Dietary Strategies for improving muscle health in older Women

Topics:

- Older population
- Ageing and muscle mass
- Dietary protein requirements
- WHAM Study (Women's Healthy Ageing and Muscle Study)

 Evaluation of health benefits & potential health risks 个 dietary protein in older women

Recommendations for practice

Australia 205

- 33 million people
- Almost 1 in 2 Australians > 50 years
- 9 million aged > 65 years:
 - > 1 in 4 Australians > 65 years
 - > 85 years 8% population
- Centenarians: growth> 20 times the rate of the total population by 2050
- What is middle age/old age ?
- Doctors willing to aggressively treat people once considered too Olo DEAKIN Centre for Physical Activit

100-year-old runner finishes Toronto marathon 90 Year Old Marathon Runner Gets Caught!

Disability increases with age

- One in five Australian disability
- Disability rate ↑age
 - severe core-activity limitation
 - 10% for 65-69 years
 - 74% > 90 years
- Females > 80 years ↑ severe limitation core-activity
- Females: 52%
- Males : 34%

http://www.abs.gov.au/AUSSTATS/abs@.nsf/mf/4430.0?OpenDocument

Centenarians: fastest-growing age segment

- > 340,000 worldwide
 Highest numbers US & Japan
- 6M 100-year-olds by 2050 worldwide
- What does it means to be old/middle-age
- Centenarians: growth> 20 times the rate of the total population by 2050
- Doctors willing to aggressively treat the health problems of people once considered too old for such care

100-year-old runner finishesToronto marathon90 Year Old Marathon RunnerGets Caught!

"Inflamm-ageing"

Figure 6.3 Inflammatory pathway linked risk factors

UNIVERSITY AUSTRALIA

endothelial cells (EC), smooth muscle cells (SMC), reactive oxygen species (ROS), interleukin-1 (IL-1), tumour necrosis factor-alpha, interleukin-6 IL-6, Creactive protein (CRP), serum amyloid A (SAA), AGE advanced glycation end products; Ang II angiotensin II; MMPs _ matrix metalloproteinases, OxLDL oxidized low-density lipoprotein; PAI-1 _ plasminogen activator inhibitor-1; RANTES _ Regulated on Activation, Normal T Cell Expressed and Secreted (also known as chemokine ligand 5, CCL5)

Deakin University CRICOS Provider Code: 001138

Changes in Body Composition

- Age-related decrease in Muscle Mass
- By 50 yrs average person lost 10% muscle mass + corresponding ↓ strength
- By 70 yrs loss ↑ 40%
- Chronic muscle loss affect 30% those > 60 y & affect 50% > 80 y

Paddon-Jones D, Short KR, Campbell WW, Volpi E, Wolfe RR. Role of dietary protein in the sarcopenia of aging. Am J Clin Nutr. 2008 May;87(5):1562S-1566S

RICOS Provider Code: 001138

Adverse consequences of decreased muscle mass in older people.

- loss of aerobic capacity
- loss of strength
- loss of balance
- increased likelihood of falls
- loss of independence, which all contribute to functional impairment

Emerging Evidence: optimal health higher protein

- protein intake > 0.8g/kg can improve :
 - muscle mass,
 - strength and function
 - immune status
 - wound healing
 - bone health

Wolfe RR, Miller SL, Miller KB. Optimal protein intake in the elderly.

Clin Nutr. 2008 Oct;27(5):675-84.

Aust. & NZ Protein Requirement Older adults

- Protein intake $\downarrow \downarrow$ decrease with age)
 - ↓ appetite
 - **↑** satiety
 - dentition/chewing difficulties
 - Social isolation
 - •Financial constraints
 - •

• Aust. Protein RDA ~20% higher >70y

37 g/day (0.60 g/kg)

46 g/day (0.75 g/kg)

NH&MRC NRVs 2006

46 g/day (0.75 g/kg)

57 g/day (0.94 g/kg)

CRICOS Provider Code: 001138

- ↓ protein synthetic efficiency
 •impaired insulin action
 - Adults EAR RDI • | gastric emptying Men • ↓ splanchnic uptake 52 g/day (0.68 g/kg) 64 g/day (0.84 g/kg) 19–30 yr 64 g/day (0.84 g/kg) 31-50 vr 52 g/day (0.68 g/kg) • Utilisation: peripheral tissues 51-70 yr 52 g/day (0.68 g/kg) 64 g/day (0.84 g/kg) 65 g/day (0.86 g/kg) 81g/day (1.07 g/kg) >70 vr Women 19-30 yr 37 g/day (0.60 g/kg) 46 g/day (0.75 g/kg) 31-50 yr 37 g/day (0.60 g/kg) 46 g/day (0.75 g/kg)
 - >70 yr

Centre for Physical Activity and Nutrition Research

51-70 yr

ABC longitudinal Study: 3yr >2000, 70-79 year olds

 Highest quintile protein 3 intake (91g/day(1.2g/kg))
 40% less loss in lean body mass cf lowest quintile(57g/d (0.8g/kg))

 Animal, but not vegetable, protein was significantly associated with preservation of lean body mass

Housten et al. Am J Clin Nutr 2008;87:150 –5

Emerging Evidence: optimal health higher protein

- N-balance studies do not measure any relevant physiological end point
- Supplement: essential aa (~30g protein x2/d)
- beneficial effect protein may be mediated by stimulation of insulin-like growth factor 1 (IGF-1)
- IGF-1 levels lower in older people
- 1.5 g protein/kg/day, reasonable target for elderly wishing to optimize protein intake in terms of health and

Wolfe RR, Miller S, Miler K, Miller K, Miler K,

Background

- Protein intake falls with age
- Evidence 个 protein requirements older people
- Evidence \uparrow protein requirements with RT
- Red Meat major source of protein in the Australian diet
 - high biological value:
- \downarrow meat intake \uparrow age
 - Australian adults > 60 years consuming 34% less meat compared to those aged 25-44 years {McLennan, 1999 }

Rationale

- Evidence resistance training (RT), enhance muscle-protein synthesis, muscle mass and strength, in older people
- Not known if increased consumption of protein in combination with regular exercise (resistance training) can lower inflammation and enhance muscle mass and function in the elderly

Lucas M, Heiss CJ. Protein needs of older adults engaged in resistance training: J Aging Phys Act. 2005 Apr;13(2):223-36

? Risks of increasing dietary protein in older people

- Adverse impact on dietary intake: other nutrients
- Diet high in red meat intake may increase systemic inflammation
 - ? saturated fat intake.
 - ? ↑ dietary iron
- Increase cardiovascular risk factors
 - serum cholesterol
 - HDL cholesterol
 - Glucose , insulin
- Reduced kidney function-
 - Exacerbate poor renal function

Women's Healthy Ageing and Muscle Study

Effects of Resistance Training Combined with Red Meat on Musculoskeletal and Cardiometabolic Health

Robin M. Daly,¹ Stella O'Connell,¹ Niamh Mundell,¹ Carley Grimes,¹ David Dunstan,² Caryl Nowson¹ Baker IDI HEART & DIABETES INSTITUTE

¹ Centre for Physical Activity and Nutrition Research (C-PAN), Deakin University, Melbourne; ² Baker IDI Heart and Diabetes Institute, Melbourne

This study was funded by a grant from Meat and Livestock Australia

Study Aim and Hypothesis

Study Aim

 To investigate whether increasing dietary protein compared to a control carbohydrate intervention , enhances muscle mass, strength and function in older women, when combined with resistance training, in a vitamin D replete state

Study Hypothesis

Increasing the intake of dietary protein to at least 1.3 g/kg/d, through an increased intake of lean red meat, combined with Progressive Resistant Training (PRT) will lead to greater gains in muscle mass, strength and function compared to PRT plus carbohydrate (Control) over 14 weeks

Study Flow Chart

Exercise Program

Program

- Weights on Wheel van visited each village twice a week for 4 months to deliver the program
- 32 exercise sessions in total.
- Exercise sessions run by qualified exercise trainers
- Small group sessions (6-8 women per group);
 45 to 60 minutes per session

Mode

- Type: Progressive resistance training
- Dose: 3 sets of 8-12 reps
- Intensity: 15-16 (hard-very hard) on RPE Scale
- Dumbbells, ankle weights, Swiss balls
- Sessions conducted prior to lunch / dinner if possible

Intervention

Lean Red Meat Group

- ~ ≈220 g (raw weight) of lean red meat (~160 g cooked)/day for 6 days per week (protein intake ≈1.3 g/kg/d)
- Mixed variety of lean red meat (beef, lamb, veal)
- Consume the meat across two meals: lunch / dinner (~80 g per meal)
- Received individual counseling sessions and written dietary instructions, including recipes, on consuming the lean red meat.

Intervention

Carbohydrate (Control) Group

- Make small changes to the amount (portion sizes) of protein rich foods consumed at meal times and to eat more pasta, rice, breads and cereals.
- Participants were provided with packs of pasta and rice every 2-4 weeks, and advised to consume at least one serve 1/2 cup of cooked rice or pasta, or potato daily.

All women in both groups provided with vitamin D_3 supplements (1000 IU/d)

Baseline Characteristics \pm (SD)

Characteristic	Meat	Control: CHO	P-value
	53	47	
Ν	(48 complete)	(43 complete)	
Age, years	72.1 ± 6.4	73.6 ± 7.7	0.75
Weight, kg	70.0 ± 11.3	68.4 ± 11.5	0.15
BMI, kg/m ²	27.7 ± 3.9	27.6 ± 4.8	0.2
Walking, hours per week	5.2 ± 3.7	5.0 ± 3.0	0.82
Physical activity, hours per week	9.6 ± 6.1	7.9 ± 4.3	0.1
Anti-hypertensive therapy, n (%)	31 (58%)	27 (57%)	0.92
Lipid lowering therapy, n (%)	16 (30%)	18 (40%)	0.31
Protein Intake g	74.5 ± 23.7	73.4 ± 26.9	0.56

Whole group Protein 1.11 \pm 0.39 g/kg/d

Centre for Physical Activity and Nutrition Research

Deakin University CRICOS Provider Code: 001138

Compliance with the Program

Centre for Physical Activity and Nutrition Research

n University CRICOS Provider Code: 001138

Dietary Intake

*Between group P<0.05

 Δ^* baseline v intervention P<0.05

Centre for Physical Activity and Nutrition Research

Deakin University CRICOS Provider Code: 001138

% Change (baseline v intervention) Energy & % Energy Macronutrients

Baseline 24hr recall v Intervention (4x 24hr recalls, monthly)

*** P<0.001, **P<0.01, * P<0.05

% Change (baseline v intervention) Average Daily Nutrient Intakes

50%				
40%				
30%				
20%				
10%				
0%				
-10%				
-20%				

Dietary Sodium/Potassium % change

Centre for Physical Activity and Nutrition Research

Deakin University CRICOS Provider Code: 001138

CVD risk factors

 $\begin{array}{ccc} & \pm \text{SD} \\ \textbf{Meat} & (95\% \text{ CI}) & \textbf{Control CHO} \\ \end{array} \\ \hline 70.0 \pm 11.4 & 68.4 \pm 11.6 \\ 0.05 & (-0.33, 0.43) & -0.17 & (-0.55, 0.22) \end{array}$

Total Cholesterol

Body Weight

Baseline, kg

Baseline, mmol/L % change HDL-cholesterol

Baseline, mmol/L % change LDL-cholesterol

Baseline, mmol/L % change Triglycerides

Baseline, mmol/L % change Glucose

Baseline, mmol/L % change 1.49 ± 0.32 -1%

 5.46 ± 1.22

-6%**

3.39 ± 1.01 6%*

1.41 ± 1.00 -10%

 5.7 ± 1.0

-47%

.17 (-0.55, 0.2 5.56 ± 1.02 -4%**

1.60 ± 0.34 -1%

3.36 ± 0.96 6%*

1.32 ± 0.57 -1%

5.6 ± 1.0 -<mark>69%</mark>

Baseline values are means \pm SD; within and between-group differences are means with 95% CI. All between-group differences adjusted for use of lipid-lowering medication (cholesterol and lipids). * P<0.05, ** P<0.01 + P<0.001 within-group change relative to baseline; # P<0.05 between-group difference for the change relative to baseline (group-by-time interaction).

Protein status: Kidney function

	Meat ± 3	SD Control:CHO	Between-Grp
Serum	(95%	CI)	Differ. (95% CI)
Urea			
Baseline, mmol/L	5.9 ± 1.3	6.2 ± 1.6	
% ∆ 4 mo	8.9 (2.5, 15.2) **	3.5 (-2.8, 9.8)	5.4 (-3.5, 14.2)
% change	2%**	1%	
Creatinine			
Baseline, umol/L	68.8 ± 10.8	70.2 ± 10.0	
% ∆ 4 mo	-2.0 (-7.3, 3.4)	-0.7 (-3.0, 1.6)	-1.2 (-7.2, 4.7)
% change	-3%	-1%	
eGFR			
Baseline, mL/min/1.73m ²	77.2 ± 10.8	76.1 ± 10.9	
%	0.9 (-3.0, 4.7)	0.4 (-2.0, 2.7)	0.5 (-4.0, 5.1)
% change	1%	1%	
Albumin			
Baseline, g/L	43.3 ± 3.3	44.5 ± 2.9	
%	-0.0 (-3.7, 3.7)	-2.3 (-4.0, -0.6) **	2.3 (-1.9, 6.4)
% change	0	-2% **	

• Excluded those with renal impairment (eGFR <45 ml/min)

Normal kidney function= eGFR, ≥60 ml/min/1.73m²; Mild = mildly decreased eGFR, 45 to 59 ml/min/1.73m²

No Adverse effects: Kidney function

• Excluded those with renal impairment (eGFR <45 ml/min)

Kidney Function	Meat	Control CHO
Normal to Normal eGFR		
4 months	45 (93.8%)	38 (88.4%)
Normal to Mild eGFR		
4 months	1 (2.1%)	0 (0.0%)
Mild to Normal eGFR		
4 months	1 (2.1%)	1 (2.3%)
Mild to Mild eGFR		
4 months	1 (2.1%)	4 (9.3%)

 $eGFR = ml/min/1,73m^2$

Normal kidney function= eGFR, ≥60 ml/min/1.73m²; Mild = mildly decreased eGFR, 45 to 59 ml/min/1.73m²

Centre for Physical Activity and Nutrition Research

v CRICOS Provider Code: 001138

24-hour urinary excretion

	Meat	СНО	Between-Group
		± SD	Differences (95% CI)
Urea			
Base mmol/24 h	378 ± 118	376 ± 134	
% ∆ 2 mo	13.4% †	-0.9%	14.2 (3.0, 25.4) #
% ∆ 4 mo	2.4%	-1.1%	3.5 (-8.6, 15.6)
Sodium			
Base mmol/24 h	128.8 ± 56.1	125.7 ± 54.5	
Salt equiv. g/d	7.5	7.4	
% ∆ 4 mo	1.1%	8.9%	-7.8 (-26.4, 10.7)
Potassium,			
Base mmol/24 h	68.4 ± 21.1	67.4 ± 22.9	
% ∆ 4 mo	5.8%	3.0%	2.9 (-8.4, 14.1)
Creatinine, Base			
mmol/24 h			
Baseline	7.8 ± 1.8	7.7 ± 1.7	
% change	4.5	-2.2	6.7 (-3.3, 16.7)

Baseline values are means \pm SD; within and between-group differences are unadjusted means with 95% Cl. \pm P<0.01 P<0.05, ** P<0.01 \pm P<0.001 within-group change relative to baseline; # P<0.05 between-group difference for the change relative to baseline (group-by-time interaction).

Centre for Physical Activity and Nutrition Research

Deakin University CRICOS Provider Code: 001138

Vitamins and Inflammatory markers

	Meat	Control CHO	Between-Group Diff. (95% CI)
25-OHD Base, nmol/L	68.4 ± 26.8	70.0 ± 31.6	
Absolute \varDelta 4 mo	10.4 (4.1, 16.7) †	13.1 (7.3, 19.0) †	-2.8 (-11.3, 5.8)
Vit B12 Baseline, pmol/L	338 ± 127	299 ± 125	
% ∆ 4 mo	2%	-3%	4.8 (-1.9, 11.5)
IGF-1 Base, nmol/L	15.4 ± 5.6	15.3 ± 6.2	
% ∆ 4 mo	+9%†	-2%	10.2 (3.1, 17.3) #
IL-6 Base, pg/mL	23.3 ± 88.1	20.6 ± 89.0	
% ∆ 4 mo	-16% *	-1%	-15.7 (-43.5, 12.1) #
IL-10 Base, pg/mL	37.3 ± 94.0	51.3 ± 261.8	
% ∆ 4 mo	-15%	-10%	-4.8 (-32.1, 22.5)
TNF-α Base, pg/mL	6.9 ± 3.4	7.8 ± 3.3	
% ∆ 4 mo	-9%*	-6%	-1.4 (-13.3, 10.5)

Baseline values are means \pm SD; within and between-group differences are unadjusted means with 95% CI. * P<0.05 within-group change relative to baseline; # P<0.05 between-group difference for the change relative to baseline (group-by-time interaction).

Mean baseline blood pressure by group and the within-group changes

Characteristics	Meat	Control CHO	Between- Group Differences (95% CI)
Systolic			
Baseline, mmHg	137.0 ± 15.8	134.9 ± 14.7	
Absolute 🛆 4 mo	-7.1 (-11.5, -2.8)†	-3.4 (-8.5, 1.7)	-3.7 (-10.3, 2.8)
Diastolic, mmHg			
Baseline	75.2 ± 9.3	74.3 ± 8.4	
Absolute 🛆 4 mo	-3.9 (-6.4, -1.4) **	-0.4 (-0.4, 3.4)	-3.5 (-7.9, 0.9)

All between-group differences adjusted for use of anti-hypertensive medication (blood pressure). * P<0.05, ** P<0.01 † P<0.001 within-group change relative to baseline; # P<0.05 between-group difference for the change relative to baseline (group-by-time interaction).

Centre for Physical Activity and Nutrition Research

ity CRICOS Provider Code: 001138

Key Findings 1

- daily consumption of ~160g of cooked lean red meat well tolerated high compliance (81%)
- Increased dietary protein from 1.1g/kg to 1.3g/kg (~74g/d 89g/d)
- Dietary Changes : Meat Group
- 23% increase protein
- 9% decrease % En CHO
- 12% increase iron
- 44% increase zinc
- 12% reduction calcium
- 20% reduction sodium
- 17% increase potassium
- No change in body weight
- No reduction ↓ serum albumin (CHO (control) ↓ 2%)

Key Findings (2)

- Protein intake >1.3 g/kg/d with red meat, when combined with twice-weekly progressive resistance training (RT):
- Meat group: greater ↑ IGF-1 (7 to 10%) cf to CHO control
- Meat group: greater ↓ pro-inflammatory marker IL-6 (16%) cf to CHO control
- Meat group : \downarrow pro-inflammatory marker TNF- α (9%)
- No adverse effects of increasing protein intake on:
- kidney function
- cholesterol or lipoprotein levels : beneficial effects
 - total cholesterol ↓ ~0.24 mmol/L, LDL-cholesterol ↓~ 0.20 mmc
- Blood pressure: beneficial effects
 - Meat group: ↓ 7/4mmHg (signf)

EXAMPLE STRALLA CENTRE IS CONTROL OF CONTR

Dietary Pattern A Baseline

Breakfast:

Orange Juice Sweet Biscuit (2)

Mid meals:

Dates Nuts Sugar 1 tsp Milk 250ml Coffee

Lunch:

1 slice mixed grain bread Butter Vegemite

6.1MJ49g Protein14% En Protein

Dinner

Canned Mushroom Soup 480ml Cake 1 slice Jam

Dietary Pattern A Intervention: Meat

Breakfast:

Orange Juice Oats Honey Sultana Nut 0.5 tbl sustagen (1g prot) Lunch: Beef strips 85g Stock, tomato paste, onion sauce 1 slice mixed grain bread Butter Brandy 1 glass ginger ale

6.7MJ 98g Protein (49g) 25% En Protein (14%)

Dinner

Beef, sirloin steak 85g Spinach 1 cup 1 egg Ice cream, 3 scoops 1 cone

Mid meals:

Sugar 2 tsp 2 Coffee /milk (1g prot/cup)

Dietary Pattern B Baseline

Lunch:

Breakfast:

Oats Sultana Prune Banana $\frac{1}{2}$ cup milk

Mid meals: **Biscuits** Coffee

I slice mixed grain bread 1 slice cheese Tomato Spinach Mandarin

3.9MJ 48g Protein 21% En Protein

Dinner

1 Lamb chump chop 80g Carrot (1/4)Sweet Potato (1 cup) Potato baked 1 Spinach (15 leaves) 1 glass wine 1 orange

044base

Dietary Pattern B Meat Intervention

Breakfast:

Lemon Juice Oats Sultana Banana ½ cup milk

Mid meals: Coffee milk x2 1 tartlet

044wk4

Lunch:

Beef stir fry strips 85g Sauce 1 egg Cereal ¼ cup Avocado Tomato Coffee milk

6.6MJ 100g Protein (48g) 26% En Protein (21%)

Dinner

Beef stir fry strips 85g Sauce 1 egg Cereal ¼ cup Silverbeet, carrot, sweet potato Brussels sprouts Stewed apple Rhubarb Yogurt Mandarin 1 glass wine

Summary

- Emerging evidence that dietary protein requirements greater for older people
- Progressive Resistant Training to prevent muscle loss and reduce bone loss may require greater intakes protein
- Protein intake ~1.3g/kg in older women (~73yrs) achievable and no adverse effects (renal, cardiovascular)
- Positive effect on muscle and inflammatory markers

Older people (>70yrs): Health & Quality of Life

? Protein 1.3g/kg

