

final report

Project Code:	NAP3.116
Prepared by:	D.B Coates
	CSIRO Sustainable Ecosystems Davies Laboratory
	PMB PO Aitkenvale,
Date Published:	Septeber 2002
ISBN:	9781741911930

PUBLISHED BY Meat and Livestock Australia Limited Locked Bag 991

Faecal NIRS for predicting growth rate in grazing cattle

Meat & Livestock Australia acknowledges the matching funds provided by the Australian Government to support the research and development detailed in this publication.

This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA.

PART 1

ABSTRACT

NAP3.116: Predicting growth performance using NIRS

MLA funding support through NAP3.116 was provided to assist in the development of faecal NIRS technology for predicting growth rate in cattle. Specifically, the funding was allocated to cover the costs of processing and NIRS analysis of faecal samples derived from small herds of growing cattle weighed at regular 4-week or 6-week intervals (monitor herds). Faecal samples, bulked within herds, were collected at twice the weighing frequency. Growth rates co-incident with the time of faecal sampling were calculated from liveweight gain curves and calibration equations for predicting growth rate were developed by relating faecal spectra to measured growth rates using ISI software and MPLS regression.

Overall, samples and data from 32 herd-years (one herd year = faecal samples and data from one monitor herd over 12 months) comprising 629 faecal samples collected over a four year period and from 5 different sites were included in the calibration set. Calibration equation statistics were acceptable with respect to the Standard Error of Calibration and the Standard Error of Cross Validation. However, validation tests carried out during the course of the project indicated a substantially larger calibration set will be required to improve predictive accuracy on samples from populations not included in the calibration set. Even with a greatly increased calibration set it may not be possible to develop a single calibration equation that can be applied usefully across all locations and pasture communities of northern Australia. The development of a number of "local" equations may offer a practical alternative.

There are sufficient samples and data on hand to double the size of the calibration set and to increase sites sampled from 5 to 15. Collection from 18 monitor herds at 10 different locations is continuing.

PART 2

EXECUTIVE SUMMARY

NAP3.116: Using faecal NIRS to predict growth rate in grazing cattle

Previous research conducted in project CS.253 (*Predicting diet digestibility and crude protein content from the faeces of grazing cattle*) provided results that suggested faecal NIRS (Near Infrared Reflectance Spectroscopy) prediction of growth rate in cattle might be feasible with beneficial applications in the grazing beef industry. An initial investigation using faecal samples and liveweight gain data from an experimental herd at Lansdown Research Station produced results that strengthened such a notion. Further work was deemed worthwhile as the required methodology is relatively inexpensive particularly where data and samples could be acquired from existing grazing trials.

MLA funding was provided by way of project NAP3.116 to encourage the development of the technology, primarily in support of the necessary faecal NIRS analyses. Several monitor herds were established on sown pastures at the CSIRO Lansdown Research Station near Townsville. In addition cattle in selected treatments of Queensland DPI grazing trials at Glentulloch near Injune, Galloway Plains near Calliope, Wambiana south of Charters Towers, and Rosebank near Longreach, were designated as monitor herds. Sampling requirements and measurements merely involved weighing the cattle at regular intervals of 4-6 weeks together with faecal sampling on weigh days (rectal grab samples) and mid-way between scheduled weigh days (sampling from fresh faecal pats). NIR spectra were obtained from dried, ground faecal samples. Reference values for growth rate were calculated from the cumulative liveweight gain curves for each monitor herd.

Calibration equations were developed in progression using a step-wise process of calibration, validation, expansion and recalibration. The first three calibration equations were developed using data from two monitor herds at Lansdown, firstly with the herd data kept separate and then by combining the two sets. The results for all three equations were most encouraging as indicated below.

ounoration oquation	Salisfation equation statistics for predicting growth fate norm acoult witho								
Calibration	Herd	No.	SEC ¹	SECV ²	RSQ	Range in ADG			
Equation		samples	g/d	g/d		(g/d)			
ADG(1).EQA	Herd 1	95	63	81	0.97	40 – 1500			
ADG(2).EQA	Herd 2	94	63	75	0.96	160 - 1500			
ADG(3).EQA	1+2	188	50	61	0.98	40 - 1500			

Calibration equation statistics for predicting growth rate from faecal NIRS

¹ Standard error of calibration

² Standard error of cross validation

As data sets (faecal spectra and reference growth rates) from different sites/herds became available, each set was used first to test the predictive accuracy of the current, existing equation (validation test) and then to expand the calibration set for recalibration purposes. In this way the calibration set was built up to the current level of 629 samples comprising 32 herd-years (one herd-year represents the samples from a single monitor herd of one year's duration) of information spanning the period June 1997 – May 2001 and 5 different sites.

None of the calibration equations developed to date has provided accurate predictions of growth rate when applied to samples unrelated to those in the calibration set (i.e. samples from different locations or different years) but there has been a clear trend for the predictive accuracy to improve as the calibration set expands. On the other hand, the actual calibration statistics (SEC, SECV, and RSQ) deteriorated with the expansion of the calibration set such that the SEC of the most recent equation stands at approximately 140 g/d. In the broad context this indicates that the probability of predicted growth rate being within 100 g/d or 200 g/d of actual growth rate is limited to approximately 60% and 85% respectively.

One of the difficulties with developing robust calibration equations for predicting growth rate is that of determining valid reference values from the regular weighing of cattle. Gut-fill and total body water account for a high proportion of the liveweight of cattle and changes in tissue weight (growth) that occur between successive weighings will generally be confounded to a greater or lesser degree by disproportionate changes in gut fill and body water. This means that "measured growth rates" used as reference values in developing calibration equations are likely to include a substantial error component and this will contribute to poor calibration statistics. Thus, the calibration equations are almost certainly somewhat better than the statistics indicate (Coates 2002). Similarly, validation tests are likely to exaggerate prediction errors.

Some other problem areas were identified. When cattle were in a compensatory growth phase, predicted growth rate was usually under-estimated. Conversely, when cattle were in a phase of rapid weight loss, predicted growth rate was often over-estimated (i.e. predicted weight loss was under-estimated). There was also an interaction between animal age/weight and the prediction errors. The errors were greater in older or heavier cattle, least in weaners. It is logical, too, that condition would also have an effect since the higher the condition score the greater will be the rate of weight loss when nutritional status declines. In a test case involving steers at Lansdown, predicted growth rates at points in time were often markedly different from measured growth rates, but calculated cumulative liveweight gain over an extended period was agreeably close to observed liveweight gain.

The weight of cattle relative to mature size has an effect on potential liveweight gain. Thus, annual liveweight gain of young cattle is usually greater than that of older, heavier cattle grazing the same pasture. It was satisfying to observe that faecal NIRS apparently coped with this age/weight/maturity effect on growth rate. Where weaner, yearling, and 2-year-old steers grazed the same pasture, predicted growth rates were usually highest for the weaners and lowest for the 2-year-old steers and the differences, when converted to cumulative liveweight gain, were consistent with the observed differences.

Faecal NIRS for predicting growth rate in cattle is not yet sufficiently developed to be considered a useful tool for beef producers. Validation tests to date have demonstrated an unacceptable level of predictive accuracy for samples unrelated to those in the calibration set. Although validation tests have shown a trend for continued improvement in predictive accuracy as the calibration set expands, it appears that substantial further expansion will be needed to develop a robust, useful, calibration set will, in fact, meet the predictive accuracy required for the technology to be of practical benefit to the industry. Current indications are that a single calibration equation for use across all localities and vegetation types may be beyond the scope of the technology. However, "local" equations for application in designated situations may provide a useful alternative. It is estimated that there are sufficient samples and

data on hand to almost double the current calibration set and to increase the sites covered from 5 to 15. Moreover, collection from 18 monitor herds at 10 different locations is continuing.

CONTENTS

Page

BACKGROUND	1
OBJECTIVES	2
METHODOLOGY	2
RESULTS	4
CONCLUSIONS	14
RECOMMENDATIONS	15
SUCCESS IN ACHIEVING OBJECTIVES	15
INTELLECTUAL PROPERTY	15
TECHNOLOGY TRANSFER	15
FUNDING	16
IMPACT	16
ACKNOWLEDGEMENTS	16
REFERENCES	16

BACKGROUND

Project CS.253 (1995-98) established that faecal NIRS could be used to predict dietary attributes (dietary crude protein, digestibility and dietary non-grass proportions) in free grazing cattle. The benefits of a simple, rapid and inexpensive technology that enables diet quality of free grazing cattle to be estimated with reasonable accuracy are quite obvious and a range of applications has been suggested (Coates 1999, 2000). Some applications depend on deriving an estimate of animal performance via a nutritional model using the predicted diet quality and other factors that influence performance. With respect to dietary attributes, most nutritional models are driven by protein and digestibility data. At present however, there is no nutritional model for calculating growth rate from diet quality attributes that is suitable for cattle grazing pastures in the northern half of Australia.

If one accepts that faecal NIRS analysis can reliably predict the protein and energy status of the diet (and this necessarily demands that faecal composition is highly correlated with diet composition), and if dietary protein and energy are the major nutritional determinants of growth rate, then it follows that it may be possible for growth rate of grazing cattle to be predicted directly by faecal NIRS analysis rather than inputting faecal NIRS derived dietary attributes into a nutritional model. Obviously there are other nutritional factors, as well as a range of non-nutritional factors, that influence growth rate (Table 1). Therefore, any prediction of growth rate by faecal NIRS analysis would most likely presuppose a given context in which the prediction may be considered valid. The "given context" would be one in which (i) there were no external limitations (nutritional or non-nutritional) to performance other than the protein and energy status of the diet and (ii) the prediction applied to a specific class of animal with respect to growth potential (genotype, sex, weight, age and condition).

Table 1. List of nutritional and non-nutritional factors that may influence growth rate

Nutritional factors
Protein Energy (digestibility and voluntary intake) Other essential nutrients (e.g. vitamins and minerals) Amount and accessibility of forage on offer Toxic compounds in the diet Water quality
Non-nutritional factors
Disease and parasites

Climatic stressors (e.g. temperature, humidity, wind, rain etc) Class of animal (genotype, sex, age, weight, condition, temperament)

There is the possibility, however, that the "given context" could be of lesser importance if there were, in the faeces, an endogenous compound with a concentration related to growth rate.

The hypothesis that faecal NIRS can be used to predict growth rate in grazing cattle can be readily tested. The only requirement is to physically measure growth rate and collect faecal samples at regular intervals over any chosen period so that appropriate reference values for growth rate can be assigned to faecal NIRS spectra for calibration and validation purposes.

OBJECTIVE

To develop faecal NIRS calibration equations for predicting growth rate in grazing cattle and to assess the predictive reliability of equations.

METHODOLOGY

Sites

Monitor herds were established at sites at different locations in Queensland (Table 2). Each monitor herd consisted of a small group of growing cattle (steers or heifers) grazing a specific pasture type at the relevant site. No specific mineral deficiencies were suspected at any of the sites except for a phosphorus deficiency in some paddocks at Lansdown; this was remedied by phosphorus supplementation.

Management of cattle

For each herd, grazing was continuous over the trial period. Stocking rate was light so that low dry matter on offer would not limit growth rate, i.e. growth rate would be determined by quality of feed on offer, not quantity. Normal husbandry measures were applied so that growth would not be significantly influenced by disease or parasites.

Measurements

Rainfall records were maintained at each site. Cattle were weighed at regular 4-week or 6week intervals and faecal samples were collected per rectum on weigh days. Faecal collections were made between weigh days by sampling fresh faecal pats in the paddock. On each sampling occasion faecal samples were bulked within herds. Where separate age groups were present, bulking was confined to within age group on weigh days.

Faecal samples were processed using the standard protocol of drying in a forced draft oven at 65 °C and grinding through a Tecator Cyclotec cyclone mill fitted with a 1mm screen. Faecal NIR spectra were derived and stored by scanning 65 °C oven-dry samples in a NIRSystems 6500 spectroscope fitted with a spinning sample cup module.

Cumulative liveweight gain curves were plotted for each monitor herd (or age group within herd) using the average of recorded liveweights. Growth rates (Average Daily Gain (ADG) in grams per day) coinciding with the time of faecal sampling were calculated from the cumulative liveweight gain curves to provide the appropriate reference values for calibration. Where liveweight change was unduly confounded with change in gut fill so that the calculated reference value was deemed to be invalid, the relevant faecal sample was discarded from the calibration set. This occurred most frequently at the beginning of each growing season when the diet changed from dry to green.

Calibration equations were developed with ISI (Infrasoft International) software; math treatment 1,4,4,1 with SNV and detrend in the band width 700 –2500 nm.; and modified partial least squares (MPLS) regression.

Herd	Site	Pasture type	Breed	Sex	Age groups	Duration
1	Lansdown	Urochloa/stylo	DM	Hfrs	Weaner	June 97 – Dec 98
2		Urochloa/stylo	DM	Hfrs	Weaner	June 97 – Dec 98
3		Urochloa/stylo	DM	Hfrs	Weaner	July 98 – Aug 99
4		Urochloa/stylo	DM	Hfrs	Yearling	June 98 – Aug 99
5		Urochloa/stylo	DM	Steers	Weaner	June 98 – Sep 99
6		Urochloa/stylo	DM	Steers	Yearling	June 98 – Sep 99
7		Uro/stylo/siratro	DM	Steers	Weaner	Nov 98 – Aug 99
8		Urochloa/stylo	DM	Steers	Weaner	Sep 99 – July 00
9		Urochloa/stylo	DM	Steers	Weaner	Aug 99 – July 00
10		Urochloa/stylo	BR	Steers	Weaner	Nov 99 – July 00
11		Urochloa/stylo	DM	Steers	Yearling	Sep 99 – July 00
12		Uro/stylo/siratro	DM	Steers	Weaner	Sep 99 – June 00
13		Uro/stylo/siratro	DM	Steers	Yearling	Sep 99 - June 00
14		Buffel/stylo	DM	Steers	Weaner	Nov 98 – Oct 99
15		Buffel/stylo	DM	Steers	Yearling	Nov 99 – June 00
16	Glentulloch	Native	BX	Steers	Weaner	Nov 97 – Aug 98
17		Native	BX	Steers	Weaner	Nov 97 – Aug 98
18		Native	BX	Steers	Weaner	Nov 97 – Aug 98
19		Native	BX	Steers	Weaner	Nov 97 – Aug 98
20	Galloway Plains	Native	BX	Steers	Yearling	Aug 99 – May 00
21		Native	BX	Steers	Yearling	Aug 99 – May 00
22		Native/stylo	BX	Steers	Yearling	Aug 99 – May 00
23		Native/stylo	BX	Steers	Yearling	Aug 99 – May 00
24	Wambiana	Native	BX	Steers	Yearling	June 98 – May 99
25		Native	BX	Steers	Yearling	June 98 – May 99
26		Native	BX	Steers	Yearling	May 99 – May 00
27		Native	BX	Steers	Yearling	May 99 – May 00
28		Native	BX	Steers	Yearling	May 00 – May 01
29		Native	BX	Steers	Yearling	May 00 – May 01
30	Rosebank	Mitchell/Flinders	BX	Steers	Yearling	Apr 99 – July 00
31		Mitchell/Flinders	BX	Steers	Yearling	Apr 99 – July 00
32		Mitchell/Flinders	BX	Steers	Yearling	Apr 99 – July 00

 Table 2. Particulars of monitor herds used for generating data for predicting growth rate in cattle (Project NAP3.116)

Droughtmaster Brangus DM

BR

ΒX Brahman cross

RESULTS

The assigned growth rates for the 32 monitor herds are presented in Appendix 1.

Calibration equations

First calibration

The first calibration equation, ADG(1) was developed on 1997-98 data from a Lansdown monitor herd of heifers grazing a Urochloa dominant grass/stylo pasture (*Urochloa mosambicensis* in association with *Stylosanthes hamata* cv. verano and *S. scabra* cv. Seca). There were 95 faecal samples in the calibration set (Appendix 1, Herd 1) and the calibration statistics (Table 3) surpassed expectations.

Second calibration

A separate calibration equation, ADG(2), was developed using data from another Lansdown herd (Appendix 1, Herd 2) grazing a similar pasture but with stylo dominance. Calibration statistics were similar to those from Herd 1 (Table 3).

|--|

Calibration	Herd	No.	SEC ¹	SECV ²	RSQ	Range in ADG
Equation		samples	g/d	g/d		(g/d)
ADG(1).EQA	Herd 1	95	63	81	0.97	40 – 1500
ADG(2).EQA	Herd 2	94	63	75	0.96	160 - 1500
ADG(3).EQA	1 + 2	188	50	61	0.98	40 - 1500

¹ Standard error of calibration

² Standard error of cross validation

Predictions using equation ADG(1) on Herd 2 samples, and equation ADG(2) on Herd 1 samples were also promising (Table 4) but this was to be expected considering cattle in Herds 1 and 2 were similar (breed, sex and age), the pastures were similar except for grass : legume proportions, and the data were collected in the same year.

Table 4. Validation statistics for prediction of growth rate from faecal NIRS

Calibration equation	Herd	SEP ¹	RSQ
ADG(1).EQA	Herd 2	113	0.90
ADG(2).EQA	Herd 1	100	0.92

¹ Standard error of prediction

Third calibration

Calibration equation ADG(3) was developed by combining samples from Herds 1 and 2 and the calibration statistics were an improvement on those for the separate equations (Table 3).

Fourth calibration

All samples in the calibration set of ADG(3) were from heifers grazing stylo-based pastures at Lansdown. Dietary energy status rather than dietary protein was probably the primary limiting factor with respect to growth for much of the year. With grass-only pastures, whether native or introduced, dietary protein is usually the primary limiting factor. Therefore, applying the equation ADG(3) to samples from cattle grazing grass pastures would be unlikely to provide accurate predictions of growth rate. Such a validation test was conducted on samples from monitor herds 16-19 from Glentulloch west of Injune. Indeed, predicted growth rate was poorly related to measured growth rate such that only 35% of the predictions were within 200 g/d of measured growth rate.

However, when the samples from Glentulloch were combined with the samples from Lansdown Herds 1 and 2, the calibration statistics of the resultant calibration equation, ADG(4), were again very satisfactory (Table 5).

Table 5. Calibration e	equation stati	sucs for p	predicting g	rowin rate	nom laecal NIRS
Calibration	No.	SEC	SECV	RSQ	Range in ADG
Equation	samples	g/d	g/d		(g/d)
ADG(4).EQA	255	77	83	0.95	-300 – 1500
ADG(5).EQA	297	88	99	0.94	-300 – 1500
ADG(6).EQA	368	99	113	0.92	-300 – 1500
ADG(7).EQA	565	139	146	0.87	-430 – 1880
ADG(8).EQA	629	138	146	0.86	-430 – 1880

 Table 5.
 Calibration equation statistics for predicting growth rate from faecal NIRS

Fifth and sixth calibrations

The process of validation followed by expanding the calibration set continued with the addition of samples from monitor herds 20-23 from Galloway Plains near Calliope, and herds 24-29 from Wambiana south of Charters Towers. Predicting samples from Galloway Plains with equation ADG(4) was no more successful than predicting samples from Glentulloch with equation ADG(3) since only one third of the predictions were within 200 g/d of measured growth rate. There was a slight deterioration in calibration statistics when samples from Galloway Plains were added to the main calibration set to develop ADG(5) (Table 5). Predicting samples from Wambiana with equation ADG(5) showed some improvement compared with previous validation tests in that nearly 60% of predictions were within 200 g/d of measured and measured was greater than 200 g/d, growth rate was under-estimated. There was a further deterioration in the statistics of calibration equation ADG(6) developed after adding Wambiana samples to the main calibration set (Table 5).

Seventh calibration

Lansdown monitor herds 5-15 provided an additional 200 samples for validation and subsequent expansion. Predicted growth rates using equation ADG(6) were still not closely related to measured growth rates but there was an improvement compared with previous validation tests such that 65% of predictions were within 200 g/d of measured growth rate and 35% within 100 g/d. Once again, for the 35% of samples where the difference between predicted and measured value was greater than 200 g/d, 55 of the 70 were under-estimated and, of those 55, all but 5 had measured growth rates in excess of 800 g/d. This bias towards under-estimation at high measured growth rate was clearly associated with compensatory growth early in the wet season. Moreover, the under-estimates of greatest magnitude were associated with compensatory growth of steers in the early wet season of their second year post-weaning (samples from steers in their third year post-weaning were not included).

There was a marked deterioration in the calibration statistics when the extra 200 samples were added to the calibration set for the development of ADG(7). SEC and SECV increased to 139 and 146 g/d respectively and the RSQ value dropped to 0.87 (Table 5).

Eighth calibration

Monitor herds 30-33 at Rosebank near Longreach provided samples from yet another pasture type quite dissimilar to those contributing to the ADG(7) calibration set, especially with respect to the high proportion of non-leguminous forbs in the Rosebank diets. Predictions based on equations ADG(6) and ADG(7) were poorly correlated with measured growth rate. Only about 50% of the predictions were within 200 g/d of measured growth rate and yet again the majority (>85%)were associated with an under-estimation of growth rate. In contrast to the Lansdown samples from herds 5-15, the under-estimation did not appear to be linked to compensatory gain early in the growing season. In fact, predictions based on ADG(6) and ADG(7) for all the Rosebank faecal samples from the winter months June-July-

August of 1999 were under-estimated by an average of 530 and 370 g/d respectively and these accounted for the majority of the underestimates of more than 200 g/d (65% for ADG(5) and 75% for ADG(6)). It was noteworthy that the predicted amount of dietary non-grass during these winter months, presumably forbs resulting from March-April rain, averaged more than 50% (range of 35 - 76%).

Calibration equation ADG(8) was developed from the expanded calibration set. Calibration statistics were similar to those for equation ADG(7) and the plot of predicted ADG against measured ADG is shown in Fig. 1. The same data is used in Fig. 2 where relationships are plotted for the different sites in isolation. The axis scales are the same for each graph enabling a visual comparison between sites to be made. Site statistics for the relationship of predicted to measured growth rate are presented in Table 6.

Site	SEP (g/d)	Bias (g/d)	RSQ	No. of samples
Lansdown A	97	-23	0.93	192
Lansdown B	148	2	0.89	131
Lansdown C	195	19	0.83	60
Glentulloch	153	0	0.88	67
Galloway Plains	192	-13	0.73	46
Wambiana	141	22	0.83	72
Rosebank	182	-3	0.39	71

Table 6. Statistical features of predicted values for equation ADG(8) for the different sites (Lansdown
has been divided into 3 sub-groups: Herds 1-2 for 1997-98 (Lansdown A); weaner cattle for 1998-2000
(Lansdown B); and yearling cattle for 1998-2000 (Lansdown C)).

Statistical parameters like RSQ are influenced by the range of values within the sample group. Thus the RSQ for the Rosebank samples was very low at 0.39 but the SEP was smaller than for the Lansdown C and Galloway Plains sample groups where the RSQ values were much higher. A more practical guide to the reliability of predictions within the ADG(8) calibration set for the different sites is presented in Table 7. Predictions within 100 g/d of actual growth rate may be considered a reasonable practical limit to attainable accuracy (100 g/d is equivalent to only 3 kg/month) and the results in Table 7 indicate a 60% probability of predictions being with the 100g/d threshold while 86% of predictions were within 200 g/d of measured growth rate. However, the 14% of predictions outside the 200 g/d threshold present a problem. Moreover, the results in Table 6 and Table 7 relate to the calibration set and predictions on samples outside the calibration set are likely to be less reliable.

Figure 1. Relation between predicted average daily gain (ADG) and measured ADG for samples in the calibration set of ADG(8).

Rosebank: steers grazing Mitchell grass downs 1999-00

Ldn 1&2: heifers grazing Urochloa/stylo pastures at Lansdown 1997-98

Glen: steers grazing native pasture at Glentulloch 1997-98

Gal Plns: steers grazing native pasture (NP) or NP/stylo at Galloway Plains 1999-00

Wamb: steers grazing native pasture at Wambiana 1998-99

Ldn Wean: weaner steers and heifers grazing sown grass/legume pastures at Lansdown 1998-00

Ldn ylng: yearling steers and heifers grazing sown grass/legume pastures at Lansdown 1998-00

Figure 2. Relation between predicted and assigned ADG for samples in ADG(8).CAL for the separate sites

Table 7. The relationship between predicted and measured growth rates within calibration set AGD(8) showing the percentage of predicted values within 100 g/d or 200 g/d of measured growth rate.

Site	% within 100 g/d	% within 200 g/d
Lansdown A	73	95
Lansdown B	56	82
Lansdown C	43	73
Glentulloch	50	89
Galloway Plains	53	73
Wambiana	56	85
Rosebank	50	84
Total	59	86

Reliability of predictions. The process of calibration, validation and expansion carried out to date indicates that further expansion of the calibration set is needed if reliable predictions of growth rate are to be achieved. In the step-wise process used so far, predicted daily gains using the most up-to-date equation on batches of samples from new monitor herds have been poorly related to measured growth rate. Nevertheless, there has been a definite trend for the accuracy of the predictions on new samples to improve as the calibration set continues to expand in both number and diversity of samples (sites and years). On the down side, calibration statistics have deteriorated as the calibration set expanded (Tables 3 and 5).

Considering the diversity of factors that influence growth rate (Table 1), many of which are unrelated to diet quality and/or have little or no direct influence on faecal composition, the chances of making consistently accurate predictions of growth rate by means of faecal NIRS may be considered overly optimistic. Apart from the non-nutritional factors affecting growth rate, there are also various nutritional factors that may have little or no effect on faecal composition *per se*, or on the NIR spectral characteristics of dried and ground faeces, or, more specifically, on those parts of the NIR spectra of importance to the current growth rate calibration equation. Of particular significance to this latter category would be (i) nutritional limitations to intake other than limitations due to protein or energy deficits (eg. mineral deficiencies and toxic or inhibitory compounds) and (ii) physical limitations to intake such as dry matter on offer and sward structure. Conversely, there may well be various compounds, hormonal or non-hormonal, that stimulate intake.

Specific problem areas. Some of the non-nutritional factors became very apparent during the course of this work. The 1999-2000 season at Lansdown provided some insight into some such factors. There was a long dry season in 1999 from April to October. Substantial weight losses were recorded in growing cattle from the end of June to early November (50 and 75 kg/hd in No. 8 and No.7 steers respectively). Good rain was received in November (117 mm), December (122 mm) and January (43 mm) and compensatory gains were evident. February and March were characterized by excessively wet conditions (680 mm in February and 260 mm in March) when cattle growth rates declined dramatically despite an abundance of green feed. When the excessively wet period ended there was a return to good growth rates and compensatory gains were again evident during April and May.

Growth rates for the period November to May are presented in Fig. 3 for steers of three different age categories – No.9, No.8, and No.7 steers (approximately 10, 22 and 34 months old in November 1999). The three age groups grazed as one mob and so had equal feed opportunities.

Fig.3 clearly illustrates problems of faecal NIRS predictions of growth rate in relation to:

- (i) compensatory gain following periods of nutritional stress
- (ii) limitations to weight gain caused by weather conditions
- (iii) the interaction of age/weight with (i) and (ii) above.

When compensatory growth is marked it is clear that faecal NIRS predictions of growth rate are under-estimated, at least in older cattle. This was most pronounced in the early wet following severe weight losses during the dry season. It occurred to a lesser extent following the period when weight gains were apparently limited by excessively wet conditions. Conversely, when growth rate is limited by non-nutritional stressors such as protracted inclement weather, growth rates tend to be over-estimated. It may be reasonably inferred, therefore, that faecal NIRS predictions of growth rate are influenced primarily by those faecal characteristics that are determined by diet quality.

The magnitude of either over-estimation or under-estimation of growth rate by faecal NIRS was clearly influenced by age. There was minimal effect in the youngest group of steers where predicted and measured growth rates were similar throughout the entire period. Conversely, the effect was most pronounced in the oldest group of steers where the differences between predicted and measured growth rates were, on occasion, in orders of magnitude. The effect in the steers of intermediate age, while quite pronounced, was considerably less than in the oldest steers.

This age effect was also apparent with respect to predicted weight losses during the dry season. Weaner steers (No.9) maintained weight during the late dry season in September and October and predicted ADG was in good agreement with measured ADG. Yearling steers (No.8) suffered moderate weight losses (eg. measured ADGs of -430 and -250 g/d for September 9 and October 8 samplings respectively) and predicted ADG under-estimated the rate of weight loss. The oldest steers (No.7) suffered weight losses of 600 g/d throughout September and October but predicted losses were less than 100 g/d.

Effect of age on growth rate. As cattle increase in age and weight and draw closer to mature size, growth rates decline. This is due not only to there being a limit to mature size but also to changes in the partitioning of energy into bone, muscle and fat as cattle mature. The effect of steer age on liveweight gain was again well illustrated in the Lansdown experiment where the steers of three age groups grazed as one mob. Liveweight change during the period of common grazing, September 1999 – June 2000, was 176, 168, and 135 kg/hd for the young, intermediate and old steers respectively. This being so, can faecal NIRS prediction of growth rate cope with this phenomenon? The results presented in Table 8 provide evidence that faecal NIRS predictions of growth rates differ between growing cattle of different ages. Not only do predicted growth rates differ but so do the predictions of diet quality (protein and digestibility). The differences in predicted diet quality would explain, at least in part, the differences in predicted growth rate. It is possible, however, that there may be some endogenous metabolite in the faeces that is influenced by either age or actual growth rate and that is influential in the growth rate equation.

	Pred	Predicted ADG Predicted di (g/d) protein		diet	Predicted diges				
Steer age	No.9	No. 8	No. 7	No.9	No. 8	No. 7	No.9	No.8	No.7
Date									
25-11-99	1536	131 2	121 8	14.6	12.3	11.1	69	62	65
22-12-99	934	797	797	9.8	9.0	9.0	62	60	59
18-01-00	877	700	706	9.8	7.9	8.1	61	57	58
03-03-00	708	586	479	8.0	6.5	6.0	55	52	49
06-04-00	819	715	598	8.7	7.5	7.1	60	57	56
04-05-00	967	814	728	9.3	8.4	8.2	61	58	57

Table 8. Predicted growth rate, dietary crude protein, and digestibility of steers of three different ages grazing as a single mob. No.9 – weaners; No.8 – yearlings; No.7 – 2-year-olds.

Cumulative liveweight change. Results indicate that, even within the calibration set, predicted ADG often differed quite markedly from the assigned reference value (measured ADG). It has been demonstrated that compensatory gain and non-nutritional stressors can contribute to these differences and that the magnitude of such differences can be influenced by age or maturity. It also needs to be recognized that the reference or measured growth rates may incorporate a substantial error component and that prediction errors are not the sole reason for differences between predicted and measured ADG. Measured growth rates are determined as the average daily change in liveweight between two weighings. Such a procedure represents a true measure of growth (either positive or negative) only if gut fill and body water remain constant as a proportion of total weight. Changes in gut fill from one weighing to the next are the main cause of error in measured growth rate and the error can be substantial. The shorter the interval between successive weighings the greater the potential for large errors in measured growth rate. This is because even small changes in gut fill can override changes in tissue weight.

Because of the range of factors that can influence the difference between predicted and measured ADG at any point in time, an alternative test of the reliability of faecal NIRS predictions of growth rate would be to generate a liveweight gain curve over a given period and compare it with the comparable measured LWG curve. This process was adopted for the steers of different ages in the Lansdown experiment in 1999-2000 (Fig. 4).

Fig. 4 illustrates some of the features already discussed, viz,

- (i) under-prediction of weight losses in older cattle during the late dry season
- (ii) under-prediction of liveweight gain early in the wet season when compensatory gains were being made (most apparent during December)
- (iii) over-prediction of liveweight gain during the excessively wet period in February and March
- (iv) under-prediction of liveweight gain following the excessively wet period when steers again made compensatory gains (most apparent in May)

Despite the short term differences between predicted and measured gains, there was little difference between predicted and measured cumulative liveweight gain at the end of the trial in June 2000. The biggest difference occurred in the youngest steers even though predicted gains tracked closely to measured gains throughout the trial period except during the transition period between the dry and the wet in November. In the two older groups where short term differences in gain were substantial, the cumulative effect for the entire period was negligible.

Figure 3. Predicted and measured growth rates (ADG) for steers of different ages grazing together. Compensatory gains were observed in the early wet (November and December) but growth rate was limited by excessively wet weather during the mid-wet (January - March). Another period of compensatory growth occurred after the excessive wet (May).

Figure 4. Cumulative liveweight gain curves for weaner (No.9), yearling (No.8) and 2-year-old (No.7) steers grazing a Urochloa/stylo pasture at Lansdown, September 1999 to June 2000.

CONCLUSIONS

1. Faecal NIRS for predicting growth rate in grazing cattle has the potential to be a useful tool for both research and commercial purposes.

2. The predictive reliability of the most recent equation (based on a calibration set of 629 samples sourced from 32 monitor herds at five different locations and spanning a 4-year period June 1997 to May 2001) is not considered to be adequate for widespread use and the calibration set needs to be expanded to incorporate samples from more localities, pasture types and years.

3. Regardless of the magnitude of any future expansion of the calibration set, present indications are that there will always be situations where predicted growth rate will differ substantially from actual growth rate. Such situations would include (i) times of marked compensatory gain (e.g. early wet season gains following a long dry season) when predicted growth rate will underestimate actual growth rate, (ii) times when growth rate is limited by non-nutritional stressors such as protracted, inclement weather when predicted growth rate will over-estimate actual growth rate, and (iii) situations where growth rate is limited by mineral deficiency, minor essential nutrients or toxic substances, when predicted growth rates will over-estimate actual growth rate.

4. Although untested as yet, it would be reasonable to assume that faecal NIRS predictions of growth rate would be unable to differentiate between animals of different genetic potential for liveweight gain.

5. When cattle of different ages (maturity) graze the same pasture, measured liveweight gains generally decrease with increasing maturity except when compensatory gains occur. At any given sampling occasion where cattle graze in common, faecal NIRS consistently predicts lower growth rates for the older cattle.

6. With the current equation, animal age has a marked effect on differences between predicted and measured growth rate. Differences associated with compensatory gain, non-nutritional stressors, and periods of weight loss are much more pronounced in older, heavier cattle. There may be some potential to reduce large, age-related differences by developing separate calibration equations for different age categories but this would be impractical in the foreseeable future.

7. Although untested as yet, predictive reliability may be improved by developing calibration equations specific to certain pasture types e.g buffel grass pastures, Mitchell/Flinders grass communities; native speargrass pastures; sown grass/legume pastures.

8. Work to date has been confined to growing cattle and no attempt has been made to predict weight change in breeding cows.

RECOMMENDATIONS

It is quite clear that faecal NIRS analysis for predicting growth rate requires further development to improve predictive reliability to the level where it can be beneficially applied as a management tool. One cannot conclude from the results to date whether the required predictive reliability will be achieved simply by increasing the number and diversity of samples in the calibration set or whether "local"¹ equations offer a better alternative, at least in some situations, to a "universal"² equation. The perceived requirement at present is to continue the validation and expansion procedure with samples from new monitor herds and to evaluate progress on a continuing basis.

This requirement has, in fact, been accommodated in project NAP3.121 (*Improving reliability of faecal NIRS calibration equations for predicting diet quality and productivity in cattle*) and there are currently 18 monitor herds at 10 different locations across Queensland. In addition there are data on hand from other monitor herds still to be processed.

SUCCESS IN ACHIEVING OBJECTIVES

The objective of developing faecal NIRS calibration equations for predicting growth rate in grazing cattle and of assessing the predictive reliability of such equations has been achieved. The contractual agreement with MLA was actually based on the processing and analysis of samples from the equivalent of 10 monitor herds in each of 2 years, i.e. 20 herd years. The data included in this report was derived from a total of 32 herd-years.

INTELLECTUAL PROPERTY

The intellectual property arising out of NAP3.116 is represented in (i) the calibration equations for predicting growth rate, (ii) the faecal NIR spectra files and matching reference values (measured growth rates) and (iii) the calibration set of faecal samples being held in storage. The calibration equations are not static and will be subject to continued expansion and refinement. Equations can only be transferred to other users if the NIRS instruments are cross-standardised. Other users could generate their own calibration equations if they had access to both the faecal samples for scanning on their own instruments and the relevant reference values for relating to the spectra. In other words, the intellectual property can only be shared, transferred or sold by agreement between relevant parties and by following a protocol of agreed procedures.

TECHNOLOGY TRANSFER

There is already widespread awareness amongst beef producers, extension officers, research personnel, consultants and agribusiness of faecal NIRS technology in general and of faecal NIRS predictions of growth rate as part of that technology. However, that awareness would not, at present, include a proper understanding of the current limitations with respect to predictive reliability and specific areas of difficulty. The widespread distribution of this report, or part thereof, will improve that understanding.

¹ local equation: equation specific to a defined situation such as a region or pasture type

² universal equation: equation for broad application; no restriction on the origin of the sample to be tested

FUNDING

MLA provided funding support of \$25,000 to NAP3.116. The CSIRO contribution to the project was estimated to be in the order of \$100,000.

IMPACT

At the present time, the technology is not sufficiently developed to actively promote the use and benefits of this aspect of faecal NIRS technology so it is premature to make an assessment of impact.

ACKNOWLEDGEMENTS

I acknowledge with gratitude the funding support provided by MLA and the continued support of CSIRO for this work. I also wish to thank the DPI scientists in charge of grazing trials at Glentulloch (Trevor Hall), Galloway Plains (Ron Hendricksen), Rosebank (Desiree Jackson) and Wambiana (Peter O'Reagain) for making faecal samples and liveweight data available to this project.

REFERENCES

- Coates, D.B. (1999) Faecal spectroscopy (NIRS) for nutritional profiling of grazing cattle. Proceedings of the VI International Rangeland Congress Townsville, Australia. July 19-23 Vol. 1:466-467.
- 2. **Coates, D.B.** (2000) Faecal NIRS what does it offer today's grazier? *Tropical Grasslands* **34**:230-239.
- 3. Coates, D.B. (2002) Is NIRS only as good as the reference method? Spectroscopy Europe

APPENDIX 1

Sample			Reference	Sample			Reference
Number	Herd	Date	ADG (g/d)	Number	Herd	Date	ADG (g/d)
3131	LDN 2	26-Jun-97	372	3709	LDN 2	06-Mar-98	790
3132	LDN 2	26-Jun-97	372	3785	LDN 2	13-Mar-98	780
3133	LDN 2	26-Jun-97	372	3788	LDN 2	20-Mar-98	770
3134	LDN 2	26-Jun-97	372	3795	LDN 2	27-Mar-98	760
3137	LDN 2	04-Jul-97	354	3796	LDN 2	27-Mar-98	760
3139	LDN 2	11-Jul-97	336	3797	LDN 2	27-Mar-98	760
3141	LDN 2	18-Jul-97	318	3798	LDN 2	27-Mar-98	760
3146	LDN 2	25-Jul-97	300	3799	LDN 2	27-Mar-98	760
3147	LDN 2	25-Jul-97	300	3809	LDN 2	03-Apr-98	750
3148	LDN 2	25-Jul-97	300	3819	LDN 2	09-Apr-98	740
3149	LDN 2	25-Jul-97	300	3822	LDN 2	21-Apr-98	725
3150	LUN 2	25-JUI-97	300	3829	LDN 2	30-Apr-98	700
3193	LDN 2	01-Aug-97	282	3830	LDN 2	30-Apr-98	700
3190	LDN 2	15 Aug-97	264	3831	LDN 2	30-Apr-98	700
3303		15-Aug-97	240	0002 0000		30-Apr-98	700
3202		22-Aug-97	220	2028		15 May 09	670
3200		29-Aug-97	210	004Z 2945		10-Way-96	500
3238		12-3ep-97	600	0040 0040		22-Way-90	590
3241		25-Sep-97	550	3851		23-May-30	530
3244	LDN 2	03-Oct-97	500	3864		13. Jun-98	500
3305		10-Oct-97	400	3867	LDN 2	19-Jun-98	450
3306	I DN 2	10-Oct-97	400	4040	IDN 2	03-101-98	400
3307	LDN 2	10-Oct-97	400	4047	LDN 2	17-Jul-98	350
3308	LDN 2	10-Oct-97	400	4071	LDN 2	31-Jul-98	300
3309	LDN 2	10-Oct-97	400	4078	LDN 2	14-Aug-98	250
3316	LDN 2	17-Oct-97	300	4106	LDN 2	11-Sep-98	700
3324	LDN 2	31-Oct-97	200	4129	LDN 2	25-Sep-98	800
3332	LDN 2	07-Nov-97	180	4243	LDN 2	08-Oct-98	700
3333	LDN 2	07-Nov-97	180	4269	LDN 2	23-Oct-98	750
3334	LDN 2	07-Nov-97	180	4276	LDN 2	05-Nov-98	770
3335	LDN 2	07-Nov-97	180	4333	LDN 2	19-Nov-98	770
3336	LDN 2	07-Nov-97	180	4351	LDN 2	03-Dec-98	750
3522	LDN 2	14-Nov-97	180	4398	LDN 2	17-Dec-98	800
3525	LDN 2	21-Nov-97	170	4412	LDN 2	31-Dec-98	750
3528	LDN 2	27-Nov-97	170	3119	LDN 1	20-Jun-97	310
3513	LDN 2	05-Dec-97	160	3120	LDN 1	20-Jun-97	250
3514	LDN 2	05-Dec-97	160	3126	LDN 1	26-Jun-97	372
3519	LDN 2	11-Dec-97	160	3127	LDN 1	26-Jun-97	372
3531	LDN 2	19-Dec-97	150	3128	LDN 1	26-Jun-97	372
3541	LDN 2	02-Jan-98	1500	3129	LDN 1	26-Jun-97	372
3542	LDN 2	02-Jan-98	1500	3130		26-Jun-97	372
3043	LDN 2	02-Jan-98	1500	3130		04-JUI-97	354
0044 9545		02-Jan-90	1500	2140		19-jul-97	330
3557		02-0an-98	1250	3140		25. jul-97	300
3560		16-Jan-98	1000	3143		25-Jul-97	300
3563		23. Jan-98	955	3144	LDN 1	25-Jul-97	300
3570	IDN 2	30-Jan-98	910	3145	LDN 1	25-Jul-97	300
3571	IDN 2	30- Jan-98	910	3192	I DN 1	01-Aug-97	282
3573	LDN 2	30-Jan-98	910	3195	I DN 1	08-Aug-97	264
3574	LDN 2	30-Jan-98	910	3198	LDN 1	15-Aug-97	246
3671	LDN 2	05-Feb-98	865	3201	LDN 1	22-Aug-97	228
3688	LDN 2	13-Feb-98	820	3204	LDN 1	29-Aug-97	210
3691	LDN 2	20-Feb-98	810 .	3234 .	LDN 1	12-Sep-97	600
3698	LDN 2	27-Feb-98	800	3237	LDN 1	19-Sep-97	550
3699	LDN 2	27-Feb-98	800	3240	LDN 1	25-Sep-97	500
3700	LDN 2	27-Feb-98	800	3243	LDN 1	03-Oct-97	450
3701	LDN 2	27-Feb-98	800	3302	LDN 1	10-Oct-97	400
3702	LDN 2	27-Feb-98	800	3303	LDN 1	10-Oct-97	400

Somnia			Reference	Sample			Reference
Number	Herd	Date	ADG (q/d)	Number	Herd	Date	ADG (g/d)
3304	I DN 1	10-Oct-97	400	4045	LDN 1	17-Jul-98	200
2215		17-Oct-97	350	4069	LDN 1	31-Jul-98	120
3323	I DN 1	31-Oct-97	270	4076	LDN 1	14-Aug-98	40
3327	LDN 1	07-Nov-97	230	4104	LDN 1	11-Sep-98	700
3328	LDN 1	07-Nov-97	230	4127	LDN 1	25-Sep-98	800
3330		07-Nov-97	230	4241	LDN 1	08-Oct-98	700
3330		07-Nov-97	230	4267	LDN 1	23-Oct-98	750
3331		07-Nov-97	230	4274	LDN 1	05-Nov-98	800
3521	LDN 1	14-Nov-97	200	4331	LDN 1	19-Nov-98	740
3524		21-Nov-97	170	4349	LDN 1	03-Dec-98	700
3527		27-Nov-97	140	4396	LDN 1	17-Dec-98	750
3510		05-Dec-97	110	4410	LDN 1	31-Dec-98	750
3511	LDN 1	05-Dec-97	110	E693	GTCH	23-Nov-97	980
3512		05-Dec-97	110	E696	GTCH	23-Nov-97	990
3518		11-Dec-97	100	E699	GTCH	23-Nov-97	970
3536		02-Jan-98	1500	E702	GTCH	23-Nov-97	970
3537		02-Jan-98	1500	E706	GTCH	16-Dec-97	980
3538		02-Jan-98	1500	E709	GTCH	16-Dec-97	970
2520		02-Jan-98	1500	E712	GTCH	16-Dec-97	980
3540		02-Jan-98	1500	E715	GTCH	16-Dec-97	990
3556		09-Jan-98	1250	E721	GTCH	30-Dec-97	950
3550		16-Jan-98	1000	E724	GTCH	30-Dec-97	980
3562		23-Jan-98	955	E727	GTCH	30-Dec-97	970
3565		30-Jan-98	910	E732	GTCH	13-Jan-98	930
3566	LDN 1	30-Jan-98	910	E735	GTCH	13-Jan-98	930
3567	LDN 1	30-Jan-98	910	E738	GTCH	13-Jan-98	940
3568	LDN 1	30-Jan-98	910	E741	GTCH	13-Jan-98	900
3569	DN 1	30-Jan-98	910	E772	GTCH	28-Jan-98	760
3670	LDN 1	05-Feb-98	865	E775	GTCH	28-Jan-98	850
3687	LDN 1	13-Feb-98	820	E778	GTCH	28-Jan-98	720
3690	LDN 1	20-Feb-98	810	E781	GTCH	28-Jan-98	700
3693	LDN 1	27-Feb-98	800	E790	GTCH	16-Feb-98	1150
3694	LDN 1	27-Feb-98	800	E793	GTCH	16-Feb-98	1120
3695	LDN 1	27-Feb-98	800	E796	GTCH	16-Feb-98	1020
3696	LDN 1	27-Feb-98	800	E799	GTCH	16-Feb-98	1100
3697	LDN 1	27-Feb-98	800	E804	GTCH	02-Mar-98	860
3708	LDN 1	06-Mar-98	790	E807	GTCH	02-Mar-98	850
3784	LDN 1	13-Mar-98	780	E810	GTCH	02-Mar-98	1070
3787	LDN 1	20-Mar-98	770	E813	GTCH	02-Mar-98	860
3790	LDN 1	27-Mar-98	760	E821	GTCH	17-Mar-98	650
3791	LDN 1	27-Mar-98	760	E824	GTCH	17-Mar-98	650
3792	LDN 1	27-Mar-98	760	E827	GTCH	17-Mar-98	650
3793	LDN 1	27-Mar-98	760	E830	GTCH	17-Mar-98	600
3794	LDN 1	27-Mar-98	760	E988	GTCH	01-Apr-98	530
3808	LDN 1	03-Apr-98	750	E991	GTCH	01-Apr-98	550
3818	LDN 1	09-Apr-98	740	E1002	GTCH	20-Apr-98	440
3821	LDN 1	21-Apr-98	725	E1005	GTCH	20-Apr-98	450
3824	LDN 1	30-Apr-98	700	E1008	GTCH	20-Apr-98	480
3825	LDN 1	30-Apr-98	700	E1011	GTCH	20-Apr-98	350
3826	LDN 1	30-Apr-98	700	E1060	GTCH	30-Apr-98	420
3827	LDN 1	30-Apr-98	700	E1063	GTCH	30-Apr-98	440
3828	LDN 1	30-Apr-98	700	E1066	GTCH	30-Apr-98	480
3838	LDN 1	08-May-98	670	E1069	GTCH	30-Apr-98	500
3841	LDN 1	15-May-98	630	E1074	GTCH	12-May-98	390
3844	LDN 1	22-May-98	590	E1077	GTCH	12-May-98	430
3847	LDN 1	29-May-98	550	E1080	GTCH	12-May-98	450
3850	LDN 1	05-Jun-98	510	E1083	GTCH	12-May-98	450
3863	LDN 1	13-Jun-98	470	E1091	GTCH	UZ-JUN-98	370
3866	LDN 1	19-Jun-98	400	E1094	GTCH	02-Jun-98	350
4038	LDN 1	03-Jul-98	300	E1097	GICH	02-Jun-98	300

Sample			Reference	Sample			Reference
Number	Herd	Date	ADG (a/d)	Number	Herd	Date	ADG (a/d)
E1100	GTCH	02-Jun-98	350	E5568	GPLNS	08-Mav-00	450
F1111	GTCH	15-Jun-98	350	E1194	WAMB	20-Jun-98	500
F1114	GTCH	15-Jun-98	250	E1195	WAMB	20-Jun-98	325
F1117	GTCH	15-Jun-98	250	E1198	WAMB	22-Jul-98	175
E1120	GTCH	15- Jun-98	250	F1192	WAMB	22-Jul-98	208
E1162	GTCH	02-101-98	-80	F1246	WAMB	10-Aug-98	-75
E1165	GTCH	02.001.00	-50	F1247	WAMR	10-Aug-98	135
E1168	GTCH	02-001-08	-90	E1645	WAMB	23-Sen-98	500
E1176	GTCH	15. Jul-98	-150	E1646	WAMB	23-Sep-98	433
E1170	GTCH	15-Jul-98	-80	E1649	WAMB	14-Oct-98	500
E1190	GTCH	15-301-90	-00	E1650	W/AMB	14-Oct-98	427
E1010	GTON	05-01-00	-230	E1653	W/AMB	02-Nov-98	575
E1210	GTCH	05-Aug-90	-100	E1654	MAMB	02-Nov-98	450
E1225	GTON	05-Aug-90	-200	E1657	WAMB	02-Dec-98	625
E1220 E10E1	OTOH	17 Aug 09	-200	E1057		02-Dec-90	683
E1201 E1060		17-Aug-90	-40	E1000		16-Dec-98	625
E1200		17-Aug-90	-200	E1001		16-Dec-90	750
E0017	OPLNO	30-Aug-99	10	E100Z		12 000	701
E0010	GPLNS	30-Aug-99	400	E1000		12-Jan-00	767
E5519	GPLNS	30-Aug-99	500	E1000		12-Jan-99	707
E5521	GPLINS	21-Sep-99	50	C1/04		02-Feb-99	110
E5522	GPLNS	21-Sep-99	105	E1/80		12-Feb-99	000
E5523	GPLNS	21-Sep-99	10	E2212		18-Feb-99	//3
E5524	GPLNS	21-Sep-99	500	E2213	WANB	18-Feb-99	673
E5525	GPLNS	18-Oct-99	10	E2216	WAMB	12-Mar-99	667
E5527	GPLNS	18-Oct-99	-10	E2217	WAMB	12-Mar-99	625
E5533	GPLNS	22-Nov-99	900	E2220	WAMB	30-Mar-99	500
E5534	GPLNS	22-Nov-99	1150	E2221	WAMB	30-Mar-99	571
E5535	GPLNS	22-Nov-99	1500	E3184	WAMB	23-Apr-99	375
E5536	GPLNS	22-Nov-99	1050	E3185	WAMB	18-May-99	250
E5537	GPLNS	14-Dec-99	650	E3191	WAMB	23-Apr-99	283
E5538	GPLNS	14-Dec-99	700	E3192	WAMB	18-May-99	146
E5539	GPLNS	14-Dec-99	1200	E3186	WAMB	17-Jun-99	524
E5540	GPLNS	14-Dec-99	850	E3187	WAMB	06-Jul-99	233
E5541	GPLNS	10-Jan-00	780	E3188	WAMB	27-Jul-99	1
E5542	GPLNS	10-Jan-00	650	E3189	WAMB	18-Aug-99	-38
E5543	GPLNS	10-Jan-00	1300	E3193	WAMB	17-Jun-99	536
E5544	GPLNS	10-Jan-00	950	E3194	WAMB	06-Jul-99	223
E5545	GPLNS	25-Jan-00	780	E3195	WAMB	27-Jul-99	-116
E5546	GPLNS	25-Jan-00	650	E3196	WAMB	18-Aug-99	1
E5547	GPLNS	25-Jan-00	1300	E3955	WAMB	09-Sep-99	-71
E5548	GPLNS	25-Jan-00	950	E3957	WAMB	09-Sep-99	70
E5549	GPLNS	21-Feb-00	780	E3967	WAMB	26-Sep-99	1
E5550	GPLNS	21-Feb-00	650	E5688	WAMB	23-Mar-00	810
E5551	GPLNS	21-Feb-00	900	E5701	WAMB	23-Mar-00	800
E5552	GPLNS	21-Feb-00	950	E5713	WAMB	12-Apr-00	780
E5553	GPLNS	07-Mar-00	780	E5715	WAMB	12-Apr-00	800
E5554	GPLNS	07-Mar-00	600	E5725	WAMB	02-May-00	760
E5555	GPLNS	07-Mar-00	700	E5727	WAMB	02-May-00	650
E5556	GPLNS	07-Ma r- 00	750	E8033	WAMB	08-Aug-00	450
E5557	GPLNS	27-Mar-00	380	E8035	WAMB	08-Aug-00	395
E5558	GPLNS	27-Mar-00	450	E8043	WAMB	01-Sep-00	365
E5559	GPLNS	27-Mar-00	500	E8045	WAMB	01-Sep-00	225
E5560	GPLNS	27-Mar-00	500	E8053	WAMB	22-Sep-00	1
E5561	GPLNS	18-Apr-00	280	E8055	WAMB	22-Sep-00	1
E5562	GPLNS	18-Apr-00	200	E8065	WAMB	11-Oct-00	-150
E5563	GPLNS	18-Apr-00	100	E8083	WAMB	23-Nov-00	1375
E5564	GPLNS	18-Apr-00	450	E8085	WAMB	23-Nov-00	1313
E5565	GPLNS	08-Mav-00	400	E8093	WAMB	11-Dec-00	1090
E5566	GPLNS	08-Mav-00	400	E8095	WAMB	11-Dec-00	1050
E5567	GPLNS	08-May-00	600	E8103	WAMB	04-Jan-01	686

Sample			Reference		Sample			Reference
Number	Herd	Date	ADG (g/d)		Number	Herd	Date	ADG (g/d)
E8105	WAMB	04-Jan-01	865		4419	LDNWEAN	31-Dec-98	730
E8113	WAMB	24-Jan-01	686		4492	LDNWEAN	14-Jan-99	635
E8115	WAMB	24-Jan-01	865		4510	LDNWEAN	02-Feb-99	520
E10339	WAMB	12-Feb-01	680		4528	LDNWEAN	11-Feb-99	450
E10341	WAMB	12-Feb-01	765		4559	LDNWEAN	25-Feb-99	500
E10349	WAMB	02-Mar-01	680		4574	LDNWEAN	11-Mar-99	450
E10351	WAMB	02-Mar-01	667		4609	LDNWEAN	25-Mar-99	570
E10359	WAMB	23-Mar-01	670		4637	LDNWEAN	13-Apr-99	730
E10361	WAMB	23-Mar-01	530		4664	LONWEAN	22-Apr-99	715
E10369	WAMB	18-Apr-01	525		4/16	LDNWEAN	06-May-99	460
E10371	WAMB	18-Apr-01	315		4/63		20-IVIAy-99	220
E10379	WAMB	14-May-01	340		4//1	LONWEAN	17 Jun 00	160
E10381		14-Iviay-01	95		4000		01_bd_00	105
4039		17 101-98	200		4091		17- Jul-00	75
4046		17-Jul-98	290	·	4937		28- Jul-99	75 75
4068		31-JUI-98	325		4949		12-Aug-00	40
4075		14-Aug-98	290		4904		72-Aug-99	
4103		11-Sep-90	1200		4990		20-Aug-99	-20
4120		20-3eh-ao	050		5108		20-06p-99	1590
4240		08-001-98	930		5120		09-09-09	1400
4200		23-001-96	720		5790		08-1ep-00	1185
4273		10 Nov 08	730		5260		03-Eab-00	835
4330		19-INOV-90	760		5500		10-Mar-00	285
4340		17 Dec 08	070		5567		13-Anr-00	1000
4395		21 Dec 09	970		5703		18-May-00	865
4409		14- Jap-80	900		A337		19-Nov-98	1040
4402		14-Jan-99	735		4355		03-Dec-98	975
4000		11-Eeb-00	520		4404		17-Dec-98	860
4510		25.Eeh.99	560		4418	I DNWFAN	31-Dec-98	730
4540		25-Mar-99	640		4491	IDNWEAN	14-Jan-99	730
4555		22-Anr-99	760		4509	LDNWEAN	02-Feb-99	730
4004		20-May-99	430		4527	LDNWEAN	11-Feb-99	680
4927		17-Jul-99	1		4558	LDNWEAN	25-Feb-99	640
4043		03-10-98	450		4573	LONWEAN	11-Mar-99	640
4050		17-Jul-98	350		4608	LDNWEAN	25-Mar-99	910
4072	DNWFAN	31-Jui-98	400		4636	LDNWEAN	13-Apr-99	910
4079	LDNWEAN	14-Aug-98	400		4663	LDNWEAN	22-Apr-99	910
4107	LDNWEAN	11-Sep-98	1060		4715	LDNWEAN	06-May-99	680
4130	LDNWEAN	25-Sep-98	1060		4762	LDNWEAN	20-May-99	300
4244	LDNWEAN	08-Oct-98	990		4770	LDNWEAN	04-Jun-99	70
4270	LDNWEAN	23-Oct-98	990		4882	LDNWEAN	17-Jun-99	-35
4277	LDNWEAN	05-Nov-98	990		4890	LDNWEAN	01-Jul-99	-70
4334	LDNWEAN	19-Nov-98	990		4936	LDNWEAN	17-Jul-99	-90
4352	LDNWEAN	03-Dec-98	930		4948	LDNWEAN	28-Jul-99	-125
4399	LDNWEAN	17-Dec-98	870		4983	LDNWEAN	12-Aug-99	-140
4413	LDNWEAN	31-Dec-98	870		4995	LDNWEAN	26-Aug-99	-150
4486	LDNWEAN	14-Jan-99	870		4992	LDNWEAN	26-Aug-99	1
4504	LDNWEAN	02-Feb-99	870		5008	LDNWEAN	09-Sep-99	1
4522	LDNWEAN	11-Feb-99	860		5030	LDNWEAN	23-Sep-99	1
4553	LDNWEAN	25-Feb-99	820		5059	LDNWEAN	08-Oct-99	1
4569	LDNWEAN	11-Mar-99	780		5083	LDNWEAN	21-Oct-99	1
4603	LDNWEAN	25-Mar-99	760		5101	LDNWEAN	04-Nov-99	1
4658	LDNWEAN	22-Apr-99	700		5155	LDNWEAN	25-Nov-99	1500
4757	LDNWEAN	20-May-99	300		5156	LDNWEAN	25-Nov-99	1500
4877	LDNWEAN	17-Jun-99	-150		5241	LDNWEAN	22-Dec-99	1215
4931	LDNWEAN	17-Jul-99	-350		5242	LDNWEAN	22-Dec-99	1200
4338	LDNWEAN	19-Nov-98	1130		5276	LDNWEAN	06-Jan-00	950
4356	LDNWEAN	03-Dec-98	900		5314	LDNWEAN	18-Jan-00	855
4405	LDNWEAN	17-Dec-98	815		5315	LDNWEAN	18-Jan-00	610

Sample			Reference	Sample			Reference
Number	Herd	Date	ADG (g/d)	Number	Herd	Date	ADG (g/d)
5352	LDNWEAN	03-Feb-00	630	4554	LDNYLG	25-Feb-99	680
5421	LDNWEAN	03-Mar-00	640	4604	LDNYLG	25-Mar-99	560
5422	LDNWEAN	03-Mar-00	560	4659	LDNYLG	22-Apr-99	530
5504	LDNWEAN	16-Mar-00	550	4758	LDNYLG	20-May-99	350
5555	LDNWEAN	06-Apr-00	450	4878	LDNYLG	17-Jun-99	-210
5556	LDNWEAN	06-Apr-00	560	4932	LDNYLG	17-Jul-99	-415
5563	LDNWEAN	13-Apr-00	990	5006	LDNYLG	09-Sep-99	-430
5647	LDNWEAN	04-May-00	1040	5057	LDNYLG	08-Oct-99	-250
5648	LDNWEAN	04-May-00	880	5312	LDNYLG	18-Jan-00	485
5699	LONWEAN	18-May-00	885	5427	LDNYLG	03-Mar-00	415
5782	LDNWEAN	04-Jun-00	565	5553	LDNYLG	06-Apr-00	730
5825	LDNWEAN	20-Jun-00	335	5645	LDNYLG	04-May-00	1170
5885		12-JUI-00	265	5035	LDNYLG	23-Sep-99	-140
5669		12-Jul-00	150	.5357	LDNYLG	03-Feb-00	900
5005		09-Sep-99	1	5568		13-Apr-00	985
5020 5056		23-Sep-99	-	5704		18-May-00	830
5000		25-Nov 00	1760	5011		09-Sep-99	-160
5238		12-Dec-00	950	5063		23-3ep-99	-190
5211		18- Jan-00	715	5086		21_Oct_99	-250
5426		03-Mar-00	745	5127		22-Nov-99	1880
5552		06-Apr-00	840	5279		06- Jan-00	1115
5644		04-May-00	1000	5319		18-, jan-00	840
4038	I DNYI G	03-Jul-98	255	E11567	BBK	10-041-00	660
4045	LDNYLG	17-Jul-98	290	E2459(1)	BBK	06-May-99	660
4069	LDNYLG	31-Jul-98	290	E2975(1)	RBK	16-Jun-99	540
4076	LDNYLG	14-Aug-98	250	E2976(1)	BBK	07-Jul-99	410
4104	LDNYLG	11-Sep-98	1100	E2977(1)	RBK	21-Jui-99	400
4127	LDNYLG	25-Sep-98	1050	E3043(1)	RBK	04-Aug-99	390
4241	LDNYLG	08-Oct-98	750	E4235(1)	RBK	11-Aug-99	360
4267	LDNYLG	23-Oct-98	525	E4243(1)	RBK	25-Aug-99	310
4274	LDNYLG	05-Nov-98	525	E4251(1)	RBK	08-Sep-99	225
4331	LDNYLG	19-Nov-98	605	E4283(1)	RBK	24-Nov-99	675
4349	LDNYLG	03-Dec-98	760	E5664(1)	RBK	25-Jan-00	540
4396	LDNYLG	17-Dec-98	760	E5672(1)	RBK	01-Mar-00	500
4410	LDNYLG	31-Dec-98	760	E11585	RBK	08-Dec-99	675
4483	LDNYLG	14-Jan-99	745	E11592	RBK	15-Dec-99	675
4501	LDNYLG	02-Feb-99	525	E11600	RBK	30-Dec-99	625
4519	LDNYLG	11-Feb-99	380	E11607	RBK	12-Jan-00	600
4550	LDNYLG	25-Feb-99	300	E11615	RBK	09-Feb-00	470
4600	LDNYLG	25-Mar-99	300	E11623	RBK	08-Mar-00	510
4655	LDNYLG	22-Apr-99	820	E11631	RBK	22-Mar-00	480
4928	LDNYLG	17-Jul-99	-390	E11636	RBK	05-Apr-00	310
3869	LDNYLG	19-Jun-98	600	E11644	RBK	12-Apr-00	250
4042	LDNYLG	03-Jul-98	550	E11666	HBK	07-Jun-00	615
4049	LDNYLG	17-Jul-98	450	E11568	RBK	28-Apr-99	750
4073	LDNYLG	31-Jul-98	550	E2460(2)	KBK	06-May-99	750
4080	LDNYLG	14-Aug-98	600	E2467(2)	HBK	19-May-99	750
4108	LDNYLG	11-Sep-98	720	E2990(2)	HBK	02-Jun-99	750
4131		25-Sep-98	720	E2991(2)	RBK	16-Jun-99	640
4245		08-Oct-98	720	E2992(2)	HBK	30-Jun-99	530
42/1			120	E2993(2)	NDK DDV	01-00-99	00U 160
4278		10 Nov-98	720	E2994(2)	HBK DBV	21-JUI-99	40U
4335		18-100-98	720	E2995(2)	RBK	04-AUG-99	410
4353		17 Dec 98	720	E4230(2)	NDK DDV	11-AUG-99	3/3
4400		17-D60-98	080	⊏4244(2) ⊑4050(0)		20-AUG-88	∠00 250
4414		31-DCC-98	060	E4202(2)		16 Son 00	∠0U 220
440/ 4505		14-JU1-99	000	E420U(Z)		10-06h-99	220
4000		11_Eob 00	000	124204(2) E5665(0)	DBK	24-140V-99	540
4023		11-L60-99	000	L0000(Z)	NDN	20-0a11-00	040

Sample			Reference
Number	Herd	Date	ADG (g/d)
E11570	RBK	14-Oct-99	100
E11586	RBK	08-Dec-99	790
E11593	RBK	15-Dec-99	750
E11601	RBK	30-Dec-99	670
E11608	RBK	12-Jan-00	650
E11616	RBK	09-Feb-00	520
E11624	RBK	08-Mar-00	560
E11637	RBK	05-Apr-00	425
E11645	RBK	12-Apr-00	380
E11569	RBK	28-Apr-99	605
E2463(5)	RBK	06-May-99	605
E2469(5)	RBK	19-May-99	604
E3020(5)	RBK	02-Jun-99	604
E3021(5)	RBK	16-Jun-99	602
E3022(5)	RBK	30-Jun -9 9	602
E3023(5)	RBK	07-Jul-99	600
E3024(5)	RBK	21-Jul-99	580
E3025(5)	RBK	04-Aug-99	470
E4239(5)	RBK	11-Aug-99	430
E4247(5)	RBK	25-Aug-99	360
E4255(5)	RBK	08-Sep-99	270
E4263(5)	RBK	16-Sep-99	230
E5668(5)	RBK	25-Jan-00	475
E11589(5)	RBK	08-Dec-99	730
E11596(5)	RBK	15-Dec-99	725
E11604(5)	RBK	30-Dec-99	680
E11611(5)	RBK	12-Jan-00	580
E11619(5)	RBK	09-Feb-00	500
E11627(5)	RBK	08-Mar-00	585
E11640(5)	RBK	05-Apr-00	375
F11648(5)	BBK	12-Apr-00	300