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Abstract 

Hyperspectral imaging has the ability to provide information that goes beyond texture and 

colour of a surface, near and short-wave infrared spectrum penetrate into the subsurface of 

materials. Combining disparate sensing modalities, hyperspectral and 3D imaging cameras, 

could allow to reason about the thickness of the layer of fat over the surface of a carcass 

(known as subcutaneous fat). We present a learning-based method to estimate subcutaneous 

fat depth by leveraging hyperspectral data, modelling light sources and 3D surface shape 

information. In order to develop such a system, subcutaneous fat depth ground truth is 

recovered from computed tomography (CT) data via a novel systematic approach involving 

ray casting and non-rigidly aligning a 3D reconstruction captured by the 3D imaging camera. 

We utilise a collection of mid-loins supplied by a commercial abattoir to validate that 

subcutaneous fat is correlated to total fat with R2 0.76. Our method estimates subcutaneous 

fat over the entire surface of mid-loins (patches of 1.5mm x 1.5mm) with R2 0.73 and RMSE 

1.56mm when compared to CT obtained ground truth.  This paves a promising new direction 

to rapidly estimate information of carcass fat deposits that are complimentary to other LMY 

technologies which generally estimated whole carcass properties. 
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Executive Summary 

 

The overall objective of this work is to leverage the disparate sensing modalities, hyperspectral 

and 3D imaging cameras, to determine subcutaneous fat depth and cover in order to enable 

lamb carcass assessment.   

To allow estimation of subcutaneous fat we present a hardware solution (cameras and lighting 

system) and calibration methods for the hardware. We present methodology to combine light 

source modelling with 3D shape reconstruction and produce a hyperspectral imaging overlay. 

This allows to remove light reflected from the surface (specular light) and focus only on the 

portion of light that has results from interaction of with subsurface fat tissue (diffuse light).  

In order to develop machine learning methods for subcutaneous fat depth estimation, we 

propose a systematic approach to obtain “ground truth” subcutaneous fat depth via ray casting 

CT scans of lamb carcasses. We further transfer this information via non-rigid alignment to 

the 3D reconstruction obtained from our camera system, and therefore relate it to 

hyperspectral data. Our machine learning framework can then be trained to estimate 

subcutaneous fat over the entire surface of a carcass, each estimate relates to a surface area 

of approximately 1.5mm x 1.5mm 

We evaluated the capability of our system on determining fat depth on a selection of mid-loins 

from a commercial abattoir, collected by Program 2, covering a representative distribution of 

C-site fat. We demonstrate that subcutaneous fat on mid-loins is correlated to total fat with R2 

0.76 whereas the single point C-site measure has R2 0.34. While we cannot draw a conclusion 

on overall fat of the carcass, due to not having total carcass fat information and access to only 

mid-loins, this relationship provides us with confidence that the subcutaneous fat depth is 

correlated to overall fat.  

We demonstrate ability of our approach to predict subcuntenout fat on previously unobserved 

mid-loins (fat depth range 1-17mm) with R2 0.73 and RMSE 1.56mm. While the error tends to 

increase with fat depth, mean error is still below 2.5mm for areas of carcass with 15mm fat 

depth. The results indicate the approach with machine learning framework (MLP) can 

independently estimate fat depth for every patch on the surface.  We belive the results could 

be further improved using a deep learning frameworks that exploits spatial information via 

convolution. 

We conclude that the integrated 3D imaging and hyperspectral system shows good potential 

for measuring subcutaneous fat depth, and that the fat depth is correceted to total fat. This 

paves a promising new direction to rapidly estimate information of carcass fat deposits that 

are complimentary to other LMY technologies that generally deal with overall fat/lean. Further 

validation and training of across a more diverse phenotypic and genotypic range of lamb 

carcasses is warranted, as is predicting overall carcase measurements. 
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1 Introduction  

The overall objective of this work is evaluating the capability of integrated hyperspectral and 

3D imaging cameras to determine subcutaneous fat depth and cover, as an objective 

technology for lamb carcass assessment.   

Our earlier work using 3D information in lamb carcasses determined that shape information 

alone was not capable of capturing muscling related traits, such as Lean Meat Yield (LMY). In 

contrast to our work in beef cattle LMY, a lamb carcass has lack of visible internal bone 

structure which impacts extraction of muscle groups.  Therefore, the approach to examine fat 

instead of lean muscle was deemed a possible alternative direction.  

Two objective measures relating to fat/yield in lamb carcasses are already defined, C-site fat 

depth is a single point fat measurement, LMY is an overall meat yield value. Estimation of 

subcutaneous fat depth over the entire carcass (or parts thereof) could provide complimentary 

information of fat deposits that are not obtainable by either C-site of LMY technologies. 

Robotics perception systems, in particular those comprising multiple sensing modalities, are 

key to providing autonomy and intelligence (de Medeiros Esper, From & Mason, 2021).  

Hyperspectral imaging captures information in the near-infrared (NIR) and short-wave infrared 

(SWIR) range of the electromagnetic spectrum that cannot be seen by conventional colour 

cameras. In particular, through hyperspectral imaging it is possible to gather internal (under 

the surface) information about certain meat or food products (Wendel, Underwood & Walsh, 

2018; Yuwono & Saputro, 2021). Hyperspectral imaging has been used in red meat industry 

to estimate Intramuscular Fat (IMF. While a component of IMF could be related to depth of the 

fat approaches mostly distinguish between muscle and fat cells looking directly onto the meat 

cut at a fixed distance. Our preliminary work on estimating fat depth using hyperspectral 

imaging was on lamb short loin portions (Rahman, Quin, Walsh, Vidal-Calleja, McPhee, 

Toohey & Alempijevic, 2018) at a fixed distance. However, carcasses are curved and the 

distance between camera and the carcass surface varies. To allow estimation of 

subcutaneous fat in carcasses, the approach we are proposing is to combine 3D and 

hyperspectral data.  

The main challenge of the task at hand is the lack of data available to evaluate, and more 

importantly, to develop machine learning methods to regress fat depth. Ground truth fat depth 

values can only be obtained via medical CT. Thus, we propose a new systematic approach to 

obtain subcutaneous fat depth by ray casting the CT scans of lamb carcasses and registering 

them via non-rigid alignment with a 3D reconstruction obtained from our 3D camera system. 

Given our perception system and the ground truth data, we present a pipeline that leverages 

light source modelling, shape reconstruction using 3D, hyperspectral data to develop machine 

learning models for fat depth regression. We evaluate our work on mid-loins, estimating 

subcutaneous fat on areas of approximately 1.5x1.5mm. The mid-loins are from a commercial 

abattoir, collected by Program 2, covering a representative distribution of C-site fat. 
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2 Methods 

Our perception system developed to estimate subcutaneous fat is shown in Figure 1, 

consisting of a line-scan hyperspectral camera, a depth camera and a light source. 

 

Figure 1 – Acquisition rig, rigidly-mounted camera system comprised of a Resonon Pika NIR-320 hyperspectral 
line-scan camera and an Intel Realsense L515 RGB-D camera. The specimen (lamb leg in the image above, and 
in other experiments is a mid-loin), moves linearly under the camera system. The surface of the specimen 
changes distance and angling with respect to light source and camera(s) given it is not a flat surface. 

2.1 Hyperspectral Reflectance 

The reflectance estimation method involves the light (LS), the hyperspectral camera (HS), the 

RGB-D image (F), and the specimen observed by the cameras (P) which is the lamb carcass, 

as noted in Figure 2. The method aims at decomposing the components of the image observed 

by the hyperspectral camera in order to isolate the reflectance of the specimen (carcass) which 

could be described as the true colour of the medium without the influence of the light. The 

camera system is fixed, and calibrated using the active method outlined by (Mehami, Vidal-

Calleja & Alempijevic, 2020) providing spatial transformations between the RGB-D camera 

towards the hyperspectral camera and the RGB-D camera towards the Light source 

respectively. In practice this would always hold, the carcass could move, however the camera 

system and light source would be a single fixed unit. The non-isotropic distribution of irradiance 

produced by the light source is modelled using a Gaussian Process (GP) following the 

methods of (Mehami, J., Falque, R., Vidal-Calleja, T., & Alempijevic, A., 2022) 
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Figure 2 – The RGB-D camera (F), line-scan hyperspectral camera (HS), and light source (LS). In explaining the 
phenomena between the cameras, light source and surface: light carries radiant flux, which is reflected off the 
surface and measured by the hyperspectral camera.  

2.1.1 Hyperspectral Ray Casting 

The first step of the reflectance estimation consists of estimating the surface normals and 

associating an estimated normal to each hyperspectral measurement. This is achieved by 

analysing the depth information capture by the RGB-D camera. The depth image from the 

RGB-D camera is converted into a 3D occupancy grid map, which can then be used for ray 

casting as shown in Figure 3. The normal is then computed using the depth image from the 

RGB-D camera. 
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Figure 3 - Ray casting 3D occupancy grid map of a lamb cut. The RGB-D camera in red is used to generate the 
3D representation. The hyperspectral camera origin shown in blue is used for ray casting. The rays originating 
from the hyperspectral are shown in blue and the intersection points on the cut are shown as red crosses. 

2.1.2 Estimating the Irradiance 

The irradiance arriving on the surface of the sample is assumed to only come from the light 

source and is estimated using a modelled Gaussian process (GP) distribution of the light 

source. This again is possible in practise, as light sources can be either isolated, or the 

contribution from light sources very far away from the camera system could be ignored.  

 

The GP’s mean function is modified to fit more accurately the behaviour of the light following 

the method described by Mehami (Mehami, Falque, Vidal-Calleja & Alempijevic, 2022). The 

irradiance arriving at all points on the specimen can be estimated from this GP model and 

projected into the 2D coordinate system of the RGB-D camera. A property that is proportional 

to the shading can be acquired, where the shading describes the interaction of the irradiance 

with the surface geometry; the surface normal, light source direction and shading shown in 

Figure 4. 

 

Figure 4 - The variation in shape and lighting for a lamb cut sample – lamb leg used in this example Left: surface 
normals, middle: the light source direction map, right: the resulting dot product which relates to the shading. 
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2.2 Fat Depth Ground Truth 

The ground truth of subcutaneous fat depth is obtained through Computed tomography (CT) 

scans. All specimens are moved to a CT scanner once scanning with the camera system 

containing Hyperspectral camera is finished. A CT measures the X-rays attenuation and is 

an ideal modality for distinguishing muscle from fat components (Borkan, Gerzof, Robbins, 

Hults, Silbert & Silbert, 1982; Goodpaster, Thaete & Kelley, 2000). The CT measurements 

are in the form of a series of sequential 2D slices. They are stacked into a 3D tensor to build 

a 3D grid of the X-ray absorption. The voxels have a size of 0.56 × 0.56 × 0.7 millimetres 

and are stored as DICOM images.  

2.2.1 CT Reconstructions 

To acquire the subcutaneous fat depth of the lamb specimens and align CT scans to the 

data of the camera system shown earlier, 3D reconstructed meshes were created from the 

2D CT scan slices. This is achieved by first thresholding the X-ray absorption tensors to 

isolate the fat, muscles, and outer contour of the lamb samples and then using marching 

cubes for reconstructing the surface of each component (Adrian, S., 2020). Three meshes 

are created which isolate the fat, muscle and outer contour of the lamb specimen. The fat 

and muscle are shown in the left part of Figure 5. 

 

Figure 5 – Left: An example of surface reconstruction of the muscle (in red) and fat (in white) on a leg of lamb 
obtained from the computed tomography (CT) scans by thresholding the CT data and applying marching cubes 
(Adrian, S., 2020). Right: Reprojected hyperspectral composite image overlaid onto the RGB image of same leg 
of lamb. 

 

2.2.2 CT and Depth Alignment 

As the lamb specimens scanned with CT scanner were also acquired using the camera 

scanning rig in Figure 1 this results in two 3D reconstructions. The CT scans are 

reconstructed into meshes and the RGB-D camera allows us to create a 3D reconstruction. 

Ideally, these two separate 3D reconstructions of the specimen should perfectly align in a 

rigid manner. However, this is not what happens in practice, as slight deformations occur 

when transporting the sample between the camera scanning rig (which is setup in a chiller) 

and the CT scanner (generally located elsewhere). In our study the acquisition with cameras 

was at chillers at UNE whereas the CT scanner was in Armidale Clinic located ~5km away. 

Moving the specimens between the two locations involved loading/unloading crates in a 

refrigerated ute.  
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To solve this problem, the outer contour is aligned to the depth reconstruction in a non-rigid 

manner by using embedded deformation (Sumner, Schmid & Pauly, 2007) bootstrapped 

assuming rigid alignment or manual annotation. The deformation is then applied to the fat 

and muscle meshes to align them to the 3D camera reconstruction. The alignment of the CT 

fat mesh to the camera 3D reconstruction using the deformation is shown in Figure 6. 

 

Figure 6 - Non-rigid alignment of CT mesh to depth reconstruction using embedded deformation, example shows 
a leg of lamb. (left) misaligned CT fat mesh shown in yellow and depth reconstruction, (middle) deformation 
graph of CT fat mesh, and (right) aligned CT fat mesh to depth reconstruction. 

 

2.2.3 Subcutaneous Fat Depth via Ray Casting 

The subcutaneous fat depth must be acquired for all hyperspectral imaging measurements 

of the carcass to allow development and evaluation. This is estimated by ray casting from 

the position of camera into two aligned meshes of fat and muscle (obtained from CT). If the 

intersections are valid, with both muscle and fat intersections occurring and 𝑑𝑓 < 𝑑𝑚, the fat 

depth is calculated as shown in Figure 7. Given slice size of 0.7mm from CT scanner we can 

only measure subcutaneous fat depth in increments of 0.7mm. 

 

Figure 7 - Ray casting from the hyperspectral camera to the subcutaneous fat (yellow) and muscle (red) meshes 
(obtained from CT). The figure shows the intersection points (Pf – point on fat and Pm – point on muscle) and 
their corresponding distances dm. The actual subcutaneous fat depth is the distance highlighted by the purple 

arrow. 
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2.3 Statistical Analysis 

The subcutaneous fat depth regression is performed using machine learning approach. 

Performance is measured using a few metrics. First, we consider root mean square error 

RMSE and R2 for all patches across all cuts. Then we examined mean absolute error (MAE) 

over the subcutaneous fat depth range, which quantifies the overall prediction error by 

averaging the error for each prediction of a fat depth. Then we examine spatially (over entire 

surface or via virtual slices) the comparison between actual and predicted fat depth.  

2.3.1 Fat Depth Regression Methods 

A small portion of the observed fat depth is shallow (approximately 1–2 mm) and only a few 

regions exhibiting deeper fat content (up to 14 mm). A multilayer perceptron (MLP) is used as 

this provides higher capabilities to model the nonlinearities of the subcutaneous fat. The MLP 

consists of three hidden layers with output sizes 16 × 10 × 1. Each layer employs rectified 

linear unit (ReLU) as an activation function. The MLP will learn from pixel reflectance inputs 

where each sample is a normalised feature vector with the reflectance from all the different 

frequencies captured by the hyperspectral camera. 

2.3.2 Dimensionality Reduction 

Due to the high dimensionality of hyperspectral data, it is common to apply band selection or 

reduction techniques. These methods not only compress the data and reduce its overall size 

but can also remove redundancies that are detrimental when training machine learning 

algorithms. In line with the work from Pena et. Al. (Peña, F., Mehami, J., Guenot-Falque, R., 

Patten, T., Alempijevic, A., & Vidal Calleja, T., 2020), this work applies factor analysis to 

reduce the dimensionality of data (number of hyperspectral channels). As per the wotk 

reported, performance gain beyond 20 components is small, thus we use this value for all 

experiments as it is a good trade-off between performance and data size.  

2.4 Lamb Carcass - Dataset 

In November 2021 and November 2022, data collection was conducted at the University of 

New England in Armidale, New South Wales to study the subcutaneous fat-depth of lamb cuts 

using a hyperspectral camera. The purpose of these trials was to examine the feasibility of 

estimating the subcutaneous fat-depth of lamb cuts using the hyperspectral camera. 

The first data collection, conducted in November 2021, involved scanning cuts from a single 

lamb carcass. The cuts that were scanned included one saddle and two leg cuts (left and 

right). The aim of the trial was to estimate the subcutaneous fat-depth on the individual cuts 

using the hyperspectral camera where a diversity of fat depth was present over entire surface 

of the cut. The trial involved the rig scanning each cut with a total of 599 images captured for 

each camera. The cameras used in the trial were hyperspectral and RGB-D, and they were 

calibrated with the help of a reflective hemisphere on a planar fiducial board. In addition to the 

camera images, the trial also involved the capture of CT datasets to measure the ground-truth 

subcutaneous fat depth. The CT datasets included DICOM images of the bone and soft tissue 

for each cut, with approximately 1000 image slices captured for each cut. This data analysis 

is reported in (Peña, F., Mehami, J., Guenot-Falque, R., Patten, T., Alempijevic, A., & Vidal 

Calleja, T., 2022), given small number of samples is not part of this report. 
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The second data collection, conducted in November 2022, involved scanning 30 mid loins 

from different lamb carcasses supplied by a commercial abattoir. The mid-loins were 

selected from a total of 147 available. The selection was based on covering the distribution 

of C-site values from the larger population of 147 (as demonstrated in Figure 8) and within 

constrains of using the CT scanner. were individually wrapped and on foam trays as shown 

in  Figure 9. The aim of the trial was to show the statistical significance of subcutaneous fat 

depth models using a larger sample size and to prove generalization. The previous results 

from the first trial were from a single lamb carcass, so the second trial aimed to demonstrate 

that the results could be generalized to a larger sample size.  

The trial involved 15 scans, with 2 saddle cuts per scan (refer Figure 10), and a total of 250 

images captured for each camera. The cameras used in the trial were the same as in the 

first trial, hyperspectral and RGB, and same calibration process applied (illustrated in Figure 

11).  The trial also involved five CT scans, each with 6 saddle cuts lined up (refer Figure 10), 

with a total of 400 image slices captured for each cut. The CT datasets included DICOM 

images of the bone and soft tissue for each cut.  

  
Figure 8 - Histogram of C-site fat depth. Left: for all of the 147 mid loins available. Right: for the 30 that have 

been selected to be part of the hyperspectral camera and CT scanner trial 

 

 

Figure 9 - A view of the selection of 30 mid-loins, individually wrapped on foam trays for easier moving between 
the chiller and CT scanner. From total sample size supplied by commercial abattoir the 30 mid-loins were 

selected to cover C-site fat depth variation. 
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Figure 10 – Process of camera scanning and CT scanning of the mid-loins. Right: camera system scanning the 
mid-loins (two at a time), protective film is removed during scanning with the cameras, Left: CT scanner scanning 
5 mid-loins at a time at a Medical Clinic in Armidale. 

  
Figure 11 – The steps of registering Hyperspectral data against RGB data. Right: RGB image of a mid-loin at the 
centre of the image acquired with RGB camera clearly indicating a cut number, the reflection of light on the cut 
surface is also evident. Left: The RGB image has been altered such that the hyperspectral data appears on the 
mid-loin, 3 channels have been selected and superimposed. The cut number is not visible and the specular 
component of light (the one that bounces of the surface) is no longer present. This is the data that is 
subsequently used for estimation of subcutaneous fat.  
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3 Results 

Using the dataset (30 mid-loins) a relationship between the total fat of the mid-loin (obtained 

by CT thresholding fat) and the subcutaneous fat (via ra-tracing) or C-site fat depth is 

determined. We can see that the subcutaneous fat and C-site fat depth have a R2 of 0.76 and 

0.34 against total fat in Figure 12. 

 

 

 
Figure 12 – Analysis on 30 cuts, relationship between total fat of the mid-loin and subcutaneous fat (top) and C-
site fat (botom).  

 

The dataset (30 mid-loins) were divided randomly into 80% training and 20% testing split. As 

we estimate subcutaneous fat depth of patches a histogram for fat depth of the patches is 

also presented, indicating training and test cuts have a similar distribution Figure 13. This 
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has resulted in a total of 172,543 patches across the 5 mid-loins that are used for testing, 

each patch being 1.5mmx1.5mm.  

  

Figure 13 - Fat depth distribution for patches of 1.5mmx1.5mm on the 30 samples. These are separated to a 
training test and testing set from the data collection undertaken at UNE Armidale. (left) the training set (right) the 
testing set. 

 

We present results in a few levels. Firstly, at the level of every patch the results of estimating 

the subcutaneous fat are presented in Figure 14, RMSE is 1.56mm and R2 0.73. The MAE 

across the range of subcutaneous fat is also presented in Figure 14, with one standard 

deviation annotated in shaded blue. There are no points across the mid-loin with fat less than 

1mm (complete fat cover), the resolution of fat used for ground truth from CT scanner is 

0.7mm. Noting that MAE is under 2.5mm for subcutaneous fat depth under 15mm.  

A different spatial view of the prediction results across 5 cuts is presented in Figure 14. We 

show the estimated and predicted fat depth over the surface of the mid loin, the general trend 

across the surface is consistent with the ground truth. We can see the areas with high fat 

depth (over 15mm) are at the edges of the mid-loin and are underestimated.  

Finally, a spatial representation consisting of virtual slices across each mid-loin is presented 

in Figure 15. We show that the fat depth predicted in each slice follows the ground truth and 

that the fat depth increases symmetrically going away from the spine to the belly. The 

subcutaneous fat depth across the entire mid-loin is seldom at the C-cite fat depth, the two 

cuts have C-site fat depth of 3mm and 2mm respectively while loin eye width was 51mm an 

53mm. 

  



17 
This project is supported by funding from the Australian Government Department of Agriculture, Water and the Environment as 
part of its Rural R&D for Profit programme in partnership with Research & Development Corporations, Commercial Companies, 
State Departments & Universities. 

 

 

Figure 14 – Top: Measured vs predicted subcutaneous fat depth for each patch of 1.5mmx15.mm across all cuts 
in training data set. There are 172,453 patches in the cuts    Bottom: the MAE vs the subcutaneous fat depth for 
cuts in the testing set, the MAE is under 2.5mm until the fat depth reaches 15mm. Thereafter the error increases 

exponentially. 
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Figure 15 - 2D reprojection of the fat-depth prediction (top) compared to the ground truth value (middle). It can be 
seen that the red marking on the cuts (bottom) does not affect the prediction of the fat depth  
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Figure 16 - Visualization of prediction of the subcutaneous fat depth. Top row: measured vs predicted for entire 
mid-loin. Middle row: of a 2D slice, ground truth is shown in blue and the prediction is plotted in red. Bottom row, 
the visualisation of the actual cut. Cut labelled 30 (on left) had c-site fat depth of 3mm loin eye width 51mm. Cut 

labelled 144 (on right) had c-site fat depth of 2mm loin eye width 53mm. 
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4 Discussion 

Using all 30 cuts at our disposal we demonstrate that for mid-loins the subcutaneous fat is 

correlated to total fat of the cut R2 0.73, which is expected  measure accounting for vastly 

more fat deposits (such a subcutaneous fat cover over the whole mid-loin). This is significantly 

higher than correlation to the single point C-site measure R2 0.34. While we cannot draw a 

conclusion for overall fat of the carcass, due to not having total fat information, this relationship 

provides us with confidence that the subcutaneous fat depth is related to overall fat.  

We demonstrate ability to train a model for subcuntenous fat from a subset of mid-loins 

supplied by a commercial abattoir and predict on previously unobserved mid-loins. The 

prediction of subcutaneous fat on patches of 1.5mmx1.5mm over the entire surface reports 

R2 0.73 and RMSE 1.56mm (fat depth range 1-17mm, total of 172,543 independent patches 

of 5 mid loins). Our quantisation of the “ground truth” is 0.7mm, related to the resolution of 

CT scanner and the methodology for ray tracing into CT data to obtain subcutaneous fat 

depth. 

Investigating the error via MAE across the range of subcutaneous fat indicates that the MAE 

is under 1mm until a depth of 7.5mm and slowly increases to 2.5m at fat depth of 15mm. 

Thereafter there is an exponential increase of error with fat depths over 15mm. This is 

related to absorption of IR/SWIR by the fat tissue, and the lack of light penetration further 

into the tissue as its depth increases.  Analysis of the prediction over the entire mid-loin, 

indicates unsurprisingly that areas very far from the central spine have higher subcutaneous 

and thereby higher error in prediction.  

Examining data presented as virtual slices though the mid-loin indicates the predicted 

subcuntenous fat depth clarly follows the trend of actual measurements. We posit that this 

clearly indicates the approach and machine learning framework (MLP) can independently 

estimate fat depth for each patch.  There is a level of noise present when looking at 

neighbouring estimates of fat depth on this virtual line; exploiting spatial information over the 

surface to produce more consistency could be accomplished with a slightly “deeper” learning 

framework.  Deeper frameworks exploit spatial knowledge through convolutions and typically 

need more data to train, having a higher number of internal parameters towards prediction. 

We acknowledge that while the mid-loins are from different animals, and have been cut to 

same specifications, they could belong to a similar cohort and that tests would need to be 

run across mid-loins ensuring different breeds.  
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5 Conclusion  

The overall objective of this work is evaluating the capability of integrated hyperspectral and 

3D imaging cameras to determine subcutaneous fat depth and cover, as an objective 

technology for lamb carcass assessment.   

To allow estimation of subcutaneous fat we present hardware (cameras and lighting system), 

calibration methods and methodology that leverages light source modelling with 3D shape 

reconstruction and hyperspectral data to develop machine learning models for fat depth 

regression. The methodology separates total light visible on a surface of the carcass to the 

portion reflected from the surface itself (specular light) and that from the interaction of light 

with subsurface tissue (diffuse light). 

In order to develop machine learning methods and have a “gold standard” for validation we 

proposed a systematic approach to obtain subcutaneous fat depth by ray casting the CT scans 

of lamb carcasses and registering them via non-rigid alignment with a 3D reconstruction 

obtained from our camera system. 

We evaluated the capability of our system on a selection of mid-loins from a commercial 

abattoir, collected by Program 2, covering a representative distribution of C-site fat. Our 

approach estimating subcutaneous fat over the entire surface of the mid loins, with each 

estimate of fat corresponding to a surface of approximately 1.5mm x 1.5mm. 

Using all 30 cuts at our disposal we demonstrate that for mid-loins the subcutaneous fat is 

correlated to total fat of the cut R2 0.73, which is expected  measure accounting for vastly 

more fat deposits (such a subcutaneous fat cover over the whole mid-loin). This is significantly 

higher than correlation to the single point C-site measure R2 0.34. While we cannot draw a 

conclusion for overall fat of the carcass, due to not having total fat information, this relationship 

provides us with confidence that the subcutaneous fat depth is related to overall fat 

We demonstrate ability to predict subcuntenout fat on previously unobserved mid-loins (fat 

depth range 1-17mm) with R2 0.73 and RMSE 1.56mm. The MAE across the range of 

subcutaneous fat indicates errors are below 1mm until a depth of 7.5mm and slowly increases 

to 2.5m at fat depth of 15mm. Examining data presented as virtual slices though the mid-loin 

indicates the predicted subcuntenous fat depth clearly follows the trend of actual ground truth 

measurements. Again, we point out each estimate is independent, and there is no spatial 

knowledge (relationship between neighbouring measurements) exploited. We posit that this 

clearly indicates the approach and machine learning framework (MLP) can independently 

estimate fat depth for each patch. We belive the results could be further improved using a 

learning frameworks that exploits spatial information via convolution. 

We conclude that the integrated 3D imaging and hyperspectral system shows good potential 

for measuring subcutaneous fat depth to potentially allow predict overall carcase 

measurements. Further validation and training of across a more diverse phenotypic and 

genotypic range of lamb carcasses is warranted. 
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