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Abstract 
Data is the cornerstone of our genetic evaluation systems. Maximum data quality enhances accuracy 

of estimated breeding values (EBVs) and increases ability to make accurate selection decisions, which 

drive genetic gains. This project developed metrics to describe the quality of data submitted for 

inclusion in genetic evaluation systems. The work focused mainly on the sheep genetic evaluation 

systems delivered through Sheep Genetics, and the refinement and reporting of the data quality 

metrics currently reported in the RAMPing Up Genetic Gains (RUGG) reports. 

This project achieved 4 key outcomes: 

1. A data quality framework to characterise the quantity and quality of genetic evaluation data for 

Terminal, Maternal and Merino flocks. This prototype framework included: 

• 14 new and 7 existing data quantity, quality and timeliness-related metrics.   

• A Data Quality Score (DQS) and star rating to characterise the overall quality of each flock’s 

data. 

2. Demonstration of value proposition  

The DQS was developed independently of, but is related to, metrics that describe genetic gain. 

Flocks with higher scores had higher index accuracies and greater rates of genetic progress. 

3. Implementation of the data quality framework 

OVIS software has been updated to calculate new metrics, DQS, and automatic identification of 

data recording strengths. and recommendations for improved data recording. 

Software has been developed to generate interim DQS reports to demonstrate how it can be 

incorporated into RUGG reports. These changes are anticipated to be implemented in the next 

phase of RUGG report development.  

4. Successful road-testing in collaboration with Sheep Genetics.  

The data quality framework and DQS was road-tested at 6 events involving 96 flocks. The DQS was 

well received by service providers and sheep breeders, and there was overwhelming support to 

publish the DQS star ratings for each flock after a grace period. 

The data quality framework will assist ram breeders to target improvements in their recording 

programs. On a wider industry level, the framework will help identify and highlight breeders who 

collect and submit high quality data, and provide increased transparency to ram buyers about the 

quality of data used to calculate EBVs. There is also potential to further expand the framework to the 

valuing of phenotypes and the extent and/or value of each flock’s data contribution to the reference 

population. 

This proposed data quality framework requires continuous monitoring and refinement of weighting 

factors over time. Appropriate tools and support are also required to help breeders understand how 

the information generated through this framework can be used to improve their data recording 

strategies. Recommended future research and extension includes: studies of the cost-benefit of 

recording better quality data; better demonstration of data quality and genetic gain outcomes; and 

further development of a framework to value data contribution to reference populations. The demand 

for an updated data quality framework for BREEDPLAN (currently delivered through DataAudit 

software) is unknown. In principle, frameworks for evaluating data quality should be consistent across 

species, primarily to facilitate extension, and potentially to simplify introduction of systems for valuing 

data for reference populations.  



 

 

Executive summary 

BACKGROUND 

Data is the cornerstone of our genetic evaluation systems. Maximum data quality enhances accuracy 

of estimated breeding values (EBVs) and increases the accuracy of selection decisions, which in turn 

drives higher rates of genetic progress. The genetic evaluation systems for the Australian red meat 

industry, Sheep Genetics and BREEDPLAN, primarily rely on industry data submitted by seedstock 

breeders. While there are standards and guidelines for data submission, there is wide variation in data 

recording and submission across the industry.  

This project developed metrics to describe data quality used in genetic evaluation systems. The work 

focused mainly on the sheep genetic evaluation systems delivered through Sheep Genetics, and the 

refinement and reporting of the data quality metrics currently reported in RAMPing Up Genetic Gains 

(RUGG) reports, which are provided to breeders by Sheep Genetics. 

OBJECTIVES 

All project objectives were achieved for the Sheep Genetics evaluation system: 

• Objective 1. Demonstration of the value proposition of data quality metrics in relation to 
prediction of genetic merit 

• Objectives 2 & 3. Development of applicable data quality metrics and refinement of the 
current data quality reports and metrics within Sheep Genetics, as well as any additional metrics 
from BREEDPLAN 

• Objective 4. Demonstration of ways to calculate and report data quality metrics on a per flock 
basis to the public 

 

METHODOLOGY 

• Objective 1. The value proposition  

The value proposition for the current data quality metrics provided in RUGG reports was examined 
for Terminal, Maternal and Merino flocks. This was achieved by analyzing the relationships between 
the data quality metrics and 1) genetic gains, 2) regression of progeny performance on sire EBVs, 3) 
genetic parameter estimates. 

• Objectives 2 & 3. Development and refinement of the data quality metrics  

A review of existing frameworks for characterization of genetic evaluation data was conducted. A 
data quality framework was developed with 3 components – quantity, quality and timeliness.  

Current metrics reported in RUGG reports were categorized as data quantity or data quality 
characteristics. Current metrics were refined, and additional metrics developed and tested.  

• Objective 4. Demonstration of reporting 

A Data Quality Score (DQS) was derived to characterise the overall quality of each flock’s data. Three 

different methods were explored to decide which metrics to use, and their importance in the score 

(i.e. weightings): 

o Principal component analysis (PCA) of all metrics 



 

 

o Stepwise multiple linear regression (MLR) trained on index accuracy, average index and index 

trend, and the first principal component of all 3 gains metrics  

o Informed weightings: a weighting structure based on results from exploratory analysis of 

metrics, PCA and MLR; combined with industry knowledge and experience. 

The AGBU software behind the RUGG reports and the Sheep Genetics website were both updated to 

include the new data quality metrics. New software was developed to generate interim DQS reports 

on an individual flock level. In collaboration with Sheep Genetics, this reporting was road-tested in 

workshops with service providers and breeders. Individual flock RUGG and DQS reports were 

provided, and workshopped to obtain feedback.  

 

RESULTS/KEY FINDINGS 

• Objective 1. The value proposition  

Most current data quality metrics were significant predictors of genetic gains, explaining between 2 

to 60% of the observed variation in the rate of progress between flocks. Flocks with higher quality 

data made more genetic progress. There was small but statistically significant relationships between 

data quality metrics and sire-progeny regression and genetic parameter estimates. However, these 

results were variable between breeds and the current data quality metrics only explained a small 

proportion (on average ~5%) of variation observed. Nevertheless, the wide variation in the quality of 

data submitted demonstrates opportunities for improved data recording strategies, and also 

highlights the need for better metrics describing data quality. 

• Objectives 2 & 3. Development and refinement of data quality metrics 

The current RUGG data quality metrics were refined, and additional metrics (including DataAudit-

inspired metrics) were calculated. There were 4 quantity, 9 quality and 5 timeliness-related new 

metrics calculated. Some metrics explored (e.g. chi-squared statistic for digit frequencies, maximum 

frequencies of single values) may have limited value as feedback to breeders as frequencies did not 

deviate from what was theoretically expected. Nevertheless, these metrics can still be used as a way 

to highlight any suspicious data.  

• Objective 2 & 3. Development of an overall Data Quality Score (DQS) 

To combine the quantity, quality and timeliness metrics, an overall Data Quality Score (DQS) for each 

flock was derived using 3 methods. Detailed investigation of the alternate methods yielded no 

definitive or optimal method for how an overall DQS is calculated. All resulting DQSs were related to 

genetic gains, and the DQS were also moderately to highly-correlated with each other.  

The informed weightings approach to derive the overall DQS is recommended, which utilises 21 

metrics. The calculation of this DQS did not include metrics describing the amount of genetic gains 

achieved by each flock, but they were moderately to strongly correlated. This approach also provides 

a balance between scientific rigour with industry adoption since it is easily understood and 

interpreted.  

• Objective 4. Reporting of data quality metrics and score 

This project proposes the incorporation of the DQS and star ratings into Sheep Genetics RUGG reports: 

• DQS be scaled from 1 to 99 for ease of interpretation  



 

 

• Categorised DQS into ‘star ratings’ through equal ranges, with star ratings allocated for as 1 star: 

0-20, 2 star: 20-40, 3 star: 40-60, 4 star: 60-80 and 5 star: 80-100  

• Data recording strengths and recommended areas for improvement highlighted for each flock 

OVIS software has been updated to calculate new metrics, DQS score, and automatic identification of 

data recording strengths and recommendations for improved data recording. New software was 

developed to generate interim DQS reports to demonstrate how it can be incorporated into RAMping 

Up Genetic Gains reports. Below is a screenshot of page 1 of the DQS report. 

 

 



 

 

• Objective 4. Road-testing of DQS with industry 

The DQS prototype was road-tested at 6 events involving 96 flocks. The prototype was well-received 

and constructive feedback was provided to further enhance the usefulness of the DQS. There was 

overwhelming support to publically publish the data quality star ratings for each flock after a grace 

period. 

BENEFITS TO INDUSTRY 

• An enhanced data feedback tool for breeders.  

The RAMping Up Genetic Gains reports can be further enhanced with new data quality metrics, 

Data Quality Score, star rating, recommendations and strengths. This provides targeted advice to 

breeders to assist in management changes, improve data collection and submission and hence 

ASBV accuracy. In turn, this will assist in more accurate selection decisions and increased rates of 

genetic progress 

• Transparency for ram buyers about the quality of data used to calculate EBVs. While EBV 

accuracies are available for individual rams, a DQS provides an indication of the overall quality of 

the flock’s data and allows direct comparison across flocks.  

• A way to identify and highlight breeders who collect high quality data. This could be used as a 

basis for discounted registration fees, or through breeder awards, or other signals and/or rewards 

• Engagement tool for Sheep Genetics development officers (and service providers) for targeted 

extension activities for flocks with poor data quality.  

• This data quality framework can be further developed to determine and value data contribution 

to reference populations  

FUTURE RESEARCH 

• Understanding challenges and reasons for poor data recording. Since some metrics are widely 

poorly recorded across many flocks (e.g. level of full pedigree recording in Merino flocks), it would 

be beneficial to understand 1) why it is poorly recorded, 2) explore/devise tools to increase ease 

of recording, and 3) design an extension campaign to target improvement of recording.  

• Cost benefit analysis and tools to understand to what extent it is worth improving data recording, 

considering the costs associated, at both the individual flock and the industry levels 

• Better demonstration of the value proposition. Flocks with higher Data Quality Scores had higher 

index accuracies and rates of genetic gains. The Data Quality Score also provides additional 

information not captured in EBV/index accuracy. 

There is potential to undertake a simulation to better understand how changing data recording 

reflect consequent outcomes in genetic gains. 

An important component over time will be to understand if RUGG and DQS reporting leads to 

change in behaviour and improved recording. 

• Better accounting of fixed effects. Completeness and accuracy of fixed effect recording is only 

captured to a limited extent in the proposed framework. This requires more in-depth 

examination.  

• Data Quality Score -- reference vs. individual breeder. The proposed DQS characterises the data, 

with the purpose of understanding the value of the data to individual breeders and their clients. 

Although related, an alternative perspective is valuing data contributing to the reference 

population, and/or other breeders.  



 

 

INDUSTRY IMPLEMENTATION AND RECOMMENDATIONS  

• Public and private reporting: The recommended roll out strategy is to initially privately report 

the DQS whilst road-testing, before public reporting of star ratings after a grace period. The 

pathway to public release (including the length of the grace period) is yet to be fully defined. 

• Continued road-testing and education: This is particularly important if there is a reward or 

incentive to having a high data quality score. This requires a detailed communication strategy, 

which may involve media releases, and fact sheets and videos on the Sheep Genetics website.  

• Incorporation into RUGG reports: While an interim report is available, it would be ideal to 

incorporate the DQS and associated features into RUGG reports. Increasing the availability and 

use of the RUGG reports by service providers and breeders should also be a key strategy. 

• Continuous monitoring and refinement: The metrics require monitoring, and weights require 
refinement over time. This will assist in evaluation of how effective the reporting is to entice 
change. There is also potential to further refine the DQS reporting 

• Understanding of poor data recording: Understanding recording challenges, and devising 
targeted extension messages 

• Application in beef: The demand for an updated data quality framework for BREEDPLAN 
(currently delivered through DataAudit software) is unknown. In principle, frameworks for 
evaluating data quality should be consistent across species, primarily to facilitate extension, and 
potentially to simplify introduction of systems for valuing of data for reference populations. 

 

A key contributor to success has been the collaborative nature of the project. There was consistent 

communication and input with MLA and Sheep Genetics from the project conception to DQS delivery. 

Constructive feedback from breeders has also been very beneficial for this project.  
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1. Background 

The industry problem 

The genetic evaluation systems for the Australian red meat industry, Sheep Genetics and BREEDPLAN, 

primarily rely on industry data submitted by seedstock breeders. While there are standards and 

guidelines for data submission, there is wide variation in data recording and submission across 

industry. This is a major concern for industry, as the quantity and quality of data affects the accuracy 

of estimated breeding values (EBVs) and genetic parameter estimates. In turn, this can lower accuracy 

of selection decisions and rates of genetic progress. 

The accuracy (%) figure reported alongside EBVs provides producers an indication of the reliability of 

the estimate. The level of recording and management group structure has been shown to affect the 

accuracy of genetic merit estimation (Brown et al. 2001; Swan and Brown, 2007). However, EBV 

accuracy is calculated using the amount and structure of information utilised (i.e., quantity), and not 

explicitly the quality of information. The difference between data quantity and quality is highlighted 

in the following example: a date of birth may be supplied for each animal (maximum data quantity), 

but a single generic date may be used for all animals irrespective of their actual date of birth within 

the lambing period (poor data quality). This will affect the ability to accurately correct for age and thus 

the accuracy of the EBVs, but there is no way to account for this when calculating EBV accuracy. This 

highlights the need for additional metrics beyond EBV accuracy to characterise data quality.  

Defining data quality for genetic evaluation systems 

The quality of data depends on what is trying to be achieved and the intended purpose of the data. 

Genetic evaluation systems aim to identify the genetically superior animals to contribute as parents 

of the next generation. The quality of genetic evaluation data can therefore be assessed according to 

how well data can be used to make unbiased comparisons between animals.  

To decide which animals are genetically superior, statistical analysis is conducted using data on: 

• the animal’s genetic makeup (through pedigree or genomic information),  

• the characteristics of interest and related characteristics (i.e. performance traits and correlated 

traits),  on individual animals and their relatives 

• systematic effects that are known to affect the characteristics of interest (e.g. age, twins vs. 

singles)  

• environmental and management conditions 

In addition to requiring accurate data on the above, adequate data structure (e.g. sufficient 

representation of animals across systematic effects and management groups) is required to accurately 

estimate the genetic merit of animals (reported as estimated breeding values, EBVs).  

This project developed metrics to describe data quality used in genetic evaluation systems, and an 

overall Data Quality Score (DQS) to rank seedstock producers on the overall quality of their data. The 

work focused mainly on the sheep genetic evaluation systems delivered through Sheep Genetics.  

Benefits to industry 

A framework to characterise genetic evaluation data will benefit individual breeders, ram and bull 

buyers and the industry as a whole. Feedback on the specific characteristics of their data will assist 

ram & bull breeders to target improvements in their recording program, to support selection decisions 



 

 

and maximise genetic gains. The DQS will be a way to help identify and highlight breeders who collect 

high quality data. In turn, this will provide increased transparency to ram & bull buyers about the 

quality of data used to calculate EBVs. While EBV accuracies are available for individual animals, a DQS 

provides an indication of the overall quality of a flock’s data and allows direct comparison across 

flocks. There is also potential to use these metrics to determine how data is valued and rewarded for 

their contribution to the reference population. 

2. Project objectives 

All project objectives were achieved for sheep genetic evaluation systems: 

• Objective 1. Demonstration of the value proposition of data quality metrics in relation to 
prediction of genetic merit 

• Objectives 2 & 3. Development of applicable data quality metrics and refinement of the 
current data quality reports and metrics within Sheep Genetics, as well as any additional metrics 
from BREEDPLAN 

• Objective 4. Demonstration of ways to calculate and report data quality metrics on a per flock 
basis to the public, including OVIS software development  

 

3. Methodology 
This section is structured to reflect the objectives defined above.  

3.1 The value proposition for current data quality metrics 

The value of current data quality metrics was demonstrated by understanding their relationships to 

1) genetic gains, 2) ability to predict progeny performance, and 3) genetic parameter estimates.  

Current data quality metrics 

All investigations were conducted using data from the Terminal (TERM), Merino (MERI) and Maternal 

(MATL) analyses. Current data quality metrics were computed through the routine ‘stoplights’ 

analyses conducted in routine runs, taken from the 4th January 2020 TERM analysis (441 flocks), 31st 

January 2020 MERI analysis (243 flocks), and 4th January 2020 MATL analysis (140 flocks).  

The current data quality metrics were calculated on an individual flock basis averaged over the last 5 

year period: 

• Fullped: proportion of animals from the flock in the analyses with full pedigree (%) 

• Noped: proportion of animals with no pedigree (%) 

• Recorded: proportion of the year-drop that has been recorded for any of the following:  
weight, fat, eye muscle depth, fleece weight and fibre diameter (birth, weaning, post-weaning, 
hogget and adult stages) and number lambs weaned  

• Ncg: number of contemporary groups.  

• Eff: Average Effective Progeny. This describes how much of the information submitted is 
contributing to the EBV calculations for the trait, averaged across contemporary groups. This is 
calculated taking into account the number of progeny of each sire group compared to the total 
number of progeny in the group.  Effective number of progeny for each sire was calculated using 
the formula; 



 

 

   NEF = j ( nj ( Nj – nj) / Nj ) 

Where NEF = Number of effective progeny, nj = the number of progeny by the sire in group j, and 

Nj = the total number of progeny in group j. 

The effective progeny counts are summed within each contemporary group and expressed as a 

proportion of the number of animals within the group. Thus the greater the value, the more 

effective the information is in the analysis. 

• Prop_link: the average proportion of animals recorded that are directly linked to external flocks. 
This is also averaged across contemporary groups for the trait. A higher value means more 
linkage, and the more accurately we can predict animal performance and account for non-genetic 
factors (%) 

• M:F: male to female count (ratio) 

• Avpedknown: average completeness of pedigree known from last 3 generations (%) 

• Ngeno:  average of the proportion of animals genotyped each year (%) 

• Overall: an index of multiple quality metrics equally weighted (includes fullped, noped, recorded, 
ncg, eff, prop_link; as well as metrics describing genetic gains (defined in the next section)).  

 

3.1.1 Data quality metrics and genetic gains  
This analysis aimed to demonstrate the value proposition for data quality by understanding the value 

of current data quality metrics in terms of observed genetic gains. The indexes examined were those 

that were relevant for each breed type:  

• Lamb Eating Quality (LEQ) index for TERM: an index targeting both growth and eating quality for 
prime lamb 

• Merino Production + (MP+) for MERI: for fine wool operations that target fleece weight, fibre 
diameter, body weight, staple length and number of lambs weaned  

• Maternal Carcase Production (MCP) for MATL: for self-replacing systems with a carcase 
production focus  

Genetic gains were quantified by index accuracy (indexacc), average index value (avindex) and index 

trend (indextrend): 

• Avindex: average index value (for the relevant index of that breed type)  

• Indextrend: the average annual change in index value (for the relevant index of that breed type)  

• IndexAcc: the average accuracy of the index relevant for each analysis. This is influenced by the 
trait information submitted, with higher accuracies expected with more data submitted (%) 

Genetic gains were analysed using a series of simple linear regression models:  

yi =  + 1xi +  

Where y was either indexacc, avindex, indextrend of flock i, and xi was the flock’s corresponding data 

quality metric (i.e. fullped, noped, recorded, ncg, eff, prop_link, M:F, avpedknown, ngeno, overall). 

Outliers were removed from data quality metrics due to potential leverage and influential points 

affecting results of this analysis. These were defined by 1.5 × Inter Quartile Range (IQR) below the 1st 

quartile (Q1) and above the 3rd quartile (Q3). 

 

 

 



 

 

3.1.2 Data quality metrics and prediction of progeny performance 

This analysis aimed to demonstrate the value proposition for data quality by understanding the 

relationship between data quality metrics and the ability to predict progeny performance with sire 

EBVs.  

There were 2 steps in this analysis:  

1. Regression coefficient estimates: 

First, the ability of sire EBVs to predict progeny performance for each flock was quantified by 

regressing phenotypic progeny performance on sire EBV. Sire EBVS and progeny performance data 

were obtained from the TERM, MATL and MERI analyses. Sire EBVs were extracted from 2017, 2018 

and 2019, along with their progeny performance records the following year (i.e. 2018, 2019 and 2020) 

respectively. Therefore, sire EBVs were derived independently of progeny performance being 

analysed. Analysis was restricted to flocks that had more than 1 sire (Table 1). The regression 

coefficients for each flock were averaged across the 3 years.  

Table 1. Description of data structure used to regress progeny performance against sire EBVs 

 Number of flocks Average number of 
sires per flock 

Average number of progeny per 
sire 

TERM 214 5 
[range 2 – 30] 

435 
[range 4 – 2,173] 

MERI 30 7 
[range 2-63] 

704 
[range 21 – 4,331] 

MATL 19 7 
[range 2-38] 

583 
[14 – 2,535] 

 

The traits examined were post weaning weight (pwt) and post-weaning eye muscle depth (pemd). 

Preadjusted progeny performance was analysed on an individual flock basis using the following model:  

yijkl =  + CGk + 1flockl.sireEBVi + ijkl 

where y is the preadjusted phenotype (using the standard OVIS methodology) of progeny j from sire i 

in flock l and contemporary group k.  

Regression coefficient estimates (𝛽̂1), which quantify how well sire EBVs predict progeny performance 

for each flock, were extracted from each of these models. Since progeny receive half the genetic 

expression from the sire, the expectation for the regression coefficient estimates was 0.5.  

2. Data quality metrics as predictors of ability to predict progeny performance 

The current data quality metrics were assessed as predictors of the regression coefficients. Regression 

coefficient estimates from the first step of analysis were cleaned to only include those between -2 and 

+2.  For each flock, the average regression coefficient for all sires and years were taken. These were 

analysed in a series of simple linear regression models, with data quality metrics as predictor variables 

(described in section 3.1). 

A series of simple linear regressions were used to understand single-variable relationships: 

y =  + 1x 



 

 

Where y is the regression coefficient estimate for each flock,  = overall mean, x is the data quality 

metrics (i.e. fullped, noped, recorded, ncg, eff, prop_link, M:F, avpedknown, ngeno, overall, 

indexacc, avindex and indextrend).  

 

3.1.3 Data quality metrics and (within-flock) genetic parameter estimates 

This analysis aimed to demonstrate the value proposition for data quality by understanding the 

relationship between data quality metrics and genetic parameter estimates. Genetic parameters for 

pemd and pwt were estimated for each flock using REML in ASReml (Gilmour et al. 2009). Flocks were 

only included in the analysis if there were more than 400 animals from between 2015 and 2020 (Table 

2).  

Table 2. Summary statistics of number of animals included in each flock in the terminal (TERM), 

merino (MERI) and maternal (MATL) analyses, used to estimate within-flock genetic parameters  

  Number of animals per flock  Number of sires per flock 

 
No of 
flocks 

Mean Min Max sd 
 

Mean Min Max sd 

TERM 258 1,379 401 1,056 860  30 5 119 19 

MERI 136 1,734 403 1,599 1,627  36 9 138 25 

MATL 94 1,671 405 1,463 1,924  33 4 182 27 

 

The following model was used to estimate genetic parameters for each flock: 

yijk =  + CGj + sirebreed + dambreed + animali + damPEk + ijk 

where y is the pre-adjusted (by OVIS for the standard Sheep Genetics effects) phenotype of animal i 

from contemporary group (CG) j, animal is the random additive genetic variance term (quantified using 

pedigree) and damPE is the random permanent environment of dam k (fitted for pwt only).  

Phenotypes were preadjusted for sex, age, birth type, rear type and age of dam.   

A series of simple linear regressions were used to understand the relationship between heritability 

estimates and current data quality metrics: 

y =  + 1x 

where y is the heritability estimate for each,  = overall mean, x is the data quality metric (i.e. 

fullped, noped, recorded, ncg, eff, prop_link, M:F, avpedknown, ngeno, overall, indexacc, avindex 

and indextrend). 

  



 

 

3.2 Development and refinement of data quality metrics  

The following work was conducted to refine existing data quality metrics and develop additional 

data quality metrics: 

3.2.1 Review of the existing frameworks  

Understanding past and current frameworks to characterise genetic evaluation data provides 

knowledge and inspiration for further refinement of data quality metrics. The following frameworks 

were reviewed: 

• LAMPLAN Data Quality Grades  

• Sheep Genetics RAMPing Up Genetic Gains (RUGG) reports 

• Sheep Ireland Data Quality Index (DQI) 

• Irish Cattle Breeding Federation Herd Data Quality Index   

• BREEDPLAN DataAudit  

 

3.2.2 Development of a data quality framework  

This was developed after reviewing existing frameworks, discussions with MLA and Sheep Genetics 

extension, adoption and development officers and research scientists who use the current RUGG 

reports as an extension tool, and discussion with Sheep Ireland about their DQI development and 

industry reception. 

3.2.3 Refinement of current metrics and calculation of additional metrics  

Current metrics were categorised into the data quality framework components of quantity, quality 

and timeliness. Additional metrics that are currently calculated and reported in RUGG reports were 

further explored:  

• synped (%): proportion of animals with syndicate pedigree (i.e. where multiple rams are mated 
over a group of ewes, resulting in multiple potential parents for the progeny).  

• ages (%): proportion of animals recorded that are in contemporary groups with variation in age. 
Variation in age within contemporary groups is expected with accurate birth date recording.  

• bt (%): proportion of animals recorded that are in contemporary groups with variation in birth 
type recorded. 

Metrics were further refined, and new metrics were developed, including metrics from BREEDPLAN 

Data Audit software. 

The following new and refined metrics were developed:  

Quantity 

• cnt: average flock size  

• Recorded, the proportion of the year drop that has been recorded across multiple traits, was 
further refined into the average proportion of year drop recorded for the following trait groups: 

• rec_weights: bwt, wwt, pwt, ywt, hwt, awt, wcf, pcf, ycf, hcf, wemd, pemd, yemd, hemd,  

• rec_repro:  nlw 

• rec_wool: pgfw, ygfw, hgfw, pfd, yfd, hfd 



 

 

Quality 

• Max_freq: % of the most common single value appearing. Missing values (designated as “-1.0”) 
were not included in the calculation.  

• Chi-squared statistics: For a reasonable sample size of data with sufficiently wide variation in 
values, the likelihood of any particular number appearing as a last digit is 10% (Dlugosz and Muller-
Funk, 2009). This metric has been used in fraud detection by the taxation office. In the genetic 
evaluation context, deviation from this expectation may be due to poor recording, equipment 
problems or non-randomisation of recordings. Different traits are recorded and submitted in 
various increments (e.g. as whole number integers, or various decimal places). Therefore, the chi-
squared statistic was calculated for the digits in the units place value (chi_units) and tenths 
column (chi_tenths). For example, for the wwt of 27.8 kg, the digit in the units place value is 7, 
and the digit in the tenths place value is 8 (Figure 1).  

 
Figure 1. Example of units and tenths place values, used to calculate chi-squared statistics  

A chi-squared statistic was calculated to evaluate the deviation from the expected frequencies for 

each digit in the units and tenths placed value: 

𝜒2 =∑
(expected%− observed%)2

expected%

9

𝑖=0

 

where expected  = 10%, and observed = % of records with the digit i 

At a significance level of 0.05 and 9 degrees of freedom, the critical chi-squared statistic is 3.325. 

This means that a flock with a chi-squared statistic of less than 3.325 has recorded digits according 

to what is expected (i.e. 10% frequency for each digit). If a flock’s chi-squared statistic is greater 

than 3.325, there are significant deviations from what is expected. The greater the chi-squared 

statistic, the greater the deviation. 

All weight traits were used to calculate chi-squared statistics for digits in the units and tenths place 

values: birth weight (bwt_chi_units; bwt_chi_tenths), weaning weight (wwt_chi_units; 

wwt_chi_tenths), post-weaning weight (pwt_chi_units; pwt_chi_tenths), yearling weight 

(ywt_chi_units; ywt_chi_tenths), hogget weight (hwt_chi_units; hwt_chi_tenths), and adult 

weight (awt_chi_units; awt_chi_tenths). Sufficient records are required to adequately capture 

the frequency of each digit. Therefore, each flock required a minimum of 50 records for each trait 

across the 5 years to obtain a chi-squared statistic. Missing default values of “-1.0” were also not 

included in this calculation.  

• Date of birth distribution:  

These metrics are derived using the same concept as the chi-squared statistics. For a reasonable 

sample size of date of births, the likelihood of birth dates to occur on any given day of the week 

or month is expected to be equal. For example, the likelihood of a ewe to lamb on Monday is the 

same as the likelihood to lamb on Tuesday, Wednesday etc.  

Note that this metric may not be applicable for artificial insemination (AI) flocks, where 

insemination for all ewes are on the same day and so less variation in birth dates is expected. 



 

 

Nevertheless, variation in the days of the week and month for dates of birth is still expected for 

AI flocks. 

The metrics calculated for this concept include: 

• dayinweek: birth date deviations from expected days of the week. This is calculated as  

∑(expected%-observed%)2
7

𝑖=1

 

where expected = 1/7 × 100 % for each day of the week, and observed= % of animals born on the 

ith day of the week.  

Note that the birth date deviation from expected days in the month was also explored, with 

expected frequencies of 1/31 × 100 % for each day of the month. Since the correlation with 

dayinweek was > 0.91, results are not further discussed  

• The mean linkage by trait group: 

• link_carcase: carcase traits of wemd, pemd, yemd, hemd 

• link_weights: weight trait  of wwt, pwt, ywt, hwt 

• link_repro: reproduction traits of ynlw, nlw 

• link_wool: wool traits of pfd, yfd, hfd, afd 

 

Timeliness  

The new timeliness metrics developed described pedigree and trait data submission: 

• AgePed: the average age that animals first appear in the pedigree i.e. run date – date of birth. 
This concept is depicted in Figure 2. These metrics were calculated  by iterating through every 
analysis run conducted in the last 5 years.  

 

Figure 2. Visual representation of how pedigree timeliness, quantified as age of inclusion in 

pedigree analysis, is calculated  

 

 

 

• Age of trait data submission 
This is calculated as the average difference between the run date when animals have trait data 
and date of measurement. i.e. run date – date of measurement.  This concept is depicted in Figure 
3.  Again, these metrics were calculated by iterating through every analysis run conducted in the 
last 5 years. 

 



 

 

 
 

Figure 3. Visual representation of how trait timeliness data, quantified as age of trait data 

submission, is calculated  

This was initially calculated for yearling fibre diameter and weaning weight. This was further 

refined as an average by trait group: carcase scan traits (time_carcase), reproduction traits 

(time_repro), wool traits (time_wool), and weight traits (time_weights). 

The relationships between all metrics (new and existing) were explored to understand which variables 

capture the same underlying aspects, and therefore provide some guidance as to which metrics may 

be discarded to reduce complexity.  Pearson’s correlations were calculated to understand pairwise 

linear relationships between each metric. How the metrics relate to each other simultaneously was 

further explored in principal component analysis in Section 3.3.  

Due to the inconsistent level of recording, and hence availability of chi-squared metrics, the data 

quality metrics of chi-squared units, chi-squared tenths metrics and maximum frequencies were not 

included in this analysis.  

3.2.4 The Data Quality Score (DQS) 

To combine the metrics explored into an overall quality of a flock’s data, a Data Quality Score (DQS), 
was derived. To decide which metrics contributed to the DQS, and their relative importance, three 
different methods were explored. These were conducted on an individual breed level. Due to the 
different scales and variances of each data characteristic metric, each metric was scaled to unit 
variance and mean of zero. The resulting DQS for each method was also then scaled to between 0 
and 100 for ease of interpretation. 

Method 1: Principal component analysis (PCA) of all metrics (DQS_PCA) 

PCA was conducted to select metrics used for the DQS calculation, by identifying clusters of metrics 

and reducing similar metrics. The principal component loadings were then explored as weightings for 

each metric. The first and second principal component loadings (PC1, PC2), and simultaneous use of 

PC1 and PC2, weighted by their relative variance explained (PC1&2) were explored. Only the use of 

PC1 is discussed here due to the high correlation between PC1 and PC1&2, and PC2 identifying poor 

data quality flocks.  

Method 2: Multiple linear regression (MLR) of index accuracy (indexacc), average index (avindex) 

and index trend (indextrend). 

There were 4 genetic gains metrics analysed, to ‘train’ the DQS weightings:  

• Index accuracy (DQS_indexacc)  

• Index trend (DQS_indextrend) 

• Average index (DQS_avindex)  

• The 1st principal component of index accuracy, index trend and average index 

(DQS_GG_PC1) 



 

 

Data metrics were firstly tested for multi-collinearity (i.e. linear relationships between variables) using 

the variance inflation factor (James et al., 2017). A series of stepwise MLR were used for metric 

reduction and weight allocation (through partial regression coefficients):   

GeneticGains =  + 1xi +  

where GeneticGains is indexacc, avindex, indextrend and GG_PC1 of flock i and xi the flock’s 

corresponding data characteristic metrics. Outliers, defined by 1.5 × Inter Quartile Range below the 

1st quartile and above the 3rd quartile, were removed from data metrics due to potential leverage 

and influential points affecting results of this analysis. 

Method 3: Informed weightings (DQS_Informed) 

This weighting structure was derived  taking into account: 

• Knowledge on the variation in the data characteristic metrics  

• Relationships between metrics  

• Results of PCA and MLR methods 

• The breeding objectives of each breed type  

• Industry knowledge and experience  

 

Expectations on direction of weights 
Weighting estimates from the above methods were expected as follows:  

• Positive (i.e higher values in these metrics expect to contribute to a higher DQS score) 

o Pedigree recording and depth 

o Number of animals recorded and genotypes  

o Variation in ages and birth type  

o Effective progeny numbers  

o Linkage with other flocks  

• Negative (i.e. higher values in these metrics expect to contribute to a lower DQS score)  

o Syndicate pedigree   

o Deviation from expected frequencies and distributions for traits, birth dates etc.  

o Time taken for data submission 

 

 

  



 

 

3.3 Demonstration of data quality metric reporting 

3.3.1 Data Quality Framework reporting 

Data Quality Star Rating 

To provide some leeway in the weights used to derive the DQS, a star rating system was created. Three 

methods were explored for partitioning of the DQS: a) quintiles (equal number of flocks per star 

rating), b) equal split in DQS range (0-20, 20-40, 40-60, 60-80,80-100) and c) normal distribution in 

percentiles – 10%, 20%, 40%, 20%, 10% in star ratings 1 to 5, respectively.  

New software was written to automatically generate an interim data quality score report. This data 

quality score prototype included: 

• Overall DQS 

• DQS Star rating  

• Where they sit compared to other flocks  

• New/refined metrics – e.g. recorded and linkage by trait group, day in week, timeliness of 
data. These can be incorporated into existing categories (e.g. ‘Pedigree Analysis’) or in new 
categories (e.g. “Timeliness”)  

• Highlight data recording strengths  

• Provide recommendations for where recording can be improved  
 

Identification of strengths and recommendations 

Two methods were explored to identify each flock’s strengths and areas for improvement: 1) 

according to how they rank in percentiles for each metric, or 2) absolute deviation from the flock with 

the best value for each metric. Since flocks can be placed in the same percentile for multiple metrics, 

method 2 was the more precise and the recommended method to identify data recording strengths 

and recommendations for areas for improvement.  

This algorithm was used across all flocks, even for high DQS flocks with a DQS 5 star rating. Therefore, 

if a flock that was within the top 20% of a metric, this metric was not provided as a recommendation. 

Note that the distributions of each metric had to be taken into consideration to determine the 

threshold for whether a recommendation was provided or not. For example – since fullped was 

negatively skewed with a high average of 89% for TERM flocks, the threshold was set at the median 

(reporting threshold of 97%) as opposed to the top 20% (reporting threshold of 99.5%).  

3.3.2 Feedback and road-testing with industry  

The data quality framework was presented at the AGBU Technical committee meeting on the 21st 

March 2021 and the Advisory Committee in April 2021. Following endorsement to proceed with the 

informed weightings approach, a DQS report was developed. 

DQS reports were generated for 101 flocks, and in collaboration with Sheep Genetics, were road-

tested at the following events: 

• Service provider workshop, Melbourne, 5th May 2021 (13 flocks reports) 

• Armidale Regional Forum, 19th May 2021 (8 reports) 

• Launceston Regional Forum, 25th May 2021 (8 reports) 

• Adelaide Regional Forum, 3rd June 2021 (16 reports) 



 

 

• Merinolink ram breeder workshop, 8th - 9th June 2021 (31 reports) 

• $uperborder$ Conference, 15th June(14 reports) 

• Dubbo Regional Forum, 23rd June 2021 (11 reports) 

Workshop participants that did not provide flock codes, or had insufficient data to generate RUGG 

and DQS reports, were given a generic de-identified report (MATL, TERM or MERI) for a flock selected 

at random.  

The data quality session for each of the above workshops was organised as follows:  

• Introduction to the concept of data quality in relation to the intended purpose of genetic 

evaluation systems and data requirements 

• The data quality feedback currently provided through Sheep Genetics RUGG reports 

• Introduction of the data quality score prototype 

o the development 

o proposed role within industry  

o inclusion of DQS to further enhance RUGG reports  

• RUGG reports and DQS reports were provided for each flock (nominated by the participant 

prior to the workshop) – participants were given time to read, reflect and ask questions 

individually.  

• Group discussion about the DQS and how it could be improved (prompts via anonymous live 

polling via slido) 

• Filling in of anonymous feedback sheets (example provided in Appendix 1) 

 

3.4 The value proportion for a Data Quality Score 

The relationships between genetic gains and the Data Quality Score star ratings was explored to 

demonstrate the value proposition.  

This was demonstrated by  

1) plotting of index accuracies, average index and index trend for each of the DQS star rating 

groups  

2) understanding the amount variation in genetic gains explained by the DQS  

GeneticGains =  + 1DQSi + i 

where GeneticGains is indexacc, avindex and indextrend for flock i and DQSi the flock’s corresponding 

Data Quality Score. 

 

 



 

 

4. Results 

4.1  The value proposition for current data quality metrics 

Figure 4 demonstrates the extent of variation in the data quality metrics currently calculated. While 

the distributions across the 3 analyses are overlapping, the medians of fullped and avpedknown for 

MERI were notably lower compared to the medians for TERM and MATL.  

 

Figure 4. Distributions of current data quality metrics* for flocks in the Terminal (TERM), Merino 

(MERI) and Maternal (MATL) January 2020 analysis.  

 
The genetic gains metrics were also distributed across the breeds (Figure 5). 

 

Figure 5. distributions of index accuracy (index, %), average index values (avindex, index units) and 

annual index trend (indextrend, index points/year) for the lamb eating quality index for Terminal 

(TERM) flocks, Merino Production Plus index for Merino (MERI) flocks, and Maternal Carcase 

Production index for Maternal (MATL) flocks in the January 2020 analysis. 



 

 

Pearson’s correlations were examined to firstly assess the linear relationships between the data 

quality metrics. There were low to moderately strong linear associations between all data quality 

metrics. There were strong associations between avpedknown and indexacc (0.72, 0.78 and 0.67 for 

for TERM, MERI and MATL flocks, respectively), avpedknown and overall (0.64, 0.69 and 0.60, 

respectively) and overall and indexacc (0.69, 0.8 and 0.78, respectively). However, as noted above, 

the overall index was calculated using the other metrics, and this part-whole relationship results in 

expected high Pearson’s correlations. Nevertheless, these Pearson’s correlations demonstrate that 

metrics may relate to each other and capture similar aspects of data quality. The relationships 

between metrics is further explored when combining all metrics into an overall data quality score 

(Section 4.3). 

The value proposition for current data quality metrics was demonstrated by examining the 
relationships between current data quality metrics and 1) genetic gains, 2) regression of progeny 
performance on sire EBVs, and 3) genetic parameter estimates.  

4.1.1 Data quality metrics and genetic gains  

There were significant associations between current data quality metrics and average index merit and 

index trend (Table 3).  Note that the large regression coefficient estimate and proportion of variation 

explained (R2) by the Overall index is due to its part-whole relationship with index accuracy, index 

gains and index trend.   

Most data quality metrics had a significant association with indexacc, avindex and indextrend for 

TERM flocks. Positive estimated regression coefficients suggest that indexacc, avindex and indextrend 

were significantly positively associated with: 

- the number of animals with full pedigree (fullped) 
- proportion of the drop recorded (recorded) 
- proportion linked (prop_link) 
- average effective progeny (eff) 
- completeness of pedigree in last 3 generations (avpedknown) 
- proportion of animals genotyped (ngeno, for avindex only) 

Similarly, indexacc, avindex and indextrend were negatively associated with the proportion of animals 

with no pedigree. 

There were fewer data quality metrics related to average index and index trend for MERI and MATL 

flocks. This may be a reflection on the variable breeding objectives and therefore performance 

recording used in these flocks compared to TERM flocks. The only predictor of genetic gains that was 

not significant for all breeds was M:F.  

These results reflect Stephen et al (2018) (using data from 2017 analyses), which also reported higher 

genetic gains in TERM flocks with higher proportion of fullped known, avpedknown (over the last 3 

years) and larger eff. Stephen et al (2018) also found that indexacc was a significant predictor of 

indextrend. It should be acknowledged that while indextrend and avindex appear to be the most 

appropriate metric to quantify the genetic progress of a flock, these metrics do not take into account 

other influences such as use of outside rams of high genetic merit. Therefore, it would be valuable to 

derive a data quality metric that clearly defines gains due to either a) recording within a flock, or b) 

recording outside the flock. However, this may not be possible due to the reliance of data collected 

on linked flocks to estimate breeding values.  



 

#fullped: % with full pedigree; noped: % with no pedigree; recorded: % recorded for list of traits; ncg: number of contemporary groups; eff: average effective progeny; prop_link: % linked to external flocks; M.F: male to female ratio; avpedknown: 

% with 3 generations of pedigree ; ngeno: % genotyped; overall: an index of multiple quality metrics and genetic gains metrics. Full definition provided in section 3.3 of this report. 

Table 3. The relationship index accuracy, average index and index trend* and data quality metrics# using linear regression. Significant predictors are 

provided with a regression coefficient (𝜷̂𝟏), standard errors in parentheses and coefficient of determination (R2). Metric abbreviations available in Section 

3 of this report. Non-significant (P>0.05) regression coefficients are not shown. 

  Full_ped Noped recorded Ncg Eff Prop_link M.F Avped 
known 

ngeno Overall 

INDEX ACCURACY 

TERM 𝛽̂1 (SE) 0.58 
(0.08) 

-1.01 
(0.23) 

0.34 
(0.07) 

0.47 
(0.06) 

0.09 
(0.01) 

0.12 
(0.01) 

 0.27  
(0.01) 

9.31 
(1.96) 

0.52 
(0.02) 

R2 0.12 0.05 0.07 0.11 0.10 0.28  0.51 0.06 0.56 

MERI 𝛽̂1(SE) 0.14 
(0.01) 

-0.5 
(0.05) 

 0.47 
(0.17) 

0.21 
(0.02) 

0.14 
(0.02) 

 0.25 
(0.01) 

0.49 
(0.13) 

0.82  
(0.04) 

R2 0.47 0.29  0.03 0.26 0.168  0.60 0.06 0.64 

MATL 𝛽̂1(SE) 0.29 
(0.09) 

-1.27 
(0.32) 

0.20 
(0.04) 

0.49 
(0.11) 

0.14 
(0.03) 

0.09 
(0.02) 

 0.16  
(0.02) 

 0.51 
(0.04) 

R2 0.08 0.11 0.165 0.14 0.12 0.10  0.27  0.56 

AVERAGE INDEX 

TERM 𝛽̂1 (SE) 0.31 
(0.10) 

-0.63 
(0.28) 

0.23  
(0.08) 

0.42 
(0.08) 

0.05 
(0.02) 

0.09  
(0.01) 

 0.20  
(0.02) 

6.05  
(2.23) 0.45 (0.03) 

R2 0.02 0.01 0.02 0.07 0.02 0.12  0.19 0.02 0.32 

MERI 𝛽̂1(SE)  -0.28 
(0.09) 

  0.13 
(0.04) 

0.18 
(0.03) 

  0.55  
(0.19) 

0.60 
(0.09) 

R2  0.04   0.04 0.08   0.04 0.17 

MATL 𝛽̂1(SE)    0.87 
(0.23) 

 0.15  
(0.05) 

   
0.69 (0.10) 

R2    0.10  0.07    0.25 

INDEX TREND 

TERM 𝛽̂1(SE) 0.05  
(0.02) 

-0.17 
(0.05) 

0.05  
(0.01) 

0.06 
(0.01) 

0.01 
(0.003) 

0.01  
(0.002) 

 0.03  
(0.004) 

 0.09  
(0.006) 

R2 0.02 0.03 0.03 0.04 0.03 0.06  0.10  0.34 

MERI 𝛽̂1(SE) 0.02  
(0.003) 

-0.05 
(0.02) 

   0.01  
(0.006) 

 0.03  
(0.005) 

0.07  
(0.04) 

0.12  
(0.02) 

R2 0.11 0.04    0.03  0.11 0.02 0.21 

MATL 𝛽̂1(SE)   0.02  
(0.009) 

      0.06  
(0.01) 

R2   0.05       0.18 
*indexes used were lamb eating quality index for TERM flocks, Merino Production Plus index for MERI flocks, and Maternal Carcase Production index for MATL flocks in the January 2020 analysis.  

 



 

 

Interestingly, having more contemporary groups (ncg) also predicted an increase in indexacc for all 

breeds. This may potentially be a reflection of these breeders recording contemporary groups more 

accurately. However, the current advice provided to breeders is that having more contemporary 

groups could result in smaller group sizes therefore less ability to accurately compare animals. This 

assumption of smaller group sizes results in less effective data can be removed if a measure of 

contemporary group sizes, and sire representation across contemporary groups, is captured as a data 

quality metric. In addition to this, the consistency of contemporary group numbers may be a metric 

of interest, under the assumption that mob management does not change considerably over time. 

Therefore, this current ncg metric can be further refined by taking into account size of contemporary 

groups and change in contemporary groups over time.  

Currently the recorded metric reflects the proportion of animal in the drop with an observation for at 

least one trait in the trait list specified. This is currently the same for all breed types but would be 

better if customised to reflect traits important to the breeding objectives of the breed. 

While there was only a small proportion of the variation explained by the data quality metrics, this 

analysis demonstrates that 1) the current data quality metrics demonstrate the large amount of 

variation in the quality of data submitted, and 2) data quality metrics play an important role in 

determining potential rates of genetic gain. Therefore, there is value in providing this feedback to 

breeders so they can identify areas for improvement to maximise genetic gain.  

There are also opportunities to further refine these current data quality metrics (for example, 

contemporary group numbers and structure as discussed above). These current data quality metrics 

also do not capture the timeliness of data submission and the variability (or stability) of data captured 

over time. In addition to this, these metrics can more appropriately reflect the specific traits of 

importance to the different breed types and their breeding objectives. It is recommended that the 

current data quality metrics be further refined, and a new overall metric developed (independent of 

average index and index trend) and refined weightings. 
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4.1.2 Data quality metrics and prediction of progeny performance  

Step 1. Progeny performance was pre-adjusted using the standard OVIS systematic effect adjustments 

and then regressed on sire EBVs. These raw regression coefficients exhibit a lot of noise; this may be 

a reflection of not taking into account use of home-bred versus outside rams in this analysis, as well 

as inability to account for selection or potential preferential mating. Nevertheless, these extreme 

values were not frequently observed, and as extreme observations are known to have a significant 

influence on the results due to leverage, and thus these outliers were removed from the next step of 

analysis. The regression coefficients used were restricted to between -2 and +2 as shown below (Table 

4 and Figure 6). This only removed 2 flocks from TERM. 

 

 

 

 

 

 

 

 

 

 

 

 

Step 2. Simple linear regression was used to explore the relationship between data quality metrics and 

ability to predict adjusted progeny performance (Table 5).  It should be noted that the significant 

relationships are largely due to high leverage. For example, the relationship between M:F and 

regression coefficients for pemd in TERM may be due to the one influential point of low M:F value. 

 

 

Figure 6. Distributions of cleaned regression 

coefficient estimates from progeny 

performance regressed on sire EBVs for 

terminal (TERM), merino (MERI) and 

maternal (MATL) analyses 

Table 4. Summary statistics for 

cleaned regression coefficient 

estimates from progeny performance 

regressed on sire EBVs for terminal 

(TERM), merino (MERI) and maternal 

(MATL) analyses 

 Mean Min Max SD  

  pemd    

TERM 0.19 -2.00 2.00 0.77  

MERI 0.10 -1.9 1.84 0.84  

MATL 0.07 -1.75 1.88 0.85  

  pwt   

TERM 0.11 -1.79 1.85 0.50 

MERI 0.32 -1.59 1.37 0.49 

MATL 0.07 -1.75 1.88 0.85 

 



 

 

Table 5. The relationship between ability to predict progeny performance using sire EBVS and data quality metrics using simple linear regression. Significant 

predictors are provided with regression coefficient (𝜷̂𝟏, SE), standard errors in parentheses and coefficient of determination (R2). Metric abbreviations 

available in Section 3 of this report. 

 
  Full_ped Noped recorded Ncg Eff Prop_link M:F Avpedknown ngeno Overall IndexAcc AvIndex IndexTrend 

pemd 

TERM 𝛽̂1 (SE)       1.55 
(0.74) 

      

R2       0.024       

MERI  No sig. predictors 
MATL  No sig. predictors 

pwt 

TERM 𝛽̂1 (SE)     0.004 
(0.002) 

-0.004 
(0.001) 

       

R2     0.02 0.03        

MERI 𝛽̂1 (SE)            0.02 
(0.006) 

 

R2            0.23  

MATL 𝛽̂1 (SE) -0.04 
(0.02) 

            

R2 0.28             

 

This analysis shows that there is little evidence that there is a relationship between data quality metrics and the ability to predict progeny performance with 

sire EBVs. The ability to understand the relationships between current data quality metrics and ability to predict progeny performance with sire EBVs may be 

limited by the number of flocks used in the analysis, the variable breeding objective for each individual flock and the amount of recording to reflect the 

breeding objectives. Future investigations can examine alternative traits, which may be more relevant for the different breeds. As discussed in Section 5.1, 

there are opportunities to develop new data quality metrics, or refine the current data quality metrics to more appropriately reflect the recording strategies 

of each flock. These new metrics can then be explored to understand its value to prediction of genetic merit.   

There was evidence of non-linear relationships between data quality metrics (results available on request). This was explored to understand if there was an 

optimum data quality metric value that allows prediction of progeny performance as expected. For example, for MATL, an overall measure of 40 to provide 

an expected regression coefficient of 0.5. Again, since this analysis did not take into account use of home-bred versus outside rams in this analysis, selection 

or potential preferential mating, these results should be interpreted with caution. 



 

 

4.1.3 Data quality metrics and (within flock) genetic parameter estimates 

Genetic parameters were estimated on an individual flock level, using post-weaning eye muscle depth 

and post-weaning weight as examples. Figures 7 and 8 demonstrate that there was variation in all 

genetic parameters, and that there were overlap across the 3 breed types. Summary statistics for 

these genetic parameter estimates are provided in Table 6. 

  

Figure 7. Within-flock genetic parameter estimates for post-weaning eye muscle depth, for terminal 

(TERM), merino (MERI) and maternal (MATL) breeds. 

Abbreviations: va: additive genetic varianc; ve: residual variance; vp: phenotypic variance; h2: heritability estimate 

 

  

Figure 8. Within-flock genetic parameter estimates for post weaning weight, for terminal (TERM), 

merino (MERI) and maternal (MATL) breeds. 

Abbreviations: va: additive genetic variance; ve: residual variance; mpe: maternal permanent environment effect; vp: phenotypic 

variance; h2: heritability estimate; c2:  permanent environmental effect of the dam



 

 

Table 6. Summary statistics of genetic parameter estimates for post weaning eye muscle depth (pemd) and post weaning weight (pwt), calculated on a 

within flock basis for 336 terminal flocks (TERM), 156 merino flocks (MERI) and 111 maternal flocks (MATL). 

  pemd 

 va  ve  vp  h2  c2 

 Mean Min Max sd  Mean Min Max sd  Mean Min Max sd  Mean Min Max sd  Mean Min Max sd 

TERM 1.14 0.00 6.80 0.96  3.09 0.88 8.11 1.28  4.23 1.46 9.05 1.47  0.26 0.00 0.79 0.17  
- MERI 0.89 0.00 3.28 0.87  2.86 0.36 5.74 1.35  3.74 0.36 6.28 1.41  0.23 0.00 0.84 0.20  

MATL 0.99 0.00 4.18 1.00  2.79 0.97 7.23 1.16  3.77 1.50 7.59 1.31  0.24 0.00 0.80 0.20  

  pwt 
TERM 11.27 0.00 61.62 11.33  35.95 5.11 101.56 14.35  55.35 15.55 146.23 19.15  0.20 0.00 0.76 0.17  0.15 0.00 0.49 0.10 
MERI 8.53 0.00 22.40 4.75  12.63 4.64 31.34 4.91  23.80 12.49 48.95 7.51  0.35 0.00 0.69 0.16  0.10 0.00 0.47 0.10 
MATL 8.00 0.00 36.35 6.82  22.68 3.31 53.57 9.54  34.86 12.29 79.17 13.35  0.23 0.00 0.88 0.16  0.12 0.00 0.28 0.07 

 

There was considerable variation in genetic parameter estimates for each flock. For pemd, additive genetic variance, residual variance, phenotypic variance 

and heritability estimates align across the different breeds. Variability of estimates were also comparable. Compared to estimates in literature, the average 

within-flock heritability estimate for MERI reflects the across-flock estimate of 0.24 (0.04), reported for all flocks in the MERI analysis (Huisman et al, 2008). 

The average within-flock heritability estimate for TERM flocks are marginally lower than the estimate of 0.32 (0.01) for TERM flocks reported by Brown et al 

(2015).  

For pwt, heritability estimates were higher for MERI due to the lower phenotypic variances, although the permanent environmental effect of the dam was 

consistent across all breeds. These results reflect the estimates reported by Huisman et al. (2009), where across-flock heritability estimate of 0.76 (0.05) was 

reported for flocks in the MERI analysis. For c2, Huisman et al. (2008) reported an estimate of 0.23 (0.06) when all available animals (with and without full 

pedigree) were included in this analysis, compared to a c2 estimate of 0.04 (0.05) if only animals with known sire and dams were included in analysis.  

TERM flocks had more variation in all variance estimates compared to other breed types. However, the proportion of phenotypic variation attributed to 

genetic variation (i.e. h2) for TERM was similar to MATL. The lower pwt heritability estimates for TERM reflect the 0.17 (0.01) estimate reported by Brown et 

al (2015). 

While there are some noticeable differences across breeds, the overlapping distributions indicate that there are no significant differences in genetic parameter 

estimates for each trait across the different breeds. 



 

 

Simple linear regression was used to explore the relationship between data quality metrics and genetic parameter estimates (Table 7). While some current 

data quality metrics were statistically significant predictors of within-flock heritability estimates, these effects were extremely small. There was also no metric 

that was consistently of importance across breed types.  

Table 7. The relationship within-flock heritability estimates and data quality metrics using simple linear regression. Regression coefficient estimates (𝜷̂𝟏) 

and coefficient of determination (R2) provided for significant predictor variables 

  Full_ped Noped recorded Ncg Eff Prop_link M.F Avpedknown ngeno Overall IndexAcc AvIndex IndexTrend 

pemd 

TERM 𝛽̂1  (SE)    -0.006 
(0.002) 

         

R2    0.03          

MERI 𝛽̂1 No significant predictors 

R2 

MATL 𝛽̂1  (SE)   -0.003 
(0.001) 

  -0.002 
(0.0007)  

     0.003 
(0.001)  

 

R2   0.048   0.054      0.070  

pwt 

TERM 𝛽̂1  (SE)    -0.005 
(0.002) 

 -0.001 
(0.0005) 

  0.009 
(0.004) 

  -0.003 
(0.001) 

 

R2    0.023  0.025   0.055   0.048  

MERI 𝛽̂1     0.002 
(0.001) 

        

R2     0.040         

MATL 𝛽̂1 No significant predictors 

R2 
 

Non-linear relationships were also explored (table and graphical summaries available on request). Again, while there were few metrics had significant 

relationships with within-flock heritability estimates, these effects were extremely marginal and inconsistent across breed types. 
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4.2 Development and refinement of current data quality metrics  

4.2.1 Data quality framework requirements 

A review was conducted on the existing frameworks available to report the data quality for genetic 

evaluation systems (available on request), in particular the review of the Sheep Genetics Data Quality 

Grades by Martin (2014). Following discussions with MLA and Sheep Genetics extension, adoption and 

development officers and research scientists who use the current RUGG reports as an extension tool, 

an updated framework to report data quality metrics should take into account the following aspects:  

• Clear objectives about why the data is being characterised, and how the framework will be used 

• Transparency about the scientific rigour behind how the metrics are calculated and its value to 

genetic gains 

• Relevance to the breeding objectives of each breed type  

• A dynamic, flexible framework with metrics that are easily interpreted by industry   

• Interpretable metrics, realistic actions, goals and benchmarks, as well as tools to achieve them 

 

4.2.2 Proposed data quality framework 

The objectives of this proposed data quality framework are to: 

• Understand the data submitted, and characterise its usefulness to genetic evaluation systems.  

The benchmarking of the quality is important with the increase in phenotypes and genomic data. 

• Identify how breeders can improve data submission to improve potential genetic gain  

• Identify and highlight the breeders who make the effort to collect good data.  

This may be useful to decide whether a breeder is selected to contribute to research programs, or 

contribute to the reference population 

• Provide increased transparency to ram buyers about the data used to calculate EBVs 

Besides deciding breeder contribution to research programs or reference populations, this framework 

and the metrics calculated can be used internally for checking data pre-analysis (‘internal policing’). 

These metrics may also be helpful in determining how data contributing to the reference population 

is valued and rewarded.  

 

The proposed Data Quality framework is depicted in Figure 9. There are 3 main components— quality, 

quantity and timeliness (defined below). Each circle represents one component that characterises 

data, and the current stoplight metrics calculated that best fit each component. The size of the circles 

reflect the levels of importance to estimating genetic merit (further discussed below). The overlapping 

of circles acknowledge that there are difficulties in developing metrics that clearly separate categories.  
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Figure 9. A proposed Data Quality framework to characterise data used in sheep genetic 

evaluation systems 

The components can be described as follows: 

• Quantity 

How much data is submitted, how much data is being used, and completeness of data 

submitted.  

• Quality 

How good is the data for its intended use? This component attempts to capture how accurate 

the data is, as well as the data structure required for genetic evaluation. That is 

o Accuracy of the data submitted (i.e. pedigree, genotypes, phenotypes and fixed effects 

(including contemporary group)) 

o Data structure for unbiased evaluation of genetic merit, including 

▪ sire representation and linkage across contemporary groups, within flock, and across 

flocks 

▪ unbiased selection of recording (partial recording and submission) 

• Timeliness 

When or how soon after data collection the data is submitted.  

The time between data collection and submission may provide an indication of the level of 

engagement by flocks and breeders.  
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4.2.3 Refined and additional metrics 

The following metrics were calculated to measure the quantity, quality and timeliness of each flock’s 

data. This results section demonstrates variation across flocks. 

Quantity metrics 

Figure 10 demonstrates the variation in these new and refined data quantity metrics. 
 

 

 Figure 10. New and refined data quantity metrics for flocks in the terminal (TERM), merino (MERI) 

and maternal (MATL) analyses. 

The average flock size (cnt) was largest in MERI (average of ~700 animals) compared to MATL (~ 500) 
and TERM (~300). MERI and MATL flocks were also the most variable in size (SD of 640 and 726, 
respectively) compared to TERM flocks (SD of 270). 

The previously calculated recorded metric (which included all traits of interest) showed similar 
averages (~93%) and variation (SD of ~9%) averages across the three breeds. When the level of 
recording was classified by trait group, there were more distinct differences across breeds. While 
there were overlapping distributions across breed, the proportion of animals recorded for each trait 
group aligned with the general breeding objectives of each breed type:  

• All breed types had a high proportion of animals recorded for weight traits (rec_weights). MERI 
flocks exhibiting the lowest proportion of weight trait recordings and also the most variability 
across flocks within the breed type (mean ± SD of 86.8 ± 19.1% for MERI, 94.9 ± 8.2% for TERM, 
and 94.2 ± 9.6% for MATL). The high proportion of weight trait recordings across all breeds may 
be due to weights being relatively easy to record compared to other traits.  

• MATL had a greater average proportion of animals with reproduction traits recorded (rec_repro) 
and less variation compared to other breed types (mean of 8.2%, compared to 3.6% for MERI and 
1.7% for TERM).  

• MERI had a greater proportion of animals with wool traits recorded (rec_wool) (mean of 69.3%, 
compared to 0.36% for TERM and 15.3% for MATL), which is as expected. There was also more 
variation in rec_wool for TERM and MATL flocks compared to MERI flocks.  

 

These results show that a quantity metric that describes the level of recording for the different 

breeding objectives/trait groups is more appropriate than a metric that covers a generic list of traits. 

Therefore, different data quantity metrics may be required for each breed type.  
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Quality metrics 

The variation in these refined and additional quality metrics are demonstrated in: 

• Figure 11:  

• syndicate pedigree (synped) 

• variation in age (ages) 

• variation in birth type (bt) 

• average linkage by trait group (linkage_CA, linkage_WT, linkage_RP, linkage_FW)  

• birth date days of the week (dayinweek) 

• Figure 12: 

• chi-squared statistics – for digits in the units and tenth place value, for all weight traits 
recorded by each breed. 

• Figure 13: 

• maximum frequency (maxfreq) of a single value, for weight traits recorded by each breed.  

All of these additional data quality metrics demonstrated considerable variation, and there were also 

distinct differences between breeds.   

 

 
 Figure 11. New and refined data quality metrics for flocks in the terminal (TERM), merino (MERI) 

and maternal (MATL) analyses. 

 
Figure 11 shows that MERI flocks did not have as much variation in age (ages) and birth type (bt) 

recordings compared to the other breed types. There was also more variability within MERI flocks. On 

average, MERI flocks had 39.4±27.4% (mean±SD) of animals in contemporary groups (CGs) that had 

variation in ages, and 31.0±32.1% of animals in CGs with variation in birth type recordings. In 

comparison, MATL flocks average for ages was 79.4±15.7% and 73.7 ± 23.9% for bt, and TERM flocks 

(ages: 75.5±17.7%, bt: 53.2 ±29.0%). This suggests that date of birth and birth type is not generally as 

well recorded in MERI flocks.  

There was also more variation in synped in MERI compared to MATL and TERM (SD 12.3% vs. 4.6% 

and 2.8%, respectively). The greater amount of syndicate pedigrees used in MERI also reflects the 

amount of pedigree recorded (fullped) above. Therefore, the quantity and quality of pedigree 

recording in MERI in general is below that of TERM and MATL flocks based on these metrics.  

The amount of linkage to other flocks varied depending on trait group. The average linkage by carcase 

traits (linkage_carcase) and weight traits (linkage_weights) were similar across breeds. Meanwhile, 

the amount of linkage for reproductive traits (linkage_repro) was on average higher for MATL flocks, 

with MATL and MERI flocks exhibiting a large amount of variation (SD 0.22 and 0.20, respectively) 

compared to TERM flocks (SD 0.11%). Linkage for fleece weight traits (linkage_wool) was highest for 
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MERI flocks. These results were as expected due to the breeding objectives for each breed type. 

Similar to the quantity metrics by trait groups, these results show that a quality metric that describes 

the data structure and ability to use other flock information to derive breeding values should take into 

account the different breeding objective/trait groups. 

The days of the week metrics provide an indication of how much birth dates deviated from 

expectation. On average, MERI flocks exhibited a greater deviation from what was expected for birth 

dates recorded in the week, which reflects the ages metric. Since MERI flocks had date of birth records 

less evenly distributed across the weekly time periods, this indicates lower accuracy of actual date of 

birth recording in these flocks.  

The chi-squared statistics calculated provide an indication of how much digit frequencies deviate from 

what is expected (Figure 12). Chi-squared statistics were calculated for the digits in the units place 

value, as well as the tenths place value, to account for the potential rounding of observations.  

 

Figure 12. New and refined data quality metrics, expressed as a chi-squared statistic for digits 
recorded in the units (top plot) and tenths (bottom plot) place values, for flocks in the terminal 

(TERM), merino (MERI) and maternal (MATL) analyses 
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The trait that had the most variation in deviation from expected digit frequencies in the units place 

value was bwt (bwt_chi_units), particularly for MATL flocks. This is due to bwt mostly being single 

digit (with an average of ~4.5 kg). Therefore, the expected frequency of 10% for each digit appearing 

for bwt was not appropriate.  

The majority of chi-squared values for all traits were less than the chi-squared critical value of 3.325, 

which suggests that the frequency of digits recorded for these weight traits were as expected. 

Therefore, this metrics appears to have limited value as feedback to breeders, but can still be used as 

a way to highlight any suspicious data with repeated digits.  

The maximum frequency of any one observation is another metric that may be used to detect any 

suspicious repeated recording (Figure 13).  

 

Figure 13. New data quality metrics,, expressed as the maximum frequency (%) of a single value 

appearing, for flocks in the terminal (TERM), merino (MERI) and maternal (MATL) analyses.  

On average, in MERI flocks, 10% of records were the same for bwt and 12% of records was the same 

for ywt. MATL flocks had an average of 8% of the same records for bwt and 10% of the records were 

the same for ywt. All but 1 flock had a maximum frequency of under DataAudit’s 25% ‘threshold’ for 

reporting maximum frequencies. There was 1 MERI flock that had 43% of bwt records of 4.4kg.  
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Timeliness metrics 

All timeliness metrics exhibited variation between flocks (Figure 14). On average, the age at which 

animals first appeared in the pedigree was highest in MERI flocks (average of 406 days, compared to 

268 days in TERM flocks and 255 days in MATL flocks).  

 

Figure 14. New and refined data timeliness metrics, describing timeliness of pedigree and trait 

data submission, for flocks in the terminal (TERM), merino (MERI) and maternal (MATL) analyses. 

There was large variation in the amount of time taken to submit trait data after measuring. All breed 

types took the same amount of time to submit weight data (time_weights) (average of 111 days to 

126 days across breeds) and also carcase data (range 43 days to 64 days). Reproduction data 

(time_repro) was submitted earlier for TERM flocks (mean 14 days) compared to MERI (38 days) and 

MATL flocks (54 days). On average MATL flocks submitted wool trait data (time_wool) earlier (44 days) 

compared to MERI flocks (82 days). The time taken to submit wool trait data was also more variable 

for MERI flocks compared to MATL flocks (SD 78 days compared to 63 days, respectively).  

 

Relationships between metrics  

Pearson’s correlations were calculated to understand pairwise linear relationships all metrics. Only 

the Pearson’s correlations (r) greater than 0.5 are outlined in this report (other relationships available 

on request).  

Between Quantity metrics  

• The generic recorded metric was highly correlated with rec_weights for TERM (r = 1.00) and 

MATL (r = 0.99). The strength of this linear relationship was less for MERI (r = 0.61). Recorded was 

also highly correlated to rec_wool in MERI (r = 0.61) 

• The degree of full pedigree (fullped) was highly correlated with depth of pedigree (avpedknown) 

(0.73 in TERM to 0.80 in MERI). 

• The proportion of animals with no pedigree (noped) was also moderate to highly negatively 

correlated with fullped and avpedknown (ranging from -0.52 to -0.75).  

• The number of contemporary groups (ncg) reflect overall flock size (cnt) for all breeds, with r 

ranging from 0.58 for MERI to 0.80 for MATL. 
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3Between Quality metrics 

• Linkage of weight traits (linkage_weights) were highly correlated to linkage for carcase traits 

(linkage_carcase) for MATL (r = 0.80) and TERM (r = 0.80)  

• The amount of linkage of wool traits (link_wool) was also moderately correlated to link_weights 

in MERI (r = 0.53) 

• In all breed types, ages was negatively correlated with daysinweek (ranging from -0.67 in TERM 

to -0.82 in MERI). This is as expected, as less variation in ages also reduces the likelihood of 

variation in days on the week/month when birth dates are recorded.  

• Ages was moderately correlated with bt in MERI (r = 0.51) and MATL flocks only (r = 0.53)  

Between Timeliness metrics 

• Early submission of pedigree data (ageped) was moderate to highly correlated with the time 

taken to submit weight trait data (time_weights), for all 3 breeds (range r = 0.53 – 0.79). This is 

as expected as weights would generally be submitted at the same time as pedigree. 

• The time taken to submit weight (time_weights) and wool traits (time_wool) was also 

moderately high for MERI (r = 0.64), and also between weight (time_weights) and carcase traits  

(time_carcase) in TERM (r = 0.61) 

Between all metrics across components  

There were also moderately strong relationships across components.  

• Fullped had moderately strong relationships between ages (r = 0.71 for MATL, r =0.56 for MERI) 

and bt (r = 0.52 for MATL, r = 0.62 for MERI) 

• The level of recording (rec_repro), time taken to submit (time_repro) and linkage accuracy of 

reproduction (link_repro) were all highly correlated for TERM (range 0.69-0.64) and MERI (0.68-

0.72).  

These pairwise analyses of metrics shows that 1) there are opportunities to minimise the number of 

metrics used in this proposed framework; and 2) the metrics quantifying quantity, quality and 

timeliness may not be completely independent of each other. Multiple metrics need to be considered 

simultaneously to better understand how the metrics relate to each other.  
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4.2.4 The Data Quality Score (DQS)  

Current data quantity and quality metrics were refined, and additional metrics were developed 

(characterising data quantity, quality and timeliness). These metrics were related to each other and 

potentially could be capturing similar data characteristics. Therefore, the approach of this current 

milestone was to develop an overall DQS score that simultaneously encompassed all data quantity, 

quality and timeliness metrics (i.e. across all components, as opposed to within each component, as 

depicted in Figure 15). Combining all metrics across all components into a single value score is also 

easier to interpret compared to 3 separate data quantity, quality and timeliness scores, which would 

then need to be further combined into an overall score.  

 

Figure 15. Schematic of development of the overall Data Quality Score: the metrics used and 

weightings for each metric 

Three options were explored to decide which data characteristic metrics contributed to the overall 

Data Quality Score, and their level of importance (weightings).  
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Method 1: Principal Component Analysis (DQS_PCA) 

There were 347 Terminal, 44 Maternal and 214 Merino flocks that were used to derive PCA loadings. 

The first principal component (PC1) explained between 25% to 30% of the total variation (Table 8).  

Table 8. Principal component (PC) loadings (% of variance explained) explored as metric weights 

for calculation of the overall Data Quality Score, trained on 347 Terminal, 44 Maternal and 214 

Merino flocks  

TERMINAL (n = 347) MATERNAL (n = 44) MERINO (n = 214) 

PC1 (25.3%) PC1 (31.3%) PC1 (25.6%)  

Metric Weight Metric Weight Metric Weight 

ageped -0.38 avpedknown 0.35 avpedknown 0.38 

avpedknown 0.36 ageped -0.34 fullped 0.38 

time_weights -0.35 fullped 0.31 ages 0.36 

time_carcase -0.30 link_repro 0.28 bt 0.34 

fullped 0.27 eff 0.27 dayinweek -0.31 

eff 0.26 time_carcase -0.26 ageped -0.29 

link_weights 0.26 dayinweek -0.25 rec_repro 0.27 

bt 0.26 time_weights -0.25 eff 0.26 

dayinweek -0.22 rec_weights 0.23 link_weights 0.20 

link_repro 0.22 link_wool 0.22 link_wool 0.19 

cnt 0.21 link_carcase 0.21 time_weights -0.15 

ngeno 0.18 link_weights 0.19 time_wool -0.13 

rec_weights 0.17 ages 0.19 synped -0.13 

ages 0.12 time_repro -0.18 ngeno 0.12 

link_wool 0.08 synped -0.17 link_carcase 0.08 

rec_wool 0.07 ngeno 0.13 rec_wool 0.03 

synped -0.03 rec_repro 0.13 rec_weights 0.01 

  time_wool -0.11   

  rec_wool 0.01   

 

The amount and depth of pedigree (fullped and avpedknown) were given the highest weightings 

across all breeds. In general, the direction of the weights were as expected – positive weightings, and 

hence higher DQS scores, were allocated for more pedigree, effective progeny numbers, increased 

linkage and variation in date of births. Negative weightings, resulting in lower DQS scores, were 

allocated for less timely submission of pedigree and trait data, more syndicate pedigree, and less 

variation in DOB days of the week. Therefore, capturing the variation in data characteristic metrics 

through PC1 provide reasonable weighting estimates to capture flocks with good data characteristic 

metrics (i.e. high DQS scoring flocks).  

Use of the second principal component (PC2) was explored, as PC2 explained a further 11% to 14%. 

The emphasis placed on metrics for PC2 were in the opposite direction of PC1, which is expected since 

PC1 and PC2 were constructed as independent, orthogonal variables. Therefore, use of PC2 weightings 

capture the flocks with suboptimal data characteristic metrics (i.e. low DQS scoring flocks). The 

simultaneous use of both PC1 and PC2 weightings, further weighted by the proportion of variance 

explained, was also explored but yielded the same results as use of PC1 only (results not shown). 
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Method 2: Stepwise MLR (DQS_indexacc, DQS_avindex, DQS_indextrend, DQS_GG) 

Index accuracy, average index and index trend were used to ‘train’ the DQS. Since there are benefits 

and limitations for use of these metrics, a new ‘gains’ metric was derived to capture all aspects of 

index accuracy, average index and index trend (Table 9), named GG_PC1.  All genetic gains metrics 

were fairly equally weighted in the overall genetic gains metric. This also resulted in GG_PC1 being 

strongly correlated with all gains metrics, with Pearson’s correlations ranging from 0.80 to 0.86 for in 

Terminal flocks, 0.74 – 0.85 for Maternal flocks and 0.67 – 0.81 in Merino flocks.  

Table 9. An overall genetic gains metric combining index accuracy, average index and index trend 

through the first principal component (PC1)   

TERMINAL (n = 396) MATERNAL  (n = 91) MERINO (n = 256)  

PC1 (69.8%) PC1 (61.2%) PC1 (51%)  

Metric Weight Metric Weight Metric Weight 

Indexacc 0.60 Indexacc 0.53 Indexacc 0.66 

Avindex 0.58 Avindex 0.59 Avindex 0.52 

Indextrend 0.55 Indextrend 0.61 Indextrend 0.55 

 

Stepwise regression analysis of indexacc and genetic gains metrics was conducted for metric reduction 

and estimation of weights for data characteristic metrics (Table 10). Model fit was assessed by 

examining residual plots. Between 23% to 86% of variation in indexacc and genetic gains metrics was 

explained, with indexacc explaining the most across all breed types (range 80 – 86%). This is due to 

indexacc being the metric most independent of breeder selection decisions, which was not accounted 

for in this analysis.  

In general, the direction of the weights were also as expected, except for some metrics (highlighted 

yellow in Table 10). Again, this may be a reflection of genetic gains being influenced by factors beyond 

data characteristic, in particular selection decisions. Training against indexacc provide the most 

reasonable weighting estimates in the right direction.  These results allow decomposition of indexacc, 

which can provide a basis for informing ram breeders for how data recording can be improved.  
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Table 10.  Partial regression coefficients and coefficient of determination (R2
adj) from stepwise regression analysis of index accuracy, average index, index 

trend, and all 3 combined (GG_PC1). Metrics in red text have partial regression coefficients that are not in the expected direction 

Breed Indexacc (R2
adj  = 0.80) Avindex (R2

adj  = 0.47) Indextrend (R2
adj  = 0.38) GG_PC1 (R2

adj  = 0.70) 

TERM 
(n = 354 flocks) 

Metric 𝜷̂ SE Metric 𝜷̂ SE Metric 𝜷̂ SE Metric 𝜷̂ SE 

avpedknown 3.38 0.25 avpedknown 3.60 0.45 link_weights 0.36 0.06 avpedknown 0.67 0.05 

link_weights 1.70 0.18 link_repro 1.41 0.32 link_repro 0.24 0.07 link_weights 0.38 0.05 

ngeno 1.82 0.25 ngeno 1.83 0.53 ngeno 0.28 0.09 ngeno 0.43 0.07 

rec_weights 0.91 0.17 ages -1.19 0.39 rec_wool -0.16 0.07 link_repro 0.21 0.04 

ages 0.73 0.21 fullped -1.15 0.45 time_weights -0.12 0.06 rec_weights 0.15 0.04 

dayinweek 0.65 0.22 dayinweek -1.02 0.44 fullped 0.14 0.07 time_weights -0.14 0.05 

ageped -0.54 0.20 link_weights 0.83 0.37 rec_weights 0.10 0.05 rec_wool -0.09 0.04 

cnt 0.35 0.15 time_weights -0.75 0.35 avpedknown 0.12 0.08    

fullped 0.36 0.22 rec_wool -0.62 0.29 link_wool 0.10 0.07    

M.F 0.51 0.32    rec_repro -0.10 0.07    

 Indexacc (R2
adj  = 0.86) Avindex (R2

adj  = 0.43) Indextrend (R2
adj  = 0.39) GG_PC1 (R2

adj  = 0.61) 

MATL 
(n = 70 flocks) 

Metric 𝜷̂ SE Metric 𝜷̂ SE Metric 𝜷̂ SE Metric 𝜷̂ SE 

fullped 3.02 0.46 link_weights 6.86 1.46 time_weights -0.31 0.12 link_weights 0.52 0.14 

rec_weights 1.07 0.30 fullped 4.95 1.53 link_repro 0.34 0.13 cnt 0.30 0.10 

rec_repro 0.92 0.32 cnt 2.93 1.03 fullped -0.38 0.15 rec_weights 0.33 0.11 

M.F 0.74 0.26 link_wool -2.63 1.25 rec_wool -0.24 0.11 link_wool -0.26 0.11 

link_weights 1.11 0.44 eff -2.80 1.44 rec_weights 0.23 0.12 ngeno -0.22 0.11 

dayinweek 1.07 0.46 bt -2.42 1.47 cnt 0.20 0.10 synped -0.19 0.09 

eff 0.76 0.35 rec_repro 2.07 1.28 synped -0.15 0.11 time_weights -0.21 0.11 

link_repro 0.71 0.36 ngeno -1.50 1.11    link_repro 0.28 0.15 

ageped -0.69 0.43       rec_repro 0.20 0.13 

time_repro -0.47 0.30          

cnt 0.34 0.24          

 Indexacc (R2
adj  = 0.83) Avindex (R2

adj  = 0.23) Indextrend (R2
adj  = 0.26) GG_PC1 (R2

adj  = 0.61) 

MERI 
(n = 214 flocks) 

Metric 𝜷̂ SE Metric 𝜷̂ SE Metric 𝜷̂ SE Metric 𝜷̂ SE 

avpedknown 2.52 0.38 link_wool 4.10 1.14 ngeno 0.45 0.13 ngeno 0.25 0.06 

rec_wool 1.57 0.26 rec_wool 2.83 1.02 ageped 0.57 0.17 rec_wool 0.25 0.06 

link_wool 1.14 0.29 ngeno 2.26 0.97 link_repro 0.48 0.15 avpedknown 0.31 0.09 

fullped 1.66 0.42 ageped 2.40 1.03 link_weights 0.72 0.22 link_repro 0.28 0.09 

rec_repro 1.29 0.36 link_repro 2.45 1.07 fullped 0.42 0.15 ages -0.17 0.07 

ageped -0.81 0.28 ages -1.88 1.04 time_weights -0.38 0.15 fullped 0.22 0.10 

link_repro 1.08 0.39 cnt 1.65 0.93    ageped 0.15 0.07 

ngeno 0.63 0.24 M.F 1.50 0.87    link_wool 0.20 0.12 

eff 0.82 0.33       link_weights 0.26 0.18 

synped -0.65 0.26       rec_repro 0.13 0.09 

ages -0.72 0.30       time_weights -0.09 0.06 

rec_weights 0.79 0.33          
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Method 3: Informed weightings  

This weighting structure was derived using taking into account the previous methods outlined, as well 

as understanding variation in each metric, relationships between metrics, and the breeding objectives 

of each breed type (Table 11). More weighting was placed on metrics that required the most 

improvement. For example, the amount of full pedigree was notably lower for MERI flocks compared 

to TERM and MATL flocks. Therefore, a higher weight was placed on this metric for MERI flocks. 

 

 

Table 11. The data quantity, quality and timeliness metrics, and their relative weightings, 

contributing to the proposed Data Quality Score. 

< to remain confidential> 

 

DQS Calculation 

The metrics and their weightings derived from the 3 methods described were used to calculate an 

overall DQS: 

DQS = Weight1 × Metric1 + Weight2 × Metric2 + … + Weightn × Metricn 

Where DQS is the data quality score, weightn is the weight for scaled metric n.  

For ease of interpretation, the Data Quality Scores were then further rescaled so that scores ranged 

from 0 to 100 (Figure 16). (Note that scores were later scaled to range between 1 and 99 during 

implementation phase).  

  



 

Page 43 of 66 

Figure 16. Distributions of a) raw and b) scaled Data Quality Score (DQS) scores, derived from 

principal component analysis (DQS_PCA), trained on index accuracy, average index, index trend, a 

combination of all three (DQS_indexacc, DQS_avindex, DQS_indextrend, DQS_GG_PC1) and 

informed weightings (DQS_Informed) 

a)  

b)  

The correlations between the scaled DQS scores were generally high (Figure 17), especially for 

Terminal flocks (range of 0.75 to 0.97). The correlations were not as strong for Merino and Maternal 

flocks but were generally still high except for indexes derived from average index and index trend 

(DQS_avindex, DQS_indextrend). This may be due to the varying breeding objectives and indexes used 

in Merino and Maternal Flocks. If disregarding the DQSs derived from average index and index trend, 

Pearson’s correlations between the remaining indexes range from 0.86 to 0.93 for Maternal flocks, 

and 0.82 to 0.96 for Merino flocks. Therefore, there is limited re-ranking of flocks for the DQSs are 

derived independent of metrics that describe genetic gains (based on specific index calculations).  

The DQS_PC1 and DQS_Informed scores were derived independently of, but related to, metrics that 

describe genetic gains. Pearson’s correlations between these 2 DQS methods and genetic gains 

metrics ranged from 0.5-0.81 for Terminal flocks, 0.11 to 0.80 for Merino flocks and 0.4 to 0.86 for 

Maternal flocks (Figure 17). This highlights that flocks with higher DQSs also made greater genetic 

gains, which demonstrates value for an overall DQS score. This will be further highlighted in Section 4, 

when recommended format and scales are provided.  
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Figure 17. Pearson’s correlations between index accuracy (indexacc), average index (avindex) and 

index trend (indextrend) and  Data Quality Score (DQS) scores, derived from principal component 

analysis (DQS_PCA), trained on index accuracy, average index, index trend, a combination of all 

three (DQS_indexacc, DQS_avindex, DQS_indextrend, DQS_GG_PC1) and informed weightings 

(DQS_Informed). Calculated for 396 Terminal (TERM), 256 Merino (MERI) and 91 Maternal (MATL) 

flocks 
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The DQS was also provided to Sheep Genetics and examined to ensure they met expectations.  

There was no definitive or optimal method for how an overall DQS is calculated.  

Each method has its benefits and limitations: 

o The PCA approach examines variation in data quality metrics alone. However, the principal 

component weightings depend on what other variables are included in the analysis.  

o The MLR approach to train the DQS against genetic gains metrics is not optimal because 

genetic gains can be attributed to factors apart from data recording (for example, breeder 

decisions on use of outside genetics, selection differential etc.). The approach of training on 

genetic gains can be viewed undesirably by industry as it favours flocks with higher genetic 

gains, and also assumes that breeders are using the indexes examined.  

o The informed weightings approach can be viewed as subjective, albeit based on research 

findings.  

For all approaches explored, flocks with higher DQS scores had higher index accuracies (r = 0.86 for 

MATL, r = 0.81 for TERM and r = 0.80 in MERI flocks). Index accuracy can be seen as the most 

appropriate current metric to compare the DQS to, as it is independent of breeder selection decisions 

and is a measure that reflects the data used to estimate breeding values. Nevertheless, flocks that had 

better quality data (quantified through either DQS and index accuracy) also had higher genetic gains 

(avindex and indextrend).  

The recommendation for the first prototype of the DQS is the informed weightings approach. The 

calculation of this DQS is independent of, but related to, genetic gains. This approach provides a 

balance between scientific rigour with industry adoption, and is easily understood and interpreted. 

Road-testing with industry stakeholders will then assist in further refinement. From here on, this 

report will discuss the DQS derived through the informed weightings approach.  
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4.3 Demonstration of data quality metric reporting 

Data Quality Score – Star ratings 

Due to the informed albeit subjective nature of the weightings used to calculate the DQS, the DQS was 

categorised as ‘star ratings’. It is envisioned that these scores and star ratings will initially will be 

reported privately in RUGG reports, along with metrics as specific breeder feedback. There is support 

to publish star ratings publically after a period of road-testing with industry. 

Three methods were explored for partitioning of the DQS: a) quintiles (equal number of flocks per star 

rating), b) equal split in DQS range (0-20, 20-40, 40-60, 60-80,80-100) and c) normal distribution in 

percentiles – 10%, 20%, 40%, 20%, 10% in star ratings 1 to 5, respectively. The distributions of these 

star ratings are provided in Figure 18. 

Figure 18. Data Quality Score (DQS) overall score, derived through the informed weightings 

approach, partitioned into star ratings using a) quintiles, b) equal range, and c) normal distribution 

percentiles 

 

 

 

 

The relationships between genetic gains and DQS Star ratings were explored. When partitioning DQS 

scores by quintiles (option a), the overlapping distributions for each star rating indicate that there are 

no significant differences in indexacc, avindex and indextrend across the star ratings. The differences 

between extreme star ratings are more prominent and significant using equal range (option b) and 
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normal distribution of flocks (option c). Options a and c also resulted in more flocks with 1 star rating 

compared to partitioning by equal ranges (20% and 10% flocks vs. 0.3-2.3% flocks). Therefore, the 

recommendation is to partition DQS scores into star ratings through equal range (option b).  

 

4.3.1 Data Quality Framework Reporting  

Since the proposed DQS score has used metrics already derived in RUGG reports, it is recommended 

that the overall DQS score, ratings, and refined metrics calculated be incorporated into RUGG report.   

We propose that the RUGG includes the following aspects from this project: 

• The Data Quality Score 

• Star rating  

• Where they sit compared to other flocks  

• Highlight data recording strengths  

• Provide recommendations for where recording can be improved  

• New/refined metrics – e.g. recorded and linkage by trait group, day in week, timeliness of 
data. These can be incorporated into existing categories (e.g. ‘Pedigree Analysis’) or new 
categories (e.g. “Timeliness”)  

 

New software was written to generate interim DQS reports to demonstrate how it can be incorporated 

into RAMping Up Genetic Gains reports. Note that Version 2 of the RUGG report has been used.  
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MOCK UP report to include Data Quality Score prototype 

 

Flock Code: GENERIC. Site Code: GENERIC (MATL flock). Flock Name: GENERIC 

Date Created: 08 June 2021 from run 17May21. 

 

Your Data Quality Score (DQS) is an overall indicator of the quantity, quality and timeliness of your 

data. 

 

Your data recording strengths: 

• Depth of pedigree 

• Recording full pedigree 

• Recording of birth dates 

To improve your data quality: 

• Record more animals for reproduction traits 

• Record more animals for weight traits 

• Submit reproduction trait data earlier  
 

Although key recommendations have been provided, refer to the entire RUGG report to decide which 

components of data recording are most relevant to your flock. 

  
  

Data Quality Score:  81.7 
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  Number of unique birth dates 

  

  

  

   

Year 2015 2016 2017 2018 2019 2020 

Unique 
birth 
dates 

53 60 70 51 53 48 
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Weights Reproduction Wool Carcase 

62.8% 48.6% 43.5% 58.4% 

 

  

  

Weights Reproduction Wool 

78.6 % 11.3 % 36.6 % 
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   Average time to submit trait data after measurement 

Weight Reproduction Wool Carcase 

54 days 67 days 111 days 16 days 

4 Stars 3 Stars 1 Star 4 Stars 

 

  

  

  

Average time to submit pedigree data 

Year 2016 2017 2018 2019 

Average age 
days ( ) 

137 330 208 73 

Overall average  days 117 

 Stars 5 
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4.3.2 Feedback and road-testing with industry  

The methodology used to derive the data quality framework and DQS was discussed in various forums: 

• AGBU Seminar – 15th February 2021 

• BREEDPLAN and Sheep Genetics Technical Committee – 3rd March 2021 

The concept of the data quality framework and methodology explored to derive the overall data 

quality score was outlined. Endorsement was given to progress to implementation and road-testing 

of the first prototype of the DQS (based on the informed weightings method).  

Considerations highlighted included: 

- Cost benefit analysis 
o To what extent should recording be improved, considering the costs associated? 

- Value proposition 
o How can we better demonstrate the value proposition and implications of a DQS ? 

Potentially a simulation to understand how changes in data recording reflect 

consequent outcomes in genetic gains  

- Fixed effects  
o How do we better capture completeness and accuracy of fixed effect recording?  

- DQS reference vs. DQS individual breeder 
o The proposed DQS characterises the data, with the purpose of understanding the 

value of the data to individual breeders and their clients. How can this be applied to 

valuing data contributing to the reference population (or other breeders)? These 

DQSs will be related but capturing different aspects of data value.  

 

• Sheep Genetics Technical Operations meetings  

Continuous communication with Sheep Genetics was maintained to ensure efficient implementation 

of the data quality framework calculations in OVIS. At the time of this report, funding was not available 

to incorporate reporting of the DQS prototype and associated metrics/reporting into RUGG reports. It 

was decided an interim report will be sufficient in the initial road-testing phase.  

• Internal AGBU meetings  - multiple meetings to discuss the project scope, metrics used and 

methodology used to derive the DQS 

• Conference papers: Association for the Advancement of Animal Breeding and Genetics 

(AAABG) conference – 2 papers submitted (see Appendix 2) 
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ROAD-TESTING AT INDUSTRY EVENTS 

The data quality framework was road-tested with industry at 6 separate events, with interim DQS 

reports generated for 96 flocks.  

Communication approach  

• The specific metrics used to calculate the DQS were not disclosed (although the metrics are, or 

are anticipated to be, reported in RUGG reports). Data quality was described in reference to the 

data requirements for unbiased comparisons of animals, in particular the amount, the 

completeness and accuracy, the structure, and the timeliness of data. Figure 19 is the graphic used 

to outline the metrics used to calculate the score.  

Figure 19. Defining data quality for the calculation of the Data Quality Score.  

 

• The weightings the metrics used to calculate the DQS was also not disclosed. This was the 

approach taken to discourage ‘cheating’ or targeting improvement of only one metric. The 

description provided was 

“All measures are roughly equal, with some adjustments depending on:  

o Breed type 

o Level of trait recording  

o Variation and relationships between characteristics”  

 

• The first workshop with service providers highlighted the potential confusion between ASBV 

accuracy and the DQS. Future workshops required explanation of the difference between the two 

(Figure 20).  

Figure 20. The difference between ASBV accuracies and the new Data Quality Score 
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Industry response to the DQS 

The concept of the DQS and its reporting through RUGG reports was well received and feedback was 

positive. There were questions regarding the practicalities of improving data quality, the cost benefit, 

and the value of some metrics. These questions will require further investigation to be answered.  

Feedback was provided through live anonymous polling during workshop sessions to stimulate group 

discussion, as well as anonymous feedback sheets provided at the end of the session. Note that not 

all participants provided feedback, and responses are not available for all questions due to questions 

being refined over time with subsequent events. This report will only discuss feedback from the 

written feedback sheets (except a subset of questions for the Launceston Regional Forum, where 

responses were from live anonymous polling). Table 12 shows the number of responses for each 

event, number of flocks for which DQS reports were generated, and the average and range in DQS 

scores for the flocks at each event.  

 

Table 12. Data Quality Score (DQS) report road-testing: number of feedback responses, number of 

flocks for DQS reports were generated and their average DQS scores across 7 events 

Event Service 
Provider 

workshop 

Armidale 
Regional 
Forum 

Launceston 
Regional 
Forum  

Adelaide 
Regional 
Forum 

Dubbo 
Regional 
Forum 

MerinoLink $uperborder$ 
conference 

Total 

Number of 
feedback 
responses 

13 7 5 8 8 11 11 63 

Number of 
DQS 

reports 
generated 

(flocks) 

14 16 8 16 11 31 14 101 

Average 
DQS score 

[range] 

65 
[26 - 92] 

69 
[44 - 92] 

77 
[68 - 85] 

76 
[38 - 99] 

68 
[35 - 99] 

66 
[39 - 99] 

69 
[52 - 88] 

69 
[25 – 99] 

 

There were 101 flocks represented across the 8 events, and feedback responses were received from 

63 participants. The average DQS score (across all breed types) was 69, which ranged from 25 to 99. 

Flocks represented at the Service Provider workshop had the most diverse data quality (standard 

deviation of DQS scores of 21.7).  
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Use of the DQS to industry 

The majority of attendees (88% overall, 55 out of 63 respondents) thought that the DQS and star rating 

will be useful and relevant for industry (Figure 21). There were 2 respondents who disagreed in the 

Service Provider workshop, and 1 strongly disagreed from the Dubbo Regional Forum. There were 4 

respondents who were uncertain about the use of the DQS.  

 

Figure 21. Level of agreement (green) and disgreement (red) for the usefulness and relevance of 

the Data Quality Score (63 survey responses) 

Breeders were asked how the DQS and star rating would be used by industry. Responses are 

summarised in the wordcloud in Figure 22. From the 35 respondents, the words written more than 5 

times were ‘stud’, ‘quality’, ‘improving’, ‘ram’, ‘accurate’, ‘buying’, and ‘confidence’.  

 

Figure 22. Wordcloud for responses to the question “How do you see the Data Quality Score and 

star rating be used by industry?” (43 responses) 

 

Usefulness of DQS as a tool for Service Providers 

The RUGG report with the DQS metrics (which was previously called Data Quality Index, DQI) was seen 

to be a useful tool for 85% (11 out of 13) of service providers for giving advice to clients (Figure 23).  

Service Providers are an important support service and conduit to Sheep Genetics breeders, and so 

the DQS report is an important tool for providing targeted advice on data collection and management.  
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Figure 23. Level of agreement (green) and disgreement (red) for the usefulness of RAMping Up 

Genetic Gain (RUGG) reports updated with Data Quality Score metrics (formally Data Quality 

Index, DQI), for service providers to provide advice to clients (13 responses) 

 

Usefulness of DQS for breeders to improve data recording 

There were 50 breeders that responded to the question regarding DQS enticing change in their data 

recording, with 44 (88% overall) stating that there will be lots or some change (Figure 24). There were 

3 breeders (from the Launceston Regional Forum and Dubbo Regional Forum) who thought there will 

not be any change in their data recording. Note that the feedback from Launceston Regional Forum 

was supplied through the live slido polling during the workshop.  

 

Figure 24. Level of agreement (green) and disgreement (red) for the usefulness of Data Quality 

Score for breeders to improve data recording  

 

Breeders were asked how if the DQS would help them think differently about data.  Responses are 

summarised in the wordcloud in Figure 25. From the 43 respondents, the words written more than 5 

times were ‘yes’, ‘improve’, ‘timeliness’, and ‘accuracy’.   

 

Figure 25. Wordcloud for responses to the question “Will the Data Quality Score help you think 

differently about data quality? If so, how?” (43 responses) 



 

Page 57 of 66 

Public disclosure of the Data Quality Score and Star rating  

The majority of breeders (43 out of 48 respondents, 90%) were in favour of public disclosure of the 

DQS and star rating, providing there was a grace period.  

 

4.3.3 The value proposition for the Data Quality Score 

The DQS was calculated independently of, but related to, index accuracy & genetic gains. Flocks that 

had higher data quality scores had significantly higher index accuracies and higher rates of genetic 

gains (Figure 26). 

 

 

 

 
Figure 26. Pearson’s correlations (below diagonal) and scatter plots (above diagonal) to 

demonstrate the relationships between the Data Quality Score (DQS) and index accuracy 

(indexacc), average index (avindex) and index trend (indextrend) in 455 Terminal, 142 Maternal 

and 270 Merino flocks.  

The DQS accounted for between 63-67% of variation in indexacc; 5-26% in avindex and 8-26% in 
indextrend.  
 
When examined on a DQS star rating level, there were significant differences in indexacc and genetic 
gains, particularly indexacc (Figure 27). This provides confidence to ram buyers that the DQS is a 
reflection of 1) the general quality of the flock they are buying from, and 2) this is also a reflection of 
the anticipated outcomes expected from the progeny of the rams they are going to buy.  
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Figure 27. Higher Data Quality Score star rating flocks had higher index accuracies (indexacc), 

average index values (avindex) and index trends (indextrend) for Terminal (TERM), Merino (MERI) 

and Maternal (MATL) flocks 
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5. Software development for implementation in OVIS  
There were 3 potential strategies for system implementation of the data quality framework: 

1. Use of existing stoplights program 

New and refined metrics be incorporated into the existing stoplights program as subroutines. 

While this may be sufficient in this research phase, the process would be inefficient for routine 

analysis.  

2. Re-write stoplights program  

This will allow faster processing of data characteristic metrics due to a more efficient program. 

However, this requires time and personnel.  

3. Use existing DataAudit program 

Additional metrics were inspired by the metrics calculated in DataAudit. This option was 

explored as a way to potentially streamline the process for both beef and sheep.  

DataAudit was designed specifically for the BREEDPLAN analysis. Results are not provided 

automatically to each breeder or breed society, but is used as a diagnostic, research and 

engagement tool. Therefore, the output would not be suitable for breeders as feedback. Use 

of DataAudit in sheep will require extensive re-coding and changes in file structures. There is 

also uncertainty about how the use of DataAudit at Sheep Genetics fits into the ABRI 

commercialisation model of BREEDPLAN products.   

 

Option 2 was taken in this project. The following steps were taken: 

 

• Creation of new timeliness database  
Timeliness metrics were calculated for by iterating through every analysis run conducted in 
the last 5 years.  Since this is a computationally demanding and time consuming process, a 
new timeliness database was created to store results. Results are updated with each new 
run.  

• Re-writing of stoplights program 
This process involved 

o Updating the current stoplights program from Python 2 to Python 3  
o Calculation of timeliness data  
o Subroutine program to calculate DQS scores, star ratings, recommendations and 

strengths  
o Post-analysis saving of results as a pickle  

This has implications for the RUGG report API. This approach has significantly 
reduced the processing time (from 5 minutes to 20 seconds).  
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6. Conclusion  
  
This project delivered a data quality framework to characterise the quantity and quality of genetic 

evaluation data, which has been implemented into the national sheep genetic evaluation system. 

Flocks with higher data quality scores achieved greater genetic gains and index accuracy. This work 

has been well-received by industry, and will assist ram breeders to target improvements in their data 

recording, provide recognition for their efforts, and support selection decisions to drive genetic gains.  

6.1  Key findings 

• There was substantial variation in the quantity, quality and timeliness of data across Terminal, 

Maternal and Merino flocks. This provides opportunities for improvement 

• The Data Quality Score developed in this project was developed independent of, but is related 

to, metrics that describe genetic gains. Therefore flocks with better quality data made more 

genetic gains.  

• Industry are positive about the implementation and usefulness of this data quality framework. 

Road-testing of the data quality framework with a small number of service providers and 

breeders show support for public publishing of the data quality score and star rating after a grace 

period. 

6.2  Benefits to industry 

• An enhanced data feedback tool for breeders.  

The RAMping Up Genetic Gains reports can be further enhanced with new data quality metrics, 

Data Quality Score, star rating, recommendations and strengths. This provides targeted advice to 

breeders to assist in management changes, improvements in data collection and submission and 

hence ASBV accuracy. In turn, this was assist in more accurate selection decisions and increased 

rates of genetic progress 

• Transparency for ram buyers about the quality of data used to calculate EBVs. While EBV 

accuracies are available for individual rams, a DQS provides an indication of the overall quality of 

the flock’s data and allows direct comparison across flocks.  

• A way to identify and highlight breeders who collect high quality data. This could be used as a 

basis for discounted registration fees, or through breeder awards, or other signals and/or rewards 

• Engagement tool for Sheep Genetics development officers (and service providers) for targeted 

extension activities for flocks with poor data quality.  

• This data quality framework can be further developed to determine and value data contribution 

to reference populations  
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7. Future research and recommendations  

The following research is recommended:  

• Understanding challenges and reasons for poor data recording. Since some metrics are widely 

poorly recorded across many flocks (e.g. level of full pedigree recording in Merino flocks), it would 

be beneficial to understand 1) why it is poorly recorded, 2) explore/devise tools to increase ease 

of recording, and 3) design an extension campaign to target improvement of recording.  

• Cost-benefit analysis and tools to understand to what extent it is worth improving data 

recording, considering the costs associated, at both the individual flock and the industry levels 

• Better demonstration of the value proposition. Flocks with higher Data Quality Scores had higher 

index accuracies and rates of genetic gains. The Data Quality Score also provides additional 

information not captured in EBV/index accuracy. 

There is potential to undertake a simulation to better understand how changes in data recording 

reflect consequent outcomes in genetic gains. 

An important component over time will be to understand if RUGG and DQS reporting leads to 

change in behaviour and improved recording. 

• Better accounting of fixed effects. Completeness and accuracy of fixed effect recording is only 

captured to a limited extent in the proposed framework. This requires more in-depth 

examination.  

• Data Quality Score -- reference vs. individual breeder. The proposed DQS characterises the data, 

with the purpose of understanding the value of the data to individual breeders and their clients. 

Although related, an alternative perspective is valuing data contributing to the reference 

population, and/or other breeders.  

 

PRACTICAL APPLICATION OF PROJECT INSIGHTS   
• Public and private reporting: The recommended roll out strategy is to initially privately report 

the DQS whilst road-testing, before public reporting of star ratings after a grace period. The 

pathway to public release (including the length of the grace period) is yet to be fully defined.  

• Continued road-testing and education: This is particularly important if there is a reward or 

incentive to having a high data quality score. This requires a detailed communication strategy, 

which may involve media releases, and fact sheets and videos on the Sheep Genetics website.  

• Incorporation into RUGG reports: While an interim report is available, it would be ideal to 

incorporate the DQS and associated features into RUGG reports. Increasing the availability and 

use of the RUGG reports by service providers and breeders should also be a key strategy. 

• Continuous monitoring and refinement: The metrics require monitoring, and weights require 
refinement over time. This will assist in evaluation of how effective the reporting is to entice 
change. There is also potential to further refine the DQS reporting 

• Understanding of poor data recording: understanding recording challenges, and devising 
targeted extension messages 

• Application in beef: The demand for an updated data quality framework for BREEDPLAN 
(currently delivered through DataAudit software) is unknown. In principle, frameworks for 
evaluating data quality should be consistent across species, primarily to facilitate extension, and 
potentially to simplify introduction of systems for valuing of data for reference populations. 
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DEVELOPMENT AND ADOPTION ACTIVITIES to ensure full value from project’s findings  

• Continuous engagement with breeders: The motivation to use the DQS can be encouraged with 
continuous communication, road-testing, requesting feedback from breeders about use and re-
evaluation of reporting format.  
The RUGG report with DQS can be use as engagement tool at industry events or workshops e.g. 
Regional Forums. 

• DQS Resource:  
Adoption will be enhanced if resources and information is easily accessible. This may be in the 
form of a page on data quality on the Sheep Genetics website, with direct links to tools that will 
help improve with data recording and the benefits to be seen resulting from the improvements. 

• Rewarding breeders:  
An additional purpose of the data quality framework is to highlight the breeders that make a good 
effort. This could be used as a basis for discounted registration fees, or through breeder awards, 
or other signals and/or rewards. 
Alternatively poor scoring flocks may have EBVs withheld (which may already happen with low 
EBV accuracies).  

 
 
A key contributor to success has been the collaborative nature of the project. There was consistent 

communication and input with MLA and Sheep Genetics from the project conception to DQS delivery. 

Constructive feedback from breeders has also been very beneficial for this project  
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9. Appendix 1 – Feedback forms 
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10.  Appendix 2– Research output  

- 2 x peer reviewed paper submissions to Association for the Advancement of Animal 

Breeding and Genetics (AAABG) conference. Abstracts below 

CHARACTERISING THE QUANTITY AND QUALITY OF DATA USED IN MERINO SHEEP GENETIC EVALUATION 

SYSTEMS 

S.Z.Y. Guy and D.J. Brown 

Estimated Breeding Values (EBVs) published by Sheep Genetics Australia have an accuracy estimated with them. 

While the EBVs, their accuracy, and errors of genetic parameter estimates are all influenced by both data 

quantity and quality, these calculations do not explicitly take into account all aspects of data quality. To 

encourage increased genetic gains, Sheep Genetics provides participating breeders with data quantity and 

quality metrics in a ‘RAMping Up Genetic gains’ report. This paper demonstrates the considerable variation in 

these metrics for Merino flocks, and proposes additional descriptors metrics to characterise the quantity and 

quality of sheep genetic evaluation data. Current results show that there are opportunities to improve the 

completeness of pedigree and reproduction trait recording. Flocks had on average 46.6 ± 36.1% (mean ± SD) of 

animals with full pedigree, and 4.1 ± 6.9% of animals within each flock with reproduction trait records. The 

average proportion of effective progeny was 64.3 ± 19.1%. Flocks had on average 40.2 ± 37.3% of animals in 

contemporary groups that had variation in birth date recording. Since variation in age within contemporary 

groups is expected, this highlights potential issues with accurate recording of birth dates. Additional metrics 

describing lambing date distributions and deviations from expected were derived, and reinforce potential issues 

of birth date accuracy, with some flocks recording birth dates on a non-random proportion of days of the week. 

Feedback on the quantity and quality of their current data should help ram breeders target improvements on 

their recording program. However, the optimum or reasonable level of quantity and quality to maximise genetic 

gains is currently undefined. 
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Genetic gain can be maximised when selection is based on the most accurate breeding values and selection 

indices. To more explicitly take into account aspects pertaining to the quality of information used to estimate 

breeding values, metrics to characterise the quantity and quality of genetic evaluation data were previously 

proposed. This paper examines the relationships between these data quantity and quality metrics and genetic 

gains for Merino flocks. Stepwise regression analysis was used to analyse 3 genetic gains metrics: index accuracy, 

average index value and index trend. Index accuracy had the most number of significant predictors, with 4 

quantity and 3 quality predictors explaining 85% of the observed variation. The most important metrics 

explaining index accuracy were level of genetic linkage for wool traits, average proportion of pedigree known in 

the last 3 years, and the level of wool and reproduction trait recording (p < 0.0005). Data characteristic metrics 

were also associated with average index and index trend, although to a lesser level (~24% variation explained). 

This study demonstrates that both data quantity and quality are associated with index accuracy and genetic 

gains in Merino flocks. This decomposition provides a basis for informing ram breeders on improvements in their 

data recording. Used in conjunction with optimum selection decisions, this will enable higher rates of genetic 

progress.  
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