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Abstract 
An accredited algorithm for the prediction of lamb carcass composition was submitted 
and accepted by AUSMEAT in September 2022, a report of which can be found as 
technical report 3.11 – Lamb DXA accreditation submission to AMILSC on behalf of 
Scott Automation and Robotics and MLA. That technical report shows the results of 
the algorithm’s predictions, and what bands of weight and composition the algorithm 
is accredited for.  

This technical report details the algorithm that was used, and the method of training 
and calibration using the Scott Automation and Robotics phantom.  
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1 Introduction 
Ongoing improvements with the algorithm that drives the DXA predictions of CT 
carcass composition have resulted in an overall algorithm that has achieved 
accreditation with AUSMEAT, the report of which can be found in 3.11 - Lamb DXA 
accreditation submission to AMILSC on behalf of Scott Automation and Robotics and 
MLA. There are two large improvements that have been made with the accredited 
algorithm from its predecessor: the ability to detect bone has been reworked and 
improved (3.11.5.b) and the daily calibration-adjustments that are made using 
information drawn from the start-of-day scan of the Scott Automation and Robotics 
phantom. The equation for detecting fat and fat free mass of soft tissue through a 
function of the R-value and thickness of the tissue, using unique coefficients for each 
system by the following equation: 

𝐹𝐹𝐹𝐹𝐹𝐹 % = 𝐹𝐹 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝐹𝐹 + 𝑑𝑑𝑏𝑏𝑑𝑑 + 𝑒𝑒𝑏𝑏2 + 𝑓𝑓𝐹𝐹2   𝐸𝐸𝐸𝐸. 1 

Where a-f are the unique coefficients, R is R-value, and t is thickness, or a proxy there-
of from the logarithm of the low or high energy value. The previous algorithm used a 
form of this equation to determine an overall soft tissue DXA value, which was linearly 
transformed to calculate the prediction of fat % and lean %. Despite the bone 
containing pixels being excluded from the calculation of the DXA value, it was still used 
in its own linear transformation to predict bone %. While there was some accuracy and 
precision with the prediction of CT determined bone %, using the soft tissue values to 
predict bone resulted in prediction of this tissue type being the least precise. 

2 Accredited Algorithm 
2.1 Daily Calibration 

2.1.1 Process 

Each day, prior to the start of production, a synthetic phantom constructed of nylon, 
polyethylene, and acrylic (Figure 1) is scanned, referred to as the phantom image, 
along with the unattenuated space with and without the production of x-rays, referred 
to as the light and dark calibration images. These images are saved each day and can 
be accessed along with the lamb images produced during the day. 

There are varying mixtures and depths of these three plastics, resulting in up to 40 
plastic combinations that can be scanned in a single image. Due to detector 
orientation, it is not always possible to image all 40 combinations, as some are cut 
from the top of bottom of the image, however the entirety of the detector height can be 
covered. This enables multiple sampling of the same plastic at different heights. 
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Each portion of the plastic phantom has a linear attenuation coefficient unique to the 
material at a given energy. The attenuation can be mapped and visualised in Figure 
2, which is a calibration scan taken at the start of days processing at the WAMMCO 
facility. 

 

Figure 2 - Attenuation for each pixel row for the WAMMCO start of day calibration, red points represent high energy 
image, blue represents low energy image 
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Figure 1 - Scott Automation and Robotics synthetic phantom block 
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2.1.2 Coefficient Calculation 

From these calibration scans, it is possible to make changes to the coefficients found 
in Equation 1 to maintain accuracy of the DXA predictions. The R-value and thickness 
coefficients can be changed for the soft tissue calculations, as well as any coefficients 
for weight predictions and bone predictions. The specific adjustments that would be 
made are found in the following sections.  

2.2 Image Standardisation 

This portion of the algorithm has not been amended from its original version, and is 
designed to account for R-value drift through each days production. In summary, each 
pixel of the image being standardised is compared to the start of day light and dark 
images to calibrate their unattenuated value to 4095. This is achieved by the following 
equation: 

𝐶𝐶𝐹𝐹𝐶𝐶𝐶𝐶𝑏𝑏𝐶𝐶𝐹𝐹𝐹𝐹𝑒𝑒𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝐶𝐶[𝐶𝐶,𝑦𝑦] = 4095 ∗
𝑏𝑏𝐹𝐹𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝐶𝐶[𝐶𝐶, 𝑦𝑦] −𝐷𝐷𝐹𝐹𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝐹𝐹𝐷𝐷𝑒𝑒[𝑦𝑦]
𝐿𝐿𝐶𝐶𝐷𝐷ℎ𝐹𝐹𝐷𝐷𝐷𝐷𝐹𝐹𝐷𝐷𝑒𝑒[𝑦𝑦] − 𝐷𝐷𝐹𝐹𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝐹𝐹𝐷𝐷𝑒𝑒[𝑦𝑦]  𝐸𝐸𝐸𝐸. 2 

The unattenuated space around each carcass is then continuously sampled 
throughout the day, and if the row mean differs from 4095, the whole row is adjusted 
by this difference. This ensures a consistent attenuation ratio for calculation in future 
steps. This process is repeated for both the high and low energy images to create two 
standardised images. 

2.3 Removal of non-carcass containing pixels 

The next processing step involves the removal of “non-carcase” unattenuated pixels 
by eliminating those with values that exceed the threshold value of 3700. This step is 
applied to both the high and low energy images. 

2.4 R-value calculation 

The R-value for each pixel is calculated by the following equation: 

𝑏𝑏 =
ln �𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝐶𝐶𝐿𝐿𝑃𝑃𝑅𝑅[𝐶𝐶,𝑦𝑦]

4095 �

ln �𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝐶𝐶𝑃𝑃𝐶𝐶𝐷𝐷ℎ[𝐶𝐶,𝑦𝑦]
4095 �

 𝐸𝐸𝐸𝐸. 3 

The value of each pixel is then “smoothed” by a convolution kernel, weighting each of 
its neighbouring pixels with itself by the kernel expressed below: 

0.093198052 0.131801948 0.093198052 
0.131801948 0.1 0.131801948 
0.093198052 0.131801948 0.093198052 
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Where each of the values represent the proportion of that pixels value on the final 
value of the smoothed pixel in the centre of the 3x3 grid. 

R-values that are above 2 or below 1 are deemed errors and are removed from any 
further calculations. Furthermore, any low energy pixels with a value less than 50 is 
removed from further calculations, as this represents a thickness of tissue that has 
been shown to yield unreliable R-values. 

2.5 Bone Detection 

Bone detection is achieved by the technique described in 3.11.5b.  

Briefly, a proxy value for the thickness of each pixel is determined by the equation: 

𝐹𝐹ℎ𝐶𝐶𝑐𝑐𝐷𝐷𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 = ln(𝐷𝐷𝐿𝐿) 𝐸𝐸𝐸𝐸. 4 

The R-value of each pixel is then squared and then divided by the proxy thickness 
value and processed as a natural logarithm, as per the following equation: 

ln�
𝑏𝑏2

𝐹𝐹ℎ𝐶𝐶𝑐𝑐𝐷𝐷𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖
�  𝐸𝐸𝐸𝐸. 5 

This final value is evaluated relative to a threshold, with pixels exceeding this threshold 
deemed to contain bone, The value threshold is yet to be automatically generated by 
the accreditation algorithm, as there has not been enough points of data from enough 
different DXA units with phantom calibration capabilities to train this. However, 
thresholds for WAMMCO and GMP have been manually calculated, and do not 
change from day-to-day calibration readings. This will become automated in future 
iterations of the algorithm. 

2.6 Bone Content Calculation 

2.6.1 Equation 

The ratio of bone containing pixels to total pixels is calculated from the bone detection 
step and given the term BST. The mean R-value of the bone containing pixels is also 
calculated, and given the term BR. The R-values of the bone containing pixels may 
vary between different DXA machines, and the coefficient is adjusted accordingly and 
given the value BRΔ, which is further described below. The percentage of bone in the 
carcass is then calculated by the equation: 

𝐵𝐵𝑃𝑃𝑖𝑖𝑒𝑒 % =  −104.34 + 21.76 ∗ 𝐵𝐵𝐵𝐵𝑑𝑑 +  𝐵𝐵𝑏𝑏∆ ∗ 𝐵𝐵𝑏𝑏  𝐸𝐸𝐸𝐸. 6 

2.6.2 Training Set 

This was trained on 620 carcasses that were also CT scanned for bone %. The 
prediction of DXA bone % is a regressed general linear model, which included all 
outputted variables from the carcass and their interactions. 
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2.6.3 Calibration variable 

The variable BRΔ is calculated through use of the Scott phantom, reading only the 
acrylic portions of the phantom, and using the mean R-values according to their linear 
attenuation coefficients. This enables the R-value to be independent of thickness in 
this calculation. The coefficient is adjusted by the following equation: 

𝐵𝐵𝑏𝑏∆ =  −613.23 ∗ 𝐴𝐴𝑐𝑐𝐶𝐶𝑦𝑦𝐶𝐶𝐶𝐶𝑐𝑐𝑏𝑏 + 800.82  𝐸𝐸𝐸𝐸. 7 

2.7 Soft Tissue Evaluation 

2.7.1 Weight calculation 

The weight of soft tissue in the carcass is heavily related to HCWT, however a 
prediction of the soft tissue weight can be improved upon by the inclusion of BST and 
the thickness proxy described in Equation 4, which will be termed t for the soft tissue 
thickness proxy. The coefficient for t (tΔ) can be adjusted based on the Scott phantom 
calibration, with the equation discussed below. The soft tissue weight prediction 
equation is: 

𝐵𝐵𝑑𝑑𝑆𝑆𝐹𝐹 =  −4.0348 ∗ 𝐵𝐵𝐵𝐵𝑑𝑑 + 0.8452 ∗ 𝑃𝑃𝐶𝐶𝑆𝑆𝑑𝑑 + 11.1872 − 1.54563 ∗ 𝐹𝐹∆ ∗ 𝐹𝐹  𝐸𝐸𝐸𝐸. 8 

This produced highly precise and accurate predictions of soft tissue weight, as seen 
in Figure 3. This can also be used as a check for the bone % prediction, as they are 
calculating the same value using different vectors. 

 

Figure 3 - Prediction of soft tissue (ST) weight by DXA compared to CT in 100 lambs. DXA unit was located in 
WAMMCO, Katanning. 
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2.7.2 Fat proportion in soft tissue calculation 

The fat proportion in soft tissue is calculated by a variation of Equation 1, with some 
coefficients adjusted by the Scott phantom. The mean R-value of all soft tissue pixels, 
and the mean of the thickness proxy is calculated for use in the equation. The R-values 
and thickness proxies can be adjusted by the Scott phantom, with all other coefficients 
remaining the same, as per the equation: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿𝑒𝑒𝐹𝐹𝑖𝑖% = −8558.84 − 1982.08𝐹𝐹 − 25572𝑏𝑏 − 16724𝑏𝑏2 + 2170.54𝑏𝑏𝐹𝐹 − 48.5423𝐹𝐹2  𝐸𝐸𝐸𝐸. 9 

Where FatLean% is the proportion of fat in the soft tissue, t is the thickness proxy for 
soft tissue pixels, and R is the mean R-value of the soft tissue pixels 

 

2.7.3 Training 

The soft tissue weight and fat to lean ratio equations were trained on 620 lamb 
carcasses, with CT composition as the predicted value. In the case of soft tissue 
weight, the value being predicted was the soft tissue component of the carcass as 
determined by CT scanning, multiplied by the HCWT as per the equation: 

𝐵𝐵𝑑𝑑𝑅𝑅𝐹𝐹[𝐶𝐶𝑑𝑑] =
𝐶𝐶𝑑𝑑 𝑓𝑓𝐹𝐹𝐹𝐹 % + 𝐶𝐶𝑑𝑑 𝐿𝐿𝑒𝑒𝐹𝐹𝑖𝑖 %

100
∗ 𝑃𝑃𝐶𝐶𝑆𝑆𝑑𝑑  𝐸𝐸𝐸𝐸. 10 

The proportion of fat in soft tissue was set as the proportion of CT fat % within the total 
soft tissue component determined by CT, as per the equation: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿𝑒𝑒𝐹𝐹𝑖𝑖%[𝐶𝐶𝑑𝑑] =
(𝐶𝐶𝑑𝑑 𝑓𝑓𝐹𝐹𝐹𝐹 %)

𝐶𝐶𝑑𝑑 𝑓𝑓𝐹𝐹𝐹𝐹 % + 𝐶𝐶𝑑𝑑 𝐶𝐶𝑒𝑒𝐹𝐹𝑖𝑖 %
∗ 100  𝐸𝐸𝐸𝐸. 11 

The accredited equation is a general linear model with the fundamental variables 
included as per Equation 1.  

2.7.4 Calibration variable 

The R-value for soft tissue (STR) and the thickness proxy (t) can be adjusted using 
the Scott phantom. t change (tΔ) is calculated through the division of the STLE of 
acrylic within the Scott phantom by a set value of 7.184091653, as determined by 
initial calibration and standardisation of the WAMMCO site. The tΔ for GMP, for 
example, is 0.956. 

The STR value change (STRΔ) is calculated by predicting the required R-values for 
each of the plastics in the Scott phantom, which are set by initial calibration and 
standardisation at WAMMCO as 112% fat for polyethylene, 88% fat for Nylon, and 
69% for Acrylic. This back-calculation is done by solving for Equation 9 with known 
STLE and FatLean%. These R-value predictions are plotted against the R-values of 
the plastics at the calibrated WAMMCO DXA, with the slope and intercept calculated 
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and used to perform a linear transform on all STR values. A visualisation of this graph 
is seen in Figure 4: 

 
Figure 4 - Comparison of R-values from WAMMCO set phantom R-values for acrylic, polyethylene and nylon, 
against the GMP required R-values to produce the same FatLean% for each plastic type 

The slope and intercept are used to adjust STR, which is used in the FatLean% 
calculation. 

2.8 Final calculation 

The final calculations performed are multiplying the FatLean% by the predicted soft 
tissue weight, which itself is divided by the total HCWT to produce the fat % and lean 
% predictions, as per: 

𝐹𝐹𝐹𝐹𝐹𝐹 % =
𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿𝑒𝑒𝐹𝐹𝑖𝑖%

100 ∗ 𝐵𝐵𝑑𝑑𝑆𝑆𝐹𝐹
𝑃𝑃𝐶𝐶𝑆𝑆𝑑𝑑

∗ 100  𝐸𝐸𝐸𝐸. 12 

Similarly, the lean % is calculated in a similar way, by: 

𝐿𝐿𝑒𝑒𝐹𝐹𝑖𝑖 % =
(100 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿𝑒𝑒𝐹𝐹𝑖𝑖%)

100 ∗ 𝐵𝐵𝑑𝑑𝑆𝑆𝐹𝐹
𝑃𝑃𝐶𝐶𝑆𝑆𝑑𝑑

∗ 100  𝐸𝐸𝐸𝐸. 13 

These are finalised with the bone % prediction to complete the predictions of CT 
composition. 

2.9 HCWT prediction 
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If HCWT is required to be predicted by the DXA image, a regressed model has been 
created by training 200 DXA images on known HCWT values, to produce the equation: 

𝑃𝑃𝐶𝐶𝑆𝑆𝑑𝑑 = 913.6148221 − 125.762918𝐹𝐹 − 704.2156856𝑏𝑏 + 0.0000295𝐵𝐵𝑑𝑑𝐴𝐴
−4.6424207𝐵𝐵𝐿𝐿𝐸𝐸 + 0.0000608𝐵𝐵𝐴𝐴 + 99.8417547𝑏𝑏𝐹𝐹  𝐸𝐸𝐸𝐸. 14 

Where STA is the area of soft tissue (in pixels), BLE is the thickness proxy for bone 
containing pixels, BA is the area of bone containing pixels. This produces highly 
precise and accurate predictions of HCWT to use in the full calculations mentioned 
above (see Figure 5), however is suggested to only be used if a HCWT is not available. 

 

Figure 5 - DXA predicted HCWT vs Actual HCWT of 191 lambs 

3 New vs Old Algorithm 
3.1 Bone prediction 

Prior to the introduction of the new bone detection and prediction component of this 
accredited algorithm, predictions of each component were good, except for bone %. 
There were modest increases in precision and accuracy, but the largest gain was in 
the prediction of bone % (see Table 1). 

 

 

 

y = 0.9715x + 0.5373
R² = 0.9725

10

12

14

16

18

20

22

24

10 12 14 16 18 20 22 24

Ac
tu

al
 H

CW
T 

(k
g)

Predicted HCWT (kg)



12 
This project is supported by funding from the Australian Government Department of Agriculture, Fisheries and Forestry as part 
of its Rural R&D for Profit programme in partnership with Research & Development Corporations, Commercial Companies, 
State Departments & Universities. 

 

 

Table 1 - R2, RMSE, Slope and Bias of the DXA predictions of CT fat %, lean % and bone % using the previous 
and accredited bone detection algorithms 

    R2 RMSE Slope Bias 
Previous Algorithm      

Fat %  0.896 1.43% 0.97 -4.37 
Lean %  0.809 1.36% 0.87 1.4 
Bone %  0.925 0.61% 1.25 2.98 

Accredited Algorithm      
Fat %  0.938 1.10% 0.97 -1.19 

Lean %  0.716 1.66% 0.95 -0.23 
Bone %   0.496 1.57% 1.05 1.41 

 

See technical report for KPI 3.11 -  Lamb DXA accreditation submission to AMILSC 
on behalf of Scott Automation and Robotics and MLA - for full visualisations of fat %, 
lean % and bone % gains in precision and accuracy. 

3.2 Daily phantom adjustment 

Small changes in accuracy are observed over multiple kill days at a single site, which 
therefore required small automated adjustments to the equation coefficients in the 
accredited algorithm to include for the calibration with the Scott phantom. 

Below is a comparison of 400 lambs and their DXA prediction of fat % compared to 
CT fat % before (Figure 6) and after (Figure 7) adjustment of coefficients by the Scott 
phantom. 
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Figure 7 - DXA Predictions of fat % compared to CT fat % after adjustments by phantoms. Dashed line 
represents line of perfect prediction. 

 

4 Future Work 
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Figure 6 - DXA Predictions of fat % compared to CT fat % prior to any adjustments by phantoms. 
Dashed line represents line of perfect prediction. 
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While each aspect of the accredited algorithm can be improved upon, however the 
limiting conditions as to the effectiveness of such improvements are a) the high level 
of precision of fat and lean predictions would mean that further improvements would 
be small and b) the computational power required for such fast calculations. 
Nevertheless, there are methods that can be implemented with further experimental 
work to improve upon the precision and accuracy of DXA predictions. 

For bone detection and calculation, machine learning can be implemented to help 
detect bone edges. The identification of bone edges will allow for the entire region of 
bone to be correctly classified as such, and the bone containing pixels can also be 
evaluated more thoroughly for their bone content. The soft tissue within a bone-
containing pixel can be isolated, and the bone mineral content can be calculated, 
furthering the data available for analysis. This process would increase computational 
time, however with the correct machine learning algorithm, this increase may still be 
within the required time (11-12 per minute). 

The soft tissue component of the accredited algorithm would benefit from a more 
complex calibration technique, which would allow for the generation of the coefficients 
each day, rather than the adjustment of the coefficients. The use of plastic phantoms 
is logical, due to the ease of construction and reliability, however without a comparison 
to tissue values they are somewhat limited. A further calibration experiment using 
stearic acid and water would be a useful tool to create the correct coefficients for the 
prediction curve, with the appropriate plastics alongside as a comparison. 

The use of such a phantom of tissue analogues would also serve as a useful tool for 
testing the accuracy and precision of a DXA unit for validating and accrediting existing 
and future devices. 
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