | THM   | GHM  |  |
| C3 Native    | 1          | 70   | 32              | 46   | 21   | 89    | 40   |  |
| C4 Native    | 11         | 771  | 347             | 510  | 230  | 979   | 440  |  |
| P Rye        | 37         | 2595 | 1168            | 1716 | 772  | 3292  | 1481 |  |
| White Clover | 1          | 70   | 32              | 46   | 21   | 89    | 40   |  |
| Other        | 36         | 2525 | 1136            | 1670 | 751  | 3203  | 1441 |  |
| Annual Grass | 14         | 982  | 442             | 649  | 292  | 1246  | 561  |  |
| Total        | 100        | 7013 | 3156            | 4638 | 2087 | 8898  | 4004 |  |
|              | Land class | F    | C1              | F    | C2   | FC    | :3   |  |
| Species      | С          | THM  | GHM             | THM  | GHM  | THM   | GHM  |  |
| C3 Native    | 1          | 73   | 33              | 89   | 40   | 112   | 51   |  |
| C4 Native    | 6          | 440  | 198             | 531  | 239  | 674   | 303  |  |
| Phalaris     | 14         | 1026 | 462             | 1240 | 558  | 1573  | 708  |  |
| P Rye        | 59         | 4324 | 1946            | 5226 | 2352 | 6629  | 2983 |  |
| Tall Fescue  | 7          | 513  | 231             | 620  | 279  | 786   | 354  |  |
| Paspalum     | 1          | 73   | 33              | 89   | 40   | 112   | 51   |  |
| Brome        | 3          | 220  | 99              | 266  | 120  | 337   | 152  |  |
| Other        | 9          | 660  | 297             | 797  | 359  | 1011  | 455  |  |
| Total        | 100        | 7329 | 3298            | 8858 | 3986 | 11236 | 5056 |  |

**Table 25.** Total herbage biomass (THM) and green herbage biomass (GHM) based on NDVI conversion to biomass (kg DM/ha), botanical composition (01.03.2011) across species for paddocks (1 to 3) within land classes A, B, and C on low productivity landscapes (i.e., on the hills (H)) sampled 04.01.2011

|              | B.Comp<br>(%) | Pasture Biomass<br>(kg DM/ba) |           |       |      |       |      |
|--------------|---------------|-------------------------------|-----------|-------|------|-------|------|
|              | Land class    | HA                            | <b>\1</b> | HA2   |      | HA3   |      |
| Species      | Α             | THM                           | GHM       | ТНМ   | GHM  | ТНМ   | GHM  |
| C3 Native    | 30            | 2480                          | 496       | 2128  | 426  | 3472  | 694  |
| C4 Native    | 39            | 3223                          | 645       | 2767  | 553  | 4514  | 903  |
| White Clover | 1             | 83                            | 17        | 71    | 14   | 116   | 23   |
| Paspalum     | 23            | 1901                          | 380       | 1632  | 326  | 2662  | 532  |
| Other        | 7             | 579                           | 116       | 497   | 99   | 810   | 162  |
| Total        | 100           | 8265                          | 1653      | 7095  | 1419 | 11575 | 2315 |
|              | Land class    | HB1                           |           | HB2   |      | HB3   |      |
| Species      | В             | THM                           | GHM       | THM   | GHM  | THM   | GHM  |
| C3 Native    | 50            | 3602                          | 720       | 3532  | 706  | 4625  | 925  |
| C4 Native    | 44            | 3170                          | 634       | 3109  | 622  | 4070  | 814  |
| Tall Fescue  | 1             | 72                            | 14        | 71    | 14   | 92    | 18   |
| Other        | 5             | 360                           | 72        | 353   | 71   | 462   | 92   |
| Total        | 100           | 7205                          | 1441      | 7065  | 1413 | 9250  | 1850 |
|              | Land class    | НС                            | 21        | нс    | 2    | нс    | 3    |
| Species      | С             | THM                           | GHM       | THM   | GHM  | THM   | GHM  |
| C4 Native    | 60            | 7215                          | 1443      | 8649  | 1730 | 3288  | 658  |
| P Rye        | 8             | 962                           | 192       | 1153  | 231  | 438   | 88   |
| Tall Fescue  | 2             | 240                           | 48        | 288   | 58   | 110   | 22   |
| Other        | 30            | 3608                          | 722       | 4324  | 865  | 1644  | 329  |
| Total        | 100           | 12025                         | 2405      | 14415 | 2883 | 5480  | 1096 |

**Table 26.** Total herbage biomass (THM) and green herbage biomass (GHM) based on NDVI conversion to biomass (kg DM/ha), botanical composition (01.03.2011) across species for paddocks (1 to 3) within land classes A, B, and C on high productivity landscapes (i.e., on the flats (F)) sampled 04.01.2011

|              | B.Comp     | Pasture Biomass |            |             |      |      |      |   |    |
|--------------|------------|-----------------|------------|-------------|------|------|------|---|----|
|              | (%)        |                 | (kg DM/ha) |             |      |      |      |   |    |
|              | Land class | FA1 FA2         |            | d class FA1 |      | FA2  |      | F | A3 |
| Species      | Α          | THM             | GHM        | THM         | GHM  | THM  | GHM  |   |    |
| C4 Native    | 7          | 174             | 78         | 280         | 126  | 177  | 80   |   |    |
| P Rye        | 29         | 720             | 324        | 1161        | 522  | 735  | 331  |   |    |
| White Clover | 1          | 25              | 11         | 40          | 18   | 25   | 11   |   |    |
| Brome        | 57         | 1416            | 637        | 2281        | 1027 | 1444 | 650  |   |    |
| Other        | 6          | 149             | 67         | 240         | 108  | 152  | 68   |   |    |
| Total        | 100        | 2484            | 1118       | 4002        | 1801 | 2533 | 1140 |   |    |
|              | Land class | FI              | B1         | F           | B2   | FB3  |      |   |    |
| Species      | В          | THM             | GHM        | ТНМ         | GHM  | THM  | GHM  |   |    |
| C4 Native    | 40         | 1341            | 604        | 1070        | 482  | 1204 | 542  |   |    |
| P Rye        | 31         | 1040            | 468        | 829         | 373  | 933  | 420  |   |    |
| Tall Fescue  | 8          | 268             | 121        | 214         | 96   | 241  | 108  |   |    |
| White Clover | 8          | 268             | 121        | 214         | 96   | 241  | 108  |   |    |
| Other        | 12         | 402             | 181        | 321         | 144  | 361  | 162  |   |    |
| Annual Grass | 1          | 34              | 15         | 27          | 12   | 30   | 14   |   |    |
| Total        | 100        | 3353            | 1509       | 2676        | 1204 | 3009 | 1354 |   |    |
|              | Land class | F               | C1         | F           | C2   | F    | C3   |   |    |
| Species      | С          | THM             | GHM        | THM         | GHM  | THM  | GHM  |   |    |
| C4 Native    | 4          | 360             | 162        | 318         | 143  | 243  | 109  |   |    |
| Phalaris     | 21         | 1889            | 850        | 1672        | 752  | 1275 | 574  |   |    |
| P Rye        | 7          | 630             | 283        | 557         | 251  | 425  | 191  |   |    |
| Tall Fescue  | 2          | 180             | 81         | 159         | 72   | 121  | 55   |   |    |
| White Clover | 4          | 360             | 162        | 318         | 143  | 243  | 109  |   |    |
| Paspalum     | 34         | 3058            | 1376       | 2707        | 1218 | 2064 | 929  |   |    |
| Other        | 28         | 2518            | 1133       | 2229        | 1003 | 1700 | 765  |   |    |
| Total        | 100        | 8993            | 4047       | 7962        | 3583 | 6071 | 2732 |   |    |

**Table 27.** Total herbage biomass (THM) and green herbage biomass (GHM) based on NDVI conversion to biomass (kg DM/ha), botanical composition (01.03.2011) across species for paddocks (1 to 3) within land classes A, B, and C on low productivity landscapes (i.e., on the hills (H)) sampled 01.02.2011

|              | B.Comp     | Pasture Biomass |      |      |      |      |      |
|--------------|------------|-----------------|------|------|------|------|------|
|              | (%)        | (kg DM/ha)      |      |      |      |      |      |
|              | Land class | HA1 HA2         |      | H    | 43   |      |      |
| Species      | Α          | THM             | GHM  | THM  | GHM  | THM  | GHM  |
| C3 Native    | 30         | 1409            | 324  | 1774 | 408  | 2151 | 495  |
| C4 Native    | 39         | 1831            | 421  | 2306 | 530  | 2796 | 643  |
| White Clover | 1          | 47              | 11   | 59   | 14   | 72   | 16   |
| Paspalum     | 23         | 1080            | 248  | 1360 | 313  | 1649 | 379  |
| Other        | 7          | 329             | 76   | 414  | 95   | 502  | 115  |
| Total        | 100        | 4696            | 1080 | 5913 | 1360 | 7170 | 1649 |
|              | Land class | HB1             |      | HB2  |      | HI   | B3   |
| Species      | В          | THM             | GHM  | ТНМ  | GHM  | ТНМ  | GHM  |
| C3 Native    | 50         | 2189            | 504  | 2922 | 672  | 2685 | 618  |
| C4 Native    | 44         | 1926            | 443  | 2571 | 591  | 2363 | 543  |
| Tall Fescue  | 1          | 44              | 10   | 58   | 13   | 54   | 12   |
| Other        | 5          | 219             | 50   | 292  | 67   | 268  | 62   |
| Total        | 100        | 4378            | 1007 | 5843 | 1344 | 5370 | 1235 |
|              | Land class | H               | C1   | H    | C2   | H    | C3   |
| Species      | С          | THM             | GHM  | THM  | GHM  | THM  | GHM  |
| C4 Native    | 60         | 3125            | 719  | 4263 | 980  | 4276 | 983  |
| P Rye        | 8          | 417             | 96   | 568  | 131  | 570  | 131  |
| Tall Fescue  | 2          | 104             | 24   | 142  | 33   | 143  | 33   |
| Other        | 30         | 1563            | 359  | 2131 | 490  | 2138 | 492  |
| Total        | 100        | 5209            | 1198 | 7104 | 1634 | 7126 | 1639 |

**Table 28.** Total herbage biomass (THM) and green herbage biomass (GHM) based on NDVI conversion to biomass (kg DM/ha), botanical composition (01.03.2011) across species for paddocks (1 to 3) within land classes A, B, and C on high productivity landscapes (i.e., on the flats (F)) sampled 01.02.2011

|              | B.Comp     | Pasture Biomass |      |       |      |       |      |
|--------------|------------|-----------------|------|-------|------|-------|------|
|              | (%)        |                 |      |       |      |       |      |
| <b>•</b> •   | Land class | ►A              | 1    | ►A    | 2    |       | 3    |
| Species      | Α          | THM             | GHM  | THM   | GHM  | THM   | GHM  |
| C4 Native    | 7          | 367             | 70   | 820   | 156  | 1029  | 195  |
| P Rye        | 29         | 1520            | 289  | 3396  | 645  | 4261  | 810  |
| White Clover | 1          | 52              | 10   | 117   | 22   | 147   | 28   |
| Brome        | 57         | 2988            | 568  | 6675  | 1268 | 8376  | 1591 |
| Other        | 6          | 315             | 60   | 703   | 134  | 882   | 168  |
| Total        | 100        | 5242            | 996  | 11711 | 2225 | 14695 | 2792 |
|              | Land class | FB              | 81   | FB    | 32   | FB    | 3    |
| Species      | В          | THM             | GHM  | THM   | GHM  | THM   | GHM  |
| C4 Native    | 40         | 2354            | 447  | 4695  | 892  | 5899  | 1121 |
| P Rye        | 31         | 1824            | 347  | 3638  | 691  | 4572  | 869  |
| Tall Fescue  | 8          | 471             | 89   | 939   | 178  | 1180  | 224  |
| White Clover | 8          | 471             | 89   | 939   | 178  | 1180  | 224  |
| Other        | 12         | 706             | 134  | 1408  | 268  | 1770  | 336  |
| Annual Grass | 1          | 59              | 11   | 117   | 22   | 147   | 28   |
| Total        | 100        | 5884            | 1118 | 11737 | 2230 | 14747 | 2802 |
|              | Land class | FC              | :1   | FC    | FC2  |       | :3   |
| Species      | С          | THM             | GHM  | ТНМ   | GHM  | THM   | GHM  |
| C4 Native    | 4          | 681             | 129  | 559   | 106  | 707   | 134  |
| Phalaris     | 21         | 3578            | 680  | 2937  | 558  | 3714  | 706  |
| P Rye        | 7          | 1193            | 227  | 979   | 186  | 1238  | 235  |
| Tall Fescue  | 2          | 341             | 65   | 280   | 53   | 354   | 67   |
| White Clover | 4          | 681             | 129  | 559   | 106  | 707   | 134  |
| Paspalum     | 34         | 5793            | 1101 | 4755  | 903  | 6013  | 1142 |
| Other        | 28         | 4770            | 906  | 3916  | 744  | 4952  | 941  |
| Total        | 100        | 17037           | 3237 | 13984 | 2657 | 17684 | 3360 |

**Table 29.** Total herbage biomass (THM) and green herbage biomass (GHM) based on NDVI conversion to biomass (kg DM/ha), botanical composition (01.03.2011) across species for paddocks (1 to 3) within land classes A, B, and C on low productivity landscapes (i.e., on the hills (H)) sampled 08.03.2011

|              | B.Comp     | Pasture Biomass |      |      |      |      |      |
|--------------|------------|-----------------|------|------|------|------|------|
|              | (%)        | (kg DM/ha)      |      |      |      |      |      |
|              | Land class | H               | A1   | H    | A2   | HA3  |      |
| Species      | Α          | THM             | GHM  | THM  | GHM  | THM  | GHM  |
| C3 Native    | 30         | 2189            | 657  | 2148 | 644  | 2059 | 618  |
| C4 Native    | 39         | 2846            | 854  | 2792 | 838  | 2677 | 803  |
| White Clover | 1          | 73              | 22   | 72   | 21   | 69   | 21   |
| Paspalum     | 23         | 1678            | 503  | 1647 | 494  | 1579 | 474  |
| Other        | 7          | 511             | 153  | 501  | 150  | 480  | 144  |
| Total        | 100        | 7297            | 2189 | 7160 | 2148 | 6863 | 2059 |
|              | Land class | HB1             |      | HB2  |      | HB3  |      |
| Species      | В          | THM             | GHM  | ТНМ  | GHM  | ТНМ  | GHM  |
| C3 Native    | 50         | 2912            | 874  | 2178 | 654  | 3488 | 1046 |
| C4 Native    | 44         | 2562            | 769  | 1917 | 575  | 3070 | 921  |
| Tall Fescue  | 1          | 58              | 17   | 44   | 13   | 70   | 21   |
| Other        | 5          | 291             | 87   | 218  | 65   | 349  | 105  |
| Total        | 100        | 5823            | 1747 | 4357 | 1307 | 6977 | 2093 |
|              | Land class | H               | C1   | H    | C2   | H    | C3   |
| Species      | С          | THM             | GHM  | THM  | GHM  | THM  | GHM  |
| C4 Native    | 60         | 4876            | 1463 | 5316 | 1595 | 5054 | 1516 |
| P Rye        | 8          | 650             | 195  | 709  | 213  | 674  | 202  |
| Tall Fescue  | 2          | 163             | 49   | 177  | 53   | 168  | 51   |
| Other        | 30         | 2438            | 731  | 2658 | 797  | 2527 | 758  |
| Total        | 100        | 8127            | 2438 | 8860 | 2658 | 8423 | 2527 |

**Table 30.** Total herbage biomass (THM) and green herbage biomass (GHM) based on NDVI conversion to biomass (kg DM/ha), botanical composition (01.03.2011) across species for paddocks (1 to 3) within land classes A, B, and C on high productivity landscapes (i.e., on the flats (F)) sampled 08.03.2011

|              | B.Comp     |            | Р    | asture E | Biomas | S     |      |
|--------------|------------|------------|------|----------|--------|-------|------|
|              | (%)        | (kg DM/ha) |      |          |        |       |      |
|              | Land class | FA         | 1    | FA       | 2      | FA    | 3    |
| Species      | Α          | THM        | GHM  | THM      | GHM    | THM   | GHM  |
| C4 Native    | 7          | 985        | 286  | 531      | 154    | 1330  | 386  |
| P Rye        | 29         | 4081       | 1183 | 2201     | 638    | 5509  | 1598 |
| White Clover | 1          | 141        | 41   | 76       | 22     | 190   | 55   |
| Brome        | 57         | 8021       | 2326 | 4326     | 1255   | 10828 | 3140 |
| Other        | 6          | 844        | 245  | 455      | 132    | 1140  | 331  |
| Total        | 100        | 14072      | 4081 | 7590     | 2201   | 18997 | 5509 |
|              | Land class | FB         | 81   | FB       | 32     | FB    | 3    |
| Species      | В          | THM        | GHM  | THM      | GHM    | THM   | GHM  |
| C4 Native    | 40         | 6262       | 1816 | 2927     | 849    | 5572  | 1616 |
| P Rye        | 31         | 4853       | 1407 | 2268     | 658    | 4319  | 1252 |
| Tall Fescue  | 8          | 1252       | 363  | 585      | 170    | 1114  | 323  |
| White Clover | 8          | 1252       | 363  | 585      | 170    | 1114  | 323  |
| Other        | 12         | 1879       | 545  | 878      | 255    | 1672  | 485  |
| Annual Grass | 1          | 157        | 45   | 73       | 21     | 139   | 40   |
| Total        | 100        | 15655      | 4540 | 7317     | 2122   | 13931 | 4040 |
|              | Land class | FC         | :1   | FC       | 2      | FC    | 3    |
| Species      | С          | THM        | GHM  | THM      | GHM    | THM   | GHM  |
| C4 Native    | 4          | 322        | 93   | 577      | 167    | 630   | 183  |
| Phalaris     | 21         | 1692       | 491  | 3031     | 879    | 3309  | 959  |
| P Rye        | 7          | 564        | 164  | 1010     | 293    | 1103  | 320  |
| Tall Fescue  | 2          | 161        | 47   | 289      | 84     | 315   | 91   |
| White Clover | 4          | 322        | 93   | 577      | 167    | 630   | 183  |
| Paspalum     | 34         | 2739       | 794  | 4907     | 1423   | 5357  | 1553 |
| Other        | 28         | 2255       | 654  | 4041     | 1172   | 4411  | 1279 |
| Total        | 100        | 8055       | 2336 | 14431    | 4185   | 15755 | 4569 |

**Table 31.** Total herbage biomass (THM) and green herbage biomass (GHM) based on NDVI conversion to biomass (kg DM/ha), botanical composition (01.03.2011) across species for paddocks (1 to 3) within land classes A, B, and C on low productivity landscapes (i.e., on the hills (H)) sampled 20.04.2011

|              | B.Comp<br>(%) | Pasture Biomass<br>(kg DM/ba) |      |      |      |          |      |  |
|--------------|---------------|-------------------------------|------|------|------|----------|------|--|
|              | Land class    | H                             | A1   | HA2  |      | /<br>HA3 | •    |  |
| Species      | Α             | THM                           | GHM  | ТНМ  | GHM  | THM      | GHM  |  |
| C3 Native    | 30            | 867                           | 260  | 1107 | 332  | 1184     | 355  |  |
| C4 Native    | 39            | 1127                          | 338  | 1439 | 432  | 1539     | 462  |  |
| White Clover | 1             | 29                            | 9    | 37   | 11   | 39       | 12   |  |
| Paspalum     | 23            | 665                           | 199  | 849  | 255  | 908      | 272  |  |
| Other        | 7             | 202                           | 61   | 258  | 77   | 276      | 83   |  |
| Total        | 100           | 2890                          | 867  | 3690 | 1107 | 3946.667 | 1184 |  |
|              | Land class    | HB1                           |      | HB2  |      | HB3      | 5    |  |
| Species      | В             | THM                           | GHM  | THM  | GHM  | THM      | GHM  |  |
| C3 Native    | 50            | 1888                          | 566  | 1962 | 588  | 1978     | 594  |  |
| C4 Native    | 44            | 1662                          | 499  | 1726 | 518  | 1741     | 522  |  |
| Tall Fescue  | 1             | 38                            | 11   | 39   | 12   | 40       | 12   |  |
| Other        | 5             | 189                           | 57   | 196  | 59   | 198      | 59   |  |
| Total        | 100           | 3777                          | 1133 | 3923 | 1177 | 3957     | 1187 |  |
|              | Land class    | H                             | C1   | H    | C2   | HC3      |      |  |
| Species      | С             | THM                           | GHM  | THM  | GHM  | THM      | GHM  |  |
| C4 Native    | 60            | 3922                          | 1177 | 3002 | 901  | 2230     | 669  |  |
| P Rye        | 8             | 523                           | 157  | 400  | 120  | 297      | 89   |  |
| Tall Fescue  | 2             | 131                           | 39   | 100  | 30   | 74       | 22   |  |
| Other        | 30            | 1961                          | 588  | 1501 | 450  | 1115     | 334  |  |
| Total        | 100           | 6537                          | 1961 | 5003 | 1501 | 3717     | 1115 |  |

**Table 32.** Total herbage biomass (THM) and green herbage biomass (GHM) based on NDVI conversion to biomass (kg DM/ha), botanical composition (01.03.2011) across species for paddocks (1 to 3) within land classes A, B, and C on high productivity landscapes (i.e., on the flats (F)) sampled 20.04.2011

|              | B.Comp<br>(%) | Pasture Biomass<br>(kg DM/ha) |      |       |      |       |      |
|--------------|---------------|-------------------------------|------|-------|------|-------|------|
|              | Land class    | FA                            | \1   | FA    | 2    | FA    | 3    |
| Species      | Α             | THM                           | GHM  | THM   | GHM  | THM   | GHM  |
| C4 Native    | 7             | 807                           | 234  | 1032  | 299  | 1001  | 290  |
| P Rye        | 29            | 3344                          | 970  | 4276  | 1240 | 4147  | 1203 |
| White Clover | 1             | 115                           | 33   | 147   | 43   | 143   | 41   |
| Brome        | 57            | 6573                          | 1906 | 8405  | 2437 | 8151  | 2364 |
| Other        | 6             | 692                           | 201  | 885   | 257  | 858   | 249  |
| Total        | 100           | 11531                         | 3344 | 14745 | 4276 | 14300 | 4147 |
|              | Land class    | FB                            | FB1  |       | 32   | FB    | 3    |
| Species      | В             | THM                           | GHM  | THM   | GHM  | THM   | GHM  |
| C4 Native    | 40            | 4186                          | 1214 | 5606  | 1626 | 2749  | 797  |
| P Rye        | 31            | 3244                          | 941  | 4344  | 1260 | 2130  | 618  |
| Tall Fescue  | 8             | 837                           | 243  | 1121  | 325  | 550   | 159  |
| White Clover | 8             | 837                           | 243  | 1121  | 325  | 550   | 159  |
| Other        | 12            | 1256                          | 364  | 1682  | 488  | 825   | 239  |
| Annual Grass | 1             | 105                           | 30   | 140   | 41   | 69    | 20   |
| Total        | 100           | 10466                         | 3035 | 14014 | 4064 | 6872  | 1993 |
|              | Land class    | FC                            | :1   | FC    | 2    | FC    | 3    |
| Species      | С             | THM                           | GHM  | THM   | GHM  | THM   | GHM  |
| C4 Native    | 4             | 375                           | 109  | 397   | 115  | 316   | 92   |
| Phalaris     | 21            | 1970                          | 571  | 2086  | 605  | 1659  | 481  |
| P Rye        | 7             | 657                           | 190  | 695   | 202  | 553   | 160  |
| Tall Fescue  | 2             | 188                           | 54   | 199   | 58   | 158   | 46   |
| White Clover | 4             | 375                           | 109  | 397   | 115  | 316   | 92   |
| Paspalum     | 34            | 3190                          | 925  | 3378  | 980  | 2686  | 779  |
| Brome        | 0             | 2627                          | 762  | 2782  | 807  | 2212  | 641  |
| Other        | 28            | 9383                          | 2721 | 9934  | 2881 | 7900  | 2291 |
Tables 33 to 36 provide details of animal productivity in 2010-2011 and the results of the pseudo slaughter in April 2011 and March 2012.

**Table 33.** Ewe weights (kg) across flocks on low and high productivity landscapes in year 1; mean  $(\pm SD)$ 

|            | Low    | produc <sup>:</sup><br>Flocks | tivity | _ | High productivity<br>Flocks |        |        |  |
|------------|--------|-------------------------------|--------|---|-----------------------------|--------|--------|--|
| Date       | 1      | 2                             | 3      |   | 4                           | 5      | 6      |  |
| 21.07.2010 | 40.77  | 41.07                         | 40.93  |   | 40.87                       | 41.55  | 40.92  |  |
|            | (2.91) | (4.39)                        | (3.43) |   | (3.60)                      | (3.69) | (3.49) |  |
| 02.09.2010 | 43.00  | 44.98                         | 46.60  |   | 44.11                       | 45.50  | 44.52  |  |
|            | (5.15) | (3.17)                        | (2.97) |   | (4.38)                      | (3.97) | (4.01) |  |
| 19.10.2010 | 39.20  | 39.13                         | 42.26  |   | 45.29                       | 45.49  | 42.84  |  |
|            | (4.05) | (2.23)                        | (4.01) |   | (4.67)                      | (4.82) | (5.14) |  |
| 11.11.2010 | 40.16  | 42.60                         | 45.25  |   | 43.25                       | 46.38  | 47.61  |  |
|            | (4.52) | (2.54)                        | (3.68) |   | (4.94)                      | (5.05) | (5.72) |  |
| 8.12.2010  | 42.33  | 40.58                         | 43.46  |   | 41.14                       | 42.55  | 42.10  |  |
|            | (4.11) | (2.98)                        | (4.07) |   | (3.81)                      | (5.39) | (5.01) |  |
| 4.01.2011  | 43.86  | 43.05                         | 45.46  |   | 45.55                       | 46.37  | 45.14  |  |
|            | (4.00) | (2.97)                        | (3.78) |   | (3.83)                      | (4.34) | (5.47) |  |
| 2.02.2011  | 44.59  | 43.96                         | 46.52  |   | 46.40                       | 50.37  | 46.61  |  |
|            | (4.34) | (3.34)                        | (3.77) |   | (4.92)                      | (5.64) | (5.55) |  |
| 8.03.2011  | 46.90  | 45.86                         | 46.72  |   | 45.06                       | 48.09  | 46.92  |  |
|            | (4.71) | (3.35)                        | (5.34) |   | (4.78)                      | (4.47) | (5.45) |  |
| 5.04.2011  | 46.48  | 47.44                         | 48.05  |   | 50.09                       | 47.58  | 46.54  |  |
|            | (4.73) | (3.49)                        | (4.17) |   | (4.71)                      | (9.97) | (5.22) |  |
| 15.04.2011 | 44.23  | 44.74                         | 44.23  |   | 47.84                       | 48.58  | 47.94  |  |
|            | (4.61) | (3.58)                        | (3.46) |   | (4.72)                      | (4.77) | (5.45) |  |

|            | Low    | produc<br>Flocks | tivity | High productivity<br>Flocks |        |        |  |  |
|------------|--------|------------------|--------|-----------------------------|--------|--------|--|--|
| Date       | 1      | 2                | 3      | 4                           | 5      | 6      |  |  |
| 8.10.2010  | 14.96  | 13.73            | 13.45  | 12.73                       | 13.17  | 13.41  |  |  |
|            | (2.73) | (2.84)           | (2.50) | (3.30)                      | (2.73) | (2.39) |  |  |
| 11.11.2010 | 20.55  | 18.75            | 20.59  | 19.77                       | 20.26  | 20.88  |  |  |
|            | (2.38) | (3.43)           | (2.06) | (3.64)                      | (2.62) | (2.79) |  |  |
| 8.12.2010  | 25.84  | 23.61            | 26.34  | 25.08                       | 25.63  | 26.75  |  |  |
|            | (2.73) | (3.55)           | (2.15) | (3.78)                      | (2.76) | (2.76) |  |  |
| 4.01.2011  | 31.15  | 28.26            | 31.50  | 32.22                       | 32.03  | 32.37  |  |  |
|            | (2.98) | (4.64)           | (2.74) | (4.37)                      | (3.34) | (2.98) |  |  |
| 02.02.2011 | 31.73  | 29.49            | 33.74  | 37.20                       | 34.59  | 36.27  |  |  |
|            | (2.86) | (4.47)           | (3.21) | (4.56)                      | (3.24) | (2.97) |  |  |
| 8.03.2011  | 35.87  | 31.33            | 38.00  | 39.14                       | 38.37  | 39.82  |  |  |
|            | (4.85) | (5.33)           | (3.70) | (4.42)                      | (3.09) | (3.39) |  |  |
| 4.04.2011  | 37.01  | 33.00            | 39.91  | 44.54                       | 40.52  | 38.60  |  |  |
|            | (3.95) | (5.86)           | (3.62) | (4.74)                      | (3.11) | (7.99) |  |  |

Table 34. Lamb weights (kg) across flocks on low and high productivity landscapes in year 1; mean  $(\pm SD)$ 

**Table 35.** Greasy wool production data for year 1 (July 2010) across flocks on low and high productivity landscapes

|                 | Low pro | oductivity<br>Flocks | y      | High p | High productivity<br>Flocks |        |  |  |
|-----------------|---------|----------------------|--------|--------|-----------------------------|--------|--|--|
| Date            | 1       | 2                    | 3      | 4      | 5                           | 6      |  |  |
| Fleece.wt.      | 2.67    | 3.07                 | 3.15   | 2.87   | 2.88                        | 2.97   |  |  |
|                 | (0.37)  | (0.72)               | (0.66) | (0.47) | (0.44)                      | (0.48) |  |  |
| Staple.length   | 81.83   | 80.00                | 79.40  | 79.94  | 77.89                       | 79.67  |  |  |
|                 | (11.43) | (11.44)              | (7.70) | (8.59) | (12.63)                     | (8.10) |  |  |
| Staple.strength | 37.31   | 40.80                | 33.88  | 35.61  | 36.85                       | 39.18  |  |  |
|                 | (6.47)  | (10.50)              | (9.74) | (7.14) | (7.02)                      | (6.60) |  |  |
| Fibre.diameter  | 16.67   | 16.12                | 16.67  | 16.51  | 16.33                       | 16.33  |  |  |
|                 | (1.10)  | (1.21)               | (1.50) | (0.94) | (1.57)                      | (1.10) |  |  |

| _               | Low productivity<br>Flocks |        |        | High p<br>F | High productivity<br>Flocks |        |  |  |
|-----------------|----------------------------|--------|--------|-------------|-----------------------------|--------|--|--|
| Date            | 1                          | 2      | 3      | 4           | 5                           | 6      |  |  |
| Eye.Muscle.Area |                            |        |        |             |                             |        |  |  |
| $(mm^2)$        | 24.36                      | 19.38  | 23.79  | 24.94       | 24.90                       | 24.66  |  |  |
|                 | (2.59)                     | (3.69) | (2.29) | (2.87)      | (2.51)                      | (2.88) |  |  |
| Fat.Depth (mm)  | 2.50                       | 1.63   | 2.57   | 3.02        | 2.58                        | 2.97   |  |  |
|                 | (1.00)                     | (0.52) | (0.90) | (0.66)      | (0.71)                      | (0.93) |  |  |
| GR (mm)         | 10.21                      | 7.69   | 10.14  | 12.58       | 12.00                       | 12.55  |  |  |
|                 | (3.14)                     | (2.75) | (2.44) | (2.16)      | (1.71)                      | (2.41) |  |  |
| Carcass.Weight  | . ,                        |        | . ,    | . ,         | . ,                         | . ,    |  |  |
| (kg)            | 16.59                      | 13.79  | 17.09  | 18.06       | 17.62                       | 18.28  |  |  |
|                 | (2.16)                     | (2.69) | (1.92) | (2.05)      | (1.40)                      | (1.66) |  |  |
| Dressing        |                            |        |        |             |                             |        |  |  |
| Percent (%)     | 45.10                      | 43.82  | 44.92  | 46.14       | 45.92                       | 46.04  |  |  |
|                 | (1.54)                     | (1.82) | (1.11) | (1.08)      | (0.88)                      | (1.12) |  |  |

**Table 36.** Production data at pseudo slaughter date (4.04.2011) across flocks for low and high productivity landscapes

## **Conference and Symposium Papers**

Powell R., C. Edwards, R.S. Hegarty, and M.J. McPhee. (2011). Impacts of a two degree increase in temperature on pasture growth in the Northern tablelands of New South Wales. In Chan, F., Marinova, D. and Anderssen, R.S. (eds) MODSIM2011, 19th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, December 2011, pp. 857-862. ISBN: 978-0-9872143-1-7. www.mssanz.org.au/modsim2011/D10/wongsosaputro.pdf

## References

- Australian Farm Institute 2010, 'A discussion paper on alternative greenhouse emission policies for the Australian Beef Cattle Industry', Surry Hills, NSW.
- Corwin DL and Lesch SM 2005, 'Apparent soil electrical conductivity measurements in agriculture', *Computers and Electronics in Agriculture*, 46:11-43.
- Donnelly, J. R., Freer, M. & Moore, A. D. (1998). Using the GrassGro decision support tool to evaluate some objective criteria for the definition of exceptional drought. *Agricultural Systems* 57(3): 301-313.
- McPhee MJ, Edwards C, Meckiff J, Ballie N, Schneider D, Arnott P, Cowie A, Savage D, Lamb D, Guppy C, McCorkell B and Hegarty R (2010). Estimating on-farm methane emissions for sheep production on the Northern Tablelands: establishment of demonstration site. AFBM Journal. 7:2 85-94
- McPhee MJ, Bell AK, Griffith GR, Graham P and Meaker GP 2000, 'PRO Plus: a whole-farm fodder budgeting decision support system', *Australian Journal of Experimental Agriculture*, 40(4): 621-630.
- NSW Department of Primary Industries 2007, 'PROGRAZE<sup>™</sup>', seventh edition, ISBN 0734716982, Orange, NSW 2800.

Tothill JC, Hargreaves JNG and Jones RM 1978, 'Botanal – a comprehensive sampling and computing procedure for estimating pasture yield and composition. I Field sampling.' CSIRO Aust. Division of Tropical Crops and Pastures, Tropical Agronomy Memorandum No 8.

### Acknowledgements

Mr Doug Alcock, Sheep Livestock Officer, NSW DPI

## Appendix 1.

## GrassGro Low Productivity Landscape

09 Apr 2012 17:02

Acceptability report - All flocks of Ewes @ Trevenna Low Prod

1/09/1961 - 21/03/2011 Mean annual rainfall for years tested Mean annual rainfall [1 Jan - 31 Dec, 1962-2010]

| Date | Rainfall      |
|------|---------------|
|      | (sum)<br>(mm) |
| -    | 766           |





### Production over years

Pasture composition by years - Paddock 1 Green available herbage by species [1/09/1961 - 21/03/2011]





Numbers of sheep in the main flock Number of animals present (head) [1/09/1961 - 21/03/2011]



#### Numbers of young sheep



#### Lamb mortality





Live weight of female sheep in the main flock Live weight of each class (kg/head) [1/09/1961 - 21/03/2011]



Live weight of young sheep Live weight (kg/head) [1/09/1961 - 21/03/2011]





Fleece weight shorn each year for young sheep Clean fleece weight shorn (kg/head) [9 Jul - 10 Jul, 1962-2010] 2010



Average annual wool production of age classes in the main flock

Long term average annual clean fleece weight (kg/head) and fleece fibre diameter (micron) [1 Jan - 31 Dec, 1962-2010]

| Γ | Date | CFW -main flock |           |           |           |                   |           |           | Fleece fibre diameter |           |           |                   |  |
|---|------|-----------------|-----------|-----------|-----------|-------------------|-----------|-----------|-----------------------|-----------|-----------|-------------------|--|
| 1 |      | Female          | Female    | Female    | Male      | Male 1-2          | Male      | Female    | Female                | Female    | Male      | Male 1-2          |  |
|   |      | weaners         | 1-2 y.o.  | mature    | weaners   | <b>y.o.</b> (max) | mature    | weaners   | 1-2 y.o.              | mature    | weaners   | <b>y.o.</b> (av.) |  |
|   |      | (max)           | (max)     | (max)     | (max)     | (kg/head)         | (max)     | (av.)     | (av.)                 | (av.)     | (av.)     | (microns          |  |
|   |      | (kg/head)       | (kg/head) | (kg/head) | (kg/head) |                   | (kg/head) | (microns) | (microns)             | (microns) | (microns) |                   |  |
| - |      | n/a             | 2.77      | 2.73      | n/a       | n/a               | n/a       | n/a       | 17.3                  | 17.3      | n/a       | n/a               |  |

#### Average wool production of young sheep

Long term average clean fleece weight (kg/head) and fleece fibre diameter (micron) [9 Jul - 10 Jul, 1962-2010]

| Date | CFW -youn                                 | ig sheep                                          |                                         |                                         |                                           | Fleece fibre diameter                     |                                       |                                         |                                         |                                           |
|------|-------------------------------------------|---------------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|
|      | Unweaned<br><sup>(max)</sup><br>(kg/head) | Male<br>weaners<br>( <sup>max)</sup><br>(kg/head) | Male<br>yearlings<br>(max)<br>(kg/head) | Female<br>weaners<br>(max)<br>(kg/head) | Female<br>yearlings<br>(max)<br>(kg/head) | Unweaned<br><sup>(av.)</sup><br>(microns) | Male<br>weaners<br>(av.)<br>(microns) | Male<br>yearlings<br>(av.)<br>(microns) | Female<br>weaners<br>(av.)<br>(microns) | Female<br>yearlings<br>(av.)<br>(microns) |
| -    | n/a                                       | n/a                                               | n/a                                     | n/a                                     | n/a                                       | n/a                                       | n/a                                   | n/a                                     | n/a                                     | n/a                                       |



Supplement intake of all young sheep

Total monthly supplement intake for all young sheep (kg DM/head) [1/09/1961 - 21/03/2011]



## Variability of the whole farm system

### Distribution of annual rainfall

The probability (shown on the vertical axis) of annual rainfall exceeding the value shown on the horizontal axis (mm) [1 Jan - 31 Dec, 1962-2010]



#### Distribution of growing season rainfall

The probability of rainfall between 1 Apr and 31 Oct exceeding the value shown on the horizontal axis (mm) [1 Apr - 31 Oct, 1962-2010]



Monthly rainfall Percentiles for monthly rainfall [1 Jan - 31 Dec, 1962-2010]



#### Temperature

Long term average of monthly average maximum and minimum air temperature [1 Jan - 31 Dec, 1962-2010]











Variability in live weight of mature female sheep in the main flock Percentiles for live weight, including fleece (kg/head) [1 Jan - 31 Dec, 1962-2010]



Variability in live weight of ewe lambs Percentiles for live weight, including fleece (kg/head) [1 Jan - 31 Dec, 1962-2010]



Variability in live weight of wether lambs Percentiles for live weight, including fleece (kg/head) [1 Jan - 31 Dec, 1962-2010]







Variability in body condition of ewe lambs Percentiles for body condition score [1 Jan - 31 Dec, 1962-2010]







Variability in fibre diameter of mature female sheep in the main flock Percentiles for fibre diameter (micron) [1 Jan - 31 Dec, 1962-2010]



Variability in fibre diameter of 1-2 year old sheep in the main flock Percentiles for fibre diameter (micron) [1 Jan - 31 Dec, 1962-2010]



Variability in fibre diameter of young wethers (unweaned and weaned) Percentiles for fibre diameter (micron) [1 Jan - 31 Dec, 1962-2010]



Percentiles for lambs per ewe [1 Jan - 31 Dec, 1962-2010]

Lambs per ewe





Variability in intake of maintenance and production supplement of young sheep <u>Percentiles for total daily supplement intake of young sheep (kg DM/head/d) [1 Jan - 31 Dec, 1962-2010]</u>



Variability in average daily gain (ADG) of wether lambs Percentiles for average daily live weight gain -not fleece (kg/head/d) [1 Jan - 31 Dec, 1962-2010]



## Pasture quality









## Pasture growth rates for each paddock



| Table of average monthly pasture and sheep growth rates                                     |            |
|---------------------------------------------------------------------------------------------|------------|
| rable of average menting pactare and encop growth rates                                     | _          |
| Long term average pasture and sheep growth rates, averaged over each month [1 Jan - 31 Dec. | 1962-2010] |
|                                                                                             |            |

| Date | Pasture<br>growth     | Pasture<br>growth     | Pasture<br>growth     | Weight<br>change<br>(Unweaned) | Weight<br>change<br>(Male<br>weaners) | Weight<br>change<br>(Female<br>weaners) | Weight c                                        | hange (I                              | Main mo                             | b)                                 |                                        |                                   |
|------|-----------------------|-----------------------|-----------------------|--------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------------|---------------------------------------|-------------------------------------|------------------------------------|----------------------------------------|-----------------------------------|
|      | P1 (av.)<br>(kg/ha/d) | P2 (av.)<br>(kg/ha/d) | P3 (av.)<br>(kg/ha/d) | (av.)<br>(kg/d)                | (av.)<br>(kg/d)                       | (av.)<br>(kg/d)                         | Female<br>weaners<br><sup>(av.)</sup><br>(kg/d) | Female<br>1-2 y.o.<br>(av.)<br>(kg/d) | Female<br>mature<br>(av.)<br>(kg/d) | Male<br>weaners<br>(av.)<br>(kg/d) | Male<br>1-2<br>y.o.<br>(av.)<br>(kg/d) | Male<br>mature<br>(av.)<br>(kg/d) |
| Jan  | 14                    | 14                    | 15                    | n/a                            | 0.064                                 | 0.044                                   | n/a                                             | n/a                                   | -0.009                              | n/a                                | n/a                                    | n/a                               |
| Feb  | 13                    | 11                    | 12                    | n/a                            | 0.073                                 | 0.051                                   | n/a                                             | n/a                                   | -0.006                              | n/a                                | n/a                                    | n/a                               |
| Mar  | 15                    | 15                    | 11                    | n/a                            | 0.068                                 | 0.049                                   | n/a                                             | n/a                                   | -0.008                              | n/a                                | n/a                                    | n/a                               |
| Apr  | 14                    | 13                    | 12                    | n/a                            | n/a                                   | n/a                                     | n/a                                             | 0.049                                 | 0.053                               | n/a                                | n/a                                    | n/a                               |
| Мау  | 9                     | 8                     | 7                     | n/a                            | n/a                                   | n/a                                     | n/a                                             | 0.043                                 | 0.047                               | n/a                                | n/a                                    | n/a                               |
| Jun  | 4                     | 4                     | 2                     | n/a                            | n/a                                   | n/a                                     | n/a                                             | 0.037                                 | 0.043                               | n/a                                | n/a                                    | n/a                               |
| Jul  | 3                     | 2                     | 1                     | n/a                            | n/a                                   | n/a                                     | n/a                                             | 0.010                                 | 0.014                               | n/a                                | n/a                                    | n/a                               |
| Aug  | 4                     | 3                     | 3                     | n/a                            | n/a                                   | n/a                                     | n/a                                             | -0.024                                | -0.016                              | n/a                                | n/a                                    | n/a                               |
| Sep  | 9                     | 8                     | 7                     | 0.094                          | n/a                                   | n/a                                     | n/a                                             | -0.081                                | -0.075                              | n/a                                | n/a                                    | n/a                               |
| Oct  | 14                    | 12                    | 13                    | 0.170                          | n/a                                   | n/a                                     | n/a                                             | n/a                                   | -0.051                              | n/a                                | n/a                                    | n/a                               |
| Nov  | 19                    | 14                    | 16                    | 0.156                          | n/a                                   | n/a                                     | n/a                                             | n/a                                   | 0.012                               | n/a                                | n/a                                    | n/a                               |
| Dec  | 15                    | 15                    | 12                    | 0.086                          | n/a                                   | n/a                                     | n/a                                             | n/a                                   | 0.001                               | n/a                                | n/a                                    | n/a                               |

Feed budget

Long term average daily pasture growth and intake of pasture by the whole enterprise (kg DM/ha/d) [1 Jan - 31 Dec, 1962-2010]



#### Pasture utilization rate

The long term average amount of pasture consumed by all stock as a proportion of the amount of pasture grown over the period tested (%) [21 Mar - 21 Mar, 2011-2011]

| Date   | Utilization rate |
|--------|------------------|
|        | (%)              |
| 21 Mar | 7                |

## Economics

#### Production summary

Long term average pasture and sheep production. For selected financial year [1 Jul - 30 Jun, 1962/1963 - 2009/2010]

| 2003/2010]                                                     |              |                                           |
|----------------------------------------------------------------|--------------|-------------------------------------------|
| Farm System                                                    |              | All flocks of Ewes @ Trevenna Low<br>Prod |
| Total annual pasture yield (NPP) (sum)                         | kg/ha        | 6217                                      |
| Dry sheep equivalents (av.)                                    | dse/ha       | 1.5                                       |
| Wool cut - total flock (sum)                                   | kg<br>CFW/ha | 3                                         |
| Wool cut - lambs (sum)                                         | kg<br>CFW/ha | 0                                         |
| Shorn fibre diameter - ewe adults (av.)                        | microns      | 17.2                                      |
| Shorn fibre diameter - wether adults (av.)                     | microns      | n/a                                       |
| Shorn fibre diameter - lambs (av.)                             | microns      | n/a                                       |
| Meat sold - total (sum)                                        | kg LW/ha     | 30                                        |
| Meat sold - young stock (sum)                                  | kg LW/ha     | 23                                        |
| Wthr/ram Lambs Sale wt (av.)                                   | kg           | 26.5                                      |
| Ewe Lambs Sale wt (av.)                                        | kg           | 23.6                                      |
| Supplement fed/area (New Production Feeding rule) (sum)        | tonnes/ha    | 0.024                                     |
| Supplement fed/area (Maintenance - main flock) (sum)           | tonnes/ha    | 0.013                                     |
| Supplement fed/area (Maintenance - young (wnr) stock)<br>(sum) | tonnes/ha    | 0.002                                     |

#### Gross margin

Long term average gross margin. For selected financial year [1 Jul - 30 Jun, 1962/1963 - 2009/2010]

| Farm System                   |       | All flocks of Ewes @ Trevenna Low Prod |
|-------------------------------|-------|----------------------------------------|
| Net wool income - main flock  | \$/ha | 1                                      |
| Net wool income - young stock | \$/ha | 0                                      |
| Sale income - young stock     | \$/ha | 28                                     |

| Sale income - cast-for-age | \$/ha | 11  |
|----------------------------|-------|-----|
| Sale income - sold at foot | \$/ha | 0   |
| TOTAL INCOME               | \$/ha | 40  |
| Maintenance supplement     | \$/ha | 3   |
| Production supplement      | \$/ha | 6   |
| Shearing costs             | \$/ha | 4   |
| Animal husbandry           | \$/ha | 5   |
| Replacements purchased     | \$/ha | 28  |
| Rams purchased             | \$/ha | 4   |
| Sale costs                 | \$/ha | 2   |
| Pasture costs              | \$/ha | 0   |
| TOTAL EXPENSES             | \$/ha | 52  |
| GROSS MARGIN               | \$/ha | -13 |

#### Variability of Gross Margin

Long term standard deviation of the annual gross margin [1 Jul - 30 Jun, 1962/1963 - 2009/2010]

| Farm System      |       | All flocks of Ewes @ Trevenna Low Prod |
|------------------|-------|----------------------------------------|
| Total income/ha  | \$/ha | 5.30                                   |
| Total expense/ha | \$/ha | 9.09                                   |
| Gross margin/ha  | \$/ha | 8.64                                   |

#### Boxplot of gross margins

Annual gross margins (\$/ha). For selected financial year [1 Jul - 30 Jun, 1962/1963 - 2009/2010]



#### Interpretation of boxplot

The box shows the middle 50% of values (the interquartile range). The horizontal line inside the box is the median. The lines extending above and below the box (whiskers) show the upper and lower quartiles (25% of values). Beyond the whiskers, outlying values are shown by dots and extreme values are shown by asterisks. "Outlying values" lie more than 1.5 times the interquartile range beyond the upper and lower quartiles. "Extreme values" lie more than 3.0 times the interquartile range beyond the upper and lower quartiles.

#### Cumulative distribution of annual gross margins

The probability (on the vertical axis) of exceeding the gross margin value shown on the horizontal axis. For selected financial year [1 Jul - 30 Jun, 1962/1963 - 2009/2010]



Cumulative distribution of total supplement fed to whole enterprise The probability (on the vertical axis) of the total supplement fed in any year exceeding the value shown on the horizontal axis (kg/head). For selected financial year [1 Jul - 30 Jun, 1962/1963 - 2009/2010]



Cumulative distribution of live weight at sale of wether and ewe lambs (including fleece) The probability (on the vertical axis) of the live weight at sale in any year exceeding the value shown on the horizontal axis (kg/head, including fleece). For selected financial year [1 Jul - 30 Jun, 1962/1963 - 2009/2010]



Cumulative distribution of total supplement intake of sheep in main flock and young stock The probability (on the vertical axis) of the total supplement intake in any year exceeding the value shown on the horizontal axis (kg/head). For selected financial year [1 Jul - 30 Jun, 1962/1963 - 2009/2010]



Cumulative distribution of the average fleece fibre diameter of mature sheep The probability (on the vertical axis) of the fleece fibre diameter in any year exceeding the value shown on the horizontal axis (micron) [1 Jan - 31 Dec, 1962-2010]



Cumulative distribution of the average fleece fibre diameter of 1-2 year old sheep in the main flock

The probability (on the vertical axis) of the fleece fibre diameter in any year exceeding the value shown on the horizontal axis (micron) [1 Jan - 31 Dec, 1962-2010]



**Sustainabilty** 

| Pasture production and water h        | alance                               |    |  |  |  |  |  |
|---------------------------------------|--------------------------------------|----|--|--|--|--|--|
| rasilie production and water balance  |                                      |    |  |  |  |  |  |
| Long term average pasture productivit | y [1 Jan - 31 Dec, 1962-2010]        |    |  |  |  |  |  |
| Farm System                           | All flocks of Ewes @ Trevenna Low Pr | od |  |  |  |  |  |
| Desture growth (D1)                   | ka/ba 4040                           |    |  |  |  |  |  |
| Pasture growth (PT)                   | Kg/na 4040                           |    |  |  |  |  |  |
|                                       |                                      |    |  |  |  |  |  |

| Pasture growth (P2)              | kg/ha | 3634 |
|----------------------------------|-------|------|
| Pasture growth (P3)              | kg/ha | 3369 |
| Yearly Rainfall                  | mm    | 766  |
| Actual evapotranspiration (P1)   | mm    | 700  |
| Actual evapotranspiration (P2)   | mm    | 696  |
| Actual evapotranspiration (P3)   | mm    | 699  |
| Actual evapotranspiration (P4)   | mm    | 682  |
| Runoff (P1)                      | mm    | 0    |
| Runoff (P2)                      | mm    | 0    |
| Runoff (P3)                      | mm    | 0    |
| Runoff (P4)                      | mm    | 3    |
| Drainage below rooting zone (P1) | mm    | 66   |
| Drainage below rooting zone (P2) | mm    | 70   |
| Drainage below rooting zone (P3) | mm    | 67   |
| Drainage below rooting zone (P4) | mm    | 81   |

Ground cover over years

The ground cover for each paddock over time [1/09/1961 - 21/03/2011]



Cumulative distribution function for minimum ground cover

The probability (shown on the vertical axis) of the minimum ground cover in a year exceeding the value shown on the horizontal axis 2010]



#### Methane production

Long term annual average methane production [1 Jan - 31 Dec, 1962-2010]

| Date | Methane production<br>-main flock | Methane production<br>-young sheep |
|------|-----------------------------------|------------------------------------|
|      | (sum)<br>(g/head)                 | (sum)<br>(g/head)                  |
| -    | 8713                              | 2983                               |

Cumulative distribution function for deep drainage



## Farm System description

SILO file

| initial values of Farr | n System                                                                                          |       |  |  |  |  |
|------------------------|---------------------------------------------------------------------------------------------------|-------|--|--|--|--|
| Farm System            |                                                                                                   |       |  |  |  |  |
| Name                   | All flocks of Ewes @ Trevenna Low Prod                                                            |       |  |  |  |  |
| Enterprise type        | Ewe                                                                                               |       |  |  |  |  |
| Tested                 | Over 1 Sep 1961 to 21 Mar 2011                                                                    |       |  |  |  |  |
| Passed                 | No                                                                                                |       |  |  |  |  |
| Pasture<br>parameters  | <i>C:\Temp\grassgro 2012-03.prm GrassGro March 2012</i> , last edited 13 Jul 2011 by Andrew Moore |       |  |  |  |  |
| Animal<br>parameters   | standard, last edited 09 Feb 2004 by Andrew Moore                                                 |       |  |  |  |  |
| Property: Trevenna     | a                                                                                                 |       |  |  |  |  |
| Number of paddoc       | ks                                                                                                | 4     |  |  |  |  |
| Total area             |                                                                                                   | 48 ha |  |  |  |  |
| Weather: Armic         | lale Silo Data                                                                                    |       |  |  |  |  |
| Weather station        | Armidale Silo Data (from D:\Documents and<br>Settings\mcpheem\Desktop\GrassGro3\custom.set)       |       |  |  |  |  |
| Latitude               | 30°31'S                                                                                           |       |  |  |  |  |
| Longitude              | 151°40'E                                                                                          |       |  |  |  |  |
| Data period            | 1 Jan 1961 to 21 Mar 2011                                                                         |       |  |  |  |  |

D:\Documents and Settings\mcpheem\My

| Wind speed<br>Last edited2.0 m/s<br>2 0Mar 2012Paddock: HA35.6 haArea5.6 haSteepness0.07Soil evaporation0.17Soil subacio0.17Soil evaporation3.3 mm/d*Soil subacio0.17Soil evaporation0.30Soil subacio0.17Soil evaporation0.30Soil evaporation0.17Soil evaporation0.17Soil evaporation0.13Soil evaporation0.13Soil evaporation0.13Sturated conductivity (m/m)*0.13OutputRepresePield capacity (m/m)*0.13OutputRepresePopulationAustrodanthonia sp.<br>(beland)Bothriochool<br>Reproductive<br>(200)Annual<br>RyegrasePopulationAustrodanthonia sp.<br>(gestative (900)Bothriochool<br>Reproductive<br>(200)Annual<br>RyegrasePienologyVegetative (900)Vegetative (900Soil evaporation<br>(200)Soil evaporation<br>(200)SteepnessItem W (kg/ha)<br>(Rg/ha)7144481010Below ground DM<br>(Kg/ha)600500500500Max. rooting depti<br>foil labedo0.17501924600920Soil evaporation3.3 mm/d*9291010Below ground DM<br>(Kg/ha)7404481010Below ground DM<br>(Sg/ha)740090909090Soil evaporation3.3 mm/d*909                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | Docume                               | ents\GrassG               | ro\weath       | ier\armida        | lesiloda          | ta.txt     |                       |                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------|---------------------------|----------------|-------------------|-------------------|------------|-----------------------|---------------------|
| Last edited20 Mar 2012Paddock: HA3Area5.61: ho datSteepnes0.40Reduce wind to0.40Reduce wind to0.17Soil: New SoilSoil: New SoilSoil: Paperation0.33 mm/d <sup>5</sup> Soil: New SoilSoil: New SoilReproductive (Non")Note: New SoilReproductive (Non")Soil: New SoilSoil: New Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wind speed             | 2.0 m/s                              |                           |                |                   |                   |            |                       |                     |
| Topsol Subsol           Site press           Site press           Soli albedo         0.40           Reduce wind to         0.40           Soli albedo         0.17           Saturated conductivity (mm/m)         0.03         Within a           Perture: Hills Landscape Within A           Population         Annual Ryegrass           Pature: Hills Landscape Within A           Population         Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan= "2"           Colspan="2"                                                                                                                                                                                                                                                                                                                                                                                                                                          | Last edited            | 20 Mar 2                             | 2012                      |                |                   |                   |            |                       |                     |
| Area       5.6 ha         Steepness       Moderate         Fertility       0.40         Reduce wind to       100%         Soil: New Soil       0.17         Soil albedo       0.17         Soil abedo       0.17         Soil argoration       3.3 mm/d <sup>24</sup> SCS runoff curve no.       Using detault         Viliting point (m <sup>3</sup> /m <sup>3</sup> )       0.13       0.27       0.30         Bulk density (Mg/m <sup>3</sup> )       1.40       1.70         Statuated conductivity (mm/hr)       0.13       0.20         Bulk density (Mg/m <sup>3</sup> )       1.40       1.70         Statuated conductivity (mm/hr)       0.13       0.20         Initial water (m <sup>3</sup> /m <sup>3</sup> )       0.13       0.20         Pasture: Hills Landscape Within A       Ryegrass       Ryegrass         Phenology       Vegetative (900)       Reproductive (200)       (259)         Live DM (kg/ha)       302       190       10       10         Steapnes       600       500       500       500         Max. rooting depth (mm)       600       500       500       500         Soil evaporation       3.3 mm/d <sup>24</sup> 5.7 ha       10         Seepnes <td< th=""><th>Paddock: HA3</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>                                                                                                                                             | Paddock: HA3           |                                      |                           |                |                   |                   |            |                       |                     |
| Steepness       Moderate         Fertility       0.40         Reduce wind to       0.40         Soil: New Soil       0.17         Soil albedo       0.17         Soil albedo       0.33 mm/d <sup>16</sup> SCS runoff curve no       Using default         Cumulative depth (mm/)       0.02         Pield capacity (m <sup>3</sup> /m <sup>3</sup> )       0.20         Bulk density (Mg/m <sup>3</sup> )       1.40         1.40       1.70         Saturated conductivity (mm/hr)       0.00         Austrodanthona sp.       Bothriochloa       Perennial         Population       Austrodanthona sp.       Bothriochloa       Regrass         Phenology       Vegetative (900)       Reproductive       Vegetative (200)         Live DM (kg/ha)       302       10       10         Staturated conductivity (mm/hr)       0.20       Reproductive       Vegetative (200)         Live DM (kg/ha)       302       190       10       10         Staturited conductive (900)       Ceno       500       500       200         Reproductive (Mg/m <sup>3</sup> )       740       448       10       10         Steepness       Undulating       500       500       500                                                                                                                                                                                                                                                                             | Area                   |                                      |                           |                |                   |                   | 5.6 ha     |                       |                     |
| Fertility       0.40         Reduce wind to       100%         Soil: New Soil       0.17         Soil evaporation       3.3 mm/d <sup>14</sup> SCS: runoff curve no.       Using default         Cumulative depth (mm)       300       700         Field capacity (m <sup>3</sup> /m <sup>3</sup> )       0.27       0.30         Witting point (m <sup>3</sup> /m <sup>3</sup> )       0.13       0.20         Buik density (Mg/m <sup>3</sup> )       1.40       1.70         Saturated conductivity (mm/h)       0.00       3.00         Initial water (m <sup>3</sup> /m <sup>3</sup> )       0.13       0.20         Pasture: Hills Landscape Within A       Population       Austrodanthonia spp. (beta)       Perennial       Ryegrass       Ryegrass         Phenology       Vegetative (900)       Vegetative (900)       Reproductive (200)       Vegetative (200)       Vegetative (200)         Live DM (kg/ha)       302       190       10       10         Standing dead DM       740       4555       246       246         Kg/ha)       740       600       500       500       500         Below ground DM       7400       1.00%       10       10         Statepness       5.7 ha       100%       100         Statepness                                                                                                                                                                                                          | Steepness              |                                      |                           |                |                   |                   | Moderate   |                       |                     |
| answer wind to         Soil: New Soil         Soil: New Soil         Soil: albedo       0.17         Soil: albedo       Soil: albedo       Soil: albedo         Cumulative depth (mm)       300       700         Feld capacity (m <sup>3</sup> /m <sup>3</sup> )       0.27       0.30         Buik density (Mg/m <sup>3</sup> )       0.13       0.20         Bature: Hills Landszew With A       Pereinial Rancal Ra                                                                                                                   | Fertility              |                                      |                           |                |                   |                   | 0.40       |                       |                     |
| Soil: New Soil       Image: Soli albedo       0.17         Soil albedo       3.3 mm/d <sup>16</sup> SCS runoff curve no.       Using default         Cumulative depth (mm)       300       700         Field capacity (m <sup>2</sup> /m <sup>3</sup> )       0.27       0.30         Witting point (m <sup>2</sup> /m <sup>3</sup> )       0.13       0.20         Bulk density (Mg/m <sup>3</sup> )       0.13       0.20         Bulk density (Mg/m <sup>3</sup> )       0.13       0.20         Bulk density (Mg/m <sup>3</sup> )       0.13       0.20         Baturated conductivity (mm/hr)       30.0       3.00         Initial water (m <sup>3</sup> /m <sup>3</sup> )       0.13       0.20         Pasture: Hills Landscape Within A       Ryegrass       Ryegrass         Phenology       Vegetative (900)       Reproductive (200)       Vegetative (200)         Live DM (kg/ha)       302       190       10       10         Standing dead DM (kg/ha)       7264       4455       246       246         Max. rooting depth (kg/ha)       740       448       10       10         Seepness       Undulating       90       10       10         Reduce wind to       0.17       501 evaporation       3.3 mm/d <sup>16</sup> Soil albedo       0.17       3.3 mm/d <sup>1</sup>                                                                                                                                                         | Reduce wind to         | 0                                    |                           |                |                   |                   | 100%       |                       |                     |
| Soil albedo0.17Soil evaporation3.3 mm/d <sup>16</sup> SCS runoff curve no.Using defaultTopsoil SubsoilTopsoil SubsoilCumulative depth (mm)300700Field capacity (n <sup>2</sup> /m <sup>3</sup> )0.130.20Bulk density (Mg/m <sup>3</sup> )1.401.70Saturated conductivity (mm/hr)30.003.00Initial water (m <sup>3</sup> /m <sup>3</sup> )0.130.20Pasture: Hills Landscape Within APopulationRegrassPopulationAustrodanthonia spp.<br>(tableland)Bothrichloa<br>(beta)RegrassPhenologyVegetative (900)Vegetative (900)Reproductive<br>(200)Vegetative<br>(359)Live DM (kg/ha)30219010Standing dead DM<br>(kg/ha)7144481010Standing depth<br>(kg/ha)600500500Below ground DM<br>(kg/ha)740046002500250Paddock: HB3600500500500Area5.7 ha<br>100%100%Soil: New Soil<br>Soil avaporation3.3 mm/d <sup>16</sup> Soil avaporation3.0 20Buk density (Mg/M <sup>2</sup> )1.40 <th>Soil: New S</th> <th>Soil</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                            | Soil: New S            | Soil                                 |                           |                |                   |                   |            |                       |                     |
| Soil evaporation3.3 mm/d <sup>4</sup> SCS runoff curve no.Using defaultCumulative depth (mm)300700Field capacity (m <sup>7</sup> /m <sup>3</sup> )0.270.30Witting point (m <sup>3</sup> /m <sup>3</sup> )0.130.20Bulk density (Mg/m <sup>3</sup> )1.401.70Saturated conductivity (mm/hr)30.003.00Initial water (m <sup>3</sup> /m <sup>3</sup> )0.130.20Pasture: Hills Landscape Within APerennial (beta)Annual RyegrassPopulationAustrodanthonis sp. (beta)BothriochloaPerennial (heta)Annual RyegrassPhenologyVegetative (900)Vegetative (900)Reproductive (359)<br>(359)Vegetative (359)<br>(359)Live DM (kg/ha)3021901010Standing dead DM<br>(kg/ha)7144481010Below ground DM<br>(kg/ha)7400500500500500Max. rooting depth<br>(mm)600500500500500SeetenessUndulating<br>1.401.70100%100%Soil: New Soll<br>Soil albedo0.17<br>3.3 mm/d <sup>4</sup> 507<br>3.3 mm/d <sup>4</sup> 100%100%Soil: albedo<br>Soil albedo0.17<br>3.3 mm/d <sup>4</sup> 30027700Field capacity (m/m)<br>Suing default0.270.33100%Witting point (m <sup>3</sup> /m <sup>3</sup> )0.130.20100%Soil: New Soll<br>Soil albedo0.270.33100%Soil: albedo<br>Live depth (mm)0.270.33100%Soil: albedo<br>Live depth (mm)0.13<                                                                                                                                                                                                                                                      | Soil albedo            | 1                                    |                           | 0.17           |                   |                   |            |                       |                     |
| Using default         Topsoil Subsoil         Cumulative depth (mm)       300       700         Field capacity (m²/m²)       0.27       0.30         Wilting point (m²/m²)       0.13       0.20         Buik density (Mg/m²)       0.13       0.20         Pasture: HIIS Lands=zew Within A       Prenology       Vegetative (900)       Reproductive Vegetative (200)         Phenology       Vegetative (900)       Reproductive Vegetative (200)         Standing dead DM       7264       4555       246         Live DM (kg/ha)       302       100       10         Standing dead DM       7264       4555       246         Max. rooting depth (kg/ha)       714       448       10       10         Max. rooting depth (kg/ha)       7400       500       501         Soli: New Soil       Soli: New Soil       Soli albedo       10.17       Soli albedo <th>Soil evapor</th> <th>ation</th> <th></th> <th>3.3 mm</th> <th>/d<sup>½</sup></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Soil evapor            | ation                                |                           | 3.3 mm         | /d <sup>½</sup>   |                   |            |                       |                     |
| Topsoil SubsoilCumulative depth (m)300700Field capacity (m <sup>3</sup> /m <sup>3</sup> )0.270.30Wilting point (m <sup>3</sup> /m <sup>3</sup> )0.130.20Bulk density (Mg/m <sup>3</sup> )1.401.70Saturated conductivity (mm/hr)30.003.00Initial water (m <sup>3</sup> /m <sup>3</sup> )0.130.20Pasture: Hills Landscore Within APopulationAustrodanthonia sp.<br>(tableand)Reproductive<br>(200)Reproductive<br>(200)Vegetative<br>(359)PhenologyVegetative (900)Vegetative (900)Reproductive<br>(200)Vegetative<br>(359)Live DM (kg/ha)3021901010Standing dead DM<br>(kg/ha)72644555246246Liter DM (kg/ha)7144481010Below ground DM<br>(kg/ha)600500500500Standing dead DM<br>(kg/ha)7400200Patdoct: HB35.7 ha100%5.7 ha200Soil: New Soil<br>Soil albedo0.170.40100%Soil: New Soil0.170.130.205.7 haSoil albedo0.170.130.205.7 haSoil albedo0.170.30100%Soil albedo0.170.30100%Soil albedo0.170.301.70Soil albedo0.170.301.70Soil albedo0.170.302.00Soil albedo0.170.301.70S                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SCS runoff             | curve no                             | ).                        | Using d        | efault            |                   |            |                       |                     |
| Topsoil SubsoilCumulative depth (mm)300700Field capacity (m <sup>3</sup> /m <sup>3</sup> )0.130.270.30Wilting point (m <sup>3</sup> /m <sup>3</sup> )0.130.20Bulk density (Mg/m <sup>3</sup> )1.401.70Bulk density (Mg/m <sup>3</sup> )0.130.20Bulk density (Mg/m <sup>3</sup> )0.130.20Pasture: Hills Landstee Within a span<br>(tableland)Pasture: Hills Colspan="2">Antordam KreegersPartne: Hills Colspan="2">Antordam KreegersPopulationAustrodam KreegerPasture: Hills Colspan="2">Antordam KreegersPasture: Hills Colspan="2">Antordam KreegersPopulationAustrodam KreegersPartne: Hills Colspan="2">Antordam KreegersPartne: Hills Colspan="2">Antordam KreegersPopulationAustrodam KreegersPartne: Hills Colspan="2">Antordam KreegersPopulationAustrodam KreegersPartne: Hills Colspan="2">Antordam KreegersField Colspan="2">Austrodam KreegersPasture: Hills Colspan="2">Antordam KreegersPopulationAustrodam KreegersPopulationAustrodam KreegersPopulationAustrodam KreegersMax. rooting depth<br>(mm)Austrodam KreegersBalew ground DM<br>(Kg/ha)Austrodam KreegersSoli: kew SoilSoli Austrodam                                                                                                                                                                                                                                                                                                                                         |                        |                                      |                           |                |                   |                   |            |                       |                     |
| Cumulative depth (mm)       300       700         Field capacity (m³/m³)       0.27       0.30         Wilting point (m³/m³)       0.13       0.20         Bulk density (Mg/m³)       1.40       1.70         Saturated conductivity (mm/hr)       30.00       3.00         Initial water (m³/m³)       0.13       0.20         Pasture: Hills Landscurve Within A         Population       Austrodamthonia sp.<br>(tableand)       Bothriochloa<br>(beta)       Perennial<br>Ryegrass       Annual<br>Ryegrass         Phenology       Vegetative (900)       Vegetative (900)<br>(200)       Reproductive<br>(200)       Vegetative<br>(359)         Live DM (kg/ha)       302       190       10       10         Standing dead DM<br>(kg/ha)       714       448       10       10         Below ground DM<br>(kg/ha)       7400       555       246       246         Max. rooting depth<br>(mm)       600       500       500       500         Seed DM (kg/ha)       740       448       10       0         Seepness       Undulating       5.7 ha       100%         Soil: New Soil       0.17       0.40       100%         Soil avaporation       0.17       3.3 mm/d <sup>4</sup>                                                                                                                                                                                                                                                           |                        |                                      |                           | Topsoi         | l Subsoil         |                   |            |                       |                     |
| Field capacity (m <sup>2</sup> /m <sup>3</sup> )       0.27       0.30         Willing point (m <sup>3</sup> /m <sup>3</sup> )       0.13       0.20         Bulk density (Mg/m <sup>3</sup> )       1.40       1.70         Saturated conductivity (mm/m <sup>3</sup> )       0.13       0.20         Pastne: Hills Landscape Within A       Bothricchica       Perennial       Annual         Population       Austrodanthonia spp.<br>(tableland)       Bothricchica       Perennial       Annual         Phenology       Vegetative (900)       Reproductive<br>(200)       Vegetative (359)         Live DM (kg/ha)       302       190       10       10         Standing dead DM<br>(kg/ha)       7264       4555       246       246         Litter DM (kg/ha)       714       448       10       10       10         Below ground DM<br>(kg/ha)       740       600       500       500       500         Seed DM (kg/ha)       714       448       10       10       10         Below ground DM<br>(kg/ha)       740       0.13       0.20       500       500       500         Seed DM (kg/ha)       740       0.13       0.20       0.40       10       10         Soil albedo       0.17       0.33 mm/d <sup>4</sup> 5.7 ha       100%                                                                                                                                                                                                  | Cumulative             | e depth (n                           | nm)                       | 300            | 700               |                   |            |                       |                     |
| Wilting point (m²/m²)0.130.20Bulk density (Mg/m²)1.401.70Saturated conductivity (mm/h²)0.130.20Pasture: Hills LandszerWithin 20.003.00Pasture: Hills LandszerWithin 20.00RyegrassPopulationAustrodanthonia sp.<br>(tableland)Bothriochloa<br>(beta)Perennial<br>RyegrassAnnual<br>RyegrassPhenologyVegetative (900)Reproductive<br>(200)Vegetative<br>(359)246246Litre DM (kg/ha)3021901010Standing dead DM<br>(kg/ha)7414481010Below ground DM<br>(kg/ha)7400600500500Bedow ground DM<br>(kg/ha)7400600500500Pactock: HB35.7 ha5.7 ha5.7 haArea5.7 ha5.7 ha5.7 haSoil evaporation3.3 mn/d <sup>16</sup> 10%Soil albedo0.170.40Soil albedo0.17Soil albedo0.17Soil albedo further300Villing point (m²/m³)0.27Bulk density (Mg/m³)0.27Bulk density (Mg/m³)0.27Bulk density (Mg/m³)No 1.30.20Bulk density (Mg/m³)Saturated conductify (mm/m³)Saturated conductify (mm/m                                                                                                                                                                                                                                                                                                                                                                                                           | Field capac            | ity (m³/m                            | l°)                       | 0.27           | 0.30              |                   |            |                       |                     |
| Built density (Mg/m <sup>*</sup> )       1.40       1.70         Saturated conductivity (mm/hr)       30.00       3.00         Initial water (m <sup>3</sup> /m <sup>3</sup> )       0.13       0.20         Pasture: Hills Landscape Within A         Population       Austrodanthonia sp. (tableland)       Control (beta)       Perennial Ryegrass       Annual Ryegrass         Phenology       Vegetative (900)       Vegetative (900)       Reproductive (200)       Reproductive (200)       Vegetative (200)         Live DM (kg/ha)       302       190       10       10         Standing dead DM (kg/ha)       7264       4555       246       246         Litter DM (kg/ha)       714       448       10       10         Below ground DM (kg/ha)       7400       500       500       500         Max. rooting depth (mm)       600       500       500       500         Seed DM (kg/ha)       -       -       -       200         Soli albedo       0.17         Soli albedo       0.17       33       33       33       34       34       34       34       34       34       34 </th <th>Wilting poir</th> <th>nt (m³/m³</th> <th>)</th> <th>0.13</th> <th>0.20</th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                          | Wilting poir           | nt (m³/m³                            | )                         | 0.13           | 0.20              |                   |            |                       |                     |
| Saturated conductivity (mm/hr) 30.00 3.00         Initial water (m³/m³)       0.13 0.20         Pasture: Hills Landscare Within A         Population       Austrodanthonia spp. (tableland)       Bothriochloa Ryegrass       Annual Ryegrass         Phenology       Vegetative (900)       Vegetative (900)       Reproductive (200)       Vegetative (359)         Live DM (kg/ha)       302       190       10       10         Standing dead DM (kg/ha)       7264       4555       246       246         Litter DM (kg/ha)       714       448       10       10         Below ground DM (kg/ha)       7400       600       500       500         Max. rooting depth (mm)       600       500       500       500         Seed DM (kg/ha)       -       -       -       -       -       200         Perenal       0.17       33 mm/d <sup>14</sup> 100%       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                          | Bulk densit            | y (Mg/m³                             | )                         | 1.40           | 1.70              |                   |            |                       |                     |
| Initial water (m*/m*)         0.13         0.20           Pasture: Hills Lands⊂ape Within A           Population         Austrodanthonia spp.<br>(tableland)         Bothriochloa<br>(beta)         Perennial<br>Ryegrass         Annual<br>Ryegrass           Phenology         Vegetative (900)         Vegetative (900)         Reproductive<br>(200)         Vegetative<br>(359)           Live DM (kg/ha)         302         190         10         10           Standing dead DM<br>(kg/ha)         7264         4555         246         246           Litter DM (kg/ha)         714         448         10         10           Below ground DM<br>(kg/ha)         7400         600         500         500           Max. rooting depth<br>(mm)         600         500         500         500           Seed DM (kg/ha)         -         -         -         -         200           Paddock: HB3         0.17         0.40         100%         501         100%           Soil evaporation         3.3 mm/d <sup>14</sup> 5.7 ha         100%         5.7 ka         1.40         1.70           Soil albedo         0.17         3.3 mm/d <sup>14</sup> 5.7 ka         1.40         1.70         1.40         1.70         1.40         1.70         1.40                                                                                                                                                                              | Saturated c            | conductiv                            | rity (mm/hr)              | 30.00          | 3.00              |                   |            |                       |                     |
| Pasture: Hills Landscape Within A           Population         Austrodanthonia spp.<br>(tableland)         Bothriochloa<br>(beta)         Perennial<br>Ryegrass         Annual<br>Ryegrass           Phenology         Vegetative (900)         Vegetative (900)         Reproductive<br>(200)         Vegetative<br>(359)           Live DM (kg/ha)         302         190         10         10           Standing dead DM<br>(kg/ha)         7264         4555         246         246           Litter DM (kg/ha)         714         448         10         10           Below ground DM<br>(kg/ha)         7400         600         500         500           Max. rooting depth<br>(mm)         600         500         500         500           Steepness         Undulating         -         -         200           Fertility         0.17         0.40         0.40         -         -           Soil albedo         0.17         0.33 mm/d <sup>16</sup> -         100%         -         -           Soil albedo         0.17         0.30         700         -         -         -           Soil albedo         0.27         0.30         700         -         -         -           Field capacity (m <sup>3</sup> /m <sup>3</sup> ) <td< th=""><th>Initial water</th><th>r (m³/m³)</th><th></th><th>0.13</th><th>0.20</th><th></th><th></th><th></th><th></th></td<>                                                            | Initial water          | r (m³/m³)                            |                           | 0.13           | 0.20              |                   |            |                       |                     |
| Population         Austrodanthonia spp.<br>(tableland)         Bothriochloa<br>(beta)         Perennial<br>Ryegrass         Annual<br>Ryegrass           Phenology         Vegetative (900)         Vegetative (900)         Reproductive<br>(200)         Vegetative<br>(200)         Sol         Sol | Pasture: Hi            | lls Lands                            | cape Within               | n A            |                   |                   |            |                       |                     |
| Phenology         Vegetative (900)         Reproductive (200)         Reproductive (200)         Vegetative (359)           Live DM (kg/ha)         302         190         10         10           Standing dead DM (kg/ha)         7264         4555         246         246           Litter DM (kg/ha)         714         448         10         10           Below ground DM (kg/ha)         7400         4600         250         250           Max. rooting depth (mm)         600         500         500         500           Seed DM (kg/ha)         -         -         -         200           Paddock: HB3         -         5.7 ha         100%           Steepness         Undulating         -         -         200           Fertility         0.40         0.40         -         -         -           Soil New Soil         3.3 mm/d <sup>14</sup> 100%         -         -         -         -           Soil evaporation         3.3 mm/d <sup>14</sup> 5.7 ha         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< th=""><th>Population</th><th></th><th>Austrodan<br/>(tableland)</th><th>ithonia s<br/>)</th><th>spp.</th><th>Bothrie<br/>(beta)</th><th>ochloa</th><th>Perennial<br/>Ryegrass</th><th>Annual<br/>Ryegrass</th></t<>                                                    | Population             |                                      | Austrodan<br>(tableland)  | ithonia s<br>) | spp.              | Bothrie<br>(beta) | ochloa     | Perennial<br>Ryegrass | Annual<br>Ryegrass  |
| Live DM (kg/ha)       302       190       10       10         Standing dead DM<br>(kg/ha)       7264       4555       246       246         Litter DM (kg/ha)       714       448       10       10         Below ground DM<br>(kg/ha)       7400       4600       250       250         Max. rooting depth<br>(mm)       600       500       500       500         Seed DM (kg/ha)       -       -       -       200         Paddock: HB3       -       5.7 ha       100%         Steepness       Undulating       0.40       100%         Fertility       0.17       0.40       100%         Soil albedo       0.17       0.10%       501       5.7 ha         Soil albedo       0.17       0.40       100%       501         Soil albedo       0.17       0.13       0.27       0.30         Soil albedo filting point (m <sup>3</sup> /m <sup>3</sup> )       0.27       0.30       5.7 ha         Vilting point (m <sup>3</sup> /m <sup>3</sup> )       0.27       0.30       5.7 ha         Soll albedo       0.17       5.7 ha       5.7 ha         Soll albedo       0.17       5.7 ha       5.7 ha         Soll albedo       0.17       5.7 ha                                                                                                                                                                                                                                                                                                | Phenology              |                                      | Vegetative                | (900)          |                   | Vegeta            | tive (900) | Reproductive (200)    | Vegetative<br>(359) |
| Standing dead DM<br>(kg/ha)         7264         4555         246         246           Litter DM (kg/ha)         714         448         10         10           Below ground DM<br>(kg/ha)         7400         4600         250         250           Max. rooting depth<br>(mm)         600         500         500         500           Seed DM (kg/ha)         -         -         -         200           Paddock: HB3         -         5.7 ha         58         5.7 ha           Steepness         Undulating         0.40         100%           Fertility         0.40         100%         100%           Soil: New Soil         0.17         0.40         100%           Soil albedo         0.17         0.30         501 evaporation         3.3 mm/d <sup>16</sup> SCS runoff curve no.         Using default         100%         100%           Field capacity (m <sup>3</sup> /m <sup>3</sup> )         0.27         0.30         1.40         1.70           Bulk density (Mg/m <sup>3</sup> )         0.13         0.20         2.00         1.40                                                                                                                                                                                                                                                                                                                                                                               | Live DM (kg            | g/ha)                                | 302                       |                |                   | 190               |            | 10                    | 10                  |
| Litter DM (kg/ha)       714       448       10       10         Below ground DM<br>(kg/ha)       7400       4600       250       250         Max. rooting depth<br>(mm)       600       600       500       500         Seed DM (kg/ha)       -       -       -       200         Paddock: HB3       -       5.7 ha       10       10         Area       5.7 ha       Undulating       10       10         Steepness       Undulating       0.40       100%       100%         Fertility       0.17       0.40       100%       100%         Soil New Soil       0.17       0.40       100%         Soil albedo       0.17       0.40       100%         Soil cuporation       3.3 mm/d <sup>16</sup> SCS runoff curve no.       Using default         Using default       5.7 n 30       1.40       1.70         Bulk density (Mg/m <sup>3</sup> )       0.13       0.20       1.70 <tr< th=""><th>Standing de<br/>(kg/ha)</th><th>ead DM</th><th>7264</th><th></th><th></th><th>4555</th><th></th><th>246</th><th>246</th></tr<>                                                                                                                                                                                                 | Standing de<br>(kg/ha) | ead DM                               | 7264                      |                |                   | 4555              |            | 246                   | 246                 |
| Below ground DM<br>(kg/ha)       7400       4600       250       250         Max. rooting depth<br>(mm)       600       500       500       500         Seed DM (kg/ha)       -       -       -       200         Paddock: HB3       -       5.7 ha       -       200         Paddock: HB3       -       0.40       -       -       -       -       -         Steepness       -       0.40       100%       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                  | Litter DM (k           | (g/ha)                               | 714                       |                |                   | 448               |            | 10                    | 10                  |
| Max. rooting depth (mm) $600$ $500$ $500$ Seed DM (kg/ha)       -       - $200$ Paddock: HB3       - $5.7$ ha $5.7$ ha         Area $5.7$ ha $5.7$ ha $5.7$ ha         Steepness $1000$ $0.40$ $100\%$ Fertility $0.40$ $100\%$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$ $501$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Below grou<br>(kg/ha)  | INd DM                               | 7400                      |                |                   | 4600              |            | 250                   | 250                 |
| Seed DM (kg/ha) 200     Paddock: HB3   Area 5.7 ha   Steepness Undulating   Fertility 0.40   Reduce wind to 100%   Soil: New Soil 0.17   Soil albedo 0.17   Soil evaporation 3.3 mm/d <sup>14</sup> SCS runoff curve no. Using default     Topsoil Subsoil   Cumulative depth (mm) 300   Field capacity (m <sup>3</sup> /m <sup>3</sup> ) 0.27   0.13 0.20   Bulk density (Mg/m <sup>3</sup> ) 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Max. rootin<br>(mm)    | g depth                              | 600                       |                |                   | 600               |            | 500                   | 500                 |
| Paddock: HB3         Area       5.7 ha         Steepness       Undulating         Fertility       0.40         Reduce wind to       100%         Soil: New Soil       100%         Soil albedo       0.17         Soil evaporation       3.3 mm/d <sup>%</sup> SCS runoff curve no.       Using default         Image: Cumulative depth (mm)       300       700         Field capacity (m <sup>3</sup> /m <sup>3</sup> )       0.27       0.30         Wilting point (m <sup>3</sup> /m <sup>3</sup> )       0.13       0.20         Bulk density (Mg/m <sup>3</sup> )       1.40       1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Seed DM (k             | g/ha)                                | -                         |                |                   | -                 |            | -                     | 200                 |
| Area       5.7 ha         Steepness       Undulating         Fertility       0.40         Reduce wind to       100%         Soil: New Soil       0.17         Soil albedo       0.17         Soil evaporation       3.3 mm/d <sup>½</sup> SCS runoff curve no.       Using default         Image: Cumulative depth (mm)       300       700         Field capacity (m <sup>3</sup> /m <sup>3</sup> )       0.27       0.30         Wilting point (m <sup>3</sup> /m <sup>3</sup> )       0.13       0.20         Bulk density (Mg/m <sup>3</sup> )       1.40       1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Paddock: HB3           |                                      |                           |                |                   |                   |            |                       |                     |
| Steepness       Undulating         Fertility       0.40         Reduce wind to       100%         Soil: New Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Area                   |                                      |                           |                |                   | 5.7               | ha         |                       |                     |
| Fertility       0.40         Reduce wind to       100%         Soil: New Soil       100%         Soil albedo       0.17         Soil evaporation       3.3 mm/d <sup>1/2</sup> SCS runoff curve no.       Using default         Image: Cumulative depth (mm)       300         Soil capacity (m <sup>3</sup> /m <sup>3</sup> )       0.27         Wilting point (m <sup>3</sup> /m <sup>3</sup> )       0.13         Bulk density (Mg/m <sup>3</sup> )       1.40         Scturated conductivity (mm/br)       20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Steepness              |                                      |                           |                |                   | Und               | dulating   |                       |                     |
| Reduce wind to       100%         Soil: New Soil       0.17         Soil albedo       0.17         Soil evaporation       3.3 mm/d <sup>1/2</sup> SCS runoff curve no.       Using default         Image: Cumulative depth (mm)       300         700       700         Field capacity (m <sup>3</sup> /m <sup>3</sup> )       0.27         0.13       0.20         Bulk density (Mg/m <sup>3</sup> )       1.40         Scturated conductivity (mm/hr)       20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fertility              |                                      |                           |                |                   | 0.4               | 0          |                       |                     |
| Soil: New SoilSoil albedo $0.17$ Soil evaporation $3.3 \text{ mm/d}^{\frac{1}{2}}$ SCS runoff curve no.Using defaultTopsoil SubsoilCumulative depth (mm) $300  700$ Field capacity (m <sup>3</sup> /m <sup>3</sup> ) $0.27  0.30$ Wilting point (m <sup>3</sup> /m <sup>3</sup> ) $0.13  0.20$ Bulk density (Mg/m <sup>3</sup> ) $1.40  1.70$ Scturated conductivity (mm/br) $20.00  3.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reduce wind to         | 0                                    |                           |                |                   | 100               | )%         |                       |                     |
| Soil albedo0.17Soil evaporation3.3 mm/d <sup>½</sup> SCS runoff curve no.Using defaultTopsoil SubsoilCumulative depth (mm)300300700Field capacity (m³/m³)0.270.130.20Bulk density (Mg/m³)1.40Scturated conductivity (mm/br)20.003003.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Soil: New S            | Soil                                 |                           |                |                   |                   |            |                       |                     |
| Soil evaporation3.3 mm/d <sup>½</sup> SCS runoff curve no.Using defaultTopsoilSubsoilCumulative depth (mm)300300700Field capacity (m³/m³)0.270.300.13Wilting point (m³/m³)0.130.130.20Bulk density (Mg/m³)1.4020.003.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Soil albedo            | r                                    |                           | 0.17           |                   |                   |            |                       |                     |
| SCS runoff curve no.Using defaultTopsoilSubsoilCumulative depth (mm)300700Field capacity (m³/m³)0.270.30Wilting point (m³/m³)0.130.20Bulk density (Mg/m³)1.401.70Scturated conductivity (mm/br)20.003.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Soil evapor            | ation                                |                           | 3.3 mm         | /d <sup>1/2</sup> |                   |            |                       |                     |
| TopsoilSubsoilCumulative depth (mm)300700Field capacity (m³/m³)0.270.30Wilting point (m³/m³)0.130.20Bulk density (Mg/m³)1.401.70Saturated conductivity (mm/br)20.003.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SCS runoff             | curve no                             | ).                        | Using d        | efault            |                   |            |                       |                     |
| TopsoilSubsoilCumulative depth (mm)300700Field capacity (m³/m³)0.270.30Wilting point (m³/m³)0.130.20Bulk density (Mg/m³)1.401.70Saturated conductivity (mm/br)20.003.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                      |                           |                |                   |                   |            |                       |                     |
| Cumulative depth (mm)       300       700         Field capacity (m³/m³)       0.27       0.30         Wilting point (m³/m³)       0.13       0.20         Bulk density (Mg/m³)       1.40       1.70         Saturated conductivity (mm/br)       20.00       3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • • •                  |                                      |                           | Topsoi         | Subsoil           |                   |            |                       |                     |
| Freid capacity (m /m )       0.27       0.30         Wilting point (m³/m³)       0.13       0.20         Bulk density (Mg/m³)       1.40       1.70         Saturated conductivity (mm/br)       20.00       3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cumulative             | e depth (n                           | n <b>m)</b>               | 300            | 700               |                   |            |                       |                     |
| Witting point (m /m )         0.13         0.20           Bulk density (Mg/m³)         1.40         1.70           Saturated conductivity (mm/br)         20.00         3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | nt (m <sup>-2</sup> /m               | )                         | 0.27           | 0.30              |                   |            |                       |                     |
| Bulk density (Mg/m <sup>-</sup> ) 1.40 1.70<br>Seturated conductivity (mm/br) 20.00 - 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | wiiting poir           | nt (m <sup>°</sup> /m <sup>°</sup> ) | )                         | 0.13           | 0.20              |                   |            |                       |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bulk densit            | y (wg/m°                             | )<br>iitu ( 100 100 (lla) | 1.40           | 1.70              |                   |            |                       |                     |
| $\begin{array}{c} \text{Saturated conductivity (minim)} & 50.00 & 5.00 \\ \text{Initial water } (m^3/m^3) & 0.12 & 0.20 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Saturated C            | $m^{3}/m^{3}$                        | ity (mm/nř)               | 30.00<br>0.12  | 3.00<br>0.20      |                   |            |                       |                     |

| Pasture: Hills             | Landscape                        | Withir             | ו B      |                  |        |             |             |          |          |
|----------------------------|----------------------------------|--------------------|----------|------------------|--------|-------------|-------------|----------|----------|
| Population                 |                                  | Aust               | rodanthe | onia spp. (ta    | blelan | d) Bothrioc | hloa (beta) | Annual F | Ryegrass |
| Phenology                  |                                  | Vernalizing (0.00) |          |                  |        | Vegetativ   | Vegetativ   | re (0)   |          |
| Live DM (kg/h              | a)                               | 258                |          |                  |        | 89          |             | 76       |          |
| Standing dea               | d DM (kg/ha)                     | 6222               |          |                  |        | 2142        |             | 1836     |          |
| Litter DM (kg/             | ha)                              | 622                |          |                  |        | 214         |             | 184      |          |
| Below ground               | I DM (kg/ha)                     | 6500               |          |                  |        | 2200        |             | 1900     |          |
| Max. rooting               | depth (mm)                       | 500                |          |                  |        | 600         |             | 500      |          |
| Seed DM (kg/               | ha)                              | -                  |          |                  |        | -           |             | 0        |          |
| Paddock: HC2               |                                  |                    |          |                  |        |             |             |          |          |
| Area                       |                                  |                    |          |                  | 5.7 h  | а           |             |          |          |
| Steepness                  |                                  |                    |          |                  | Undu   | llating     |             |          |          |
| Fertility                  |                                  |                    |          |                  | 0.40   |             |             |          |          |
| Reduce wind to             |                                  |                    |          |                  | 100%   | /<br>0      |             |          |          |
| Soil: New Soi              | l                                |                    |          |                  |        |             |             |          |          |
| Soil albedo                |                                  |                    | 0.17     |                  |        |             |             |          |          |
| Soil evaporat              | ion                              |                    | 3.3 mm/  | d <sup>1/2</sup> |        |             |             |          |          |
| SCS runoff cu              | irve no.                         |                    | Usina de | efault           |        |             |             |          |          |
|                            |                                  |                    | Ū        |                  |        |             |             |          |          |
|                            |                                  |                    | Topsoil  | Subsoil          |        |             |             |          |          |
| Cumulative d               | epth (mm)                        |                    | 300      | 700              |        |             |             |          |          |
| Field capacity             | / (m³/m³)                        |                    | 0.27     | 0.30             |        |             |             |          |          |
| Wilting point              | (m³/m³)                          |                    | 0.13     | 0.20             |        |             |             |          |          |
| Bulk density               | (Mg/m <sup>3</sup> )             |                    | 1.40     | 1.70             |        |             |             |          |          |
| Saturated cor              | nductivity (m                    | m/hr)              | 30.00    | 3.00             |        |             |             |          |          |
| Initial water (r           | n <sup>3</sup> /m <sup>3</sup> ) |                    | 0.13     | 0.20             |        |             |             |          |          |
| Pasture: Hills             | Landscape                        | Withir             | n C      |                  |        |             |             |          |          |
| Population                 | Austrod                          | antho              | nia spp. | Bothrioch        | loa    | Phalaris    | Annual      | Annu     | al Grass |
|                            | (tablelar                        | nd)                |          | (beta)           |        |             | Ryegrass    | - Earl   | у        |
| Phenology                  | Vernalizi                        | ng (0.             | 00)      | Vegetative       | e (0)  | Vegetative  | Vernalizing | y Verna  | alizing  |
| Livo DM (ka/b              | <b>a)</b> 102                    |                    |          | 215              |        | (U)<br>11   | (0.00)      | (0.00    | )        |
| Standing doa               | a) 102<br>a) 2475                |                    |          | 7564             |        | 275         | 1210        | 127      |          |
| DM (kg/ha)                 | u 2475                           |                    |          | 7504             |        | 215         | 1210        | 137      |          |
| Litter DM (kg/             | ha) 248                          |                    |          | 756              |        | 28          | 121         | 14       |          |
| Below ground<br>DM (kg/ha) | 2500                             |                    |          | 7850             |        | 300         | 1300        | 150      |          |
| Max. rooting depth (mm)    | 500                              |                    |          | 600              |        | 500         | 500         | 500      |          |
| Seed DM (kg/               | ha) -                            |                    |          | -                |        | -           | 0           | 0        |          |
| Paddock: Winter            | grazing                          |                    |          |                  |        |             |             |          |          |
| Area                       |                                  |                    |          |                  | 31.0   | ha          |             |          |          |
| Steepness                  |                                  |                    |          |                  | Undu   | llating     |             |          |          |
| Fertility                  |                                  |                    |          |                  | 0.60   |             |             |          |          |
| Reduce wind to             |                                  |                    |          |                  | 100%   | 0           |             |          |          |
| Soil: New Soi              | l                                |                    |          |                  |        |             |             |          |          |
| Soil albedo                |                                  |                    | 0.17     |                  |        |             |             |          |          |
| Soil evaporat              | ion                              |                    | 3.5 mm/  | d <sup>1/2</sup> |        |             |             |          |          |
| SCS runoff cu              | irve no.                         |                    | Using de | efault           |        |             |             |          |          |
|                            |                                  |                    | _        |                  |        |             |             |          |          |
|                            |                                  |                    | Tonsoil  | Subsoil          |        |             |             |          |          |

|                                                                                                                       | Cumulative dept                                                                                                                                                                                                                                                                                                          | th (mm                                                                                                                          | )                                                                                                                                                                                                                        | 150                                                                                                                   | 1000                                              |                                                                            |                                             |                                                                     |                                 |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|---------------------------------|
|                                                                                                                       | Field capacity (n                                                                                                                                                                                                                                                                                                        | n <sup>3</sup> /m <sup>3</sup> )                                                                                                |                                                                                                                                                                                                                          | 0.30                                                                                                                  | 0.34                                              |                                                                            |                                             |                                                                     |                                 |
|                                                                                                                       | Wilting point (m                                                                                                                                                                                                                                                                                                         | ³/m³)                                                                                                                           |                                                                                                                                                                                                                          | 0.15                                                                                                                  | 0.23                                              |                                                                            |                                             |                                                                     |                                 |
|                                                                                                                       | Bulk density (Mg                                                                                                                                                                                                                                                                                                         | g/m³)                                                                                                                           |                                                                                                                                                                                                                          | 1.40                                                                                                                  | 1.60                                              |                                                                            |                                             |                                                                     |                                 |
|                                                                                                                       | Saturated condu                                                                                                                                                                                                                                                                                                          | uctivity                                                                                                                        | (mm/hr                                                                                                                                                                                                                   | 60.00                                                                                                                 | 2.00                                              |                                                                            |                                             |                                                                     |                                 |
|                                                                                                                       | Initial water (m <sup>3</sup> /                                                                                                                                                                                                                                                                                          | m³)                                                                                                                             |                                                                                                                                                                                                                          | 0.15                                                                                                                  | 0.23                                              |                                                                            |                                             |                                                                     |                                 |
|                                                                                                                       | Pasture: Hills La                                                                                                                                                                                                                                                                                                        | ndsca                                                                                                                           | ne Withi                                                                                                                                                                                                                 | n C                                                                                                                   |                                                   |                                                                            |                                             |                                                                     |                                 |
|                                                                                                                       | Population                                                                                                                                                                                                                                                                                                               | 4                                                                                                                               | Austroda                                                                                                                                                                                                                 | anthonia                                                                                                              | SDD.                                              | Phalaris                                                                   | Perennial                                   | Annual G                                                            | rass -                          |
|                                                                                                                       |                                                                                                                                                                                                                                                                                                                          | (                                                                                                                               | tablelan                                                                                                                                                                                                                 | d)                                                                                                                    |                                                   |                                                                            | Ryegrass                                    | Early                                                               |                                 |
|                                                                                                                       | Phenology                                                                                                                                                                                                                                                                                                                | ١                                                                                                                               | /ernalizir                                                                                                                                                                                                               | ng (0.00)                                                                                                             |                                                   | Vegetative<br>(0)                                                          | Vernalizing (0.00                           | ) Vernalizin                                                        | g (0.00)                        |
|                                                                                                                       | Live DM (kg/ha)                                                                                                                                                                                                                                                                                                          | 1                                                                                                                               | 17                                                                                                                                                                                                                       |                                                                                                                       |                                                   | 13                                                                         | 156                                         | 6                                                                   |                                 |
|                                                                                                                       | Standing dead D<br>(kg/ha)                                                                                                                                                                                                                                                                                               | <b>DM</b> 2                                                                                                                     | 2808                                                                                                                                                                                                                     |                                                                                                                       |                                                   | 312                                                                        | 3744                                        | 156                                                                 |                                 |
|                                                                                                                       | Litter DM (kg/ha)                                                                                                                                                                                                                                                                                                        | ) 2                                                                                                                             | 281                                                                                                                                                                                                                      |                                                                                                                       |                                                   | 31                                                                         | 37                                          | 16                                                                  |                                 |
|                                                                                                                       | Below ground D<br>(kg/ha)                                                                                                                                                                                                                                                                                                | <b>M</b> 2                                                                                                                      | 2900                                                                                                                                                                                                                     |                                                                                                                       |                                                   | 320                                                                        | 3900                                        | 160                                                                 |                                 |
|                                                                                                                       | Max. rooting dep<br>(mm)                                                                                                                                                                                                                                                                                                 | oth 5                                                                                                                           | 500                                                                                                                                                                                                                      |                                                                                                                       |                                                   | 500                                                                        | 500                                         | 500                                                                 |                                 |
|                                                                                                                       | Seed DM (kg/ha)                                                                                                                                                                                                                                                                                                          | ) -                                                                                                                             |                                                                                                                                                                                                                          |                                                                                                                       |                                                   | -                                                                          | -                                           | 0                                                                   |                                 |
| Live                                                                                                                  | stock: New Livesto                                                                                                                                                                                                                                                                                                       | ock                                                                                                                             |                                                                                                                                                                                                                          |                                                                                                                       |                                                   |                                                                            |                                             |                                                                     |                                 |
| Bre                                                                                                                   | ed                                                                                                                                                                                                                                                                                                                       |                                                                                                                                 |                                                                                                                                                                                                                          | Small N                                                                                                               | lerino                                            |                                                                            |                                             |                                                                     |                                 |
| Star                                                                                                                  | ndard reference we                                                                                                                                                                                                                                                                                                       | ight                                                                                                                            |                                                                                                                                                                                                                          | 40.0                                                                                                                  |                                                   |                                                                            |                                             | kg                                                                  |                                 |
| Gre                                                                                                                   | asy fleece weight                                                                                                                                                                                                                                                                                                        | Č.                                                                                                                              |                                                                                                                                                                                                                          | 3.60                                                                                                                  |                                                   |                                                                            |                                             | kg                                                                  |                                 |
| Fibr                                                                                                                  | e diameter                                                                                                                                                                                                                                                                                                               |                                                                                                                                 |                                                                                                                                                                                                                          | 17.0                                                                                                                  |                                                   |                                                                            |                                             | microns                                                             |                                 |
| Flee                                                                                                                  | ece yield                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                                                                                                                                                                                                                          | 70                                                                                                                    |                                                   |                                                                            |                                             | %                                                                   |                                 |
|                                                                                                                       | hrood                                                                                                                                                                                                                                                                                                                    |                                                                                                                                 |                                                                                                                                                                                                                          | Border                                                                                                                | Leicester (N                                      | Aature ram: 84                                                             | 4.0 ka)                                     |                                                                     |                                 |
| Ran                                                                                                                   | I DICCU                                                                                                                                                                                                                                                                                                                  |                                                                                                                                 |                                                                                                                                                                                                                          | Doraor                                                                                                                |                                                   |                                                                            |                                             |                                                                     |                                 |
| Ran<br>Dea                                                                                                            | th rate: adults                                                                                                                                                                                                                                                                                                          |                                                                                                                                 |                                                                                                                                                                                                                          | 2.0                                                                                                                   | (                                                 |                                                                            |                                             | %/year                                                              |                                 |
| Ran<br>Dea<br>Dea                                                                                                     | th rate: adults<br>th rate: weaners                                                                                                                                                                                                                                                                                      |                                                                                                                                 |                                                                                                                                                                                                                          | 2.0<br>2.0                                                                                                            | (                                                 |                                                                            |                                             | %/year<br>%/year                                                    |                                 |
| Ran<br>Dea<br>Dea<br>I                                                                                                | th rate: adults<br>th rate: weaners<br>nitial values                                                                                                                                                                                                                                                                     |                                                                                                                                 |                                                                                                                                                                                                                          | 2.0<br>2.0                                                                                                            |                                                   |                                                                            |                                             | %/year<br>%/year                                                    | _                               |
| Ran<br>Dea<br>Dea<br>I                                                                                                | th rate: adults<br>th rate: weaners<br>nitial values                                                                                                                                                                                                                                                                     |                                                                                                                                 | Ewes V                                                                                                                                                                                                                   | 2.0<br>2.0<br>/ether                                                                                                  | Wether                                            | Ewe                                                                        | Wether                                      | %/year<br>%/year<br><b>Ewe</b>                                      |                                 |
| Ran<br>Dea<br>Dea<br>I                                                                                                | th rate: adults<br>th rate: weaners<br>nitial values                                                                                                                                                                                                                                                                     |                                                                                                                                 | Ewes V                                                                                                                                                                                                                   | 2.0<br>2.0<br>/ether<br>ambs                                                                                          | Wether<br>Weaners                                 | Ewe<br>Weaners                                                             | Wether<br>Yearlings                         | %/year<br>%/year<br>Ewe<br>Yearlings                                |                                 |
| Ran<br>Dea<br>Dea<br>I                                                                                                | th rate: adults<br>th rate: weaners<br>nitial values<br>Live weight includir<br>fleece and concepti                                                                                                                                                                                                                      | ng<br>Js                                                                                                                        | <b>Ewes W</b><br>L<br>42.5 2                                                                                                                                                                                             | 2.0<br>2.0<br>/ether<br>ambs<br>0.0                                                                                   | Wether<br>Weaners<br>25.4                         | Ewe<br>Weaners<br>22.1                                                     | Wether<br>Yearlings<br>46.9                 | %/year<br>%/year<br>Ewe<br>Yearlings<br>39.5                        | kg                              |
| Ran<br>Dea<br>Dea<br>I                                                                                                | th rate: adults<br>th rate: weaners<br>nitial values<br>Live weight includir<br>Greasy fleece weigh                                                                                                                                                                                                                      | ng<br>us<br>ht                                                                                                                  | <b>Ewes M</b><br>42.5 2<br>0.50 1                                                                                                                                                                                        | 2.0<br>2.0<br>/ether<br>ambs<br>0.0                                                                                   | Wether<br>Weaners<br>25.4<br>1.00                 | Ewe<br>Weaners<br>22.1<br>0.84                                             | Wether<br>Yearlings<br>46.9<br>2.07         | %/year<br>%/year<br>Ewe<br>Yearlings<br>39.5<br>1.73                | kg<br>kg                        |
| Ran<br>Dea<br>Dea<br>I<br>I<br>I<br>I<br>I                                                                            | th rate: adults<br>th rate: weaners<br>nitial values<br>Live weight includir<br>fleece and conceptu<br>Greasy fleece weigl<br>Fibre diameter                                                                                                                                                                             | ng<br>us<br>nt                                                                                                                  | <b>Ewes V</b><br><b>L</b><br>42.5 2<br>0.50 1<br>16.7 1                                                                                                                                                                  | 2.0<br>2.0<br><b>/ether</b><br>ambs<br>0.0<br>.11<br>7.0                                                              | Wether<br>Weaners<br>25.4<br>1.00<br>17.0         | <b>Ewe</b><br><b>Weaners</b><br>22.1<br>0.84<br>27.0                       | Wether<br>Yearlings<br>46.9<br>2.07<br>17.0 | %/year<br>%/year<br>Ewe<br>Yearlings<br>39.5<br>1.73<br>17.0        | kg<br>microns                   |
| Ran<br>Dea<br>Dea<br>I<br>I<br>I<br>I<br>I<br>Mar                                                                     | th rate: adults<br>th rate: weaners<br>nitial values<br>Live weight includir<br>fleece and concepto<br>Greasy fleece weigh<br>Fibre diameter<br>nagement policy: Ne                                                                                                                                                      | ng<br>us<br>ht<br>ew Ewe                                                                                                        | Ewes M<br>42.5 2<br>0.50 1<br>16.7 1<br>e Manag                                                                                                                                                                          | 2.0<br>2.0<br><b>/ether</b><br>ambs<br>0.0<br>.11<br>7.0<br>ement pc                                                  | Wether<br>Weaners<br>25.4<br>1.00<br>17.0<br>Dicy | <b>Ewe</b><br>Weaners<br>22.1<br>0.84<br>27.0                              | Wether<br>Yearlings<br>46.9<br>2.07<br>17.0 | %/year<br>%/year<br>Ewe<br>Yearlings<br>39.5<br>1.73<br>17.0        | kg<br>kg<br>microns             |
| Ran<br>Dea<br>Dea<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I      | th rate: adults<br>th rate: weaners<br>nitial values<br>Live weight includir<br>fleece and concepto<br>Greasy fleece weigh<br>Fibre diameter<br>hagement policy: Ne<br>cking rate                                                                                                                                        | ng<br>us<br>ht<br>ew Ewe<br>Rate 1                                                                                              | Ewes M<br>L<br>42.5 2<br>0.50 1<br>16.7 1<br>e Manag<br>.0/ha                                                                                                                                                            | 2.0<br>2.0<br><b>/ether</b><br>ambs<br>0.0<br>.11<br>7.0<br>ement pc                                                  | Wether<br>Weaners<br>25.4<br>1.00<br>17.0<br>Dicy | <b>Ewe</b><br><b>Weaners</b><br>22.1<br>0.84<br>27.0                       | Wether<br>Yearlings<br>46.9<br>2.07<br>17.0 | %/year<br>%/year<br>Ewe<br>Yearlings<br>39.5<br>1.73<br>17.0        | kg<br>kg<br>microns             |
| Ran<br>Dea<br>Dea<br>I<br>I<br>I<br>I<br>Mar<br>Stoo<br>She                                                           | th rate: adults<br>th rate: weaners<br>nitial values<br>Live weight includir<br>fleece and conceptu<br>Greasy fleece weigh<br>Fibre diameter<br>hagement policy: Ne<br>cking rate<br>aring date                                                                                                                          | ng<br>us<br>ht<br>Rate 1<br>Main f                                                                                              | Ewes M<br>42.5 2<br>0.50 1<br>16.7 1<br>• Manag<br>.0/ha                                                                                                                                                                 | 2.0<br>2.0<br>2.0<br>/ether<br>ambs<br>0.0<br>.11<br>7.0<br>ement pc                                                  | Wether<br>Weaners<br>25.4<br>1.00<br>17.0<br>Dicy | <b>Ewe</b><br><b>Weaners</b><br>22.1<br>0.84<br>27.0                       | Wether<br>Yearlings<br>46.9<br>2.07<br>17.0 | %/year<br>%/year<br>Ewe<br>Yearlings<br>39.5<br>1.73<br>17.0        | kg<br>kg<br>microns             |
| Ran<br>Dea<br>Dea<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>Stoo<br>She                                         | th rate: adults<br>th rate: weaners<br>nitial values<br>Live weight includir<br>fleece and concepto<br>Greasy fleece weigh<br>Fibre diameter<br>hagement policy: Ne<br>cking rate<br>aring date                                                                                                                          | ng<br>us<br>nt<br>Rate 1<br>Main f<br>Weane                                                                                     | Ewes M<br>L<br>42.5 2<br>0.50 1<br>16.7 1<br>e Manag<br>.0/ha<br>lock 10                                                                                                                                                 | 2.0<br>2.0<br>2.0<br>/ether<br>ambs<br>0.0<br>.11<br>7.0<br>ement pc                                                  | Wether<br>Weaners<br>25.4<br>1.00<br>17.0<br>Dicy | <b>Ewe</b><br><b>Weaners</b><br>22.1<br>0.84<br>27.0                       | Wether<br>Yearlings<br>46.9<br>2.07<br>17.0 | %/year<br>%/year<br><b>Ewe</b><br>Yearlings<br>39.5<br>1.73<br>17.0 | kg<br>kg<br>microns             |
| Ran<br>Dea<br>Dea<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I      | th rate: adults<br>th rate: weaners<br>nitial values<br>Live weight includir<br>fleece and concepto<br>Greasy fleece weigh<br>Fibre diameter<br>hagement policy: Ne<br>cking rate<br>aring date                                                                                                                          | ng<br>us<br>ht<br>Rate 1<br>Main fi<br>Weane                                                                                    | Ewes M<br>42.5 2<br>0.50 1<br>16.7 1<br>e Manag<br>.0/ha<br>lock 10<br>ers 10                                                                                                                                            | 2.0<br>2.0<br>2.0<br>/ether<br>ambs<br>0.0<br>.11<br>7.0<br>ement pc<br>Jul<br>Jul                                    | Wether<br>Weaners<br>25.4<br>1.00<br>17.0<br>Dicy | <b>Ewe</b><br><b>Weaners</b><br>22.1<br>0.84<br>27.0                       | Wether<br>Yearlings<br>46.9<br>2.07<br>17.0 | %/year<br>%/year<br>Ewe<br>Yearlings<br>39.5<br>1.73<br>17.0        | kg<br>kg<br>microns             |
| Ran<br>Dea<br>Dea<br>I<br>I<br>I<br>I<br>Mar<br>Stoc<br>She<br>Rep                                                    | th rate: adults<br>th rate: weaners<br>nitial values<br>Live weight includir<br>leece and concepto<br>Greasy fleece weigh<br>Fibre diameter<br>nagement policy: Ne<br>cking rate<br>aring date                                                                                                                           | ng<br>us<br>ht<br>Rate 1<br>Main f<br>Weane<br>Purcha                                                                           | Ewes M<br>42.5 2<br>0.50 1<br>16.7 1<br>e Manag<br>.0/ha<br>lock 10.<br>ers 10.<br>ase P                                                                                                                                 | 2.0<br>2.0<br>2.0<br>/ether<br>ambs<br>0.0<br>.11<br>7.0<br>ement pc<br>Jul<br>Jul<br>Jul                             | Wether<br>Weaners<br>25.4<br>1.00<br>17.0<br>Dicy | Ewe<br>Weaners<br>22.1<br>0.84<br>27.0                                     | Wether<br>Yearlings<br>46.9<br>2.07<br>17.0 | %/year<br>%/year<br><b>Ewe</b><br>Yearlings<br>39.5<br>1.73<br>17.0 | kg<br>kg<br>microns<br>C.S. 3.0 |
| Ran<br>Dea<br>Dea<br>I<br>I<br>1<br>1<br>1<br>1<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | th rate: adults<br>th rate: weaners<br>nitial values<br>Live weight includir<br>fleece and conceptu<br>Greasy fleece weigh<br>Fibre diameter<br>hagement policy: Ne<br>cking rate<br>aring date                                                                                                                          | ng<br>us<br>ht<br>Rate 1<br>Main f<br>Weane<br>Purcha<br>Cast fo                                                                | Ewes       M         42.5       2         0.50       1         16.7       1         e Manag       0         .0/ha       10         lock       10         ase       P         por age       S                             | 2.0<br>2.0<br>2.0<br>/ether<br>ambs<br>0.0<br>.11<br>7.0<br>ement pc<br>Jul<br>Jul<br>Jul<br>urchase e<br>ell stock a | Wether<br>Weaners<br>25.4<br>1.00<br>17.0<br>Dicy | Ewe<br>Weaners<br>22.1<br>0.84<br>27.0                                     | Wether<br>Yearlings<br>46.9<br>2.07<br>17.0 | %/year<br>%/year<br><b>Ewe</b><br>Yearlings<br>39.5<br>1.73<br>17.0 | kg<br>kg<br>microns<br>C.S. 3.0 |
| Ran<br>Dea<br>Dea<br>I<br>I<br>f<br>f<br>f<br>f<br>f<br>f<br>f<br>f<br>f<br>f<br>f<br>f<br>f<br>f<br>f<br>f<br>f      | th rate: adults<br>th rate: weaners<br>nitial values<br>Live weight includir<br>fleece and concepto<br>Greasy fleece weigh<br>Fibre diameter<br>nagement policy: Ne<br>cking rate<br>aring date<br>lacement rule                                                                                                         | ng<br>us<br>ht<br>Rate 1<br>Main fl<br>Weane<br>Purcha<br>Cast fo<br>New R                                                      | Ewes       M         42.5       2         0.50       1         16.7       1         e Manag       0/ha         lock       10         lock       10         ase       P         or age       S         eproduct       10  | 2.0<br>2.0<br>2.0<br>/ether<br>ambs<br>0.0<br>.11<br>7.0<br>ement po<br>Jul<br>Jul<br>Jul<br>urchase e<br>ell stock a | Wether<br>Weaners<br>25.4<br>1.00<br>17.0<br>Dicy | Ewe<br>Weaners<br>22.1<br>0.84<br>27.0<br>xpr at age 18 r<br>years on 1 Ap | Wether<br>Yearlings<br>46.9<br>2.07<br>17.0 | %/year<br>%/year<br><b>Ewe</b><br>Yearlings<br>39.5<br>1.73<br>17.0 | kg<br>kg<br>microns<br>C.S. 3.0 |
| Ran<br>Dea<br>Dea<br>I<br>I<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>Stoo<br>She<br>Rep    | th rate: adults<br>th rate: weaners<br>nitial values<br>Live weight includir<br>fleece and concepto<br>Greasy fleece weigh<br>Fibre diameter<br>hagement policy: Ne<br>cking rate<br>aring date<br>lacement rule<br>Reproduction rule:<br>First join at                                                                  | ng<br>us<br>ht<br>Rate 1<br>Main f<br>Weane<br>Purcha<br>Cast fo<br>New R<br>1 years                                            | Ewes       M         42.5       2         0.50       1         16.7       1         e Manag       .0/ha         lock       10         lock       10         ase       P         pr age       S                           | 2.0<br>2.0<br>2.0<br>/ether<br>ambs<br>0.0<br>.11<br>7.0<br>ement pc<br>Jul<br>Jul<br>Jul<br>urchase e<br>ell stock a | Wether<br>Weaners<br>25.4<br>1.00<br>17.0<br>Dicy | Ewe<br>Weaners<br>22.1<br>0.84<br>27.0                                     | Wether<br>Yearlings<br>46.9<br>2.07<br>17.0 | %/year<br>%/year<br><b>Ewe</b><br>Yearlings<br>39.5<br>1.73<br>17.0 | kg<br>kg<br>microns<br>C.S. 3.0 |
| Ran<br>Dea<br>I<br>I<br>I<br>I<br>Mar<br>Stoo<br>She<br>Rep                                                           | th rate: adults<br>th rate: weaners<br>nitial values<br>Live weight includir<br>fleece and concepto<br>Greasy fleece weigh<br>Fibre diameter<br>hagement policy: Ne<br>cking rate<br>aring date<br>lacement rule<br>Reproduction rule:<br>First join at<br>Mating date                                                   | ng<br>us<br>nt<br>Rate 1<br>Main f<br>Weane<br>Purcha<br>Cast fo<br>New Re<br>1 years<br>14 Apr                                 | Ewes       M         42.5       2         0.50       1         16.7       1         e Manag       0/ha         .0/ha       10         lock       10         ase       P         or age       S         eproducts       S | 2.0<br>2.0<br>2.0<br>/ether<br>ambs<br>0.0<br>.11<br>7.0<br>ement pc<br>Jul<br>Jul<br>Jul<br>urchase e<br>ell stock a | Wether<br>Weaners<br>25.4<br>1.00<br>17.0<br>Dicy | Ewe<br>Weaners<br>22.1<br>0.84<br>27.0                                     | Wether<br>Yearlings<br>46.9<br>2.07<br>17.0 | %/year<br>%/year<br><b>Ewe</b><br>Yearlings<br>39.5<br>1.73<br>17.0 | kg<br>kg<br>microns             |
| Ran<br>Dea<br>I<br>I<br>I<br>I<br>Mar<br>Stoo<br>She<br>Rep                                                           | th rate: adults<br>th rate: weaners<br>nitial values<br>Live weight includir<br>fleece and concepto<br>Greasy fleece weigh<br>Fibre diameter<br>hagement policy: Ne<br>cking rate<br>aring date<br>lacement rule<br>Reproduction rule:<br>First join at<br>Mating date<br>Conception at CS 3                             | ng<br>Js<br>ht<br>Rate 1<br>Main f<br>Weane<br>Purcha<br>Cast fo<br>New Re<br>1 years<br>14 Apr<br>(1) 769<br>(2) 249<br>(3) 0% | Ewes       M         42.5       2         0.50       1         16.7       1         e       Manag         .0/ha       10.4         lock       10.5         or age       S         eproduces       S         %       %    | 2.0<br>2.0<br>2.0<br>/ether<br>ambs<br>0.0<br>.11<br>7.0<br>ement pc<br>Jul<br>Jul<br>Jul<br>urchase e<br>ell stock a | Wether<br>Weaners<br>25.4<br>1.00<br>17.0<br>Dicy | Ewe<br>Weaners<br>22.1<br>0.84<br>27.0                                     | Wether<br>Yearlings<br>46.9<br>2.07<br>17.0 | %/year<br>%/year<br><b>Ewe</b><br>Yearlings<br>39.5<br>1.73<br>17.0 | kg<br>kg<br>microns             |
| Ran<br>Dea<br>Dea<br>I<br>I<br>Mar<br>Stoc<br>She<br>Rep                                                              | th rate: adults<br>th rate: weaners<br>nitial values<br>Live weight includir<br>fleece and conceptu<br>Greasy fleece weigh<br>Fibre diameter<br>nagement policy: Ne<br>cking rate<br>aring date<br>lacement rule<br>Reproduction rule:<br>First join at<br>Mating date<br>Conception at CS 3<br>Birth date               | ng<br>us<br>ht<br>Rate 1<br>Main fl<br>Weans<br>Cast fo<br>New R<br>1 years<br>14 Apr<br>(1) 769<br>(2) 249<br>(3) 0%<br>10 Sep | Ewes M<br>42.5 2<br>0.50 1<br>16.7 1<br>e Manag<br>.0/ha<br>lock 10<br>ers 10<br>ase P<br>or age S<br>eproduces                                                                                                          | 2.0<br>2.0<br>2.0<br>/ether<br>ambs<br>0.0<br>.11<br>7.0<br>ement pc<br>Jul<br>Jul<br>Jul<br>urchase e<br>ell stock a | Wether<br>Weaners<br>25.4<br>1.00<br>17.0<br>Dicy | Ewe<br>Weaners<br>22.1<br>0.84<br>27.0                                     | Wether<br>Yearlings<br>46.9<br>2.07<br>17.0 | %/year<br>%/year<br><b>Ewe</b><br>Yearlings<br>39.5<br>1.73<br>17.0 | kg<br>kg<br>microns<br>C.S. 3.0 |
| Ran<br>Dea<br>Dea<br>I<br>I<br>I<br>I<br>Mar<br>Stoo<br>She<br>Rep                                                    | th rate: adults<br>th rate: weaners<br>nitial values<br>Live weight includir<br>fleece and concepto<br>Greasy fleece weigh<br>Fibre diameter<br>hagement policy: Ne<br>cking rate<br>aring date<br>lacement rule<br>Reproduction rule:<br>First join at<br>Mating date<br>Conception at CS 3<br>Birth date<br>Castration | ng<br>Js<br>ht<br>Rate 1<br>Main f<br>Weans<br>Cast fo<br>New Re<br>1 year<br>(1) 769<br>(2) 249<br>(3) 0%<br>10 Sep<br>yes     | Ewes M<br>42.5 2<br>0.50 1<br>16.7 1<br>• Manag<br>.0/ha<br>lock 10.4<br>• nor age S<br>• nor age S<br>• nor age S                                                                                                       | 2.0<br>2.0<br>2.0<br>/ether<br>ambs<br>0.0<br>.11<br>7.0<br>ement pc<br>Jul<br>Jul<br>urchase e<br>ell stock a        | Wether<br>Weaners<br>25.4<br>1.00<br>17.0<br>Dicy | Ewe<br>Weaners<br>22.1<br>0.84<br>27.0                                     | Wether<br>Yearlings<br>46.9<br>2.07<br>17.0 | %/year<br>%/year<br><b>Ewe</b><br>Yearlings<br>39.5<br>1.73<br>17.0 | kg<br>microns                   |

| -                             |                                                                                            |                                                                                                                                              |                      |                |                        |  |  |  |  |
|-------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|------------------------|--|--|--|--|
| One ram per                   | 50 ewes                                                                                    |                                                                                                                                              |                      |                |                        |  |  |  |  |
| Keep rams for                 | 5.0 years                                                                                  |                                                                                                                                              |                      |                |                        |  |  |  |  |
| Sell young ewes               | Sell 0 year old animals on 31                                                              | Sell 0 year old animals on 31 Mar                                                                                                            |                      |                |                        |  |  |  |  |
| Sell young wether             | oung wethers Sell 0 year old animals on 31 Mar                                             |                                                                                                                                              |                      |                |                        |  |  |  |  |
| Maintenance Feed              | ling rule: New Maintenance Fe                                                              | edin                                                                                                                                         | g rule               |                |                        |  |  |  |  |
| Main flock/herd               |                                                                                            |                                                                                                                                              | -                    |                |                        |  |  |  |  |
| Mature Females                | Feed in paddock, applying the r<br>If animal condition falls to 1.5 du<br>thinnest animals | ule:<br>uring                                                                                                                                | 1 Jan to 31 D        | ec feed to mai | ntain condition of the |  |  |  |  |
| Immature<br>Females           | Feed in paddock, applying the r<br>If animal condition falls to 1.5 du<br>thinnest animals | in paddock, applying the rule:<br>mal condition falls to 1.5 during 1 Jan to 31 Dec feed to maintain condition of the<br>est animals         |                      |                |                        |  |  |  |  |
| Immature Males                | Feed in paddock, applying the r<br>If animal condition falls to 1.0 du<br>thinnest animals | ed in paddock, applying the rule:<br>inimal condition falls to 1.0 during 1 Jan to 31 Dec feed to maintain condition of the<br>nnest animals |                      |                |                        |  |  |  |  |
| Weaner flock/hero             | 1                                                                                          |                                                                                                                                              |                      |                |                        |  |  |  |  |
| Weaners                       | Feed in paddock, applying the r<br>If animal condition falls to 1.5 du<br>thinnest animals | ule:<br>uring                                                                                                                                | 1 Jan to 31 D        | ec feed to mai | ntain condition of the |  |  |  |  |
| Supplement                    | Supplement: Maize                                                                          |                                                                                                                                              |                      |                |                        |  |  |  |  |
|                               | Ingredient                                                                                 |                                                                                                                                              | Maize                |                |                        |  |  |  |  |
|                               | Proportion of mix (%)                                                                      |                                                                                                                                              | 100                  |                |                        |  |  |  |  |
|                               | Dry matter content (%)                                                                     |                                                                                                                                              | 87                   |                |                        |  |  |  |  |
|                               | Dry matter digestibility (%                                                                | )                                                                                                                                            | 87                   |                |                        |  |  |  |  |
|                               | ME:DM (MJ/kg)                                                                              |                                                                                                                                              | 14.1                 |                |                        |  |  |  |  |
|                               | Crude protein (%)                                                                          |                                                                                                                                              | 10                   |                |                        |  |  |  |  |
|                               | Rumen-degradable protein                                                                   | n (%)                                                                                                                                        | 80                   |                |                        |  |  |  |  |
| Production Foodi              | ng rule: New Production Feedi                                                              | na ri                                                                                                                                        | ulo                  |                |                        |  |  |  |  |
| Feeding rule Fixed            | amount of 0.60 kg/d to All Stoc                                                            | k in F                                                                                                                                       | ale<br>Paddock from  | 1 Sep to 10 O  | ct                     |  |  |  |  |
| Supplement                    |                                                                                            | × 111 1                                                                                                                                      |                      | 1 000 10 10 0  |                        |  |  |  |  |
| ouppiement S                  | upplement: Hay/Beans, field                                                                | N1                                                                                                                                           | d de a sector tra de |                |                        |  |  |  |  |
|                               | escription                                                                                 | Need                                                                                                                                         | a the mix in tr      | iese           |                        |  |  |  |  |
|                               | aradiant                                                                                   | Hav                                                                                                                                          | Roops field          | Ovorall mix    |                        |  |  |  |  |
|                               | reportion of mix (%)                                                                       | пау<br>50                                                                                                                                    | 50                   |                |                        |  |  |  |  |
|                               | reportion of mix (%)                                                                       | 20                                                                                                                                           | 80                   | 80             |                        |  |  |  |  |
|                               | ry matter digestibility (%)                                                                | 64                                                                                                                                           | 86                   | 75             |                        |  |  |  |  |
|                               |                                                                                            | 04<br>9 5                                                                                                                                    | 12 7                 | 11 1           |                        |  |  |  |  |
|                               | rudo protoin (%)                                                                           | 16                                                                                                                                           | 21                   | 11.1<br>22     |                        |  |  |  |  |
| R                             | umen-degradable protein (%)                                                                | 68                                                                                                                                           | 01                   | 23             |                        |  |  |  |  |
|                               |                                                                                            | 00                                                                                                                                           | 51                   | 00             |                        |  |  |  |  |
| Pasture rule: New<br>Reset on | Pasture rule<br>1 Mar                                                                      |                                                                                                                                              |                      |                |                        |  |  |  |  |
| Grazing rule: Graz            | zing rotation                                                                              |                                                                                                                                              |                      |                |                        |  |  |  |  |
| Ewes                          | 04 J                                                                                       |                                                                                                                                              |                      |                |                        |  |  |  |  |
| From 1 Jan to 31 J            | an 31 days in "HC2"                                                                        |                                                                                                                                              |                      |                |                        |  |  |  |  |
| From 1 Feb to 29 F            |                                                                                            |                                                                                                                                              |                      |                |                        |  |  |  |  |
| From 1 Mar to 31 M            | iar / days in "HB3"                                                                        |                                                                                                                                              |                      |                |                        |  |  |  |  |
| From 1 Apr to 31 A            | ug 153 days in "winter grazing"                                                            |                                                                                                                                              |                      |                |                        |  |  |  |  |
| From 1 Sep to 9 O             | JT 39 days in "HB3"                                                                        |                                                                                                                                              |                      |                |                        |  |  |  |  |
| From 10 Oct to 31             | Uct 22 days in "HC2"                                                                       |                                                                                                                                              |                      |                |                        |  |  |  |  |
| From 1 Nov to 30 N            | NOV 30 days in "HA3"                                                                       |                                                                                                                                              |                      |                |                        |  |  |  |  |
| From 1 Dec to 31 E            |                                                                                            |                                                                                                                                              |                      |                |                        |  |  |  |  |
|                               | Dec 31 days III HB3                                                                        |                                                                                                                                              |                      |                |                        |  |  |  |  |

| Ewe Weaners             |              |            |            |    |         |       |
|-------------------------|--------------|------------|------------|----|---------|-------|
| Same as                 | Same as Ewes |            |            |    |         |       |
| Wether Weaner           | s            |            |            |    |         |       |
| Same as                 |              | Ewe \      | Neaners, I | Ξv | /es     |       |
| Costs: New Costs        |              |            |            |    |         |       |
| Ewe Shearing            |              |            | \$4.50     | /h | ead     |       |
| Shearing Lambs          |              |            | \$3.50     | /h | ead     |       |
| Ewe Husbandry           |              |            | \$3.00     | /h | ead     |       |
| Lamb Husbandry          |              |            | \$2.00     | /h | ead     |       |
| Ewe Replacement         |              |            | \$130.00   | /h | ead     |       |
| Rams                    |              |            | \$1000.00  | /h | ead     |       |
| Sheep sales comm        | niss         | sion       | 4          | %  | )       |       |
| Sheep sales cost        |              |            | \$0.00     | /h | ead     |       |
| Pasture cost            |              |            | \$0.00     | /h | a       |       |
| Supplement costs        | На           | ıy         | \$300.00   | /t |         |       |
|                         | Be           | ans, field | \$250.00   | /t |         |       |
|                         | Ma           | aize       | \$200.00   | /t |         |       |
| Prices: New Prices      | 5            |            |            |    |         |       |
| Wool prices for<br>ewes |              |            |            |    |         |       |
|                         |              | Fleece p   | rice       |    | 800     | c/kg  |
|                         |              | Av. Fleed  | e Price    |    | 5.0     | %     |
|                         |              | Wool cor   | nmission   |    | 7.0     | %     |
| Ewe sales               |              |            |            |    |         |       |
|                         |              | Base price | e          |    | 260.0   | c/kg  |
|                         |              | Dressing   | percentag  | je | 43.0    | %     |
|                         |              | Skin price | е          |    | \$15.00 | /head |
| Ewe lamb sales          |              |            |            |    |         |       |
|                         |              | Base price | e          |    | 450.0   | c/kg  |
|                         |              | Dressing   | percentag  | je | 45.0    | %     |
|                         |              | Skin pric  | е          |    | \$15.00 | /head |
| Wether lamb sales       | ;            |            |            |    |         |       |
|                         |              | Base price | e          |    | 0.0     | c/kg  |
|                         |              | Dressing   | percentag  | je | 0.0     | %     |
|                         |              | Skin price | е          |    | \$0.00  | /head |

GrassGro 3.2.5. Build: 23 Aug 2011

## GrassGro High Productivity Landscape

09 Apr 2012 17:06

Acceptability report - All flocks of Ewes @ Trevenna High Prod

### 1/09/1961 - 21/03/2011

Mean annual rainfall for years tested Mean annual rainfall [1 Jan - 31 Dec, 1962-2010]

| Date | Rainfall      |
|------|---------------|
|      | (sum)<br>(mm) |
| -    | 766           |

Annual rainfall by years



## Draduction over veera







Numbers of sheep in the main flock Number of animals present (head) [1/09/1961 - 21/03/2011]



Numbers of young sheep



Number of animals present (head) [1/09/1961 - 21/03/2011]

#### Lamb mortality

Number of lambs per ewe and the mortality rate at birth [8 Sep - 12 Sep, 1961-2010]







Fleece weight shorn each year for sheep in the main flock Clean fleece weight shorn (kg/head) [1 Jan - 31 Dec, 1962-2010]



Fleece weight shorn each year for young sheep Clean fleece weight shorn (kg/head) [9 Jul - 10 Jul, 1962-2010]



Average annual wool production of age classes in the main flock Long term average annual clean fleece weight (kg/head) and fleece fibre diameter (micron) [1 Jan - 31 Dec, 1962-2010]

| Date CFW -main flock Fleece fibre diameter                                                                                                                                                                                                                                                                                                                                          | Fleece fibre diameter              |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|--|--|--|
| Female<br>weaners<br>(max)Female<br>matureFemale<br>weanersMale<br>y.o. (max)Male<br>matureFemale<br>matureFemale<br>matureFemale<br>matureFemale<br>matureFemale<br>matureMale<br>mature(max)<br>(max)(max)<br>(max)(max)<br>(max)(max)<br>(max)(max)<br>(max)(max)<br>(max)Male<br>(max)Female<br>matureFemale<br>(max)Female<br>(max)Female<br>(max)Female<br>(max)Male<br>(max) | Male 1-2<br>y.o. (av.)<br>(microns |  |  |  |  |
| (kg/head) (kg/head) (kg/head) (kg/head) (kg/head) (microns) (microns) (microns) (microns)                                                                                                                                                                                                                                                                                           | S)                                 |  |  |  |  |
| - n/a 2.71 2.86 n/a n/a n/a n/a 17.2 17.4 n/a                                                                                                                                                                                                                                                                                                                                       | n/a                                |  |  |  |  |

#### Average wool production of young sheep

Long term average clean fleece weight (kg/head) and fleece fibre diameter (micron) [9 Jul - 10 Jul, 1962-2010]

| Date | CFW -young sheep                          |                                       |                                         |                                         |                                           | Fleece fibre diameter                     |                                       |                                         |                                         |                                           |
|------|-------------------------------------------|---------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|
|      | Unweaned<br><sup>(max)</sup><br>(kg/head) | Male<br>weaners<br>(max)<br>(kg/head) | Male<br>yearlings<br>(max)<br>(kg/head) | Female<br>weaners<br>(max)<br>(kg/head) | Female<br>yearlings<br>(max)<br>(kg/head) | Unweaned<br><sup>(av.)</sup><br>(microns) | Male<br>weaners<br>(av.)<br>(microns) | Male<br>yearlings<br>(av.)<br>(microns) | Female<br>weaners<br>(av.)<br>(microns) | Female<br>yearlings<br>(av.)<br>(microns) |
| -    | n/a                                       | n/a                                   | n/a                                     | n/a                                     | n/a                                       | n/a                                       | n/a                                   | n/a                                     | n/a                                     | n/a                                       |

Supplement intake of sheep in the main flock Total monthly supplement intake (kg DM/head) [1/09/1961 - 21/03/2011]


#### Supplement intake of all young sheep

Total monthly supplement intake for all young sheep (kg DM/head) [1/09/1961 - 21/03/2011]



#### Variability of the whole farm system

#### Distribution of annual rainfall

The probability (shown on the vertical axis) of annual rainfall exceeding the value shown on the horizontal axis (mm) [1 Jan - 31 Dec, 1962-2010]



#### Distribution of growing season rainfall

The probability of rainfall between 1 Apr and 31 Oct exceeding the value shown on the horizontal axis (mm) [1 Apr - 31 Oct, 1962-2010]



Monthly rainfall

Percentiles for monthly rainfall [1 Jan - 31 Dec, 1962-2010]



#### Temperature

Long term average of monthly average maximum and minimum air temperature [1 Jan - 31 Dec, 1962-2010]



Pasture supply - green - Paddock 1 Percentiles for available green herbage [1 Jan - 31 Dec, 1962-2010]



Average pasture composition - Paddock 1 Long term average green available herbage by species [1 Jan - 31 Dec, 1962-2010]





Variability in live weight of mature female sheep in the main flock Percentiles for live weight, including fleece (kg/head) [1 Jan - 31 Dec, 1962-2010]



Variability in live weight of ewe lambs Percentiles for live weight, including fleece (kg/head) [1 Jan - 31 Dec, 1962-2010]



Variability in live weight of wether lambs



Variability in body condition of mature female sheep in the main flock Percentiles for body condition score [1 Jan - 31 Dec, 1962-2010]



Variability in body condition of ewe lambs

Percentiles for body condition score [1 Jan - 31 Dec, 1962-2010]



Variability in body condition of wether lambs Percentiles for body condition score [1 Jan - 31 Dec, 1962-2010]



Variability in fibre diameter of mature female sheep in the main flock Percentiles for fibre diameter (micron) [1 Jan - 31 Dec, 1962-2010]



Variability in fibre diameter of 1-2 year old sheep in the main flock Percentiles for fibre diameter (micron) [1 Jan - 31 Dec, 1962-2010]



Variability in fibre diameter of young wethers (unweaned and weaned) Percentiles for fibre diameter (micron) [1 Jan - 31 Dec, 1962-2010]



#### Lambs per ewe

Percentiles for lambs per ewe [1 Jan - 31 Dec, 1962-2010]



Variability in intake of maintenance and production supplement of the main flock Percentiles for daily supplement intake (kg DM/head/d) [1 Jan - 31 Dec, 1962-2010]







Variability in average daily gain (ADG) of wether lambs Percentiles for average daily live weight gain -not fleece (kg/head/d) [1 Jan - 31 Dec, 1962-2010]



#### Pasture quality

Average quality of all herbage in each paddock Long term average pasture dry matter digestibility (%) [1 Jan - 31 Dec, 1962-2010]



Variability in pasture growth rate - Paddock 1 Percentiles for average weekly pasture growth rate (kg DM/ha/d) [1 Jan - 31 Dec, 1962-2010]



Pasture growth rates for each paddock Long term average pasture growth rates [1 Jan - 31 Dec, 1962-2010]



Table of average monthly pasture and sheep growth rates Long term average pasture and sheep growth rates, averaged over each month [1 Jan - 31 Dec. 1962-2010]

| Date | Pasture<br>growth     | Pasture<br>growth     | Pasture<br>growth     | Weight<br>change<br>(Unweaned) | Weight<br>change<br>(Male<br>weaners) | Weight<br>change<br>(Female<br>weaners) | Weight change (Main mob)                        |                                       |                                     |                                               |                                        |                                   |
|------|-----------------------|-----------------------|-----------------------|--------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------------|---------------------------------------|-------------------------------------|-----------------------------------------------|----------------------------------------|-----------------------------------|
|      | P1 (av.)<br>(kg/ha/d) | P2 (av.)<br>(kg/ha/d) | P3 (av.)<br>(kg/ha/d) | (av.)<br>(kg/d)                | (av.)<br>(kg/d)                       | (av.)<br>(kg/d)                         | Female<br>weaners<br><sup>(av.)</sup><br>(kg/d) | Female<br>1-2 y.o.<br>(av.)<br>(kg/d) | Female<br>mature<br>(av.)<br>(kg/d) | Male<br>weaners<br><sup>(av.)</sup><br>(kg/d) | Male<br>1-2<br>y.o.<br>(av.)<br>(kg/d) | Male<br>mature<br>(av.)<br>(kg/d) |
| Jan  | 37                    | 30                    | 29                    | n/a                            | 0.099                                 | 0.075                                   | n/a                                             | n/a                                   | 0.013                               | n/a                                           | n/a                                    | n/a                               |
| Feb  | 27                    | 32                    | 24                    | n/a                            | 0.070                                 | 0.053                                   | n/a                                             | n/a                                   | -0.003                              | n/a                                           | n/a                                    | n/a                               |
| Mar  | 23                    | 24                    | 26                    | n/a                            | 0.059                                 | 0.045                                   | n/a                                             | n/a                                   | -0.010                              | n/a                                           | n/a                                    | n/a                               |
| Apr  | 30                    | 29                    | 29                    | n/a                            | n/a                                   | n/a                                     | n/a                                             | 0.048                                 | 0.034                               | n/a                                           | n/a                                    | n/a                               |
| Мау  | 17                    | 16                    | 15                    | n/a                            | n/a                                   | n/a                                     | n/a                                             | 0.041                                 | 0.028                               | n/a                                           | n/a                                    | n/a                               |
| Jun  | 5                     | 4                     | 4                     | n/a                            | n/a                                   | n/a                                     | n/a                                             | 0.035                                 | 0.022                               | n/a                                           | n/a                                    | n/a                               |
| Jul  | 4                     | 3                     | 4                     | n/a                            | n/a                                   | n/a                                     | n/a                                             | 0.006                                 | -0.018                              | n/a                                           | n/a                                    | n/a                               |
| Aug  | 7                     | 6                     | 7                     | n/a                            | n/a                                   | n/a                                     | n/a                                             | -0.032                                | -0.049                              | n/a                                           | n/a                                    | n/a                               |
| Sep  | 21                    | 19                    | 23                    | 0.119                          | n/a                                   | n/a                                     | n/a                                             | -0.036                                | -0.044                              | n/a                                           | n/a                                    | n/a                               |
| Oct  | 42                    | 35                    | 36                    | 0.217                          | n/a                                   | n/a                                     | n/a                                             | n/a                                   | -0.005                              | n/a                                           | n/a                                    | n/a                               |
| Nov  | 47                    | 49                    | 36                    | 0.172                          | n/a                                   | n/a                                     | n/a                                             | n/a                                   | 0.027                               | n/a                                           | n/a                                    | n/a                               |
| Dec  | 35                    | 34                    | 34                    | 0.109                          | n/a                                   | n/a                                     | n/a                                             | n/a                                   | 0.020                               | n/a                                           | n/a                                    | n/a                               |

#### Feed budget

Long term average daily pasture growth and intake of pasture by the whole enterprise (kg DM/ha/d) [1 Jan - 31 Dec, 1962-2010]



#### Pasture utilization rate

The long term average amount of pasture consumed by all stock as a proportion of the amount of pasture grown over the period tested (%) [21 Mar - 21 Mar, 2011-2011]

| Date   | Utilization rate |
|--------|------------------|
|        | (%)              |
| 21 Mar | 12               |

#### Economics

#### Production summary

Long term average pasture and sheep production. For selected financial year [1 Jul - 30 Jun, 1962/1963 - 2009/2010]

| Farm System                                                    |              | All flocks of Ewes @ Trevenna High<br>Prod |
|----------------------------------------------------------------|--------------|--------------------------------------------|
| Total annual pasture yield (NPP) (sum)                         | kg/ha        | 8026                                       |
| Dry sheep equivalents (av.)                                    | dse/ha       | 3.2                                        |
| Wool cut - total flock (sum)                                   | kg<br>CFW/ha | 6                                          |
| Wool cut - lambs (sum)                                         | kg<br>CFW/ha | 0                                          |
| Shorn fibre diameter - ewe adults (av.)                        | microns      | 17.4                                       |
| Shorn fibre diameter - wether adults (av.)                     | microns      | n/a                                        |
| Shorn fibre diameter - lambs (av.)                             | microns      | n/a                                        |
| Meat sold - total (sum)                                        | kg LW/ha     | 76                                         |
| Meat sold - young stock (sum)                                  | kg LW/ha     | 59                                         |
| Wthr/ram Lambs Sale wt (av.)                                   | kg           | 31.0                                       |
| Ewe Lambs Sale wt (av.)                                        | kg           | 27.8                                       |
| Supplement fed/area (New Production Feeding rule)<br>(sum)     | tonnes/ha    | 0.047                                      |
| Supplement fed/area (Maintenance - main flock) (sum)           | tonnes/ha    | 0.001                                      |
| Supplement fed/area (Maintenance - young (wnr) stock)<br>(sum) | tonnes/ha    | 0.000                                      |

| Gross margin                    |       |                                               |                     |
|---------------------------------|-------|-----------------------------------------------|---------------------|
| Long term average gross margin. | For s | selected financial year [1 Jul - 30 Jun, 1962 | 2/1963 - 2009/2010] |
| Farm System                     |       | All flocks of Ewes @ Trevenna High Prod       |                     |
| Net wool income - main flock    | \$/ha | 2                                             |                     |
| Net wool income - young stock   | \$/ha | 0                                             |                     |
| Sale income - young stock       | \$/ha | 71                                            |                     |
| Sale income - cast-for-age      | \$/ha | 24                                            |                     |
| Sale income - sold at foot      | \$/ha | 0                                             |                     |
| TOTAL INCOME                    | \$/ha | 97                                            |                     |
| Maintenance supplement          | \$/ha | 0                                             |                     |
| Production supplement           | \$/ha | 13                                            |                     |
| Shearing costs                  | \$/ha | 9                                             |                     |
| Animal husbandry                | \$/ha | 10                                            |                     |
| Replacements purchased          | \$/ha | 55                                            |                     |
| Rams purchased                  | \$/ha | 8                                             |                     |
| Sale costs                      | \$/ha | 4                                             |                     |
| Pasture costs                   | \$/ha | 0                                             |                     |
| TOTAL EXPENSES                  | \$/ha | 99                                            |                     |
| GROSS MARGIN                    | \$/ha | -2                                            |                     |
|                                 |       |                                               | 1                   |
|                                 |       |                                               |                     |

#### Variability of Gross Margin

Long term standard deviation of the annual gross margin [1 Jul - 30 Jun, 1962/1963 - 2009/2010]

| Farm System      |       | All flocks of Ewes @ Trevenna High Prod |
|------------------|-------|-----------------------------------------|
| Total income/ha  | \$/ha | 7.69                                    |
| Total expense/ha | \$/ha | 8.66                                    |

Gross margin/ha \$/ha 8.58

#### Boxplot of gross margins

Annual gross margins (\$/ha). For selected financial year [1 Jul - 30 Jun, 1962/1963 - 2009/2010]



#### Interpretation of boxplot

The box shows the middle 50% of values (the interquartile range). The horizontal line inside the box is the median. The lines extending above and below the box (whiskers) show the upper and lower quartiles (25% of values). Beyond the whiskers, outlying values are shown by dots and extreme values are shown by asterisks. "Outlying values" lie more than 1.5 times the interquartile range beyond the upper and lower quartiles. "Extreme values" lie more than 3.0 times the interquartile range beyond the upper and lower quartiles.

#### Cumulative distribution of annual gross margins The probability (on the vertical axis) of exceeding the gross margin value shown on the horizontal axis. For selected financial year [1 Jul - 30 Jun, 1962/1963 - 2009/2010]



Cumulative distribution of total supplement fed to whole enterprise

The probability (on the vertical axis) of the total supplement fed in any year exceeding the value shown on the horizontal axis (kg/head). For selected financial year [1 Jul - 30 Jun, 1962/1963 - 2009/2010]



Cumulative distribution of live weight at sale of wether and ewe lambs (including fleece) The probability (on the vertical axis) of the live weight at sale in any year exceeding the value shown on the horizontal axis (kg/head, including fleece). For selected financial year [1 Jul - 30 Jun, 1962/1963 - 2009/2010]



Cumulative distribution of total supplement intake of sheep in main flock and young stock The probability (on the vertical axis) of the total supplement intake in any year exceeding the value shown on the horizontal axis (kg/head). For selected financial year [1 Jul - 30 Jun, 1962/1963 - 2009/2010]



Cumulative distribution of the average fleece fibre diameter of mature sheep The probability (on the vertical axis) of the fleece fibre diameter in any year exceeding the value shown on the horizontal axis (micron) [1 Jan - 31 Dec, 1962-2010]



Cumulative distribution of the average fleece fibre diameter of 1-2 year old sheep in the main flock





#### Sustainabilty

| ĺ | Farm System                      |       | All flocks of Ewes @ Trevenna High Prod |
|---|----------------------------------|-------|-----------------------------------------|
|   | Pasture growth (P1)              | kg/ha | 8978                                    |
|   | Pasture growth (P2)              | kg/ha | 8491                                    |
|   | Pasture growth (P3)              | kg/ha | 8183                                    |
|   | Yearly Rainfall                  | mm    | 766                                     |
|   | Actual evapotranspiration (P1)   | mm    | 709                                     |
|   | Actual evapotranspiration (P2)   | mm    | 708                                     |
|   | Actual evapotranspiration (P3)   | mm    | 708                                     |
|   | Actual evapotranspiration (P4)   | mm    | 682                                     |
|   | Runoff (P1)                      | mm    | 0                                       |
| ĺ | Runoff (P2)                      | mm    | 0                                       |
|   | Runoff (P3)                      | mm    | 0                                       |
|   | Runoff (P4)                      | mm    | 3                                       |
|   | Drainage below rooting zone (P1) | mm    | 58                                      |
|   | Drainage below rooting zone (P2) | mm    | 58                                      |
| ĺ | Drainage below rooting zone (P3) | mm    | 59                                      |
| ĺ | Drainage below rooting zone (P4) | mm    | 82                                      |





| Farm System description       |  |
|-------------------------------|--|
| Initial values of Farm System |  |
| Forme Orietone                |  |

| Farm System           |                                                                                                   |
|-----------------------|---------------------------------------------------------------------------------------------------|
| Name                  | All flocks of Ewes @ Trevenna High Prod                                                           |
| Enterprise type       | Ewe                                                                                               |
| Tested                | Over 1 Sep 1961 to 21 Mar 2011                                                                    |
| Passed                | No                                                                                                |
| Pasture<br>parameters | <i>C:\Temp\grassgro 2012-03.prm GrassGro March 2012</i> , last edited 13 Jul 2011 by Andrew Moore |
| Animal<br>parameters  | standard, last edited 09 Feb 2004 by Andrew Moore                                                 |

**Property: Trevenna** 

Number of paddocks

Total area

| ale Silo Data                                                                               |
|---------------------------------------------------------------------------------------------|
| Armidale Silo Data (from D:\Documents and<br>Settings\mcpheem\Desktop\GrassGro3\custom.set) |
| 30°31'S                                                                                     |
| 151°40'E                                                                                    |
| 1 Jan 1961 to 21 Mar 2011                                                                   |
| D:\Documents and Settings\mcpheem\My<br>Documents\GrassGro\weather\armidalesilodata.txt     |
| 2.0 m/s                                                                                     |
| 20 Mar 2012                                                                                 |
|                                                                                             |

| Paddock: FA1     |                         |        |
|------------------|-------------------------|--------|
| Area             |                         | 6.4 ha |
| Steepness        |                         | Level  |
| Fertility        |                         | 0.90   |
| Reduce wind to   |                         | 100%   |
| Soil: New Soil   |                         |        |
| Soil albedo      | 0.17                    |        |
| Soil evaporation | 3.3 mm/d <sup>1/2</sup> |        |

| SCS runoff curve no. | Using default   |
|----------------------|-----------------|
|                      | Topsoil Subsoil |

| Cumulative depth (mm) | 200 | 900 |
|-----------------------|-----|-----|

4

48 ha

| Field capacity (m <sup>3</sup> /m <sup>3</sup> ) | 0.27  | 0.30  |
|--------------------------------------------------|-------|-------|
| Wilting point (m <sup>3</sup> /m <sup>3</sup> )  | 0.13  | 0.20  |
| Bulk density (Mg/m <sup>3</sup> )                | 1.20  | 1.50  |
| Saturated conductivity (mm/hr)                   | 30.00 | 10.00 |
| Initial water (m <sup>3</sup> /m <sup>3</sup> )  | 0.13  | 0.20  |

#### Pasture: Flatss Landscape Within A

| Population                  | Bothriochloa<br>(beta) | Perennial<br>Ryegrass | White Clover        | Annual<br>Ryegrass |
|-----------------------------|------------------------|-----------------------|---------------------|--------------------|
| Phenology                   | Vegetative (900)       | Reproductive (200)    | Vegetative<br>(900) | Vegetative (650)   |
| Live DM (kg/ha)             | 18                     | 1667                  | 54                  | 18                 |
| Standing dead DM<br>(kg/ha) | 19                     | 1831                  | 56                  | 19                 |
| Litter DM (kg/ha)           | 2                      | 17                    | 5                   | 2                  |
| Below ground DM<br>(kg/ha)  | 1500                   | 2000                  | 500                 | 60                 |
| Max. rooting depth (mm)     | 600                    | 500                   | 390                 | 500                |
| Seed DM (kg/ha)             | -                      | -                     | 200                 | 100                |

Paddock: FB2

| Area           | 6.4 ha |
|----------------|--------|
| Steepness      | Level  |
| Fertility      | 0.90   |
| Reduce wind to | 100%   |
| Soil: New Soil |        |
|                |        |

| Soil albedo          | 0.17                    |
|----------------------|-------------------------|
| Soil evaporation     | 3.3 mm/d <sup>1/2</sup> |
| SCS runoff curve no. | Using default           |

|                                                  | Topsoil | Subsoil |
|--------------------------------------------------|---------|---------|
| Cumulative depth (mm)                            | 200     | 900     |
| Field capacity (m <sup>3</sup> /m <sup>3</sup> ) | 0.27    | 0.30    |
| Wilting point (m <sup>3</sup> /m <sup>3</sup> )  | 0.13    | 0.20    |
| Bulk density (Mg/m <sup>3</sup> )                | 1.20    | 1.50    |
| Saturated conductivity (mm/hr)                   | 30.00   | 10.00   |
| Initial water (m <sup>3</sup> /m <sup>3</sup> )  | 0.13    | 0.20    |

#### Pasture: Flatss Landscape Within A

| Population                 | Bothriochloa<br>(beta) | Perennial<br>Ryegrass | White Clover        | Annual Grass -<br>Early | Annual<br>Ryegrass  |
|----------------------------|------------------------|-----------------------|---------------------|-------------------------|---------------------|
| Phenology                  | Vegetative (900)       | Reproductive<br>(200) | Vegetative<br>(900) | Vegetative (350)        | Vegetative<br>(350) |
| Live DM (kg/ha)            | 158                    | 532                   | 14                  | 518                     | 201                 |
| Standing dead DM (kg/ha)   | 165                    | 554                   | 15                  | 538                     | 210                 |
| Litter DM (kg/ha)          | 17                     | 55                    | 2                   | 54                      | 21                  |
| Below ground DM<br>(kg/ha) | 320                    | 1050                  | 30                  | 1020                    | 400                 |
| Max. rooting depth (mm)    | 600                    | 500                   | 390                 | 500                     | 500                 |
| Seed DM (kg/ha)            | -                      | -                     | 200                 | 100                     | 100                 |
| Paddock: FC3               |                        |                       |                     |                         |                     |
| Area                       |                        |                       |                     | 6.0 ha                  |                     |
| Steepness                  |                        |                       |                     | Level                   |                     |

| 0.90 |
|------|
| 100% |
|      |
|      |
|      |
|      |
|      |

|                                                  | Topsoil | Subsoil |
|--------------------------------------------------|---------|---------|
| Cumulative depth (mm)                            | 200     | 900     |
| Field capacity (m <sup>3</sup> /m <sup>3</sup> ) | 0.27    | 0.30    |
| Wilting point (m <sup>3</sup> /m <sup>3</sup> )  | 0.13    | 0.20    |
| Bulk density (Mg/m <sup>3</sup> )                | 1.20    | 1.50    |
| Saturated conductivity (mm/hr)                   | 30.00   | 10.00   |
| Initial water (m³/m³)                            | 0.13    | 0.20    |

#### Pasture: Flatss Landscape Within A

| Population                  | Bothriochloa<br>(beta) | Phalaris            | Perennial<br>Ryegrass | Cocksfoot           | White<br>Clover     | Annual<br>Grass - Early |
|-----------------------------|------------------------|---------------------|-----------------------|---------------------|---------------------|-------------------------|
| Phenology                   | Vegetative<br>(900)    | Vegetative<br>(100) | Reproductive (200)    | Vegetative<br>(100) | Vegetative<br>(900) | Vegetative<br>(350)     |
| Live DM (kg/ha)             | 168                    | 393                 | 1656                  | 196                 | 10                  | 330                     |
| Standing dead<br>DM (kg/ha) | 176                    | 409                 | 1724                  | 205                 | 2                   | 300                     |
| Litter DM<br>(kg/ha)        | 17                     | 55                  | 2                     | 54                  | 2                   | 10                      |
| Below ground<br>DM (kg/ha)  | 320                    | 1050                | 30                    | 1020                | 12                  | 10                      |
| Max. rooting<br>depth (mm)  | 600                    | 500                 | 500                   | 500                 | 390                 | 500                     |
| Seed DM<br>(kg/ha)          | -                      | -                   | -                     | -                   | 200                 | 100                     |

| Paddock: | Winter | grazing |
|----------|--------|---------|

Bulk density (Mg/m<sup>3</sup>)

Initial water (m<sup>3</sup>/m<sup>3</sup>)

Saturated conductivity (mm/hr) 60.00

| Ar  | ea                                               |          |                  | 29.2 ha    |
|-----|--------------------------------------------------|----------|------------------|------------|
| Ste | eepness                                          |          |                  | Undulating |
| Fe  | rtility                                          |          |                  | 0.60       |
| Re  | duce wind to                                     |          |                  | 100%       |
|     | Soil: New Soil                                   |          |                  |            |
|     | Soil albedo                                      | 0.17     |                  |            |
|     | Soil evaporation                                 | 3.5 mm/  | d <sup>1/2</sup> |            |
|     | SCS runoff curve no.                             | Using de | efault           |            |
|     |                                                  |          |                  |            |
|     |                                                  | Topsoil  | Subsoil          |            |
|     | Cumulative depth (mm)                            | 150      | 1000             |            |
|     | Field capacity (m <sup>3</sup> /m <sup>3</sup> ) | 0.30     | 0.34             |            |
|     | Wilting point (m <sup>3</sup> /m <sup>3</sup> )  | 0.15     | 0.23             |            |

1.60

2.00

0.23

1.40

0.15

| Pasture: Hills Landscape Within C |                                     |                   |                       |                         |  |
|-----------------------------------|-------------------------------------|-------------------|-----------------------|-------------------------|--|
| Population                        | Austrodanthonia spp.<br>(tableland) | Phalaris          | Perennial<br>Ryegrass | Annual Grass -<br>Early |  |
| Phenology                         | Vernalizing (0.00)                  | Vegetative<br>(0) | Vernalizing (0.00)    | Vernalizing (0.00)      |  |

|         | Live DM (kg/ha                       | a) ´                            | 117                          |                                     |                              | 13                           | 156                   | 6                 |          |
|---------|--------------------------------------|---------------------------------|------------------------------|-------------------------------------|------------------------------|------------------------------|-----------------------|-------------------|----------|
|         | Standing dead (kg/ha)                | IDM 2                           | 2808                         |                                     |                              | 312                          | 3744                  | 156               |          |
|         | Litter DM (kg/h                      | na) 2                           | 281                          |                                     |                              | 31                           | 37                    | 16                |          |
|         | Below ground<br>(kg/ha)              | DM 2                            | 2900                         |                                     |                              | 320                          | 3900                  | 160               |          |
|         | Max. rooting d<br>(mm)               | lepth :                         | 500                          |                                     |                              | 500                          | 500                   | 500               |          |
|         | Seed DM (kg/h                        | ia) -                           |                              |                                     |                              | -                            | -                     | 100               |          |
| Live    | stock: New Lives                     | stock                           |                              |                                     |                              |                              |                       |                   |          |
| Bree    | d                                    |                                 |                              | Small M                             | Verino                       |                              |                       |                   |          |
| Stan    | dard reference w                     | veight                          |                              | 40.0                                |                              |                              |                       | kg                |          |
| Grea    | sy fleece weight                     |                                 |                              | 3.60                                |                              |                              |                       | kg                |          |
| Fibre   | e diameter                           |                                 |                              | 17.0                                |                              |                              |                       | microns           |          |
| Flee    | ce yield                             |                                 |                              | 70                                  |                              |                              |                       | %                 |          |
| Ram     | breed                                |                                 |                              | Border                              | Leicester (N                 | lature ram:                  | 84.0 kg)              |                   |          |
| Deat    | h rate: adults                       |                                 |                              | 2.0                                 |                              |                              |                       | %/year            |          |
| Deat    | h rate: weaners                      |                                 |                              | 2.0                                 |                              |                              |                       | %/year            |          |
| Ir      | nitial values                        |                                 |                              |                                     |                              |                              |                       |                   |          |
|         |                                      |                                 | Ewes                         | Wether<br>Lambs                     | Wether<br>Weaners            | Ewe<br>Weaner                | Wether<br>s Yearlings | Ewe<br>Yearlings  |          |
| L<br>fl | ive weight incluc<br>eece and concep | ding<br>otus                    | 44.0                         | 20.0                                | 20.0                         | 20.0                         | 20.0                  | 20.0              | kg       |
| G       | reasy fleece wei                     | ght                             | 0.50                         | 1.11                                | 1.00                         | 0.84                         | 2.07                  | 1.73              | kg       |
| E       | ibre diameter                        | -                               | 16.7                         | 17.0                                | 17.0                         | 17.0                         | 17.0                  | 17.0              | microns  |
| Man     | agement policy:                      | New Fw                          | • Mana                       | agement no                          | alicy                        |                              |                       |                   |          |
| Stoc    | king rate                            | Rate 2                          | 2.0/ha                       |                                     | Siley                        |                              |                       |                   |          |
| Shea    | aring date                           | Main f<br>Wean                  | lock 1<br>ers 1              | 0 Jul<br>0 Jul                      |                              |                              |                       |                   |          |
| Repl    | acement rule                         | Purch<br>Cast f                 | ase<br>or age                | Purchase<br>Sell stock              | ewes on 2 A<br>aged 6 to 7 y | pr at age 18<br>/ears on 1 A | s months, live w      | veight 40 kg and  | C.S. 3.0 |
| P       | eproduction rule                     | Now P                           | enrodi                       | uction rule                         |                              |                              |                       |                   |          |
|         | irst join at                         |                                 | epiou                        |                                     |                              |                              |                       |                   |          |
| M       | lating date                          |                                 | s<br>r                       |                                     |                              |                              |                       |                   |          |
| C       | conception at CS                     | 3 (1) 63<br>(2) 37<br>(3) 0%    | %                            |                                     |                              |                              |                       |                   |          |
| В       | irth date                            | 10 Se                           | o                            |                                     |                              |                              |                       |                   |          |
| С       | astration                            | yes                             |                              |                                     |                              |                              |                       |                   |          |
| v       | Veaning date                         | 1 Jan                           |                              |                                     |                              |                              |                       |                   |          |
| С       | )ne ram per                          | 50 ew                           | es                           |                                     |                              |                              |                       |                   |          |
| ĸ       | leep rams for                        | 5.0 ye                          | ars                          |                                     |                              |                              |                       |                   |          |
| S       | ell young ewes                       | Sell 0                          | year ol                      | d animals o                         | on 31 Mar                    |                              |                       |                   |          |
| s       | ell young wether                     | rs Sell 0                       | year ol                      | d animals o                         | on 31 Mar                    |                              |                       |                   |          |
| N       | laintenance Feed                     | ding rule                       | : New                        | Maintenan                           | ce Feeding                   | rule                         |                       |                   |          |
| N       | lain flock/herd                      |                                 |                              |                                     |                              |                              |                       |                   |          |
| N       | lature Females                       | Feed in<br>If anima<br>thinnest | paddoo<br>I condit<br>animal | ck, applying<br>tion falls to<br>Is | the rule:<br>1.5 during 1    | Jan to 31 D                  | ec feed to main       | ntain condition o | f the    |
| lr<br>F | nmature<br>emales                    | Feed in<br>If anima<br>thinnest | paddoo<br>I condit<br>animal | ck, applying<br>tion falls to<br>Is | the rule:<br>1.5 during 1    | Jan to 31 D                  | ec feed to main       | ntain condition o | f the    |

| Immature Male   | es Feed<br>If an<br>thinn | d in paddock, a<br>imal condition f<br>nest animals | pplying the ı<br>falls to 1.0 d | rule:<br>uring        | 1 Jan to 31 D | Dec feed to m      | aintain condition of the |  |  |  |  |
|-----------------|---------------------------|-----------------------------------------------------|---------------------------------|-----------------------|---------------|--------------------|--------------------------|--|--|--|--|
| Weaner flock/h  | nerd                      |                                                     |                                 |                       |               |                    |                          |  |  |  |  |
| Weaners         | Feed<br>If an<br>thinn    | d in paddock, a<br>imal condition f<br>nest animals | pplying the i<br>falls to 1.5 d | rule:<br>uring        | 1 Jan to 31 D | Dec feed to m      | aintain condition of the |  |  |  |  |
| Supplement      | S                         | Supplement: N                                       | laize                           |                       |               |                    |                          |  |  |  |  |
|                 | h                         | ngredient                                           |                                 |                       | Maize         |                    |                          |  |  |  |  |
|                 | F                         | Proportion of r                                     | nix (%)                         |                       | 100           |                    |                          |  |  |  |  |
|                 | C                         | Dry matter con                                      | itent (%)                       |                       | 87            |                    |                          |  |  |  |  |
|                 | 0                         | Dry matter dige                                     | estibility (%                   | )                     | 87            |                    |                          |  |  |  |  |
|                 | Ν                         | /E:DM (MJ/kg)                                       | )                               |                       | 14.1          |                    |                          |  |  |  |  |
|                 | c                         | Crude protein                                       | (%)                             |                       | 10            |                    |                          |  |  |  |  |
|                 | F                         | Rumen-degrad                                        | lable protei                    | n (%) 80              |               |                    |                          |  |  |  |  |
| Production Fe   | eding ru                  | le: New Produ                                       | ction Feed                      | ing r                 | ule           |                    |                          |  |  |  |  |
| Feeding rule F  | ixed amo                  | ount of 0.60 kg/                                    | /d to All Stoc                  | k in ∣                | Paddock from  | 1 Sep to 10        | Oct                      |  |  |  |  |
| Supplement      | Suppl                     | ement: Hav/B                                        | eans field                      |                       |               | •                  |                          |  |  |  |  |
|                 | Descr                     | iption                                              | ourio, nora                     | Need the mix in these |               |                    |                          |  |  |  |  |
|                 |                           |                                                     |                                 |                       |               |                    |                          |  |  |  |  |
|                 | Ingred                    | dient                                               |                                 | Hay                   | Beans, field  | <b>Overall mix</b> |                          |  |  |  |  |
|                 | Propo                     | ortion of mix (%                                    | %)                              | 50                    | 50            | 100                |                          |  |  |  |  |
|                 | Dry m                     | atter content                                       | (%)                             | 89                    | 89            | 89                 |                          |  |  |  |  |
|                 | Dry m                     | atter digestibi                                     | ility (%)                       | 64                    | 86            | 75                 |                          |  |  |  |  |
|                 | ME:DI                     | M (MJ/kg)                                           |                                 | 8.5                   | 13.7          | 11.1               |                          |  |  |  |  |
|                 | Crude                     | e protein (%)                                       |                                 | 16                    | 31            | 23                 |                          |  |  |  |  |
|                 | Rume                      | n-degradable                                        | protein (%)                     | 68                    | 91            | 83                 |                          |  |  |  |  |
| Pasture rule: N | lew Past                  | ture rule                                           |                                 |                       |               |                    |                          |  |  |  |  |
| Reset on        | 1 M                       | lar                                                 |                                 |                       |               |                    |                          |  |  |  |  |
| Grazing rule: 0 | Grazing I                 | rotation                                            |                                 |                       |               |                    |                          |  |  |  |  |
| Ewes            |                           |                                                     |                                 |                       |               |                    |                          |  |  |  |  |
| From 1 Jan to 3 | 31 Jan 3                  | 31 days in "FA1                                     | "                               |                       |               |                    |                          |  |  |  |  |
| From 1 Feb to 2 | 29 Feb 2                  | 29 days in "FB2                                     |                                 |                       |               |                    |                          |  |  |  |  |
| From 1 Mar to 3 | 31 Mar 7                  | days in "FC3"                                       |                                 |                       |               |                    |                          |  |  |  |  |
| From 1 Apr to 3 | 1 Aug 1                   | 53 days in "Wi                                      | nter grazing                    | "                     |               |                    |                          |  |  |  |  |
| From 1 Sep to 9 | Oct 3                     | 89 days in "FC3                                     | 8"                              |                       |               |                    |                          |  |  |  |  |
| From 10 Oct to  | 31 Oct 2                  | 2 days in "FA1                                      | "                               |                       |               |                    |                          |  |  |  |  |
| From 1 Nov to 3 | 30 Nov 3                  | 30 days in "FB2                                     |                                 |                       |               |                    |                          |  |  |  |  |
| From 1 Dec to 3 | 31 Dec 3                  | 31 days in "FC3                                     | 3"                              |                       |               |                    |                          |  |  |  |  |
| Ewe Weaners     |                           |                                                     |                                 |                       |               |                    |                          |  |  |  |  |
| Same as         | E                         | wes                                                 |                                 |                       |               |                    |                          |  |  |  |  |
| Wether Weane    | rs                        |                                                     |                                 |                       |               |                    |                          |  |  |  |  |
| Same as         | E                         | Ewe Weaners, I                                      | Ewes                            |                       |               |                    |                          |  |  |  |  |
| osts: New Costs |                           |                                                     |                                 |                       |               |                    |                          |  |  |  |  |
| we Shearing     |                           | \$4.50                                              | /head                           |                       |               |                    |                          |  |  |  |  |
| hearing Lambs   |                           | \$3.50                                              | /head                           |                       |               |                    |                          |  |  |  |  |
| we Husbandry    |                           | \$3.00                                              | /head                           |                       |               |                    |                          |  |  |  |  |
| amb Husbandry   |                           | \$2.00                                              | /head                           |                       |               |                    |                          |  |  |  |  |
| we Replacement  |                           | \$130.00                                            | /head                           |                       |               |                    |                          |  |  |  |  |
| ams             |                           | \$1000.00                                           | /head                           |                       |               |                    |                          |  |  |  |  |
| heep sales comr | nission                   | 4                                                   | %                               |                       |               |                    |                          |  |  |  |  |

| Sheep sales cost        |    |                 | \$0.00      | /h | lead    |       |
|-------------------------|----|-----------------|-------------|----|---------|-------|
| Pasture cost            |    |                 | \$0.00      | /h | a       |       |
| Supplement costs        | На | у               | \$300.00 /t |    |         |       |
|                         | Be | ans, field      | \$250.00    | /t |         |       |
|                         | Ма | ize             | \$200.00    | /t |         |       |
| Prices: New Prices      | 5  |                 |             |    |         |       |
| Wool prices for<br>ewes |    |                 |             |    |         |       |
|                         |    | Fleece p        | rice        |    | 800     | c/kg  |
|                         |    | Av. Fleed       | e Price     |    | 5.0     | %     |
|                         |    | Wool commission |             |    | 7.0     | %     |
| Ewe sales               |    |                 |             |    |         |       |
|                         |    | Base pric       | e           |    | 260.0   | c/kg  |
|                         |    | Dressing        | percentag   | ge | 43.0    | %     |
|                         |    | Skin price      | Э           |    | \$15.00 | /head |
| Ewe lamb sales          |    |                 |             |    |         |       |
|                         |    | Base price      | e           |    | 450.0   | c/kg  |
|                         |    | Dressing        | percentag   | ge | 45.0    | %     |
|                         |    | Skin price      | е           |    | \$15.00 | /head |
| Wether lamb sales       |    |                 |             |    |         |       |
|                         |    | Base price      | e           |    | 0.0     | c/kg  |
|                         |    | Dressing        | percentag   | ge | 0.0     | %     |
|                         |    | Skin price      | Э           |    | \$0.00  | /head |

GrassGro 3.2.5. Build: 23 Aug 2011

#### SGS High Productivity Landscape Paddock FA2, Flock 5

Note: only 1 paddock and 1 flock to illustrate the simulation.

| Initial soil water<br>Final soil water<br>Total rainfall<br>Total irrigation inputs                                                                                         | Paddock: 1<br>695<br>682<br>606<br>0    |                                                                                                                                             | 1/09/2010 to 21/03/2011 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Total pasture transpiration<br>Total canopy evaporation<br>Total litter evaporation<br>Total soil evaporation<br>Total ST<br>Total through drainage<br>Total surface runoff | 443<br>40<br>100<br>1<br>584<br>0<br>35 | The error term should be<br>close to zero. If it is too<br>large, try increasing the<br>infiltration time-step in<br>the soil water module. |                         |
| Inputs<br>Outputs<br>Change in soil water                                                                                                                                   | 606<br>619<br>-13                       |                                                                                                                                             |                         |
| Total error                                                                                                                                                                 | 0                                       |                                                                                                                                             | Сору                    |

| Ø, | Simula | tion s  | tatistics     |                     |                    |         |     |                |           |   |  |
|----|--------|---------|---------------|---------------------|--------------------|---------|-----|----------------|-----------|---|--|
|    |        |         |               |                     |                    |         |     |                |           |   |  |
|    | Water  | EA      | Nutrients     | Monthly events      | Pasture and animal | Cut GHG | - 1 | Summary dates  |           |   |  |
|    |        |         |               |                     |                    |         |     |                | 50        |   |  |
|    |        | EA: m   | ean           | 2.89                |                    |         |     | rear:          | 150       | ⊒ |  |
|    |        | FA: s   | .d.           | 1.15                |                    |         |     | 1/09/2010 to 2 | 1/03/2011 |   |  |
|    |        | EA: O   | 25            | 2.02                |                    |         |     |                |           |   |  |
|    |        | EA: Q   | 50            | 2.66                |                    |         |     |                |           |   |  |
|    |        | EA: Q   | 75            | 3.77                |                    |         |     |                |           |   |  |
|    |        | EA ma   | ax            | 6.27                |                    |         |     |                |           |   |  |
|    |        | ·       |               |                     |                    |         |     |                |           |   |  |
|    |        | These   | statistics fo | or actual evapotrar | spiration have     |         |     |                |           |   |  |
|    |        | units n | nm/day        |                     |                    |         |     |                |           |   |  |
|    |        |         |               |                     |                    |         |     |                |           |   |  |
|    |        |         |               |                     |                    |         |     |                |           |   |  |
|    |        |         |               |                     |                    |         |     |                |           |   |  |
|    |        |         |               |                     |                    |         |     |                |           |   |  |
|    |        |         |               |                     |                    |         |     |                |           |   |  |
|    |        |         |               |                     |                    |         |     |                |           |   |  |
|    |        |         |               |                     |                    |         |     |                |           |   |  |
|    |        |         |               |                     |                    |         |     |                |           |   |  |
|    |        |         |               |                     |                    |         |     |                |           |   |  |
|    |        |         |               |                     |                    |         |     |                |           |   |  |
|    |        |         |               |                     |                    |         |     |                |           |   |  |
|    |        |         |               |                     |                    |         |     |                |           |   |  |
|    |        |         |               |                     |                    |         |     |                |           |   |  |
|    |        |         |               |                     |                    |         |     |                |           |   |  |
|    |        |         |               |                     |                    |         |     | Сору           |           |   |  |
|    |        |         |               |                     |                    |         |     |                |           |   |  |
|    |        |         |               |                     |                    |         |     | Close          | Ha        |   |  |
|    |        |         |               |                     |                    |         |     | Close          |           | 9 |  |
|    |        |         |               |                     |                    |         |     |                |           |   |  |

| Initial soil<br>Final soil<br>Final soil<br>Inital plant<br>Final plant<br>Total fertilizer<br>Total concentrate<br>Total dung and urine returned<br>Total lung and urine returned<br>Total leached<br>Milk removed<br>Cut herbage removed<br>Total N volatilization<br>Total N denitrification<br>Total N fixation<br>Total atmospheric input, N | Paddock 1: N         21316.55         21428.51         202.23         1115.74         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.0100         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         4.85         2.98         41.16         8.30 | Nutrient<br>Nitrog<br>Phosp<br>Potas<br>Sulfur                                                                                      | jen<br>shorous<br>sium                       | Year:<br>1/09/2010 to 21/ | 50   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------|------|
| Units<br>i ƙg/ha ⊂g/m2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Note that<br>time that I<br>The error<br>takes into<br>growth et                                                                                                                                                                                                                                                                                                                                    | the feed inputs are only sho<br>the stock were on this paddo<br>term is calculated for the pac<br>account removal through mil<br>c. | wn for the<br>ck.<br>idock, and<br>k, animal | Close                     | Help |

|             | Nutrients Monthly     | events Pasture an     | d animal   Cut   GHG |  | -Summaru datas |            |
|-------------|-----------------------|-----------------------|----------------------|--|----------------|------------|
|             |                       |                       |                      |  | Summary dates  |            |
|             | Runoff events         | Runoff                | Drainage             |  | Year:          | 50 🗢       |
| January     | 0                     | 0.10                  | 0.0070               |  | 1/00/2010 5    | 21/02/2011 |
| February    | 2                     | 26.10                 | 0.0063               |  | 1/09/2010 (0   | 21/03/2011 |
| March       | 0                     | 0.00                  | 0.0047               |  |                |            |
| April       | 0                     | 0.00                  | 0.00                 |  |                |            |
| Мау         | 0                     | 0.00                  | 0.00                 |  |                |            |
| June        | 0                     | 0.00                  | 0.00                 |  |                |            |
| July        | 0                     | 0.00                  | 0.00                 |  |                |            |
| August      | 0                     | 0.00                  | 0.00023              |  |                |            |
| 5eptember   | 0                     | 0.00                  | 0.0070               |  |                |            |
| October     | 0                     | 0.036                 | 0.0072               |  |                |            |
| November    | 1                     | 6.93                  | 0.0069               |  |                |            |
| December    | 0                     | 1.40                  | 0.0071               |  |                |            |
|             |                       |                       |                      |  |                |            |
|             |                       |                       |                      |  |                |            |
|             |                       |                       |                      |  |                |            |
| Monthly run | off is in mm          |                       |                      |  |                |            |
| Monuniy rui |                       |                       |                      |  |                |            |
| Monthly run | off events are only t | hose in excess of 5 m | ากา                  |  |                |            |
|             |                       |                       |                      |  |                |            |
|             |                       |                       |                      |  |                |            |
|             |                       |                       |                      |  |                |            |
|             |                       |                       |                      |  |                |            |
|             |                       |                       |                      |  |                |            |
|             |                       |                       |                      |  |                |            |
|             |                       |                       |                      |  | Сору           |            |

| Simulation statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Water       EA       Nutrients       Monthly events       Past         Paddock       Pasture intake:       1/ha/year       9/h       1/ha/year         % live intake       9/h       1/ha/year       1/ha/year       1/ha/year         Total cut yield:       t/ha/year       1/ha/year       1/ha/year       1/ha/year         Forage intake:       t/ha/year       1/ha/year       1/ha/year       1/ha/year         Greasy filecce sheared:       kg / sheep       1/ha/year       1/ha/year         Dry weights have units t/ha       1/ha/year       1/ha/year       1/ha/year | ure and animal     Cut     GHG       3.78     Feed inputs are only<br>shown for the time that<br>the stock were on this<br>paddock.       0.00     Total pasture growth<br>excludes any losses to<br>senescence and so is<br>generally greater than<br>measured growth rates | Summary dates<br>Year: 50 1/09/2010 to 21/03/2011 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                              | Close Help                                        |

| Simulation statistics                                                                            |                                                        |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Water       EA       Nutrients       Monthly events       Pasture and animal       Cut       GHG | Summary dates<br>Year: 50 💽<br>1/09/2010 to 21/03/2011 |
| Dry weights have units t/ha  Use separate columns for each year when copying to the clipboard    | Copy<br>Close Help                                     |

|     | addock                                                                               |                                             |                                      |                                           | Summary dates           |
|-----|--------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------|-------------------------------------------|-------------------------|
|     |                                                                                      |                                             | CO2e, t/ha/y                         | Stock values are only                     |                         |
|     | Pasture C fix: tC/ha/year                                                            | 6.92                                        | 25.37                                | shown for the time<br>that the stock were | 1/09/2010 to 21/03/2011 |
|     | Soil C fix: tC/ha/year                                                               | 9.36                                        | 34.34                                | on this paddock.                          |                         |
|     | Soil C resp: tC/ha/year                                                              | 10.39                                       | 38.10                                |                                           |                         |
|     | N2O emission: kgN/ha/year                                                            | 1.15                                        | 0.56                                 |                                           |                         |
|     | Stock CO2 resp: tC/ha/year                                                           | 0.70                                        | 2.58                                 |                                           |                         |
|     | Stock CH4 resp: tC/ha/year                                                           | 0.040                                       | 1.11                                 |                                           |                         |
|     | Net balance: t CO2e / ha / year                                                      |                                             | -16.98                               |                                           |                         |
|     |                                                                                      |                                             |                                      |                                           | CO2e parameters         |
|     |                                                                                      |                                             |                                      |                                           |                         |
|     |                                                                                      |                                             |                                      |                                           |                         |
|     |                                                                                      |                                             |                                      |                                           |                         |
|     |                                                                                      |                                             |                                      |                                           |                         |
| The | e first column of data have the units list                                           | ed in the descriptio                        | n on the left.                       |                                           |                         |
| The | e first column of data have the units list<br>e second column is the conversion to C | ed in the descriptio<br>D2 equivalents conv | n on the left.<br>verted to t/ha/yea | as indicated.                             |                         |

#### SGS Low Productivity Landscape Paddock HB3, Flock 1

Note: only 1 paddock and 1 flock to illustrate the simulation.

| ater EA Nutrients Mont            | thly events Pasture and anim | nal Cut GHG                 | L Summaru datas         |
|-----------------------------------|------------------------------|-----------------------------|-------------------------|
| All values have units projugator. |                              |                             | Summary dates           |
| All values have units him water   |                              |                             | Year: 50 🚖              |
|                                   | Paddock: 1                   |                             | 1/09/2010 to 21/03/2011 |
| Initial soil water                | 648                          |                             |                         |
| Final soil water                  | 643                          |                             |                         |
| Total rainfall                    | 606                          |                             |                         |
| Total irrigation inputs           | 0                            |                             |                         |
| Total pasture transpiration       | 475                          |                             |                         |
| Total canopy evaporation          | 43                           |                             |                         |
| Total litter evaporation          | 61                           |                             |                         |
| Total soil evaporation            | 6                            | The error term should be    |                         |
| Total ET                          | 585                          | close to zero. If it is too |                         |
| Total through drainage            | 0                            | infiltration time-step in   |                         |
| Total surface runoff              | 26                           | the soil water module.      |                         |
| Inputs                            | 606                          |                             |                         |
| Outputs                           | 611                          |                             |                         |
| Change in soil water              | -5                           |                             |                         |
| Total error                       | 0                            |                             |                         |
| J                                 |                              |                             |                         |
|                                   |                              |                             | Copy                    |

| 🍓 Simul | ation s | tatistics |                |                    |     |     |   |   |   |               |            |      |   |
|---------|---------|-----------|----------------|--------------------|-----|-----|---|---|---|---------------|------------|------|---|
|         |         | ,         | γ.             | s                  |     | ,   | , |   |   |               |            |      |   |
| Water   | EA      | Nutrients | Monthly events | Pasture and animal | Cut | GHG |   | 1 | ſ | Summary dates |            |      |   |
|         |         |           |                |                    |     |     |   |   |   | Vort          | 50         |      |   |
|         | EA: n   | nean      | 2.90           |                    |     |     |   |   |   | rear:         | 150        | -    |   |
|         | EA: s   | .d.       | 1.14           |                    |     |     |   |   |   | 1/09/2010 to  | 21/03/2011 |      |   |
|         | EA: C   | 25        | 2.07           |                    |     |     |   |   |   |               |            |      |   |
|         | EA: C   | 250       | 2.69           |                    |     |     |   |   |   |               |            |      |   |
|         | EA: C   | 275       | 3.69           |                    |     |     |   |   |   |               |            |      |   |
|         | EA m    | ах        | 6.41           |                    |     |     |   |   |   |               |            |      |   |
|         |         |           |                |                    |     |     |   |   |   | Close         | ł          | telp | - |

| Initial soil<br>Final soil<br>Final soil<br>Inital plant<br>Final plant<br>Total fertilizer<br>Total concentrate<br>Total concentrate<br>Total forage<br>Total animal intake<br>Total dung and urine returned<br>Total dung and urine returned<br>Total dung and urine removed<br>Total leached<br>Milk removed<br>Cut herbage removed<br>Total N volatilization<br>Total N denitrification<br>Total N denitrification<br>Total N fixation | Paddock 1: N 17875.53 17848.15 79.82 107.42 0.00 0.00 0.00 30.03 23.43 0.00 0.00 0.00 0.00 1.18 0.29 0.00 8.30 |                                                                                                    | Nutrient<br>Nitrogen<br>Phosphorous<br>Potassium<br>Sulfur                                          | Year: 50 🗲<br>1/09/2010 to 21/03/2011 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------|
| Units<br>●kg/ha Cg/m2                                                                                                                                                                                                                                                                                                                                                                                                                      | Note<br>time t<br>The e<br>takes<br>growt                                                                      | hat the feed input:<br>hat the stock were<br>rror term is calculat<br>into account remov<br>h etc. | s are only shown for the<br>on this paddock.<br>ed for the paddock, and<br>val through milk, animal | Copy<br>Close Help                    |

| nulation s               | tatistics                               |                       |                      |  |  |               |              |     |
|--------------------------|-----------------------------------------|-----------------------|----------------------|--|--|---------------|--------------|-----|
| iter   EA                | Nutrients Monthly                       | events Pasture an     | d animal   Cut   GHG |  |  | ummary dates  |              |     |
|                          | Runoff events                           | Runoff                | Drainage             |  |  | Year:         | 50           | \$  |
| January                  | 0                                       | 0.037                 | 0.0064               |  |  | 1/00/00101    |              |     |
| February                 | 2                                       | 18.19                 | 0.0058               |  |  | 1/09/2010 00  | ) 21/03/2011 |     |
| March                    | 0                                       | 0.00                  | 0.0043               |  |  |               |              |     |
| April                    | 0                                       | 0.00                  | 0.00                 |  |  |               |              |     |
| May                      | 0                                       | 0.00                  | 0.00                 |  |  |               |              |     |
| June                     | 0                                       | 0.00                  | 0.00                 |  |  |               |              |     |
| July                     | 0                                       | 0.00                  | 0.00                 |  |  |               |              |     |
| August                   | 0                                       | 0.00                  | 0.00021              |  |  |               |              |     |
| September                | 0                                       | 0.00                  | 0.0064               |  |  |               |              |     |
| October                  | 0                                       | 0.024                 | 0.0066               |  |  |               |              |     |
| November                 | 0                                       | 6.62                  | 0.0063               |  |  |               |              |     |
| December                 | 0                                       | 0.73                  | 0.0065               |  |  |               |              |     |
| Monthly ru<br>Monthly ru | noff is in mm<br>noff events are only t | nose in excess of 5 m | m                    |  |  |               |              |     |
|                          |                                         |                       |                      |  |  | Copy<br>Close | H            | elp |

| Simulation statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                  |                                                                                            |                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Water       EA       Nutrients       Monthly events       Paddock         Paddock       Pasture intake: t/ha/year       Paddock       Paddock         Vie intake       % dead intake       Paddock       Paddock         Total cut yield: t/ha/year       Concentrate intake: t/ha/year       Parage intake: t/ha/year         Greasy fleece sheared: kg / sheep       Image: sheared: kg / sheep       Image: sheared: kg / sheep         Dry weights have units t/ha       Image: sheared transmitted by the sheared transmitted by the sheared transmitted by the sheared transmitted by the sheared by the shea | sture and animal     Cut     GHG       1.85     Feed inputs ar       96.93     shown for the       3.07     paddock.       0.00     Total pasture       2.55     generally great | e only<br>time that<br>: on this<br>growth<br>osses to<br>d so is<br>ter than<br>wth rates | mmary dates         Year:       50 €         1/09/2010 to 21/03/2011 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                  |                                                                                            | Close Help                                                           |

| Simulation statistics                                                                            |                                                        |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Water       EA       Nutrients       Monthly events       Pasture and animal       Cut       GHG | Summary dates<br>Year: 50 💽<br>1/09/2010 to 21/03/2011 |
| Dry weights have units t/ha                                                                      | Copy<br>Copy<br>Help                                   |
| 🎼 Simula                    | ation statistics                                                                                                                                                                                           |                                                                            |                                                                           |                                                                                        |               |   |  |  |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------|---|--|--|--|--|
| Water                       | EA Nutrients Monthly events                                                                                                                                                                                | Pasture and anima                                                          | Cut GHG                                                                   | 1                                                                                      | Summary dates | ] |  |  |  |  |
|                             | Pasture C fix: tC/ha/year<br>Soil C fix: tC/ha/year<br>Soil C resp: tC/ha/year<br>N2O emission: kgN/ha/year<br>Stock CO2 resp: tC/ha/year<br>Stock CH4 resp: tC/ha/year<br>Net balance: t CO2e / ha / year | 6.67<br>5.36<br>7.06<br>0.12<br>0.30<br>0.020                              | CO2e, t/ha/y<br>24.45<br>19.65<br>25.88<br>0.060<br>1.10<br>0.52<br>-3.10 | Stock values are only<br>shown for the time<br>that the stock were<br>on this paddock. | Year: 50      |   |  |  |  |  |
|                             | CO2e parameters<br>Methane 21.0<br>Nitrous Oxide 310.                                                                                                                                                      |                                                                            |                                                                           |                                                                                        |               |   |  |  |  |  |
| The<br>The<br>If t<br>it is | e first column of data have the units liste<br>e second column is the conversion to CO.<br>he net balance is positive, it shows the (<br>s negative then there is a loss from the s                        | d in the description<br>2 equivalents conv<br>IO2 equivalents be<br>ystem. | n on the left.<br>erted to t/ha/yea<br>eing incorporated i                | r as indicated.<br>in the system, if                                                   | Сору          | _ |  |  |  |  |
| Note th<br>feeding          | hat there will be some carbon inputs to th<br>. This means that the system is not 'clos                                                                                                                    | e system through<br>ed'.                                                   | supplementary                                                             |                                                                                        | Close Help    | ] |  |  |  |  |

### FarmGas Calculations for Low Productivity Landscape

| of the Scenario Tool v<br>should be obtained fro                                                                                                                                                                          | version of the FarmGAS<br>which is located on the<br>com the Australian Farm                                                                              | Scenario Tool<br>website of the /<br>Institute. | (Version 1.2, Feb<br>sustralian Farm In                                                                                          | ruary 2012). If<br>stitute ( www.1                                            | t was developed to<br>farminstitute.org.a                                        | provide a template for<br>a ). Advice on, and app                   | construction roval for, the | of a Web-ba<br>use of this s                                                  | sed version<br>preadsheet                   |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------|---------------------------------------------|--|
| te development of t                                                                                                                                                                                                       | he Scenario Tool is par                                                                                                                                   | t of a project u                                | idertaken by the li                                                                                                              | nstitute and M                                                                | eat & Livestock Au                                                               | istralia, under the Aust                                            | ralian Goverr               | nment's Redu                                                                  | cing                                        |  |
| detailed outline of t                                                                                                                                                                                                     | his spreadsheet model                                                                                                                                     | and instruction:                                | on its use are pri                                                                                                               | ovided in the F                                                               | FarmGAS Scenario                                                                 | o Tool User Guide (Spr                                              | eadsheet) wh                | nich can be ol                                                                | btained from                                |  |
| he Australian Farm Ir                                                                                                                                                                                                     | nstitute.                                                                                                                                                 |                                                 |                                                                                                                                  |                                                                               |                                                                                  |                                                                     |                             |                                                                               |                                             |  |
|                                                                                                                                                                                                                           |                                                                                                                                                           |                                                 |                                                                                                                                  |                                                                               |                                                                                  |                                                                     |                             |                                                                               |                                             |  |
| SCENARIO NA                                                                                                                                                                                                               | ME and FARM L                                                                                                                                             | OCATION                                         |                                                                                                                                  |                                                                               |                                                                                  |                                                                     |                             |                                                                               |                                             |  |
| Farm Name:                                                                                                                                                                                                                | Trevenna - Lamb                                                                                                                                           | Breed LOV                                       |                                                                                                                                  |                                                                               | -                                                                                |                                                                     |                             |                                                                               |                                             |  |
| Scenario:                                                                                                                                                                                                                 | Scenario I<br>State/Terri                                                                                                                                 | State/Territory Last saved on:                  |                                                                                                                                  |                                                                               |                                                                                  |                                                                     |                             |                                                                               |                                             |  |
| Location of Farm:                                                                                                                                                                                                         | NSW / ACT                                                                                                                                                 | uda.                                            |                                                                                                                                  |                                                                               |                                                                                  | Location: NSW                                                       | //ACT                       |                                                                               |                                             |  |
| FARM ENTERF                                                                                                                                                                                                               | PRISES                                                                                                                                                    | Select farm G                                   | HG Calculators                                                                                                                   |                                                                               |                                                                                  |                                                                     | Select Ent                  | erprise Gros                                                                  | s Margins                                   |  |
|                                                                                                                                                                                                                           | Beef Cattle                                                                                                                                               | [                                               | Be                                                                                                                               | ef Breeding                                                                   | Beef - Stores                                                                    |                                                                     |                             |                                                                               |                                             |  |
|                                                                                                                                                                                                                           | Sheep                                                                                                                                                     |                                                 | ¢                                                                                                                                |                                                                               |                                                                                  |                                                                     |                             |                                                                               |                                             |  |
|                                                                                                                                                                                                                           | Intensive Livestoc                                                                                                                                        | k [                                             | E                                                                                                                                | leef Feedlot                                                                  | Pigs                                                                             |                                                                     |                             |                                                                               |                                             |  |
|                                                                                                                                                                                                                           | Cropping (Dryland an                                                                                                                                      | d/or Irrigated)                                 | (Maximum nu                                                                                                                      | mber = 15)                                                                    |                                                                                  |                                                                     |                             |                                                                               |                                             |  |
|                                                                                                                                                                                                                           | Horticulture                                                                                                                                              |                                                 | (Maximum nu                                                                                                                      | mber = 15 )                                                                   |                                                                                  |                                                                     |                             |                                                                               |                                             |  |
|                                                                                                                                                                                                                           | Trees                                                                                                                                                     |                                                 |                                                                                                                                  |                                                                               |                                                                                  |                                                                     |                             |                                                                               |                                             |  |
|                                                                                                                                                                                                                           | "Value" (price                                                                                                                                            | of Carbon                                       | \$23.00 /                                                                                                                        | tonne (CO2-                                                                   | e)                                                                               |                                                                     |                             |                                                                               |                                             |  |
| PASTURES ar                                                                                                                                                                                                               | nd FARM AREAS                                                                                                                                             | 6                                               |                                                                                                                                  |                                                                               |                                                                                  |                                                                     |                             |                                                                               |                                             |  |
|                                                                                                                                                                                                                           | Total area of farm:                                                                                                                                       | hectares                                        | Livestock areas                                                                                                                  | 17.0                                                                          | Horticulture:                                                                    | 0.0                                                                 |                             |                                                                               |                                             |  |
| otal allocated to L/stoc                                                                                                                                                                                                  | k, Crops, Hort & Trees:                                                                                                                                   | 17.0                                            | Cropping areas                                                                                                                   | 0.0                                                                           | Trees:                                                                           | 0.0                                                                 |                             |                                                                               |                                             |  |
|                                                                                                                                                                                                                           | Remainder:                                                                                                                                                | 0                                               |                                                                                                                                  |                                                                               |                                                                                  |                                                                     | Application                 | of Nitrogon                                                                   | Fortilisor                                  |  |
| Pasture areas:                                                                                                                                                                                                            |                                                                                                                                                           | hectares                                        | Percent (%)                                                                                                                      | of legume                                                                     | Area of pasture<br>burnt each year                                               |                                                                     | Area                        | Quantity                                                                      | % of<br>Nitrogen                            |  |
| Dryland pas                                                                                                                                                                                                               | tures - with leaumes                                                                                                                                      | 17.0                                            | in the pa                                                                                                                        | 0.49                                                                          | 0.0%                                                                             | Dryland pastures (legumes)                                          | (ha)<br>0.0                 | (Kgs/ha/yr)                                                                   | in fertiliser<br>0%                         |  |
| Dryl                                                                                                                                                                                                                      | and pastures - other                                                                                                                                      | 0.0                                             |                                                                                                                                  |                                                                               | 0.0%                                                                             | Dryland pastures (other)                                            | 0.0                         | 0.0                                                                           | 0%                                          |  |
| Irrigated pas                                                                                                                                                                                                             | tures - with legumes                                                                                                                                      | 0.0                                             | 0.0% %                                                                                                                           | 0.00                                                                          | 0.0%                                                                             | Irrigated pastures (legumes)                                        | 0.0                         | 0.0                                                                           | 0%                                          |  |
|                                                                                                                                                                                                                           | Irrigated pastures                                                                                                                                        | 0.0                                             | Tatal area                                                                                                                       |                                                                               | 0.0%                                                                             | Irrigated pastures (other)                                          | 0.0                         | 0.0                                                                           | 0%                                          |  |
| Tot                                                                                                                                                                                                                       | al area of Pastures                                                                                                                                       | 17.0                                            | legume<br>Note % legume can                                                                                                      | 0.5<br>Include mixed                                                          | 0.0                                                                              |                                                                     |                             |                                                                               |                                             |  |
|                                                                                                                                                                                                                           |                                                                                                                                                           |                                                 | peeture (eg 30% kuo<br>grasses)                                                                                                  | erne, 70% native                                                              |                                                                                  |                                                                     | from:                       | Feedlot                                                                       | Piggery                                     |  |
|                                                                                                                                                                                                                           |                                                                                                                                                           |                                                 |                                                                                                                                  |                                                                               |                                                                                  | Tonnes Waste (organi<br>Emissions (tonnes CC                        | c fertiliser):<br>02 e):    | 0.0                                                                           | 0.0<br>0.0                                  |  |
|                                                                                                                                                                                                                           |                                                                                                                                                           | 1                                               |                                                                                                                                  |                                                                               |                                                                                  | Emissions (tonnes CO2-e)                                            | tonne waste =               | 0.00                                                                          | 0.00                                        |  |
|                                                                                                                                                                                                                           | ude estimated GHG<br>me-based (i.e.                                                                                                                       |                                                 |                                                                                                                                  |                                                                               |                                                                                  |                                                                     | Total Residu                |                                                                               |                                             |  |
| Do you want to inclu<br>emissions from legu                                                                                                                                                                               |                                                                                                                                                           | VEC                                             |                                                                                                                                  |                                                                               |                                                                                  | R/ Jacuma contact                                                   | (legume)<br>Dry Matter      | a                                                                             |                                             |  |
| Do you want to inclu<br>emissions from legu<br>Nitrogen-fixing) Pas                                                                                                                                                       | tures?                                                                                                                                                    | 123                                             |                                                                                                                                  |                                                                               | DM tonnes/ba                                                                     | -16 IB2 IIIII I 2 I IIII B2 I I                                     |                             |                                                                               |                                             |  |
| Do you want to inclu<br>emissions from legu<br>Nitrogen-fixing) Pas<br>Calculation of GHG e<br>require an estimate of<br>dry matter' (DM tonne                                                                            | tures?<br>missions from the legur<br>f the annual amount of i<br>as/ha) that is NOT:                                                                      | ne pastures wi<br>residual pasture              | l<br>Dryland residu                                                                                                              | al pasture                                                                    | DM tonnes/ha                                                                     | 2.9%                                                                | 2.6                         | tonnes/DM/y                                                                   | ear                                         |  |
| Do you want to inclu<br>emissions from legu<br>Nitrogen-fixing) Pas<br>Calculation of GHG e<br>require an estimate of<br>'dry matter' (DM tonne<br>a) eaten by stock<br>b) baled/silaged or                               | tures?<br>missions from the legur<br>f the annual amount of i<br>es/ha) that is NOT:<br>-                                                                 | ne pastures wi<br>residual pastur               | Dryland residu<br>Irrigated resid                                                                                                | ial pasture<br>ual pasture                                                    | DM tonnes/ha                                                                     | 2.9%<br>0.0%                                                        | 2.6<br>0.0<br>based on %v   | tonnes/DM/y<br>tonnes/DM/y<br>alue entered                                    | ear<br>ear<br>above                         |  |
| Do you want to inclu-<br>emissions from legu<br>Nitrogen-fixing) Pas<br>Calculation of GHG e<br>require an estimate of<br>dry matter (DM tonne<br>a) eaten by stock<br>b) baled/silaged or<br>c) burnt.                   | tures?<br>missions from the legur<br>f the annual amount of r<br>es/ha) that is NOT:<br>-                                                                 | ne pastures wi<br>residual pastur               | I<br>Dryland residu<br>Irrigated resid                                                                                           | ual pasture<br>ual pasture                                                    | DM tonnes/ha                                                                     | 2.9%<br>0.0%<br>% legume content is l                               | 2.6<br>0.0<br>based on %v   | tonnes/DM/y<br>tonnes/DM/y<br>alue entered                                    | ear<br>ear<br>above                         |  |
| Do you want to inclu<br>emissions from legu<br>Nitrogen-fixing) Pas<br>Calculation of GHG e<br>require an estimate of<br>'dry matter' (DM tonne<br>a) eaten by stock<br>b) baled/silaged or<br>c) burnt.                  | tures?<br>missions from the legur<br>f the annual amount of n<br>ss/ha) that is NOT:<br>-                                                                 | ne pastures wi<br>residual pastur               | Dryland residu                                                                                                                   | ial pasture<br>ual pasture                                                    | DM tonnes/ha                                                                     | 2.9%<br>0.0%<br>% legume content is l                               | 2.6<br>0.0<br>based on %v   | tonnes/DM/y<br>tonnes/DM/y<br>alue entered                                    | ear<br>ear<br>above                         |  |
| Do you want to inclu<br>emissions from legu<br>Nitrogen-fixing) Pas<br>Calculation of GHG e<br>require an estimate of<br>drym matter (DM tonne<br>a) eaten by stock<br>b) baled/silaged or<br>c) burnt.<br>Savanna areas: | tures?<br>missions from the legur<br>the annual amount of<br>ss/ha) that is NOT:                                                                          | ne pastures wi<br>residual pastur               | Dryland residu<br>Irrigated resid<br>Area burnt<br>each year                                                                     | al pasture<br>ual pasture                                                     | DM tonnes/ha                                                                     | Segune content     C.9%     O.0%     Segume content is I            | 2.6<br>0.0<br>based on %v   | tonnes/DM/y<br>tonnes/DM/y<br>alue entered                                    | ear<br>ear<br>above                         |  |
| Do you want to inclu<br>emissions from legu<br>Nitrogen-fixing) Pass<br>Calculation of GHG e<br>require an estimate o<br>dy matter (DM tonne<br>a) eaten by stock<br>b) baled/silaged or<br>c) burnt.<br>Savanna areas:   | tures?<br>missions from the legur<br>(the annual amount of r<br>shannual amount of r<br>(GLD & NTerritory only)<br>Savanna grasslands<br>Savanna woodland | hectares                                        | <ul> <li>Dryland residu</li> <li>Irrigated resid</li> <li>Area burnt</li> <li>each year</li> <li>500.0</li> <li>100.0</li> </ul> | al pasture<br>ual pasture<br>The definition<br>cover ocassio<br>arid grasslam | DM tonnes/ha<br>5.2<br>0.0<br>n of 'savanna' is "<br>onally interrupted t<br>ds. | 2.9%     0.0%     % legume content is i     tropical and sub-tropic | 2.6<br>0.0<br>based on %v   | tonnes/DM/y<br>tonnes/DM/y<br>alue entered<br>s with continu<br>nonssonal thi | ear<br>above<br>ous grass<br>rough to semi- |  |

```
NOTE: Macros have been disabled to avoid "Virus warnings"
The file has been virus checked with latest virus software and should be safe if you wish to re-enable the macros
                                                                                      Determination of Region & Lookup for WA Regions
                                                                                    Region =
Western Australia
                                                                                                                       Others (blank)
                                                                                      Select WA region
                                                                                      South West
                                                                                                                        State/Territory Code:
                                                                                                                                                                                       1
                                                                                         imberle
                                                                                    FracWET default = 0

        FracWET Codes 1=
        Region No
(Nathan's)

        NSW / A
        0

        NSW / A
        1

                                                                                      State/Territory
                                                                                                                        Region
North Coast
                                                                                     NSW / ACT
                                                                                      NSW / ACT
                                                                                                               South Coast
                                                                                                                                                                 NSW / A 0 12
                                                                                      NSW / ACT
                                                                                                                     Southern Tablelands
                                                                                                                                                                NSW / A 0 13
NSW / A 1 14
                                                                                      NSW / ACT
                                                                                     NSW / ACT
                                                                                                                      Northern Wheat/Sheep
                                                                                     NSW / ACT
                                                                                                                     Southern Wheat/Sheep NSW / A 1 15
                                                                                     NSW / ACT
                                                                                                                       Western
                                                                                                                                                                NSW / A 0 16
                                                                                                                        North East Tasman 1 17
Fast Chast Lasman 1 18
Central North/Midlands/South Tasman 1 19
                                                                                     Tasmania
Lasmania
                                                                                      Tasmania
                                                                                                                       Central Plateau/Derwent Valle Tasman 1 20
west/south Loast Lasman 1 21
                                                                                      Tasmania
Lasmania
                                                                                                                                                      Tasman
                                                                                                                        North West
                                                                                     Tasmania
Western Australia
                                                                                                                                                                                                   22
                                                                                                                        South West Vestern 1
Pilbara Western 0
Kimberley Western 1
Central West Western 1
South Coastal Western 0
Cedificited Wootern 0
                                                                                                                                                                                                    1
                                                                                     Western Australia
                                                                                                                                                                                                    2
                                                                                      Western Australia

        Western Australia
        Central West
        Western
        1

        Western Australia
        South Coastal
        Western
        0

        Western Australia
        Goldfields/Eucla
        Western
        0

        Western Australia
        Goldfields/Eucla
        Western
        0

        Western Australia
        Goldfields/Eucla
        Western
        0

        Western
        Mestern
        0
        Western
        0

                                                                                                                                                                                                  4
                                                                                                                                                                                                   5
6
7
                                                                                                                      Central Wheat Belt Western
                                                                                     Western Australia
                                                                                                                                                                                         1 8
                                                                                   Western Australia
South Australia
South Australia
South Australia
South Australia
Victoria
Victoria
                                                                                                                        Interior
South East
                                                                                                                                                                Western
South A
                                                                                                                                                                                          0 9
1 23
                                                                                                                                                         South A
                                                                                                                        Murray
                                                                                                                                                                                          1
                                                                                                                                                                                                   24
                                                                                                                                                                                          0 25
                                                                                                                         Mid-North/Flinders
                                                                                                                                                                  South A
                                                                                                                        Pastoral
                                                                                                                                                                 South A
                                                                                                                        West Coast/Eyre
Mallee
Wimmera
                                                                                                                                                                  South A
Victorial
Victorial
                                                                                                                                                                                                   27
28
29
                                                                                                                                                                                           0
                                                                                     Victoria
                                                                                                                        Northern Country
                                                                                                                                                                 Victorial
                                                                                                                                                                                       0 30
                                                                                                                        North East Vic
                                                                                                                                                                  Victorial
                                                                                                                                                                                          1 31
                                                                                      Victoria
                                                                                      Victoria
                                                                                                                        East Gippsland
                                                                                                                                                                 Victorial
                                                                                                                                                                                            1 32
                                                                                                                        West/South Gippsland
                                                                                      Victoria
                                                                                                                                                                                          1 33
                                                                                                                                                                  Victoria\
                                                                                     Victoria
Victoria
Queensland
Queensland
Queensland
Queensland
Queensland
                                                                                                                        Central
South West Vic
Central Highlands/North
Central West/Finders
Channel Country
Maranoa/Warrego
Darring Downs/Burnett
North West/Gulf
Darvin-Daly
Amhem-Roper
Victoria Rivor-Tennantt
Alice Springs
                                                                                                                        Central
                                                                                                                                                                  Victoria(
                                                                                                                                                                                         1 34
                                                                                                                                                                 Victoria(
Victoria)
Queensl
Queensl
Queensl
Queensl
Queensl
Queensl
Northerr
                                                                                                                                                                                               35
36
37
38
39
40
41
41
42
43
44
                                                                                                                                                                                          0
0
0
0
                                                                                                                                                                                          0
                                                                                     Queensland
Northern Territory
Northern Territory
Northern Territory
                                                                                                                                                                  Northerr
Northerr
                                                                                                                                                                                                     45
                                                                                     Northern Territory
                                                                                                                         Alice Springs
                                                                                                                                                                  Northerr
```

Partial results: GHG emissions ONLY

| Wethers                                      | 0.00          |                 | 0.00         |            | 0.00        |          | 0.00    |                |        |                | of Data    | Entry      | Section      | n              |         |
|----------------------------------------------|---------------|-----------------|--------------|------------|-------------|----------|---------|----------------|--------|----------------|------------|------------|--------------|----------------|---------|
|                                              |               |                 | 1            |            |             |          |         |                |        |                | n Data     | y -        | Geetio       |                |         |
|                                              |               |                 |              |            |             |          |         |                |        |                |            |            |              |                |         |
| Greenhouse Gas Emissions                     |               |                 |              |            |             |          |         |                |        |                |            |            |              |                |         |
| Default Emissions                            |               |                 | CO2          | equivalent | (tonnes/y   | ear)     |         |                |        |                |            |            |              |                |         |
|                                              |               | Tonnes<br>/year | Total CO2-e  | /Hectare   | / DSE       | / Ewe    |         |                |        |                |            |            |              |                |         |
| Methane (CH4) from E                         | Enteric =     | 0.63            | 11.14        | 0.66       | 0.10        | 0.24     |         |                |        |                |            |            |              |                |         |
| Methane (CH4) from manure &                  | Lurine =      | 0.00            | 0.00         | 0.00       | 0.00        | 0.00     |         |                |        | Do you v       | vish to ch | ange ("fu  | dge") the    | final GHG esti | mates?  |
| Total Methane                                | (CH4) =       | 0.53            | 11.14        | 0.66       | 0.10        | 0.24     |         |                |        |                | YES        |            |              |                |         |
| Nitrous Oxide (N2O) from manure &            | k urine =     | 0.01            | 1.75         | 0.10       | 0.02        | 0.04     |         |                |        |                | Final "fuo | lge" adjus | stment (to   | o "Revised Em  | issions |
|                                              |               | Total           | 12.89        | 0.76       | 0.11        | 0.27     |         | Differ         | ence   |                | Direct en  | nissions:  |              | Indirect emis  | sions   |
| Revised Emissions                            |               | Tonnes          | Total CO2-e  | (Hectare   | /DSE        | /Ewe     |         | Tonnes         | %      |                | Methane    | Nitrous    |              | Nitrous Oxide  |         |
|                                              |               | lyear           |              |            |             |          |         | CO2-e          | 0.201  |                | 0.00/      | Oxide      |              | 0.004          |         |
| Methane (CH4) from E                         | =nteric =     | 0.49            | 10.23        | 0.60       | 0.09        | 0.22     |         | -0.91          | -8.2%  |                | 0.0%       | Enter the  | a % adjustme | 0.0%           |         |
| Total Methane                                | (CH4) =       | 0.49            | 10.23        | 0.60       | 0.09        | 0.22     |         | -0.91          | -8.2%  |                |            | LINCIUM    |              | ani - 61 - 7   |         |
| Nitrous Oxide (N2O) from manure &            | unine =       | 0.01            | 1.58         | 0.09       | 0.01        | 0.03     |         | -0.16          | -9.4%  |                |            |            |              |                |         |
|                                              |               | Totai           | 11.81        | 0.69       | 0.11        | 0.25     |         | -1.08          | -8.3%  |                |            |            |              |                |         |
|                                              | Total DSE's   | 113             |              |            |             |          |         |                |        |                |            |            |              |                |         |
| Total Bre                                    | eding Ewes    | 47              |              |            |             |          |         |                |        |                |            |            |              |                |         |
|                                              |               |                 |              |            |             |          |         |                |        |                |            |            |              |                |         |
| Lookup table column numbers>                 | 1             | 2               | 1            |            | 5<br>Common |          |         | 8              |        | -10<br>Milatan | 11         | 12         |              |                |         |
| Numbers each month portioned by season       | (i.e. 1/3)    | Shind           | Shung        | Summer     | Summer      | Southing | AUTOR   | Adumn          | AGOTIN | VVID8          | Ave age    | VVI kes    |              |                |         |
| Breeding Ewes                                | 16.00         | 16.00           | 16.00        | 16.00      | 16.00       | 16.00    | 16.00   | 16.00          | 15.00  | 15.00          | 15.00      | 15.00      |              |                |         |
| Maiden Ewes                                  | 0.00          | 0.00            | 0.00         | 0.00       | 0.00        | 0.00     | 0.00    | 0.00           | 0.00   | 0.00           | 0.00       | 0.00       |              |                |         |
| Other Ewes                                   | 0.00          | 0.00            | 0.00         | 0.00       | 0.00        | 0.00     | 0.00    | 0.00           | 0.00   | 0.00           | 0.00       | 0.00       |              |                |         |
| Lambs/Hoggets                                | 15.00         | 15.00           | 15.00        | 15.00      | 15.00       | 15.00    | 15.00   | 15.00          | 0.00   | 0.00           | 0.00       | 0.00       |              |                |         |
| Rams                                         | 0.00          | 0.00            | 0.00         | 0.00       | 0.00        | 0.00     | 0.00    | 0.33           | 0.33   | 0.00           | 0.00       | 0.00       |              |                |         |
| Wethers                                      | 0.00          | 0.00            | 0.00         | 0.00       | 0.00        | 0.00     | 0.00    | 0.00           | 0.00   | 0.00           | 0.00       | 0.00       |              |                |         |
| Additional intake for milk production - sour | rce numbers   | (%):            |              |            |             |          |         |                |        |                |            |            |              |                |         |
| Lookup table column numbers>                 |               | 2               | 1            | 4          |             | 6        |         | 8              |        | -16            | 11         | 12         |              |                |         |
| Season                                       | Spring        | Spring          | Spring       | Summer     | Summer      | Summer   | Auturon | Autumn         | Aobann | Writer         | Winter     | Winter     |              |                |         |
| Numbers each month as a portion (%) of t     | otal number ( | on hand)        |              |            |             |          |         |                |        |                |            |            |              |                |         |
| Breeding Ewes - % lactating                  | 94%           | 94%             | 94%          | 94%        | 0%          | 0%       | 0%      | 0%             | 0%     | 0%             | 0%         | 096        |              |                |         |
| Lambs/Hoggets - % receiving milk             | 100%          | 100%            | 100%         | 100%       | 0%          | 0%       | 0%      | 0%             | 0%     | 096            | 096        | 096        |              |                |         |
|                                              |               |                 |              |            |             |          |         |                |        |                | DODIVI     |            |              |                |         |
| Numbers for Gas Calculator                   |               |                 | NCCI Ceter   |            | Casing      | Seas     | Son     | Minter         |        |                | DSE Value  | Tetal      |              |                |         |
| Class<br>Deservice Even                      |               |                 | Recording Ex |            | oping       | Juilline | Autumn  | vviiitei<br>45 |        |                | 1          | 04         |              |                |         |
| Breeding Ewes                                |               |                 | Maidao Ewa   |            | 40          | 40       | **      | +0             |        |                |            | 0          |              |                |         |
| Other Ewes                                   |               |                 | Other Ewes   |            | 0           | 0        | 0       | ő              |        |                | 1.2        | 0          |              |                |         |
| Lambs Weggets                                |               |                 | Lambe/Hogo   | ate        | 45          | 45       | 30      | ő              |        |                | 0.6        | 18         |              |                |         |
| Pama                                         |               |                 | Dame         | 010        | 40          |          | 1       | ő              |        |                | 3.0        | 1          |              |                |         |
| Mothere                                      |               |                 | Mothors      |            |             |          |         |                |        |                | 1.0        | 0          |              |                |         |
| veners                                       |               |                 | 44001015     |            | 93          | 93       | 78      | 45             |        |                | TOTAL      | 113        |              |                |         |
| Numbers for Gas Calculator - propo           | rtion lactati | na/receivi      | ina milk     |            |             | Seat     | son     |                |        |                |            |            |              |                |         |
| Class                                        |               | 5               | NGGI Categ   | ory        | Spring      | Summer   | Autumn  | Winter         |        |                |            |            |              |                |         |
| Breeding Ewes - % lactating                  |               |                 | Breeding Ew  | es.        | 0.94        | 0.31     | 0.00    | 0.00           |        |                |            |            |              |                |         |
| Lambs/Hoggets - % receiving milk             |               |                 | Lambs/Hogo   | əts        | 1.00        | 0.33     | 0.00    | 0.00           |        |                |            |            |              |                |         |
|                                              |               |                 |              |            |             |          |         |                |        |                |            |            |              |                |         |

### FarmGas Calculations for High Productivity Landscape

| SCENARIO NA                                                              | ME and FARM I                                                               | LOCATIC                              | N<br>Malc                  | olm - thes                                             | e sheets                               | are copies                                  | from Fa                      | armGA                     | S only -             |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------|----------------------------|--------------------------------------------------------|----------------------------------------|---------------------------------------------|------------------------------|---------------------------|----------------------|
| Farm Name:<br>Scenario:                                                  | Trevenna - Winter<br>Scenario 3                                             | grazing H<br>(Name of the            | scenario)                  |                                                        | Sce                                    | nario created on                            |                              |                           |                      |
| Location of Farm                                                         | NSW / ACT                                                                   | ds                                   |                            |                                                        |                                        | Location: NS                                | W/ACT                        |                           |                      |
| ARM ENTER                                                                | PRISES                                                                      | Select farm                          | GHG Calcı                  | ulators<br>Reef Breeding                               | Reef - Stores                          |                                             | Select Ente                  | erprise Gro               | ss Margins           |
|                                                                          | Sheep                                                                       |                                      | x                          |                                                        |                                        |                                             |                              |                           |                      |
|                                                                          | Intensive Livestoo                                                          | k                                    | _                          | Beef Feedlat                                           | Pigs                                   |                                             |                              |                           |                      |
|                                                                          | Cropping (Dryland a                                                         | nd/or Irrigate                       | d) (Maximi                 | um number = 15.)                                       |                                        |                                             |                              |                           |                      |
|                                                                          | Horticulture                                                                |                                      | (Maximi                    | um number = 15 )                                       |                                        |                                             |                              |                           |                      |
|                                                                          | Trees                                                                       |                                      | ]                          |                                                        |                                        |                                             |                              |                           |                      |
|                                                                          | "Value" (price)                                                             | of Carbon                            | \$23                       | 00 / tonne (CO2                                        | -e)                                    |                                             | Hostowelli Herrison          |                           |                      |
| PASTURES a                                                               | nd FARM AREA                                                                | S<br>heriares                        |                            |                                                        |                                        |                                             |                              |                           |                      |
| Fotal allocated to L/                                                    | Total area of farm:<br>stock, Crops, Hort &                                 | 19.0                                 | Livestoci                  | karea 18.8                                             | Horticulture                           | 0:0                                         |                              |                           |                      |
| Tre                                                                      | es<br>Remainder                                                             | 0.2                                  | Cropping                   | anea 0.0                                               | riees                                  | 0.0                                         |                              |                           |                      |
|                                                                          |                                                                             |                                      | Percen                     | t (%) of legume                                        | Area of pasture<br>burnt each year     |                                             | Application<br>Area          | o of Nitrogel<br>Quantity | n Fertiliser<br>% ot |
| Pasture areas:                                                           | turae with lagurane                                                         | heclares                             | int<br>A RM                | he pastures                                            | (% of areas)                           | Devland nashirasi (lan mas                  | Fertilised<br>(ha)<br>ରା ୦୦  | applied<br>(Kos/ha/vr)    | in fertiliser        |
| Diyianu pas<br>Diyi                                                      | and pastures - other                                                        | 0.0                                  | 4.070                      | 74 0.07                                                | 0.0                                    | Dryland pastures (againes                   | 0.0                          | 0.0                       | 0%                   |
| Irrigated pas                                                            | tures - with legumes                                                        | 0.0                                  | 0.0                        | % 0.00                                                 | 0.0                                    | Irrigeted pastures (legume:                 | 0.0                          | 0.0                       | 0%                   |
| Toi                                                                      | irngated pastures                                                           | U.U<br>19:0                          | Tota                       | Larea                                                  | 0.0                                    | irrigeted pastures (other                   | 0 <u>0</u>                   | 0.0                       | U%                   |
| 19                                                                       |                                                                             | 1019                                 | Note % legt<br>pasture (eg | gume<br>ane can include mixed<br>30% lucerne, 70% oate | ye                                     |                                             |                              |                           |                      |
|                                                                          |                                                                             |                                      | grasses)                   |                                                        |                                        | Tonnes Waste (org                           | from:<br>Janic fertiliser    | Feedlot<br>0.0            | Piggery<br>0.0       |
|                                                                          |                                                                             |                                      |                            |                                                        |                                        | Emissions (tonnes<br>Emissions (tonnes CO2- | CO2-e):<br>e) itonne waste = | 0.0                       | 0.0                  |
| )o you want to inc<br>3HG emissions fro                                  | ude estimated<br>m legume-based                                             |                                      |                            |                                                        |                                        |                                             |                              |                           |                      |
| i.e. Nitrogen-fixin                                                      | j) Pastures?                                                                | YES                                  |                            |                                                        | Difference                             | Af 1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2  | Total Resid<br>(legume)      | ual                       |                      |
| Calculation of GHG (<br>will require an estima<br>pasture 'dry matter' ( | missions from the legu<br>ite of the annual amou<br>DM trinnes/bail that is | ime pastures<br>nt of residua<br>NOT | Divtand                    | residual pasture                                       | 5.5                                    | 4.6%                                        | 4.8                          | tonnes/DM/                | year                 |
| a) eaten by stock<br>b) baled/silaged (                                  | ir.                                                                         |                                      | Imgated                    | residual pasture                                       |                                        | % legume content                            | is based on %                | tonnes/UM/<br>Value enter | year<br>ed above     |
| c) burnt:                                                                |                                                                             |                                      |                            |                                                        |                                        |                                             |                              |                           |                      |
|                                                                          |                                                                             |                                      | Area Du                    | rnit                                                   |                                        |                                             |                              |                           |                      |
| Savanna areas                                                            | (QLD & NTerritory only)<br>Savanna grasslands                               | heclares                             | each ye<br>500.0           | ar<br>The definition                                   | on of 'savanna' is                     | " tropical and sub-t                        | tropical formal              | tions with co             | ntinuous             |
|                                                                          | Savanna woodland                                                            | *******                              | 100.0                      | <ul> <li>grass cover<br/>through to s</li> </ul>       | ocassionally inte<br>iemi-arid grassla | rrupted by trees and<br>rds                 | stirubs" (his                | nciudes mo                | กรรยาลเ              |

NOTE Macros have been disabled to avoid "Virus warnings"

The file has been virus checked with latest virus software and should be safe if you wish to re-enable the macros.

#### thing has been copied only as values - Patrick

| Region =          | NSW / ACT              |
|-------------------|------------------------|
| Western Australia | Others (blank)         |
| Select WA region  |                        |
| South West        | State/Territory Code 1 |
| Pilbara           |                        |
| Kimberley         |                        |

| ······               | •                            |               |             |                         |
|----------------------|------------------------------|---------------|-------------|-------------------------|
| State/Territory      | Region                       | FracWET Codes | 11          | Region No<br>(Nathan's) |
| NSW / ACT            | North Coast                  | NSW //        | 0           | 10                      |
| NSW/ACT              | South Class                  | 1454477       | 35          | - 11                    |
| NSW/ACT              | Northern Tablelands          | NSW / /       | 0           | 12                      |
| NSW/ACT              | Southern Tablelands          | NSW [ /       | 0           | 13                      |
| NSW / ACT            | Northern Wheal/Sheep         | NSW / /       | 1           | 14                      |
| NSW/ACT              | Southern Wheat/Sheep         | NSW / /       | 1           | 15                      |
| NSW/ACT              | Western                      | NSW / /       | 0           | 16                      |
| Tasmania             | North East                   | Tasmani       | 1           | 17                      |
| Lasmania             | Hast Linast                  | i asmani<br>T | ÚĊ.         | 18                      |
| rasmania             | Central North/Midiands/South | Tasmani       | 22          | 19                      |
| Tasmania             | Central Plateau/Derwent Vall | Tasmani       | 1           | 20                      |
| Tasmania             | North West                   | Tasmani       | 常           | 22                      |
| Western Australia    | South West                   | Westerr       | 1           | 1                       |
| Western Australia    | Pilhara                      | Westerr       | n           | 2                       |
| Western Australia    | Limborla (                   | Moder         | 4           | -                       |
| Western Australia    | Control West                 | Western       | 2           |                         |
| vicstenn Australia   | Cenu an west                 | VVesteri      |             |                         |
| vyeştern Australia   | South Coastai                | VVBSIØLL      | 0           | Ð                       |
| Western Australia    | Gascovie                     | Western       | 0           | 7                       |
| Western Australia    | Central Wheat Belt           | Westerr       | 1           | 8                       |
| Western Australia    | Interior                     | Western       | ñ           | 9                       |
| South Australia      | South East                   | South A       | 4           | 23                      |
| Couth Australia      | Murrow                       | South A       | 20          |                         |
| South Australia      | Mid North/Elledows           | South A       | ģ.          | 24<br>05                |
| SUURI AUSH dila      | INITE-INDREPORT IN MUCH S    | SOUTH A       | 0           | 20                      |
| South Australia      | Pastoral                     | South A       | 0           | 26                      |
| South Australia      | west Coast/Eyre              | South A       | 0           | 27                      |
| Victoria             | Mailee                       | Victorial     | 운           | 20                      |
| Victoria             | Northern Country             | Victorial     | ñ           | 30                      |
| Victoria             | North East Vic               | Victorial     | 1           | 31                      |
| Victoria             | Fast Cinnsland               | Victorial     | \$<br>\$    | 90                      |
| Victoria             | Upert/South Cinnelan4        | Motoria)      |             | 92                      |
| Mitolia.             | Control                      | Wistorial     | 쁥           |                         |
| viccorta<br>Victorio | Conta Mart Ma                | Victorial     | 꺘           | 34                      |
| VICIBINA.            | Operated Upphicede Tipethole | Alcroita;     | 0           | 35                      |
| Queensiand           | Central Highlands/Northern   | Queenst       | 0           | 36                      |
| Queensland           | Central west/FIInders        | Queensi       | U.<br>N     | 3/                      |
| Gueenstand           | Maranna/Warrenn              | Quaerel       | 0           | 39                      |
| Queensland           | Darling Downs/Burnett        | Origonal      | 0           | 40                      |
| Queensland           | North West/Gulf              | Outgeniel     | 1           | 41                      |
| Morthern Territory   | Danvin Daly                  | Mortherr      | 211<br>- 40 | 47                      |
| Northern Terntory    | Amhem-Roper                  | Northerr      | 槊           | 43                      |
| Nothern Terntory     | Victoria River-TennantCreek  | Northerr      | 1           | 44                      |
| Mandal and Tanakan   | h Bara Mandana               | Morthorr      | 68          |                         |

Partial results: GHG emissions ONLY

| Vethers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00             |             | 0.00                         |             | 0.00     |         | 0.00       |             |          | END o    | f Data       | Entry S      | Section                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|------------------------------|-------------|----------|---------|------------|-------------|----------|----------|--------------|--------------|--------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |             |                              |             |          |         |            |             |          |          |              |              |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |             |                              |             |          |         |            |             |          |          |              |              |                                |
| Sreenhouse Gas Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |             | 002                          | aguitualant | Honnoch  | oart    |            |             |          |          |              |              |                                |
| Derault Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | Tonnes      | C02                          | equivalen   | nonnes/y | ear)    |            |             |          |          |              |              |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | lyear       | Total CO2-e                  | /Hectare    | / DSE    | / Ewe   |            |             |          |          |              |              |                                |
| Methane (CH4) from Ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | enic =           | 1.05        | 22.07                        | 1.17        | 0.10     | 0.23    |            |             |          |          |              |              |                                |
| Methane (CH4) from manure & u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rine =           | 0.00        | 0.00                         | 0.00        | 0.00     | 0.00    |            |             |          | Do you w | ish to ch    | ange ("fud   | lge") the final GHG estimates? |
| Total Methane (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (H4) =           | 1.05        | 22.07                        | 1.17        | 0.10     | 0.23    |            |             |          |          | NO           |              |                                |
| Nitrous Oxide (N2O) from manure & urine =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 0.01        | 3.48                         | 0.19        | 0.02     | 0.04    |            |             |          |          | Final "fuc   | lge" adjus   | tment (to "Revised Emissions   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | Total       | 25.56                        | 1.36        | 0.11     | 0.27    |            | Differ      | ence     |          | Directen     | ussions:     | Indirect emissions             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | Tonnes      |                              |             |          |         |            | Tonnes      |          |          |              | Nitrous      |                                |
| tevised Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | lyear       | Total CO2-e                  | 1 Hectare   | /DSE     | / Ewe   |            | CO2-e       | %        |          | letnane      | Oxide        | Nitrous Uxide                  |
| Methane (CH4) from Ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eric =           | 0.99        | 20.82                        | 1.11        | 0.09     | 0.22    |            | -1.25       | -5.6%    |          | 0.0%         | F            | 0.0%                           |
| methane (CH4) from manure & u<br>Total Methane (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rime #<br>3H4) = | 0.00        | 20.83                        | 1 11        | 0.00     | 0.00    |            | -1.25       | -5.2%    |          |              | Enter the    | >> adjustment (* or -)         |
| Nitrous Oxide (N2O) from manure & u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rine =           | 0.01        | 3.27                         | 0.17        | 0.09     | 0.03    |            | -0.21       | -6.2%    |          |              |              |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | Totai       | 24.09                        | 1.28        | 0.11     | 0.25    |            | -1.46       | -5.7%    |          |              |              |                                |
| Tc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tal DSE's        | 226         |                              |             |          |         |            |             |          |          |              |              |                                |
| Total Breed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg Ewes          | 96          |                              |             |          |         |            |             |          |          |              |              |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |             |                              |             |          |         |            |             |          |          |              |              |                                |
| Lookup table column numbers>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>Sning       | 2<br>Soloca | Sting                        | Summer      | Summer   | Summer  | Autimon    | 8<br>Autumo | Automin  | Winter   | 11<br>Minter | 12<br>Winter |                                |
| lumbers each month portioned by season (i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .e. 1/3)         | Spining     | oping                        | Juning      | Junner   |         | Autosta    | Country     | Page III | 11103    |              |              |                                |
| Breeding Ewes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32.00            | 32.00       | 32.00                        | 32.00       | 32.00    | 32.00   | 32.00      | 32.00       | 32.00    | 32.00    | 32.00        | 32.00        |                                |
| laiden Ewes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00             | 0.00        | 0.00                         | 0.00        | 0.00     | 0.00    | 0.00       | 0.00        | 0.00     | 0.00     | 0.00         | 0.00         |                                |
| Other Ewes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00             | 0.00        | 0.00                         | 0.00        | 0.00     | 0.00    | 0.00       | 0.00        | 0.00     | 0.00     | 0.00         | 0.00         |                                |
| .ambs/Hoggets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31.33            | 31.33       | 31.33                        | 31.33       | 31.33    | 31.33   | 31.33      | 0.00        | 0.00     | 0.00     | 0.00         | 0.00         |                                |
| Rams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00             | 0.00        | 0.00                         | 0.00        | 0.00     | 0.00    | 0.00       | 0.00        | 0.67     | 0.67     | 0.00         | 0.00         |                                |
| Vethers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00             | 0.00        | 0.00                         | 0.00        | 0.00     | 0.00    | 0.00       | 0.00        | 0.00     | 0.00     | 0.00         | 0.00         |                                |
| dditional intake for milk production - source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | numbers          | : (%):      |                              |             |          |         |            |             |          |          |              |              |                                |
| Lookup table column numbers>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                | 2           | 3                            |             | •        |         | 1          | 8           |          | 11       | 11           | 12           |                                |
| Season                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Spring           | Spring      | Spring                       | Summer      | Summer   | Stanmer | Auturon    | Autumn      | Autorn   | Windes.  | Waxer        | Winter       |                                |
| Reeding Ewes - % lactating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100%             | 100%        | 100%                         | 100%        | 0%       | 0%      | 0%         | 0%          | 0%       | 0%       | 0%           | 0%           |                                |
| Lambs/Hoggets - % receiving milk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100%             | 100%        | 100%                         | 100%        | 0%       | 0%      | 0%         | 0%          | 096      | 096      | 096          | 096          |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |             |                              |             |          |         |            |             |          |          |              |              |                                |
| lumbers for Gas Calculator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             |                              |             |          | Sea     | ion        | 1           |          | Г        | DSE Value    | s & Total    |                                |
| Class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |             | NGGI Categ                   | ory         | Spring   | Summer  | Autumn     | Winter      |          |          | /Hd          | Total        |                                |
| Breeding Ewes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |             | Breeding Ew                  | es          | 96       | 96      | 96         | 96          |          |          | 2            | 192          |                                |
| Aaiden Ewes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |             | Maiden Ewes                  |             | 0        | 0       | 0          | 0           |          |          | 1            | 0            |                                |
| Other Ewes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             | Other Ewes                   |             | 0        | 0       | 0          | 0           |          |          | 1.2          | 0            |                                |
| ambs/Hoggets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |             | Lambs/Hogg                   | əts         | 94       | 94      | 31         | 0           |          |          | 0.6          | 33           |                                |
| tams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |             | Rams                         |             | U        | 0       | 1          | 1           |          |          | 3.0          | 1            |                                |
| veners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |             | vvetners                     |             | 190      | 190     | 178        | 0           |          |          | TOTAL        | 226          |                                |
| umbers for Gas Calculator - proportion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on lactat        | ina/receivi | na milk                      |             | 190      | Sea     | 120<br>100 | 37          |          | L        | TOTAL        | 644          |                                |
| Class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 3           | NGGI Categ                   | ory         | Spring   | Summer  | Autumn     | Winter      |          |          |              |              |                                |
| Breeding Ewes - % lactating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |             | Breeding Ew                  | es          | 1.00     | 0.33    | 0.00       | 0.00        |          |          |              |              |                                |
| and a firm of a second se |                  |             | the second second states and |             |          |         |            |             |          |          |              |              |                                |

Impacts of a two degree increase in temperature on pasture growth in the Northern Tablelands of New South Wales

# Impacts of a two degree increase in temperature on pasture growth in the Northern Tablelands of New South Wales

R. Powell<sup>a</sup>, C. Edwards<sup>b</sup>, R.S. Hegarty<sup>c</sup> and <u>M.J. McPhee</u><sup>d</sup>

<sup>a</sup> School of Environmental and Rural Science, University of New England, Armidale NSW, 2351

> <sup>b</sup> NSW Department of Primary Industries, Ring Road Armidale NSW 2351 <sup>c</sup> Department of Animal Science, University of New England. Armidale, NSW 2351 <sup>d</sup> NSW Department of Primary Industries, Trevenna Rd, Armidale, NSW 2351 Email: <u>malcolm.mcphee@industry.nsw.gov.au</u>

**Abstract:** Sheep production is the major contributor to the agricultural economy of the Northern Tablelands of New South Wales. In 1996/97 \$109.1 million was derived from sheep production. There is a pressing need for agricultural industries to reduce their carbon footprint and global warming is a major concern. This study has simulated a sheep production system of a 36 ha research station called 'Trevenna' located at the University of New England, Armidale (30° 30'S 151° 40' E). The 'Trevenna' site has been set up as a demonstration site for producers, advisers, students, and researchers to gain insight into how to estimate and measure livestock enteric methane emissions.

The Sustainable Grazing Systems (SGS) model was used to simulate, over 50 years, pasture growth on the 'Trevenna' demonstration site . Simulations contrasted the impacts of a 2°C change in temperature on herbage mass (t/ha) and pasture growth rate (kg C/ha/day). A validation check indicated that the predicted values from 1<sup>st</sup> Sep 2010 to 30<sup>th</sup> March 2011 fell within 10% of the observed values.

There was no effect of the 2°C increase in temperature on green herbage mass (P > 0.05) but a significant difference for dead herbage mass and pasture growth rate (P < 0.05). The increase in dead herbage mass is discussed.

A significant effect of temperature on botanical composition (P < 0.05) was found with an increase in C4 native grasses (e.g. kangaroo grass, red grass, and wire grass) at the expense of other pasture species present in the sward. The impact of a 2°C increase in temperature reduced the number of frosts (defined as mornings below 2°C) and number of severe frosts (defined as mornings below 0°C).

In conclusion, a 2°C increase in temperature on the Northern Tablelands of New South Wales can be expected to increase pasture growth, particularly of C4 species, so supporting an increase in herbage mass.

Keywords: Climate change, decision support system, herbage mass, senescence

### **1. INTRODUCTION**

A large proportion of the Northern Tablelands in New South Wales is grazed for sheep production, particularly fine-wool flocks. Within these grazing systems the majority of pastures are a combination of introduced, improved, and native species. The total value of agricultural production on the Northern Tablelands in 1996/97 was estimated at \$217.8 million: 50.1% derived from sheep production; 41.7% derived from wool production; and 8.4% from prime lamb production (Alford et al., 2003). Herbage mass (kg DM/ha) is a key determinate of stocking rate that an enterprise can carry and therefore the amount of animal product that can be generated. Climate variability is a major issue confronting agriculture. There is a pressing need for agricultural industries to reduce their carbon footprint. Agricultural emissions (methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O)) comprise 16% of Australia's total emissions, and livestock emissions (enteric fermentation and manure management) contribute 69% of agricultural emissions (Department of Climate Change and Energy Efficiency 2010). Therefore, it is of great interest to determine the effects of a change in temperature on pasture production. Several studies have estimated the effects of an increase in minimum and maximum temperature on pasture production (Thornley and Cannell, 1997, Cullen et al., 2009). However, no specific studies on the Northern Tablelands have been undertaken. This study has simulated a sheep production system on a 36 ha research station called 'Trevenna' located at the University of New England, Armidale (30° 30'S 151° 40' E) using the Sustainable Grazing Systems (SGS) model (Johnson et al., 2003).

The objective of this study was to evaluate the impact of a 2°C increase in temperature on pasture growth within a sheep production enterprise on the Northern Tablelands of New South Wales, Australia.

### 2. MATERIAL AND METHODS

### 2.1 Trevenna Demonstration Site

The Trevenna demonstration site, located at the University of New England, on the Northern Tablelands of New South Wales (30° 30'S 151° 40' E) comprises 36 ha, split between high and low productivity systems. An overview of the site has been described by McPhee et al. (2010). The 'Trevenna' demonstration site has been subdivided into 18 paddocks: 9 allocated for high productivity improved pastures and 9 allocated for low productivity predominately native pastures. The paddocks averaged 2ha ranging from 1.8-2.2 ha. Each landscape was classified into classes (A, B and C) based on an EM38 electromagnetic induction survey. Within each class 3 paddocks were allocated. There were 6 flocks: 3 high and 3 low productivity flocks. Flocks were rotationally grazed through 3 paddocks so that each flock had a turn in each landscape class (A, B and C). The high productivity flocks were stocked at 6.7 DSE/ha (i.e. 32 ewes and single lambs rotationally grazing 6ha) and the low productivity flocks were stocked at 3.7 DSE/ha (i.e. 16 ewes and single lambs rotationally grazing 6ha).

### 2.2 Data Collection

Data has been collected to feed into decision support systems to estimate the amount of methane produced. The data collected will also be used as inputs to

### greenhouse inventory calculators (e.g. FarmGas (2010)). The measurements taken include:

- Soil moisture measurements taken on a weekly basis. Measurements were taken using a Diviner moisture probe (Sentek Technologies, Sydney). The moisture probe used was a capacitance probe that uses the electrical conductivity of a soil to determine the moisture content (Thomas, 1966). The access tubes were located within one paddock of each land class within each landscape. The measurements were taken in 10cm increments to a depth of 50cm.
- Herbage mass measurements were undertaken on a monthly basis when the animals were rotated between paddocks. Pre and post grazing measurements were undertaken using the median quadrat technique (Bell, 2007). A scan of each quadrat was taken using a Crop Circle (Holland Scientific equipment model ACS210) scanner. The data from the observed values and the scans have been used to develop a Normalised Difference Vegetation Index (Trotter et al., 2010)
- Botanical compositions were conducted 4 times per year, once per season using the method described by Tothill et al. (1992).
- Lambs were weighed on a monthly basis, when mobs were rotated between paddocks. These monthly lamb weights were recorded using their National Livestock Identification System Radio Frequency Identification tag. Condition score, fleece weights, and quality of fleece were also recorded.

### 2.3 Simulation

The SGS model (Johnson, 2003) was used to perform a 50 year simulation of high and low productivity sheep production systems. The soil parameters in the SGS model were stabilised over a 10 year period from 1960 to 1970 before a full 50 year

simulation from 1960-2010 was conducted. Each of the 2 landscapes was modelled separately for 3 flocks on each landscape that was rotational grazed across 3 paddocks using the information recorded from the Trevenna site (McPhee at al., 2010). Data used from the site included: herbage mass, species composition and stocking density. Table 1 reports the input values used in the simulations.

Within the SGS model supplementary feeding was established to begin feeding when ewes dropped below 40kg liveweight. Below this weight forage and concentrate supplements were fed at a rate calculated by the model to produce liveweight gains. The implementation of

| Table 1. Input values | used in | the | SGS m | nodel |
|-----------------------|---------|-----|-------|-------|
| for 'Trevenna'        |         |     |       |       |

| Variable                   | Value                                    |
|----------------------------|------------------------------------------|
| Farm                       |                                          |
| Number of ewes             | 16 low productivity 32 high productivity |
| Farm Area                  | 36ha                                     |
| Paddocks                   | 9 high productivity, 9 low productivity  |
| Paddock Areas              | 1.8-2.2ha                                |
| Rotation                   | 30 days each paddock                     |
| Irrigation                 | None                                     |
| Soil                       |                                          |
| Bulk Density               | 1.3g/cm <sup>3</sup>                     |
| Saturated point            | 48% of Volume                            |
| Field Capacity             | 35% of Volume                            |
| Permanent Wilting point    | 16% of Volume                            |
| Fertiliser                 |                                          |
| Application                | May each year                            |
| Nitrogen- Urea             | 70 <sup>2</sup> kg/ha Urea               |
| Phosphorous                | 20 <sup>1</sup> kg/ha                    |
| Sulphur                    | 25²kg/ha                                 |
| Animal                     |                                          |
| Animal growth curve        | Sigmoidal                                |
| Flocks                     | 3 high productivity 3 low productivity   |
| Mature liveweight of ewe   | 47kg                                     |
| Starting liveweight of ewe | 43.0,44.7,46.3, 44.1, 45.3,44.5kg        |
| flocks 1-6 <sup>3</sup>    |                                          |
| Minimum liveweight of ewe  | 35kg                                     |
| Lambing date               | 12-Sep                                   |
| Days from Birth to Removal | 200                                      |
| Average Lambs per ewe      | 1                                        |

<sup>1.</sup> 10kg/ha yearly after first application

<sup>2.</sup> no application after first year

<sup>3.</sup> flocks allocated to landscape classes as

supplementary feeding within the SGS model occurred when the pasture quantity and quality was insufficient to maintain liveweight. Actual on-farm supplementary feeding was supplied to ewes as per the UNE animal ethics requirements. The simulation was run using historical weather data for Armidale Airport Automatic Weather Station, NSW (30.5°S 151.6°E) (BOM, 2011). The initial pasture availability at the beginning of September 2010 was used as the starting herbage mass 1st September, 1960. The botanical composition assessment conducted in September was used as inputs to the SGS model. The soil nutrients and water values were used from the normalised values obtained in the 10 year scenario (1960-1970). Following the simulation the data produced was processed using the Post Processor 3 program. The program specifically developed as part of the SGS project summarising the model output (Anon., 2011). The data was processed to provide monthly summaries of all factors. Following the historical simulation the weather data was combined with the CSIRO Mk 3.5 Model following the A2, medium emissions scenario, using the climate downscaling software tool WeatherMaker (Gordon et al., 2010). The daily weather output file from this program was used as the observed weather values for the SGS model where the minimum and maximum temperatures were increased by 2°C. These weather values were then used with the same initial conditions for the historical weather data (baseline) scenario (i.e. 2 simulations were conducted: (1) baseline; and (2) a 2°C increase in minimum and maximum temperatures of the baseline year).

To ensure accuracy of the model the baseline simulation was run from the 1st September 2010 through to the 31<sup>st</sup> of March 2011. This enabled the predicted values from the simulation to be compared to the observed values of herbage mass, botanical composition, soil moisture and lamb weights.

#### 2.4 Statistical Analysis

The results from the simulation were analysed using the statistical package R (R Development Core Team, 2005). An analysis of variance was performed to compare the differences in herbage mass and pasture growth with a 2°C increase in temperature. No statistical interpretation between landscapes can be made because only 1 year of the experiment has been conducted (i.e. not a replicated study). This study only evaluates the difference between the baseline and the 2°C increase in temperature.

### 3. RESULTS

Following the 50 year simulation the observed versus predicted values of herbage mass, botanical composition, soil moisture, and lamb weights from 1<sup>st</sup> Sep 2010 to 30<sup>th</sup> March 2011 were found to be consistent and fell within 10% of the observed values, giving confidence in interpretation of modelled impacts on pasture growth over the 50 year time frame

The 50 year simulation showed no statistical difference (P > 0.05) between the baseline and 2°C increase in temperature simulations for green herbage mass or total herbage mass, but a significant difference (P < 0.05) for dead herbage mass (Table 1). Nevertheless the 2°C increase did increase total herbage mass compared to the baseline climate data (Table 1).

**Table 1.** Mean and standard deviation (SD), over 50 year simulation, green, dead and total herbage mass (tDM/ha) and mean gross positive growth rate<sup>1</sup> (kg carbon/ha/day) across sheep enterprises grazing low or high productivity landscapes, in the presence of historical temperatures (Baseline) and 2°C increase in temperature

| Landscape | Climate<br>Scenario     | Green<br>Herbage<br>Mass<br>(tDM/ha) | SD   | Dead<br>Herbage<br>Mass<br>(tDM/ha) | SD   | Total<br>Herbage<br>Mass<br>(tDM/ha) | SD   | Gross<br>Positive<br>Growth Rate <sup>1</sup><br>(kg C/ha/day) | SD        |
|-----------|-------------------------|--------------------------------------|------|-------------------------------------|------|--------------------------------------|------|----------------------------------------------------------------|-----------|
| Low       | Baseline                | 1.19                                 | 0.54 | 1.20 <sup>a</sup>                   | 0.47 | 2.39                                 | 0.97 | 18.50 <sup>ª</sup>                                             | 5.49      |
| Low       | 2 <sup>0</sup> increase | 1.26                                 | 0.58 | 1.37 <sup>b</sup>                   | 0.57 | 2.63                                 | 1.03 | 20.56 <sup>b</sup>                                             | 7.00      |
| High      | Baseline                | 1.64                                 | 0.52 | 0.92 <sup>a</sup>                   | 0.32 | 2.28                                 | 0.75 | 33.01ª                                                         | 11.9<br>1 |
| High      | 2 <sup>0</sup> increase | 1.57                                 | 0.67 | 1.17 <sup>⁵</sup>                   | 0.41 | 2.73                                 | 1.10 | 35.56 <sup>b</sup>                                             | 13.2<br>6 |

Differing superscripts in same column are significantly different (P < 0.05)

<sup>1</sup> gross positive growth rate= daily gross photosynthesis + remobilised carbon from senescent tissue (Johnson, 2008)



A lower amount of supplement was fed during the changed climate scenario, as a result of the greater herbage mass. In both the baseline and changed scenarios the concentrate intake was lower in the high productivity landscape, compared to the low productivity landscape.

In terms of the botanical

composition the high productivity landscape (Figure 1) was statistically significant (P

**Figure 1.** Predicted species abundance (%) across 50 year simulation of the high productivity landscape between Baseline

< 0.05) for all pasture species (C3 (e.g., weeping grass and common wheatgrass), C4 (e.g. kangaroo grass, red grass, and wire grass), White Clover, Perennial Rye)

between the baseline and changed scenarios. However for the low productivity landscape (Figure 2) only C4 and Perennial Rye were statistically significant (P < 0.05) between the baseline and changed scenarios.

### 4. DISCUSSION

The higher gross positive growth rate (daily gross photosynthesis + remobilised carbon from senescent tissue) that occurred in the high productivity landscape compared to the low productivity landscape in both climate scenarios may be attributed to the botanical composition. Robinson and Archer (1988) showed that introduced species have a higher growth rate compared to native species. The low productivity landscape class consists predominantly of native pasture species, while the high productivity landscape consists of introduced perennial species (McPhee et al., 2010). The high productivity landscape is more responsive to additional fertility and to water, exhibiting a faster growth rate. The increase in growth rate as a result of a 2°C increase is due to the warmer temperatures experienced and lower frost damage to plants.





The herbage mass present is a function of the growth rate and number of animals grazing. The results from this study show that a difference in pasture growth rate occurred when the minimum and maximum temperatures were increased by 2°C and consequently a change in herbage mass. As the stocking rates were unchanged, the pasture consumption was unchanged. A net increase in herbage mass occurred because the stocking rate and consequently intake did not change.

As the temperature increased the number of frosts, (defined as mornings below 2°C) was reduced. The number of severe frosts, (defined as mornings below 0°C) also declined. The lower number of mild and severe frosts therefore increased the growth rate as the low temperature effects are reduced (Ludlow, 1980). This effect is more pronounced in the Spring and Autumn, as the mean minimum temperature during the Northern Tablelands winter is 0.95°C (BOM, 2011). An increase in 2°C results in the temperature remaining below the lower critical temperature of C4 grasses (4°C) (Ivory and Whiteman, 1978). Hence, even in the warmer climate, cold temperatures remain a restriction to pasture growth. A reduction in pasture growth rate on the low productivity landscape may have occurred due to the high proportion of native C4 grasses (Figure 2). A mean increase of 2°C will increase the mean minimum temperature of 2.95 degrees. This is above the lower critical temperature of many temperate introduced species, allowing increased pasture growth rate on the high productivity landscape.

The small increase in green herbage mass on the low productivity scenario in response to an increase in temperature may have occurred because of the reduction in plant death associated with reduction in frosts. This is contrasted with the decrease in green herbage mass that occurs in the high productivity landscape as a result of the 2°C increase (Figure 1). This could have occurred on the low productivity landscape as a result of increased pasture intake and a decrease supplementary feed intake. Gurung et al. (1994) showed that sheep will graze green herbage in preference to dead.

The results from this study show that the increased proportion of C4 grasses that were found to be present as the temperature increased may be attributed to the

temperature increase favouring their growth and therefore increasing the C4 herbage mass present in the sward. The magnitude of the increase was similar in both landscapes, approximately doubling in prevalence as the temperature increased. In conclusion a 2°C increase in minimum and maximum temperatures significantly increased pasture growth rate and the species abundance of the C4 grasses present in the sward; with this resulting in part from reduced frost impact on these species in warmer conditions. As stocking rate was not changed in the model, the extra pasture growth at the warmer temperature led to an increased accumulated mass of dead pasture.

### ACKNOWLEDGEMENTS

The authors thank Meat & Livestock Australia and the Australian Government Climate Change Research Program for funding this project and a Cicerone scholarship for an honours student to undertake this project.

#### REFERENCES

Alford, A., Griffith, G.and Davies, L. (2003). Livestock Farming Systems in the Northern Tablelands of NSW: An Economic Analysis, Orange, NSW, NSW Agriculture.

Anon. (2011). http://www.wfsat.landfood.unimelb.edu.au/Tools.htm

- Bell, A. (2007). *Measuring herbage mass- the median quarat technique*, NSW Department of Primary Industries.
- BOM (2011). Climate Data, Armidale Airport AWS.
- Cullen, B. R., Johnson, I. R., Eckard, R. J., Lodge, G. M., Walker, R. G., Rawnsley, R. P. & McCaskill, M. R. (2009). Climate change effects on pasture systems in south-eastern Australia. *Crop and Pasture Science*, 60, 933-942.

Department of Climate Change and Energy Efficiency (2010), http://www.climatechange.gov.au/government/initiatives/cprs/whoaffected/agriculture/agricultural-emissions.aspx

- Gordon, H., O'Farrell, S., Collier, M., Dix, M., Rotstayn, L., Kowalczyk, E., Hirst, T. & Watterson, I. (2010). *The CSIRO Mk3.5 Climate Model,* Melbourne, Australia.
- Gurung, N. K., Jallow, O. A., McGregor, B. A., Watson, M. J., McIlroy, B. K. & Holmes, J. H. G. (1994). Complementary selection and intake of annual pastures by sheep and goats. *Small Ruminant Research*, 14, 185-192.
- FarmGas (2010). Farm Gas Calculator, Australian Farm Institute, Surry Hills, NSW 2010 http://www.farminstitute.org.au/calculators/farm-gas-calculator.
- Ivory, D. & Whiteman, P. (1978). Effect of Temperature on Growth of Five Subtropical Grasses. I. Effect of Day and Night Temperature on Growth and Morphological Development. *Functional Plant Biology*, 5, 131-148.
- Johnson, I. R., Lodge, G.M. and White, R.E (2003). The Sustainable Grazing Systems Pasture Model: description, philosophy and application to the SGS National Experiment. *Australian Journal of Experimental Agriculture*, 43, 711-728.
- Johnson, I.R. (2008). Pasture Growth.

http://www.imj.com.au/consultancy/wfsat/Pasture.pdf

- Ludlow, M. (1980). Stress physiology of tropical pasture species. *Tropical Grasslands Journal*, 14, 163-145.
- McPhee, M. J., Edwards, C., Meckiff, J., Baillie, N., Schnider, D. A., Arnott, P., Cowie, A., Savage D., Lamb, D. W., Guppy, C. N., McCorkell, B. and Hegarty, R. (2010). Estimating on-farm methane emissions for sheep prduction on the

Norther Tablelands: establishment of demonstration site. *Australian Farm Business Management*, 7, 85-94.

- R development core team (2005). R: A Language and Environment for Statistical Computing. Vienna, Austria.
- Robinson, G. and Archer, K. (1988). Agronomic potential of native grass species on the Northern Tablelands of New South Wales. I. Growth and herbage production. *Australian Journal of Agricultural Research*, 39, 415-423.
- Thomas, A. M. (1966). In situ measurement of moisture in soil and similar substances by `fringe' capacitance. *Journal of Scientific Instruments*, 43, 21.
- Thornley J. H. M. and Cannell, M. G. R. (1997). Temperate Grassland Responses to Climate Change: and Analysis using the Hurley Pasture Model. *Annals of Botany*, 80, 205-221.
- Tothill, J. C. (1992). BOTANAL : a comprehensive sampling procedure for estimating pasture yield and composition. *In, Field sampling / J.C. Tothill, J.N.G. Hargreaves, R.M. Jones & C.K. McDonald,* Brisbane :, CSIRO, Division of Tropical Crops and Pastures.
- Trotter, M. G., Lamb, D. W., Donald, G. E. and Schneider, D. A. (2010). Evaluating an active optical sensor for quantifying and mapping green herbage mass and growth in a perennial grass pasture. *Crop and Pasture Science*, 61, 389-398.