

## final report

Project code: B.LSM.0033

Prepared by: A.B. Pleasants AgResearch

Date published: October 2013

PUBLISHED BY Meat & Livestock Australia Limited Locked Bag 991 NORTH SYDNEY NSW 2059

# Towards the development of a next generation MSA lamb model – statistical support

Meat & Livestock Australia acknowledges the matching funds provided by the Australian Government to support the research and development detailed in this publication.

This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA.

#### Abstract

This work developed the analyses relating consumer judgements of sheep meat eating quality for the Loin and Topside to sire effects for genetic improvement. A discriminant function related the attributes of the sensory variables, tenderness, juiciness, flavour and overall liking to consumer judgement of eating excellence. Variation in this function described sire differences for effects due to year, sire breed, processing site and consumer's variation, and was related to eating quality. Consumer judgements using different reference criteria resulted in difficult frequency distributions. This was alleviated by weighting each observation by consumer variances for each of the sensory variables to calculate sire intraclass correlations. A function relating carcass attributes to consumer eating quality through a discriminant function was developed and related to sire differences for genetic improvement.

#### **Executive Summary**

This work was carried out to relate consumer judgement of sheep meat eating quality to differences between sires, and to develop a method for discriminating meat cuts of different eating quality for the retail sector.

Sheep meat eating quality and the sensory attributes of tenderness, juiciness, flavour and overall liking was evaluated by a large number of consumers for meat from the loin and topside cuts. The meat evaluated was classified within 2 production years, 2 dam types (Merino and non – Merino) 14 sire breeds including 185 different sires, 16 kill groups, 5,640 consumers in 94 consumer sessions (pick). Each consumer judged 6 randomly selected meat samples.

The statistical analysis identified significant fixed effects due to year and sire breed, and random effects due to sire within sire breed within kill group, and consumer within consumer group. Meat from sires of the Dorset and Texel breeds produced poorer eating quality meat than sires from the Merino breed. However, there was also significant between sire variations, with a number of sires from breeds giving poorer average eating quality being highly ranked overall for the eating quality of meat from their progeny.

The consumer judged classification of sheep meat eating quality into one of 4 grades (star 2 – poor to star 5 – excellent) was linked to consumer evaluation of the 4 sensory variables through both a linear discriminant analysis and a multinomial logit analysis. Both provided the same answer, but emphasised different attributes of value for the wider analysis. The best linear discriminant function would incorrectly classified 17% of the star 4 Loin cuts as star 5 and 19% of the Loin cuts as star 3. Similarly 32% of the star 5 Loin cuts would be miss classified to a lower star rating.

It was noted that the frequency distribution for consumer evaluations of eating quality and values of the sensory variables exhibited characteristics associated with individual consumers having different reference points for assessing these attributes. Tests of association showed that individual consumers maintained a consistent reference point during their judgements, however there was notable variation in the value of reference points between consumers. This resulted in frequency distributions for the consumer judged variables that were skewed to the right or to the left depending on the average value of the variable of interest. The problem had been noted in other studies of beef eating quality, and was dealt with in these cases by "clipping" the data – i.e. removing extreme values from the analysis.It was considered that this issue was a natural feature of the meat eating population, and not due to "rogue" consumers. Careful handling of the meat for testing ruled out major variation in eating quality due to cooking or preparation.

A remedy for this problem was developed by weighting the data according to the frequency of each reference point. This avoids over emphasis on the results from consumers whose reference points are "unusual.

The score for each meat sample provided by the optimal linear discriminant function could be analysed for sire breed and sire within sire breed effects for this trait. Using an analysis weighted by the principal component described above the sire intra-class correlation was 0.38 for the loin cut. The un-weighted sire intra class correlation was 0.06. Sire BLUP values were calculated and presented for each sensory variable, the eating quality score and the optimal discriminant function. Clipping the data also improved

estimates of the intra – class correlations, although at the cost of removing 30% to 40% of the data. Weighting by the inverse of the variances includes all the data in the calculation.

A program for genetic improvement of sheep meat eating quality must depend on traits that can be measured in the supply chain. In particular these supply chain traits are expected to be intramuscular fat, hot carcass weight, C site fatness and/or GR tissue depth and eye muscle area. The success of an improvement program will depend on how well these traits determine the eating quality. Since the discriminant function relates the sensory variables affected by these carcass traits to consumer judged eating quality in an optimal way, the relationship between these carcass traits and the discriminant function is of importance in defining an improvement program. This relationship is calculated, and a probabilistic model constructed to link measurements of these carcass traits to variation in eating quality as mediated through the linear discriminant functions.

The conditional probability distribution for the eating quality score given the measurements of the carcass variables intra – muscular fat and shear force is then:

 $P[EQ|IMF; SHEARF5] = P[EQ|dis] \times P[dis|IMF; SHEARF5]$ 

Where P[EQ|dis] = Multinomial distribution

P[dis|IMF; SHEARF5] = beta distribution

This formulation can be applied to derive a conditional multinomial probability distribution for the consumer evaluated eating quality score given expected values for intra – muscular fat and shear force.

It was shown that intramuscular fat and shear force 5 sire BLUP values are not related to the discriminant function sire BLUP values, suggesting that these aspects of meat quality are not related to sire differences. CEMA, the fat measurements and LMY are moderately correlated indicating sire differences in discriminating sheep meat eating quality are associated with these variables. There was a significant (P < 0.02) relationship between the sire BLUP for the amount of intramuscular fat in a loin cut and the sire BLUP for the probability (frequency) with which that cut would be graded as high eating quality (star 4 or star 5). The correlation was r = 0.15. However, though the relationship was significant the predictability was low.

There will be direct industry benefit from this work through the formulation of the discriminant model relating tenderness, juiciness, flavour and overall liking to environmental variables and differences between sires. This is the basis for a successful breeding scheme targeting sheep meat eating quality. In addition, the identification of supply chain variables affecting eating quality is the basis for a program to improve this trait. The benefit is to industry, the retail sector and the consumer in an improved, better described, product.

#### **Table of Contents**

|                                          | Page No. |
|------------------------------------------|----------|
| Abstract                                 | 1        |
| Executive summary                        | 2        |
| Background                               | 5        |
| Project Objectives                       | 6        |
| Methodology milestone 1                  | 7        |
| Methodology milestone 2                  | 8        |
| Methodology milestone 3                  | 8        |
| Methodology milestone 4 and 5            | 10       |
| Methodology milestone 6                  | 12       |
| Results and discussion milestone 1       | 13       |
| Results and discussion milestone 2       | 78       |
| Results and discussion milestone 3       | 91       |
| Results and discussion milestone 4 and 5 | 115      |
| Results and discussion milestone 6       | 177      |
| Conclusion                               | 184      |

#### Background

The current MSA lamb and sheepmeats model is a pathways approach and is basically an 'in' or 'out' system applicable to all prime lamb production. The system has either been formally or informally adopted widely across Australia. The MSA system is still appropriate for underpinning the quality of lamb carcasses. However, it will date rapidly as adoption builds and the need to differentiate specific cuts becomes apparent.

A new model for continuous improvement incorporating eating quality management and genetics is seen as crucial for the future underpinning of lamb demand domestically.

There are 3 key drivers that influence demand for lamb (1) lean meat yield (that is consumers do not want fat), (2) eating quality and (3) nutritional attributes from a human perspective – these all drive purchases, willingness to pay decisions and consumer satisfaction. Lean meat yield is also a key productivity driver throughout the supply chain, and has rapidly increased in the last 10 years as lambs have become larger, leaner and more muscular. These features will still be a factor in the future, and accordingly an important feature of the next generation MSA lamb proposal is to secure the eating quality and nutritional attributes of the product against detrimental changes that will take place if there was a single trait focus on lean meat yield without consideration of eating quality.

The data from the Sheep CRC information nucleus flocks has shown that the carcass (muscle, fat, weight, lean meat yield) and objective eating quality phenotypes (intramuscular fat, shear force) are moderate to highly heritable. In addition there are significant and unfavourable correlations between lean meat yield and the eating quality measures. This important background information has especially highlighted intramuscular fat as a key trait to manage.

Given this background the next critical stage is to test lamb cuts through the MSA consumer protocols and the true eating quality can be determined and finally related to the objective measures undertaken on the information nucleus animals. Two cuts (loin and topside) from 745 2009 drop lambs derived from 97 sires were tested using the grill protocol in 2010 and the early analysis shows a significant effect of sire on the eating quality of both cuts. The range in eating quality score for Overall Liking was 10 points for both cuts. In terms of rating (i.e. unsatisfactory, 3, 4, 5 star) this likely means that soime sires produce a topside that at best is just a 3 star, while others produce a product close to 4 star. For the loin it means product ranging from 4 to 5 star. In terms of breed there is a trend for lambs sired by Merinos to produce higher eating quality cuts than those sired by terminals. This needs further exploration.

The same consumer research has shown that consumers are prepared to pay twice as much for '3' compared to '2' star; 3 times as much for '4' compared to '2' star; and 5 times as much for '5' compared to '2' star.

The Sheep CRC has been commissioned to test another round of approximately 115 sires (including the Dorper breed for the first time) from the Information Nucleus flock in 2011. Additional testing of hogget Merinos has also been approved. This project deals with the statistical analyses of this data.

#### **Project Objectives**

#### Task 1.

- Develop an ASRemel statistical model that predicts the influence of sire on tenderness, juiciness, flavour and overall liking, composite eating quality score and finally rating ((i.e. 2, 3, 4, 5 star). This model is to use all 10 answers per cut and would include a number of fixed effects, covariates and random terms. Further statistical modelling described in the tasks below must relate to this base sire ASRemel model.
- 2. Develop the best balance of tenderness, juiciness, flavour and overall liking to predict the final rating (i.e.2, 3, 4, 5 star). Previously overall liking has been found as the best predictor however, compare this with a mixture of all 4 when overall liking is held at 0.4 (i.e. analogous to the beef MSA). Also contrast these weightings for the two cuts and potentially how they differ across breeds.
- 3. Test thehypothesis that tenderness is a key discriminator in this data set and that flavour moderates this discrimination, i.e. people that will tolerate tougher lamb because they like the flavour.
- 4. Develop cut off scores between 2/3, 3/4, 4/5 stars
  - Initially using discriminant analysis or another appropriate method.
  - Taylor these cut offs (push up or down) so as sire variation in eating quality fails around these cut offs
  - Clearly quantitate the implication for consumer satisfaction of the different cut – off scores, i.e. at any given cut – off say '4' v '5' star the probability that a consumer will rate the meat as '2', '3', '4' or '5' star.
  - Assist with the detailed genetic analyses to determine the relationships between objective measures of eating quality (intramuscular fat, shear force, pHu) and lean meat yield (HCW, fatness, muscling) with consumer based eating quality.

#### Task 2

Repeat task 1 except this time use the 2011 and 2010 eating quality data sets (Sheep CRC Information Nucleus from the 2009 and 2010 drop lambs).

#### Methodology

#### Milestone 1

Data was supplied by MLA and the Sheep CRC on the eating quality of sheep meat as judged by a number of consumers tasting meat samples arranged into groups called "picks". Each consumer tasted 6 meat with samples taken from a cut of lamb (Loin or Topside) of different lambs. Each lamb cut (i.e. topside or loin) was tasted by 10 consumers in a balanced Latin square design (Thompson et al. 2005; Watson et al. 2008).

Different cohorts of 10 consumers made up different picks (a pick is a tasting session where 36 cuts are tested by 60 consumers). The consumers rated each sample on a scale from 1 to 100 for smell, tenderness, juiciness, flavour and overall liking. In addition each sample was rated according to a star classification were star 1 was poor eating quality and star 5 was excellent eating quality. A general satisfaction score were also recorded which will be analysed by Dr. Pannier.

The lamb meats tested were also classified by a number of carcass measurements as well as by flock, kill group, sire breed, dam breed, sex, birth rank and sire. Each Kill Group was nested within flock, so that each flock comprised a distinct set of Kill Groups, and sires were nested within sire breeds within Kill Groups. As noted above consumers were nested within picks. This classification defined the linear mixed model for the analysis which included all significant (P < 0.05) effects

#### y = $\mu + sire breed + Kill Group + sire within sire breed within Kill Group +$ consumer within pick + error (1)

Each cut (Loin and Topside) was analysed separately. An earlier analysis found that the variance components for sire within sire breed within Kill group were significantly different. The model was analysed using REML to obtain the variance components, the BLUP estimates for the sires and the means for the fixed effects. The multiple comparisons of the fixed effects were performed using Tukey's HSD test, which makes adjustments to take account of the number of comparisons being made. This was important given that there were 12 sire breeds being tested with the potential to give misleading levels of significance when based on the individual t values.

The star classification of meat eating quality was a categorical variable, and analysed as a generalised linear model using the logit transformation. In this case each ordered star rating was tested against adjacent star ratings. Thus, star 4 was compared with star 5, star 3 was compared with star 4 etc.

Using the above model as a basis, a number of carcass attributes referred to as the covariates (carcass weight, age, fat, intra – muscular fat, pH and shear force) were tested for any relationship with the eating quality variables, smell, tender, juicy, flavour, overall liking and star classification. All significant covariates were included in the final analysis.

The data was analysed using the Ime4 statistical package in R, with multiple comparisons among the sire breed effects tested with the Tukey's HSD method implemented in the 'multcomp' R package. The significance of variance components was tested using the likelihood ratio test.

#### Milestone 2

Statistical Discriminant Analysis was applied to find the optimum combination of the scores for eating quality (EQ) variables, tender, juicy, flavour and overall liking that partitioned a meat sample into one of the star ratings. Linear discriminant analysis was sufficient for meat cuts from the Loin, but quadratic discriminant analysis was necessary to deal with meat cuts from the Topside.

In addition multinomial logit functions were calculated for star categories 2 to 5. Using the Logit function is considered to be superior to discriminant analysis as it relies on fewer assumptions. Using the Logit analysis it is straightforward to test for a relationship between tender and flavour which moderates the influence of tenderness, by examining the interaction terms for these variables.

The dominance of Overall Liking in affecting the discrimination procedure was examined. Dividing the Overall Liking score by a factor of 0.35 will force the discriminant coefficient for Overall Liking in the discriminant function to be 40% of the sum of the coefficients in this function, but this had no effect on the accuracy of allocation of meat cuts to star categories. There were 2 other strategies investigated that sought to deemphasise the role of Overall Liking in the discrimination. One was to remove all variation in Overall Liking associated with the other EQ variables, tender, juicy and flavour. Then to include only the remaining Overall Liking residuals in the discriminant function. The second strategy was to reduce the variation in Overall Liking by rounding the Overall Liking scores to the nearest 10. For example, variation might be reduced by rounding up the scores, thus making an EQ score of 62 equal to a score of 60, and an EQ score of 77 equal to a score of 80.

It was noted in the report for Milestone 1 of this project that consumer scores for the EQ variables did not appear to be following a common scale. That is, some consumers were more stringent in what they considered as excellence than others. For example, one consumer has a lower threshold than another consumer to attribute excellence to a meat sample. This issue could cause problems if consumers also changed their evaluation scales between each of the EQ variables. It was necessary to examine this problem to see if there was an identifiable subset of consumers that need to be treated separately.

#### Milestone 3

The earlier milestones applied discriminant analysis to find a function of the EQ variables tenderness, juiciness, flavour and overall liking that best predicted the eating quality score (expressed as a star rating 2 = poor, 5 = excellent). Data with a star rating of 1 was excluded. A discrimination based on a multivariate logit analysis was considered to be most appropriate, although a function based on classical discriminant analysis was also satisfactory.

The discriminant function of the sensory variables (tenderness, juiciness, flavour and overall liking) showed a poor relationship to differences among sires, in the sense of having a low intra – class correlation (< 0.1). To remedy this, a linear function that better ranked sires and which might be the basis for a genetic selection program was sought. Each of the sensory variables was analysed for each cut (loin or topside) for all the factors in the model except sire within sire breed within kill group, and the residuals calculated. Using the set of residuals for the sensory variables a canonical correlation with the sires was calculated for each cut.

The canonical correlation finds the linear function of the sensory variables that maximises the correlation with the variation among sires.

The linear function of the sensory variables defining the canonical correlation between the sire and the sensory variables (tenderness, juiciness, flavour) was used to calculate a number characterising the ensemble of sensory variables. This was then used in the full model to find the intra – class correlation coefficient for sires within sire breed within kill group. Modification of the weights of this new (canonical) discriminant function was carried out to maximise the sire intra – class correlation coefficient. The result of this procedure was the definition of a new candidate discriminant function for consumer eating quality that was maximally related to variation among the sires. This new discriminant function, although not optimal for discriminating among consumer star ratings based on the sensory variables, did discriminant better among sires and could be tested for accuracy of prediction using discriminant analysis procedures.

A further approach to identifying a relationship between sires and sheep meat eating quality was to select a subset of the data by eliminating observations with residuals that exceeded a certain absolute deviation. This amounts to redefining the population of interest to be a subset more closely gathered about the mean. It defines a population that is much more homogeneous and makes inferences about this population, particularly about the relationships of sires and eating quality within this subpopulation. The question is whether inferences based on this restricted redefined population of consumers had relevance to the unrestricted population of consumers. In terms of the selection of sires for genetic improvement of sheep meat eating quality it is possible that this is the case, though it remains to be determined objectively.

The relationship between overall liking and the other sensory variables (tenderness, juiciness' and flavour) has become an issue. In particular, the question of the extra attributes of sheep meat eating quality detected by the consumer that are not covered by variation in the other 3 sensory variables. This question could be addressed by regressing overall liking on the other sensory variables and using the residuals calculated from this regression to test for significant relationships with other variables of interest.

The question of the scope for genetic improvement of sheep meat eating quality depends on the relationship between the progeny of different sires and eating quality attributes. This issue was examined by calculating the Best Linear Unbiased Predictors (BLUP) of the sires for the optimal linear discriminant function and various carcass attributes measured on the progeny. The relationship of these carcass attributes (intra – muscular fat, eye muscle area, GR fat, shear – force) to the sires BLUP's of the linear discriminant function provided an estimate of how selection based on these variables related to the consumer judgement of sheep meat eating quality. A second calculation based of the sire breeding values of post weaning growth rate, post weaning eye muscle area and post weaning fat related these variables to the sire components of the discriminant function for eating quality.

Because the work in establishing these results required investigation time (resulting in a number of blind alleys) only the genetic analysis results for the Loin cut are reported in this interim report. The Topside cut will be addressed in the Final report. Because results suggested that there was a stronger relationship between eating quality judgements in the

Loin rather than the Topside cut it is likely that decisions about genetic selection would be optimally based on the Loin cut alone

#### Milestones 4 and 5

Data was supplied by MLA and the Sheep CRC on the eating quality of sheep meat as judged by a number of consumers tasting meat samples arranged into groups called "picks". Each consumer tasted 6 meat samples with these samples taken from a cut (Loin or Topside) of different lambs. Each lamb cut (i.e. topside or loin) was tasted by 10 consumers in a balanced Latin square design (Thompson et al. 2005; Watson et al. 2008).

Different cohorts of 10 consumers made up different picks (a pick is a tasting session where 36 cuts are tested by 60 consumers). The consumers rated each sample on a scale from 1 to 100 for smell, tenderness, juiciness, flavour and overall liking. In addition each sample was rated according to a star classification were star 1 was poor eating quality and star 5 was excellent eating quality. A general satisfaction score were also recorded which will be analysed by Dr. Pannier.

In the earlier analyses for drop 2010 the lamb meats tested were also classified by a number of carcass measurements as well as by flock, kill group, sire breed, dam breed, sex, birth rank and sire. Each Kill Group was nested within flock, so that each flock comprised a distinct set of Kill Groups, and sires were nested within sire breeds within Kill Groups. As noted above consumers were nested within picks.

In drop 2010 a different group of sires compared with drop 2009 were recorded, and grouped into different kill groups. Because some sires only had the results from male progeny recorded only male progeny were used in the analyses to make comparisons valid.

This classification defined the linear mixed model for the analysis which included all significant (P < 0.05) effects. The difference from drop2009 model is that kill group is now treated as a random variable given the large number of available kill group sites. It is arguable that this variable should always have been treated as random not fixed. With the combined years and the increased number of different kill groups this classification becomes feasible. Consumer and pick are also treated as random variables. The model is

 $y = \mu + year + sire breed + sire within sire breed within kill Group within year + consumer within pick + error$ 

Each cut (Loin and Topside) was analysed separately. The model was analysed with the Lme4 package of "R" using REML to obtain the variance components, the BLUP estimates for the sires and the means for the fixed effects. The multiple comparisons of the fixed effects were performed with the "R" package GLHT using Tukey's HSD test, which makes adjustments to take account of the number of comparisons being made. This was important given that there were 12 sire breeds being tested with the potential to give misleading levels of significance when based on the individual t values due to the scope for spurious comparisons.

The star classification of meat eating quality was a categorical variable, and analysed as a generalised linear model using the logit transformation. There were 2 comparisons between the categorical variable star rating. One comparison was the probability of being in star

groups 2 or 3 *versus* the probability of being in stars 4 or 5. The second comparison was of the probability of being in star 4 *versus* the probability of being in star 5. The probabilities were calculated from the logits in the usual manner.

Using the above model as a basis, a number of carcass attributes referred to as the covariates (carcass weight, age, fat, intra – muscular fat, pH and shear force) were tested for any relationship with the eating quality variables, smell, tender, juicy, flavour, overall liking and star classification. All significant covariates were included in the final analysis.

The data was analysed using the Ime4 statistical package in R Core Team (2012). R: A language and environment for statistical computing. *R* [*R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URLhttp://www.R-project.org/.*], with multiple comparisons among the sire breed effects tested with the Tukey's HSD method implemented in the 'multcomp' R package. The significance of variance components was tested using the likelihood ratio test.

The relationship between overall liking and the other sensory variables (tenderness, juiciness' and flavour) has become an issue. In particular, the question of the extra attributes of sheep meat eating quality detected by the consumer that are not covered by variation in the other 3 sensory variables. This question could be addressed by regressing overall liking on the other sensory variables and using the residuals calculated from this regression to test for significant relationships with other variables of interest. That is, the residuals from the regression of overall liking on the other sensory variables measures other attributes of eating quality not captured by tenderness, juiciness and flavour. The residuals were treated as a sensory variable in analyses with the goal of capturing elements of meat eating quality not associated with tenderness, juiciness and flavour, but also not confounded with these variables as overall liking obviously is.

A linear discriminant function was calculated to predict the meat quality eating classification (star rating) using discriminant analysis. The alternative method of discrimination using logits was also calculated. Both approaches give the same results, however the logit approach has the advantage of an easy calculation of the probability that a meat cut with given sensory variable attributes will perform in any given star classification.

The asymmetric nature of consumer responses noted in the analysis of the drop 2009 data and detailed in the earlier reports on this project reoccurred in drop 2010. As noted in the earlier reports these responses adversely impacted the results as the "noise" generated by this effect obscured other effects of interest. An effective remedy found in the earlier reports was to trim the data by excluding observations with evidence of consumer generated disturbance. This approach was to select a subset of the data by eliminating observations with residuals from the sensory variable overall liking that exceeded a certain absolute deviation. This amounts to redefining the population of interest to be a subset more closely gathered about the mean. It defines a population that is much more homogeneous and makes inferences about this population, particularly about the relationships of sires and eating quality within this subpopulation. The question is whether inferences based on this restricted redefined population of consumers had relevance to the unrestricted population of consumers. In terms of the selection of sires for genetic improvement of sheep meat eating quality it is possible that this is the case, though it remains to be determined objectively. In the analysis of the 2009 data selecting observations with an absolute residual deviation of 5 overall liking units gave the best response. In this analysis with the combined years 2009 and 2010 it was found that a similar response was obtained by selecting observations with an absolute deviation of 10 overall liking units. This was more satisfactory and it encompassed a larger proportion of the population (59% for the loin; 48% for the topside).

The question of the scope for genetic improvement of sheep meat eating quality depends on the relationship between the progeny of different sires and eating quality attributes. This issue was examined by calculating the Best Linear Unbiased Predictors (BLUP) of the sires for the optimal linear discriminant function and various carcass attributes measured on the progeny. The relationship of these carcass attributes (intra – muscular fat, eye muscle area, GR fat, shear – force) to the sires BLUP's of the linear discriminant function provided an estimate of how selection based on these variables related to the consumer judgement of sheep meat eating quality. A second calculation based of the sire breeding values of post weaning growth rate, post weaning eye muscle area and post weaning fat related these variables to the sire components of the discriminant function for eating quality.

#### Milestone 6

Previous work in this project established the contribution of sire breeds and sires within breeds to variation in sheep meat eating quality. In particular, the role of variation in consumer appreciation of eating quality was shown to matter. The difference in consumer reference points when judging meat eating quality was a significant factor, and this factor was not symmetric in its effect across the consumer population. This resulted in skewed frequency distributions for the sensory variables tenderness, juiciness, flavour and overall liking. This skewness confounded the effects on eating quality due to sire differences, leading to low intra – class correlations, or estimates of heritability.

Earlier reports showed that this problem could be overcome by clipping the data by calculating the residuals of fitting a model including year, cut, sire breed, and sire within sire breed within Kill group, then discarding all those observations with an absolute residual greater than 5 units before reanalysis. The clipped data removed consumers with reference points far from the average consumer response and improved the symmetry of the data analysed. The sire intra – class correlations were considerably improved (details in the report on milestone 5) and it was inferred that using clipped data a breeding program to improve sheep meat eating quality was feasible.

This final milestone completes the study by linking the earlier analyses based on 10 consumers making separate evaluations of a meat cut from one sheep to single measurements of a range of carcass variables (Shear force, intra – muscular fat, carcass weight, age, pH etc.). The work by Dr Pannier that has analysed these relationships in depth also links to this final milestone.

#### Results

#### Milestone 1

The data on the EQ variables showed a tendency towards skewness. This was because regularly 1 or 2 consumers at the level of cut by consumer recorded judgments on eating quality that were dramatically different from the consensus of other consumers in the cohort. This problem has been noted in other analyses of meat eating quality where it was dealt with by 'clipping' the data – i.e. removing a proportion of the extreme observations. However, the inclusion of a term in model (1) that nested consumer within pick as a random variable accounted for these deviations and the assumptions of the analysis of variance were met (Figure 1.1). This issue will arise again in succeeding milestones of this project (see discussion).

The cuts Loin and Topside were analysed separately to aid interpretation. There was no significant effect for either cut due to the effect of the dam breed the sex, age or birth rank. Of the carcass attributes measured intra – muscular fat and shear force 5 generally showed a significant effect of the EQ variables. These effects were both included in the statistical model (1).

The fixed effect estimates and their standard errors for the EQ variables for the Loin cut are shown in Table 1.1 and for the Topside cut in Table 2.1. For ease of interpretation the multiple comparisons for significant differences among the sire breeds and the Kill Groups are presented in a separate table. The sire breed and Kill Group multiple comparisons or each of the EQ variables for the Loin cut is given in Table 3.1 and for the Topside cut in Table 4.1. It is notable that the meat eating quality for lamb meat from Poll Dorset sires were poorest while the lambs meat from Merino sires were best. Generally the sire breeds showed a consistent effect on both cut types.

The EQ variable Smell was not related to any of the independent variables in either Loin or Topside.

Higher intra – muscular fat improved the scores for all EQ variables except smell, while shear force 5 was related to decreased EQ scores. The pH18 was generally not significant. The intra – muscular fat showed a quadratic response for Juicy, Flavour and Overall Liking in the Loin cut but not in the Topside cut. The quadratic coefficient was negative indicating that the response to intra – muscular fat decreased as intra – muscular fat increased. Because the inclusion of the covariate affected the least squares estimates of the fixed effects the estimates of sire breed and Kill group are also shown without the covariates in the statistical model for comparison with other analyses.

The Kill Group 331K09 showed significant consistently poorer EQ scores than lamb meat from other Kill Groups for both Loin and Topside (Tables 3.1 and 4.1).

The analysis of the Star category variable used a generalized linear model with a binomial link function to evaluate the independent variables of model (1) and the carcass covariates. The analysis of the Star Classifications for meat quality takes into account the discrete nature of these variables. The usual approach is to analyse the logit, which are the log ratios of the probabilities (p) of being in one classification or the other

$$logit = z = log\left(\frac{p}{1-p}\right)$$

After analysis this operation can be reversed to give the frequencies of being in one classification or the other

$$p = \frac{1}{1 + e^{-x}}$$

These estimates (logit and proportion) are given in Table 5.1 for the Loins and Table 6.1 for the Topside. There were significant sire breed and Kill group differences in the proportion of samples in Star categories 1, 2, and 3 verses Star categories 4 and 5 in both cuts. There were significant sire breed and Kill group differences in Star category 3 verses Star category 5 for the Loin cut but not the Topside cut. Other comparisons for differences in the Star categories were not significant, and/or were unstable due to low numbers and the complexity of the statistical model.

Also given in Table 5.1 and Table 6.1 is an estimate of the proportion of samples in each of the category classifications to aid interpretation. For example for the Merino sire breed 60% of the meat samples were classified as Star 4 or Star 5 compared with 42% of the meat samples from the Texel sire breed.

The significant sire breed comparisons and the Kill Group comparisons for the Star 1, 2, 3 verses Star 4, 5 are shown in Table 7.1 for the Loin and Table 8.1 for the Topside.

Table 9.1 gives the variance components for the Loin cut for each of the EQ variables and Table 10.1 presents the variance components for the Topside cut. The size of the consumer variance component is remarkable in relation to the size of the pick variance component. On average the intra – class correlation for consumers is about 0.4, while that for pick is effectively zero. This suggests that an ensemble of 60 consumers in a pick is relatively stable in their judgment of eating quality, while individuals within this ensemble vary considerably. That is, the proportion of dramatic deviations commented on earlier is relatively constant within a group the size of a pick (60 people).

The sire variance components are all significant except for Smell, which showed no significant variance component. The size of the variance components for each of the EQ variables is similar, no doubt reflecting the size of the correlations between these variables.

The variance components estimated without intra – muscular fat and shear force 5 in the model are shown in brackets in Tables 9.1 and 10.1. It is notable that not accounting for these covariates improves the sizes of the variance components, but not by very much.

Table 11.1 gives the Best Linear Unbiased Predictors (BLUP) estimates for the EQ variables for each of the sires for the Loin cut, ordered by breed of sire. Table 12.1 presents the same results for the Loin cut ranked by sires for each of the EQ variables ordered from 1 to 94. The correlation coefficients between these EQ BLUP estimates are given in Table 13.1 for the Loin. The Tender variable has low correlation with the other EQ variables which are all highly correlated.

Table 14.1 gives the Best Linear Unbiased Predictors (BLUP) for each of the sires and their rank order for the Loin cut, for the comparison of Star categories 1, 2, 3 verses Star categories 4, 5.

Table 15.1 presents the Best Linear Unbiased Predictors (BLUP) for each of the sires for the Topside cut, while Table 16.1 gives the rank order for each of the sires for each of the EQ variables. Table 17.1 gives the correlations between the BLUP sire estimates for each of the EQ variables'. The correlations are all high for the Topside cut.

Table 18.1 gives the Best Linear Unbiased Predictors (BLUP) for each of the sires and their rank order for the Topside cut, for the comparison of Star categories 1, 2, 3 verses Star categories 4, 5

Table 19.1 gives the correlations between the Loin and Topside for the sire best linear unbiased predictors estimated for the Tender, Juicy, Flavor and Overall Liking. Tender and Flavour are moderately correlated (r = 0.4), while Juicy and Overall Liking are highly correlated (r = 0.6).

Tables 20.1 and 21.1 give the sire BLUP estimates for the Loin and Topside cuts respectively. Tables without the covariates of intra – muscular fat and shear force 5. Tables 22.1 and 23.1 present the sire BLUP ranks for the Loin and Topside respectively where the sire ranks with and without the covariates are listed.

#### **Discussion Milestone 1.**

The differences in Kill Group within Flock are significant and expected. It is unclear what circumstances contribute to these differences which are probably associated with practices at different meat plants. It is notable that inclusion of pH measurements of the meat did not affect these differences.

These effects are an important source of variation in the eating quality of lamb meat experienced by the consumer and need to be taken into account in a sheep meat eating quality classification scheme. These are considerations for future milestones in this project. The current estimates of the variance associated with Kill Group are an indication of gains that might be made by implementing a consistent quality control program in the meat processing industry based upon an agreed and scientifically defined best practice.

The sex, birth rank and dam breed type of the lamb did not affect any of the eating quality variables. Only the amount of intra – muscular fat and the Shear Force 5 variables were related to the eating quality variables of the consumer star classification.

It is notable that the BLUP ranks of the sires change, sometimes dramatically, for each of the EQ variables when the covariates intra – muscular fat and shear force are included. The application of such estimates thus needs thought. Clearly aspects of the EQ variables associated with e.g. intra – muscular fat and related to particular sires would have an influence on the breeding value of that sire. If intra – muscular fat is included as a covariate then the sire BLUP estimates relate to effects on the EQ variables that are independent of intra – muscular fat. Thus, the objective of using either estimate (with or without a covariate) needs to be clearly defined.

The analysis of the Star categories by generalised linear models showed similar trends for sire breed and Kill Group that were observed with the EQ variables, taking into account the uncertainty associated by placing a sample into 1 of 5 classifications. Only the differences between Star Classifications 1, 2 and 3 verses Star Classifications 4 and 5 could be

distinguished for sire breed and Kill Group differences in both the Loin and Topside cuts. The difference between Star Classification 3 and Star Classification 5 could only be distinguished in the Loin cut.

There are significant (P < 0.01) sire variance components for all the EQ variables except smell. The significance of these components may have more to do with the size of the data set than the amount of the sire influence. Excluding the intra – muscular fat measurement from the statistical model modified the variance components slightly, but clearly the source of this effect was associated with elements other than the intra – muscular fat or the Shear force. There is a significant (P < 0.01) sire variance component for the Star Classification 1, 2 and 3 verses Star Classification 4 and 5 in both Loin and Topside, but not for the Star Classification 5 in the Loin. This probably reflects the extra uncertainty introduced in allocating a classification to each meat sample.

The BLUP estimates for the sire within sire breed within Kill Group effects for the EQ variables are highly correlated for the Topside cut, but the Tender variable is poorly related to Juicy, Flavour and Overall Liking in the Loin cut. This is an issue that might merit further consideration. It might indicate that something extra related to tenderness can be discerned in the Loin but not in the Topside. Perhaps the Loin exhibits a greater range of tenderness that can be identified then the Topside.

It has been observed that consumer judgement of meat eating quality exhibits considerable heterogeneity, and that this has the potential to disturb the analysis of this data by violating the assumptions underpinning the analysis. However, the inclusion of a random effect for consumer within pick dealt with this problem. The results of the model residuals for the Tender EQ variable are illustrated in Figure 1.

Previously this problem has been addressed by clipping the data, that is, by removing a proportion of extreme consumer responses. The approach assumes that these observations are not part of the population under investigation, perhaps because the consumers have made a mistake, or because some unexplained external event has contaminated the data. However, this raises the issue of exactly what population the analysis is making inference for? If the extreme events are indeed mistakes of one sort or another then removing them gives a better definition of the population of interest. But if instead these events are a characteristic of the population of interest then removing them is misleading.

The position taken here is that these events are characteristic of the population of interest and merit study. This is supported by large consumer within pick variance component compared with the pick variance component. The consumer intra – class correlation is about 0.4 for most of the EQ variables, which indicates that each consumer is relatively consistent in their evaluations. This is hard to justify if the deviations are due to mistakes and confusion. Rather, that this behaviour is an observed attribute of consumer judgement when eating lamb meat.

In this milestone the task is to evaluate the sire contributions to lamb meat eating quality, so including a random variable for consumer within pick addresses this problem adequately for these inferences to be made. However, in future milestones where the design of a suitable eating quality index is required this issue will need to be considered further.

| Sire Breed           | Smell                     | Tender                    | Juicy                 | Flavour                   | Overall Liking            |
|----------------------|---------------------------|---------------------------|-----------------------|---------------------------|---------------------------|
| Bond                 | 79.6 ± 2.23               | 79.0 ± 3.20               | 54.8 ± 3.13           | 60.9 ± 2.90               | 61.7 ± 2.90               |
| Border Leicester     | 80.4 ± 0.99               | 78.6 ± 1.47               | 53.5 ± 1.43           | 59.5 ± 1.30               | 60.1 ± 1.31               |
| Coopworth            | 79.0 ± 0.88               | 78.3 ± 1.34               | 52.4 ± 1.30           | 57.2 ± 1.18               | 57.9 ± 1.19               |
| Corriedale           | 79.3 ± 1.01               | 80.3 ± 1.56               | 54.4 ± 1.50           | 59.4 ± 1.35               | 60.5 ± 1.37               |
| Dohne Merino         | 80.7 ± 0.87               | 79.9 ± 1.33               | 52.1 ± 1.29           | 57.6 ± 1.16               | 58.6 ± 1.18               |
| Merino               | 81.0 ± 0.73               | 81.5 ± 1.09               | 55.6 ± 1.08           | 60.3 ± 0.96               | 61.5 ± 0.96               |
| Poll Dorset          | 80.5 ± 0.69               | 73.4 ± 0.79               | 48.0 ± 0.77           | 55.3 ± 0.67               | 54.7 ± 0.68               |
| Poll Merino          | 80.7 ± 0.84               | 80.7 ± 1.25               | 55.2 ±1.23            | 60.1 ± 1.11               | 60.8 ± 1.11               |
| Prime Samm           | 80.5 ± 0.93               | 79.1 ± 1.38               | 53.4 ± 1.35           | 58.5 ± 1.22               | 57.6 ± 1.23               |
| Suffolk              | 79.7 ± 0.63               | 79.2 ± 1.05               | 52.8 ± 1.00           | 59.2 ± 0.88               | 59.6 ± 0.90               |
| Texel                | 80.6 ± 0.61               | 75.2 ± 1.01               | 49.8 ± 0.96           | 56.4 ± 0.84               | 56.6 ± 0.87               |
| White Suffolk        | 80.4 ± 0.93               | 78.3 ± 1.20               | 50.8 ± 1.21           | 58.6 ± 1.08               | 58.8 ± 1.10               |
| Covariates           |                           |                           |                       |                           |                           |
| Intra – muscular fat | 0.74 ± 0.21 <sup>**</sup> | 1.56 ± 0.28 <sup>**</sup> | 5.03 ± 1.28**         | 5.42 ± 0.19 <sup>**</sup> | 5.63 ± 1.18 <sup>**</sup> |
| IF Fat quadratic     | NS                        | NS                        | $-0.26 \pm 0.12^{*}$  | -0.34 ± 0.11**            | -0.34 ± 0.11**            |
| Shear force 5        | $-0.08 \pm 0.03^{**}$     | $0.33 \pm 0.04^{**}$      | $-0.23 \pm 0.04^{**}$ | $-0.16 \pm 0.04^{**}$     | $-0.22 \pm 0.04^{**}$     |

| Table 1.1:.The fixed effects and their | r standard errors for eac | h of the EQ variables for |
|----------------------------------------|---------------------------|---------------------------|
| the Loin                               |                           |                           |

#### **Breed Effects without Covariate Corrections**

| Sire Breed       | Smell       | Tender      | Juicy       | Flavour     | Overall Liking |
|------------------|-------------|-------------|-------------|-------------|----------------|
| Bond             | 71.4 ± 2.01 | 77.9 ± 3.01 | 74.3 ± 2.99 | 75.0 ± 2.68 | 77.8 ± 2.73    |
| Border Leicester | 70.1 ± 0.94 | 76.9 ± 1.51 | 71.0 ± 1.49 | 73.9 ± 1.79 | 75.9 ± 1.33    |
| Coopworth        | 68.5 ± 0.85 | 76.1 ± 1.39 | 69.7 ± 1.38 | 71.6 ± 1.19 | 71.6 ± 1.22    |
| Corriedale       | 68.1 ± 0.98 | 77.7 ± 1.61 | 71.5 ± 1.59 | 73.1 ± 1.37 | 75.4 ± 1.42    |
| Dohne Merino     | 69.9 ± 0.82 | 77.8 ± 1.36 | 69.7 ± 1.34 | 72.0 ± 1.15 | 74.3 ± 1.19    |

| Merino        | 69.9 ± 0.67 | 80.0 ± 1.10 | 73.5 ± 1.12 | 75.0 ± 0.92 | 77.6 ± 0.94 |
|---------------|-------------|-------------|-------------|-------------|-------------|
| Poll Dorset   | 69.4 ± 0.65 | 70.5 ± 0.83 | 64.6 ± 0.82 | 68.7 ± 0.66 | 69.4 ± 0.68 |
| Poll Merino   | 69.0 ± 0.78 | 77.9 ± 1.28 | 72.2 ± 1.29 | 74.1 ± 1.08 | 76.0 ± 1.11 |
| Prime Samm    | 70.6 ± 0.89 | 79.6 ± 1.42 | 73.0 ± 1.41 | 74.3 ± 1.22 | 75.2 ± 1.25 |
| Suffolk       | 68.9 ± 0.62 | 77.6 ± 1.12 | 70.6 ± 1.09 | 73.5 ± 0.91 | 75.3 ± 0.95 |
| Texel         | 69.4 ± 0.56 | 72.7 ± 1.04 | 65.9 ± 1.02 | 69.5 ± 0.83 | 70.7 ± 0.88 |
| White Suffolk | 69.5 ± 0.76 | 76.4 ± 1.42 | 70.1 ± 1.41 | 71.6 ± 1.21 | 74.4 ± 1.24 |

| Kill Group | Smell       | Tender      | Juicy       | Flavour     | Overall Liking |
|------------|-------------|-------------|-------------|-------------|----------------|
| 219K09     | 81.7 ± 1.00 | 80.8 ± 1.29 | 57.5 ± 1.31 | 61.6 ± 1.23 | 62.7 ± 1.23    |
| 261K09     | 79.6 ± 0.97 | 77.5 ± 1.30 | 51.8 ±1.29  | 57.5 ± 1.22 | 58.0 ±1.21     |
| 272A09     | 79.4 ± 0.92 | 79.5 ± 1.19 | 50.7 ± 1.19 | 58.0 ± 1.13 | 58.6 ± 1.12    |
| 297A09     | 80.3 ± 0.96 | 78.9 ± 1.20 | 53.0 ± 1.21 | 59.8 ± 1.16 | 60.2 ± 1.15    |
| 331A09     | 80.4 ± 1.33 | 78.3 ± 1.59 | 54.3 ± 1.62 | 57.9 ± 1.54 | 58.3 ± 1.54    |
| 331K09     | 78.8 ± 1.10 | 75.4 ± 1.39 | 48.8 ± 1.39 | 56.7 ± 1.33 | 56.3 ± 1.32    |
| 359A09     | 80.3 ± 1.05 | 78.6 ± 1.38 | 52.2 ± 1.33 | 57.7 ± 1.28 | 59.0 ± 1.26    |

| Table 2.1: The fixed effects and their standard errors for each of the EQ variables fo |
|----------------------------------------------------------------------------------------|
| the Topside                                                                            |

| Sire Breed       | Smell       | Tender      | Juicy       | Flavour     | Overall     |
|------------------|-------------|-------------|-------------|-------------|-------------|
| Bond             | 77.1 ± 2.34 | 63.3 ± 4.11 | 41.7 ± 3.48 | 64.6 ± 3.39 | 65.7 ± 3.55 |
| Border Leicester | 73.9 ± 1.04 | 71.0 ±1.89  | 45.0 ± 1.60 | 64.1 ± 1.53 | 66.5 ± 1.62 |
| Coopworth        | 74.2 ± 0.93 | 68.2 ± 1.73 | 41.5 ± 1.45 | 62.8 ± 1.39 | 63.8 ± 1.48 |
| Corriedale       | 74.3 ± 1.06 | 71.8 ± 2.00 | 46.2 ± 1.66 | 64.3 ± 1.60 | 67.6 ± 1.70 |

| Dohne Merino         | 74.2 ± 0.91      | 72.3 ± 1.71           | 43.7 ± 1.43          | 63.3 ± 1.37          | 66.1 ± 1.45   |
|----------------------|------------------|-----------------------|----------------------|----------------------|---------------|
| Merino               | 73.5 ± 0.76      | 71.1 ± 1.41           | 44.9 ± 1.21          | 63.0 ± 1.12          | 65.4 ± 1.20   |
| Poll Dorset          | 74.8 ± 0.88      | 71.1 ± 1.62           | 40.4 ± 0.87          | 59.2 ± 0.79          | 61.2 ± 0.86   |
| Poll Merino          | 72.7 ± 0.52      | 64.4 ± 1.03           | 41.1 ± 1.39          | 64.4 ± 1.30          | 67.1 ± 1.39   |
| Prime Samm           | 73.9 ± 0.97      | 73.2 ± 1.73           | 45.3 ± 1.50          | 63.7 ± 1.43          | 66.3 ± 1.52   |
| Suffolk              | 73.9 ± 0.68      | 68.1 ± 1.37           | 42.2 ± 1.13          | 61.7 ± 1.07          | 63.4 ± 1.15   |
| Texel                | 73.3 ± 0.64      | 66.6 ± 1.30           | 42.4 ± 1.06          | 60.3 ± 1.01          | 62.8 ± 1.08   |
| White Suffolk        | 73.4 ± 0.86      | 68.7 ± 1.61           | 42.1 ± 1.35          | 62.5 ± 1.28          | 64.7 ± 1.37   |
| Covariates           |                  |                       |                      |                      |               |
| Intra – muscular fat | 0.06 ± 0.21      | 1.01 ± 0.36*          | 1.41 ± 0.31**        | $0.93 \pm 0.30^{**}$ | 0.96 ± 0.31** |
| Shear force 5        | $-0.02 \pm 0.03$ | $-0.20 \pm 0.05^{**}$ | $-0.10 \pm 0.05^{*}$ | $-0.11 \pm 0.04^{*}$ | -0.18 ±0.05** |
|                      |                  |                       |                      |                      |               |

#### **Breed Effects without Covariate Corrections**

| Sire Breed       | Smell       | Tender      | Juicy       | Flavour     | Overall Liking |
|------------------|-------------|-------------|-------------|-------------|----------------|
| Bond             | 71.5 ± 2.08 | 50.7 ± 3.74 | 52.7 ± 3.19 | 63.2 ± 3.07 | 60.4 ± 3.25    |
| Border Leicester | 67.6 ± 0.98 | 54.5 ± 1.84 | 54.5 ± 1.58 | 60.7 ± 1.49 | 58.2 ± 1.59    |
| Coopworth        | 67.3 ± 0.89 | 50.7 ± 1.69 | 50.3 ± 1.45 | 58.3 ± 1.36 | 54.5 ± 1.46    |
| Corriedale       | 67.5 ± 1.02 | 53.1 ± 1.97 | 53.9 ± 1.67 | 59.0 ± 1.58 | 57.3 ± 1.69    |
| Dohne Merino     | 67.5 ± 0.84 | 54.1 ± 1.64 | 52.6 ± 1.39 | 58.4 ± 1.31 | 56.7 ± 1.41    |
| Merino           | 66.6 ± 0.68 | 54.1 ± 1.30 | 54.0 ± 1.17 | 58.9 ± 1.04 | 56.6 ± 1.13    |
| Poll Dorset      | 66.1 ± 0.47 | 46.6 ± 0.97 | 48.6 ± 0.86 | 54.6 ± 0.75 | 51.5 ± 0.83    |
| Poll Merino      | 68.0 ± 0.80 | 53.5 ± 1.52 | 52.9 ± 1.34 | 59.8 ± 1.22 | 57.7 ± 1.32    |
| Prime Samm       | 66.8 ± 0.92 | 56.5 ± 1.73 | 54.3 ± 1.49 | 60.0 ± 1.40 | 58.1 ± 1.50    |
| Suffolk          | 67.0 ± 0.66 | 50.9 ± 1.35 | 51.1 ± 1.18 | 57.5 ± 1.06 | 54.6 ± 1.16    |
| Texel            | 66.8 ± 0.58 | 49.5 ± 1.24 | 50.5 ± 1.05 | 56.0 ± 0.92 | 53.7 ± 1.05    |

| White Suffolk | 66.7 ± 0.90 | 51.6 ± 1.73 | 52.0 ± 1.49 | 58.4 ± 1.50 | 55.8 ± 1.34 |
|---------------|-------------|-------------|-------------|-------------|-------------|
|               |             |             |             |             |             |

| Kill Group | Smell       | Tender      | Juicy       | Flavour     | Overall     |
|------------|-------------|-------------|-------------|-------------|-------------|
| 219K09     | 75.4 ± 0.90 | 66.9 ± 1.55 | 44.3 ± 1.43 | 63.5 ± 1.38 | 64.9 ± 1.38 |
| 261K09     | 74.0 ± 0.86 | 69.3 ±1.60  | 45.3 ± 1.45 | 63.1 ± 1.39 | 65.9 ± 1.40 |
| 272A09     | 75.1 ± 0.79 | 72.4 ±1.46  | 45.7 ± 1.34 | 65.8 ± 1.28 | 68.2 ± 1.28 |
| 297A09     | 74.1 ± 0.84 | 74.7 ± 1.44 | 45.9 ± 1.34 | 65.0 ± 1.30 | 68.3 ± 1.28 |
| 331A09     | 74.8 ± 1.33 | 67.4 ± 1.78 | 40.5 ± 1.71 | 59.9 ± 1.70 | 62.1 ± 1.66 |
| 331K09     | 73.3 ± 1.01 | 60.0 ± 1.65 | 37.9 ± 1.53 | 59.0 ± 1.49 | 58.7 ± 1.48 |
| 359A09     | 73.8 ± 0.97 | 69.0 ± 1.58 | 43.3 ± 1.47 | 62.6 ± 1.42 | 65.1 ± 1.42 |

#### Table 3.1: Multiple comparison for the sire breeds and Kill Groups for the Loin

#### Loin Tender

| Sire Breed Comparison |   |              | Difference in estimates | Significance |
|-----------------------|---|--------------|-------------------------|--------------|
| Poll Dorset           | V | Corriedale   | -6.90                   | 0.01         |
| Poll Dorset           | V | Dohne Merino | -6.57                   | 0.01         |
| Poll Dorset           | V | Merino       | -8.09                   | 0.01         |
| Texel                 | V | Merino       | -6.29                   | 0.01         |
| White Suffolk         | V | Merino       | -4.99                   | 0.01         |
| Poll Merino           | V | Poll Dorset  | 7.35                    | 0.01         |
| Suffolk               | V | Poll Dorset  | 5.81                    | 0.01         |
| Prime Samm            | V | Poll Dorset  | 5.74                    | 0.02         |
| Texel                 | V | Poll Merino  | -5.55                   | 0.03         |
| White Suffolk         | V | Poll Dorset  | 3.10                    | 0.05         |

| Kill Group Comparison | Difference in estimates | Significance |
|-----------------------|-------------------------|--------------|
|                       |                         |              |

B.LSM.0033 - Towards the development of a next generation MSA lamb model – statistical support

| 331K09 | V | 272A09 | -12.41 | 0.001 |
|--------|---|--------|--------|-------|
| 331K09 | V | 297A09 | -14.65 | 0.001 |
| 359A09 | V | 331K09 | 11.70  | 0.001 |
| 331K09 | V | 261K09 | -9.33  | 0.004 |
| 297A09 | V | 219K09 | 7.72   | 0.021 |
| 331K09 | V | 272A09 | -12.41 | 0.001 |

#### Loin Juicy

| Sire Breed Comparison |   |                  | Difference in estimates | Significance |
|-----------------------|---|------------------|-------------------------|--------------|
| Prime Samm            | V | Poll Dorset      | 5.41                    | 0.03         |
| Poll Dorset           | V | Border Leicester | -5.50                   | 0.03         |
| Texel                 | V | Poll Merino      | -5.43                   | 0.03         |

| Kill Group Comparison |   |        | Difference in estimates | Significance |
|-----------------------|---|--------|-------------------------|--------------|
| 272A09                | V | 219K09 | -6.86                   | 0.001        |
| 331K09                | V | 219K09 | -8.76                   | 0.001        |
| 261K09                | V | 219K09 | -5.77                   | 0.034        |

#### Loin Flavour

| Kill Group Comparison |   |             | Difference in estimates | Significance |
|-----------------------|---|-------------|-------------------------|--------------|
| Poll Dorset           | V | Merino      | -5.06                   | 0.01         |
| Suffolk               | V | Poll Dorset | 3.96                    | 0.01         |
| Poll Merino           | V | Poll Dorset | 4.78                    | 0.01         |

#### Loin Overall

| Kill Group Comparison |   |             | Difference in estimates | Significance |
|-----------------------|---|-------------|-------------------------|--------------|
|                       |   | Border      | - /-                    |              |
| Poll Dorset           | V | Leicester   | -5.49                   | 0.01         |
| Poll Dorset           | V | Corriedale  | -5.83                   | 0.01         |
| Poll Dorset           | V | Merino      | -6.83                   | 0.01         |
| Texel                 | V | Merino      | -4.90                   | 0.01         |
| Poll Merino           | V | Poll Dorset | 6.11                    | 0.01         |
| Suffolk               | V | Poll Dorset | 4.94                    | 0.01         |
| White Suffolk         | V | Merino      | -4.19                   | 0.01         |
| White Suffolk         | V | Poll Dorset | 2.63                    | 0.04         |

| Ki     | Il Group Comparise | on     | Difference in estimates | Significance |
|--------|--------------------|--------|-------------------------|--------------|
| 331K09 | V                  | 219K09 | 2.04                    | 0.03         |

#### Table 4.1: Multiple comparison for the sire breeds and Kill Groups for the Topside

#### Topside Smell.

No significant sire breed effects for smell

#### **Topside Tender**

| Sire Breed Comparison |   |              | Difference in estimates | Significance |
|-----------------------|---|--------------|-------------------------|--------------|
| Poll Dorset           | V | Dohne Merino | -7.91                   | 0.01         |
| Poll Dorset           | V | Merino       | -6.73                   | 0.01         |
| Prime Samm            | V | Poll Dorset  | 8.76                    | 0.01         |
| Poll Merino           | V | Poll Dorset  | 6.74                    | 0.02         |

| White Suffolk | V | Prime Samm | -7.12 | 0.02 |
|---------------|---|------------|-------|------|
| Poll Dorset   | V | Corriedale | -7.35 | 0.05 |

| Kill Group Comparison |   |        | Difference in estimates | Significance |
|-----------------------|---|--------|-------------------------|--------------|
| 331K09                | V | 272A09 | -12.41                  | 0.001        |
| 331K09                | V | 297A09 | -14.65                  | 0.001        |
| 359A09                | V | 331K09 | 11.70                   | 0.001        |
| 331K09                | V | 261K09 | -9.33                   | 0.004        |
| 297A09                | V | 219K09 | 7.72                    | 0.021        |

#### **Topside Juicy**

No significant sire breeds for juicy

| Kill Group Comparison |   |        | Difference in<br>estimates | Significance |
|-----------------------|---|--------|----------------------------|--------------|
|                       |   |        |                            |              |
| 331K09                | V | 297A09 | -7.98                      | 0.001        |
| 331K09                | V | 272A09 | -7.85                      | 0.011        |
| 331K09                | V | 261K09 | -7.45                      | 0.016        |

#### **Topside Flavour**

| Sire Breed Comparison |   | Difference in estimates | Significance |      |
|-----------------------|---|-------------------------|--------------|------|
| Poll Merino           | V | Poll Dorset             | 5.19         | 0.03 |

| Kill Group Comparison |   | Difference | Significance |      |
|-----------------------|---|------------|--------------|------|
| 331K09                | V | 297A09     | -6.03        | 0.02 |
| 331K09                | V | 272A09     | -6.81        | 0.03 |

#### **Topside Overall**

| Sire Breed Comparison |   | Difference in estimates | Significance |      |
|-----------------------|---|-------------------------|--------------|------|
| Poll Merino           | V | Poll Dorset             | 5.98         | 0.01 |
| Poll Dorset           | V | Corriedale              | -6.41        | 0.04 |

| Kill Group Comparison |   | Difference in estimates | Significance |       |
|-----------------------|---|-------------------------|--------------|-------|
| 331K09                | V | 272A09                  | -9.54        | 0.001 |
| 331K09                | V | 297A09                  | -9.56        | 0.001 |
| 331K09                | V | 261K09                  | -7.21        | 0.015 |
| 359A09                | V | 331K09                  | 7.34         | 0.039 |

## Table 5.1: The fixed effects and their standard errors for the significant star classifications for the loin

| Sire Breed       | Star 1, 2, 3 v Star 4,5 |            | Star 3 v S   | star 5    |
|------------------|-------------------------|------------|--------------|-----------|
|                  |                         | Proportion |              | Proportio |
|                  |                         | in Star 4, |              | n in Star |
|                  | Logit                   | 5          | Logit        | 5         |
| Bond             | 0.37 ± 0.36             | 59         | 0.23 ± 0.37  | 56        |
| Border Leicester | 0.09 ± 0.16             | 52         | 0.00 ± 0.16  | 50        |
| Coopworth        | 0.00 ± 0.14             | 50         | 0.09 ± 0.14  | 52        |
| Corriedale       | 0.05 ± 0.16             | 51         | -0.10 ± 0.16 | 48        |
| Dohne Merino     | 0.05 ± 0.14             | 51         | 0.05 ± 0.15  | 51        |

| Merino                  | 0.39 ± 0.12                   | 60 | 0.34 ± 0.13             | 58 |
|-------------------------|-------------------------------|----|-------------------------|----|
| Poll Dorset             | $-0.49 \pm 0.08$              | 38 | -0.28 ± 0.08            | 43 |
| Poll Merino             | 0.21±0.13                     | 55 | 0.11 ± 0.14             | 53 |
| Prime Samm              | -0.08 ± 0.15                  | 48 | 0.03 ± 0.15             | 51 |
| Suffolk                 | 0.0 ± 0.10                    | 50 | -0.02 ± 0.11            | 50 |
| Texel                   | $-0.30 \pm 0.09$              | 43 | -0.19 ± 0.10            | 45 |
| White Suffolk           | -0.03 ± 0.16                  | 49 | -0.02 ± 0.12            | 50 |
| Covariates              |                               |    |                         |    |
| Intra – muscular<br>fat | 0.64 ±<br>0.15 <sup>***</sup> |    | 0.14 ± 0.03***          |    |
| IF Fat quadratic        | -0.04 ±<br>0.01 <sup>**</sup> |    |                         |    |
| Shear force 5           | 0.03 ±<br>0.01 <sup>**</sup>  |    | $-0.02 \pm 0.005^{***}$ |    |

| Kill Group | Star 1, 2, 3 | v Star 4,5 | Star 3 v    | v Star 5 |
|------------|--------------|------------|-------------|----------|
| 219K09     | 0.43 ± 0.10  | 61         | 0.25 ± 0.09 | 56       |
| 261K09     | 0.07 ± 0.10  | 52         | 0.10 ± 0.10 | 52       |
| 272A09     | -0.16 ±      |            | -0.17 ±     |          |
|            | 0.09         | 46         | 0.09        | 46       |
| 297A09     | 0.16 ± 0.09  | 54         | 0.13 ± 0.09 | 53       |
| 331A09     | -0.16 ±      |            | -0.13 ±     |          |
|            | 0.12         | 46         | 0.11        | 47       |
| 331K09     | -0.29 ±      |            | -0.20 ±     |          |
|            | 0.11         | 43         | 0.11        | 45       |
| 359A09     | -0.01 ±      |            |             |          |
|            | 0.10         | 50         | 0.00 ± 0.10 | 50       |

## Table 6.1: The fixed effects and their standard errors for the significant star classifications for the topside

| Sire Breed        | Star 1, 2,3 v Star 4, 5 |                         |  |
|-------------------|-------------------------|-------------------------|--|
|                   | Logit                   | Proportion in Star 4, 5 |  |
| Bond <sup>#</sup> | 0.37 ± 0.38             | 59                      |  |
| Border Leicester  | 0.06 ± 0.18             | 51                      |  |
| Coopworth         | -0.23 ± 0.18            | 44                      |  |
| Corriedale        | 0.27 ± 0.19             | 57                      |  |
| Dohne Merino      | 0.14 ± 0.16             | 53                      |  |
| Merino            | $-0.08 \pm 0.14$        | 48                      |  |
| Poll Dorset       | -0.38 ± 0.10            | 41                      |  |
| Poll Merino       | 0.07 ± 0.15             | 52                      |  |
| Prime Samm        | 0.07 ± 0.17             | 52                      |  |
| Suffolk           | -0.11 ± 0.13            | 47                      |  |
| Texel             | -0.06 ± 0.12            | 49                      |  |

| White Suffolk           | -0.01 ± 0.15             | 50 |
|-------------------------|--------------------------|----|
| Covariates              |                          |    |
| Intra – muscular<br>fat | 0.08 ± 0.04 <sup>*</sup> |    |
| Shear force 5           | -0.01 ± 0.01             |    |
|                         |                          |    |

<sup>#</sup> Low numbers

| Kill Group | Star 1, 2,3 v Star 4, 5 |    |  |
|------------|-------------------------|----|--|
| 219K09     | -0.08 ± 0.10            | 48 |  |
| 261K09     | $-0.02 \pm 0.11$        | 50 |  |
| 272A09     | 0.22 ± 0.10             | 61 |  |
| 297A09     | 0.44 ± 0.09             | 61 |  |
| 331A09     | -0.08 ± 0.11            | 48 |  |
| 331K09     | $-0.42 \pm 0.12$        | 40 |  |
| 359A09     | -0.01 ± 0.10            | 50 |  |

#### Table 7.1: Multiple comparison for the sire breeds and Kill Groups for the Loin

#### Star 1, 2, 3 v Star 4, 5

| Sir           | e Breed Comparis | on          | Difference in estimates | Significance |
|---------------|------------------|-------------|-------------------------|--------------|
| Poll Dorset   | V                | Merino      | -0.91                   | 0.01         |
| Texel         | V                | Merino      | -0.72                   | 0.01         |
| White Suffolk | V                | Merino      | -0.69                   | 0.01         |
| Poll Merino   | V                | Poll Dorset | 0.74                    | 0.01         |
| Suffolk       | V                | Poll Dorset | 0.55                    | 0.01         |

| Kill Group Comparison | Difference in<br>estimates | Significance |
|-----------------------|----------------------------|--------------|
|-----------------------|----------------------------|--------------|

| 272A09 | V | 219K09 | -0.59 | 0.00 |
|--------|---|--------|-------|------|
| 331K09 | V | 219K09 | -0.73 | 0.00 |
| 331K09 | V | 297A09 | -0.49 | 0.01 |
| 331A09 | V | 219K09 | -0.57 | 0.03 |

#### Star 3 v Star 5

| Si            | re Breed Comparis                     | on           | Difference in | Significance |
|---------------|---------------------------------------|--------------|---------------|--------------|
|               | -                                     |              | ostimatos     | -            |
|               |                                       |              | estimates     |              |
|               |                                       |              |               |              |
| Poll Dorset   | v                                     | Merino       | -1.22         | 0.01         |
|               |                                       |              |               |              |
| White Suffolk | V                                     | Merino       | -1 04         | 0.01         |
|               | , , , , , , , , , , , , , , , , , , , | iniciane.    | 1.01          | 0.01         |
|               |                                       |              |               |              |
| Poll Merino   | V                                     | Poll Dorset  | 1.13          | 0.01         |
|               |                                       |              |               |              |
| Suffolk       | v                                     | Poll Dorset  | 0.76          | 0.01         |
|               |                                       |              |               |              |
| Poll Dorset   | V                                     | Dohne Merino | -0.97         | 0.02         |
|               | v                                     |              | 0.01          | 0.02         |
| White Suffolk | V                                     | Poll Merino  | -0.95         | 0.02         |
| White Outlonk | v                                     |              | -0.55         | 0.02         |
|               |                                       |              |               |              |

| Ki     | Kill Group Comparison |        | Difference in estimates | Significance |
|--------|-----------------------|--------|-------------------------|--------------|
| 272A09 | V                     | 219K09 | -0.42                   | 0.005        |

#### Table 8.1: Multiple comparison for the sire breeds and Kill Groups for the Topside

#### Star 1, 2, 3 v Star 4, 5

NS sire breed effects

| Kill Group Comparison |   | Difference in estimates | Significance |       |
|-----------------------|---|-------------------------|--------------|-------|
| 331K09                | V | 297A09                  | -0.87        | 0.001 |
| 297A09                | V | 219K09                  | 0.53         | 0.004 |
| 331K09                | V | 272A09                  | -0.65        | 0.005 |
| 331A09                | V | 297A09                  | -0.52        | 0.010 |
| 359A09                | V | 297A09                  | -0.50        | 0.012 |

| 297A09 | V | 261K09 | 0.46  | 0.046 |
|--------|---|--------|-------|-------|
| 331K09 | V | 297A09 | -0.87 | 0.001 |

## Table 9.1: The variance components for the random effects for the Loin cut. The estimates without intra- muscular fat and shear force are in brackets

| Random<br>Effect                              | Smell     | Tender          | Juicy                       | Flavour                  | Overall                     |
|-----------------------------------------------|-----------|-----------------|-----------------------------|--------------------------|-----------------------------|
| Consumer<br>within Pick                       | 149.8     | 137.0 (122.4)   | 183.8 (177.6)               | 150.5 (146.2)            | 147.0 (139.7)               |
| Pick                                          | 8.01      | 9.47 (10.76)    | 9.99 (11.29)                | 9.43 (9.49)              | 9.53 (9.85)                 |
|                                               |           |                 |                             |                          |                             |
| Sire with sire<br>breed within<br>Kill group: | 0.39 (NS) | 15.97*** (20.0) | 8.96 <sup>***</sup> (14.15) | 5.70 <sup>*</sup> (8.01) | 7.98 <sup>***</sup> (11.72) |
|                                               |           |                 |                             |                          |                             |
| Residual                                      | 170.9     | 229.4 (235.5)   | 264.5 (269.7)               | 252.1 (255.5)            | 229.1 (234.7)               |

## Table 10.1: The variance components for the random effects for the Topside cut. The estimates without intra- muscular fat and shear force are in brackets

| Random<br>Effect                              | Smell      | Tender                          | Juicy                      | Flavour                         | Overall                         |
|-----------------------------------------------|------------|---------------------------------|----------------------------|---------------------------------|---------------------------------|
| Consumer<br>within Pick                       | 161.7      | 183.3 (182.2)                   | 202.9 (204.4)              | 178.9 (174.7)                   | 178.1 (174.7                    |
| Pick                                          | 9.71       | 7.13 (6.16)                     | 7.35 (6.80)                | 9.29 (8.49)                     | 7.83 (7.19)                     |
|                                               |            |                                 |                            |                                 |                                 |
| Sire with sire<br>breed within<br>Kill group: | 0.089 (NS) | 23.75 <sup>***</sup><br>(26.80) | 9.39 <sup>**</sup> (12.04) | 11.03 <sup>***</sup><br>(12.36) | 13.40 <sup>***</sup><br>(16.11) |
|                                               |            |                                 |                            |                                 |                                 |
| Residual                                      | 182.2      | 417.9 (421.3)                   | 347.8 (350.1)              | 319.2 (322.6)                   | 341.3 (343.2)                   |

## Table 11.1: The best linear unbiased predictors (BLUP) for each of the sires on each of the EQ variables for the Loin cut.

| Sire              | Breed            | Tender | Juicy | Flavour | Overall |
|-------------------|------------------|--------|-------|---------|---------|
| s020041200707J039 | Border Leicester | 3.09   | 1.07  | 0.72    | 1.57    |
| s020041200707J040 | Border Leicester | -2.85  | -1.56 | -1.44   | -2.53   |
| s0219292007070261 | Border Leicester | -4.24  | -1.20 | -0.19   | -1.24   |
| s0244112006060369 | Border Leicester | -3.49  | -0.44 | -0.29   | -1.02   |
| s0246862007070179 | Border Leicester | -2.85  | -0.89 | -0.64   | -1.28   |
| s0300182004045220 | Corriedale       | -3.67  | -1.02 | -1.09   | -1.90   |
| s0300362005050134 | Corriedale       | -1.21  | -0.88 | -0.34   | -0.81   |
| s0315272003030360 | Corriedale       | -3.20  | -2.80 | -1.08   | -3.14   |
| s0318972006060386 | Corriedale       | -3.49  | -1.47 | -0.66   | -1.17   |
| s0600032006060121 | Bond             | -3.09  | -0.51 | -0.56   | -1.68   |
| s1500152003030196 | Coopworth        | -4.49  | -1.07 | -0.89   | -1.74   |
| s1500292007070244 | Coopworth        | -2.46  | -2.27 | -0.52   | -1.63   |
| s1500392006061009 | Coopworth        | -2.02  | 0.50  | 0.19    | 0.10    |
| s1500482007070769 | Coopworth        | -3.98  | -1.77 | -0.89   | -2.26   |
| s1500622006060070 | Coopworth        | -1.54  | -0.46 | -0.51   | -1.68   |
| s1600012008080010 | Poll Dorset      | -1.95  | -1.22 | -0.99   | -1.87   |
| s1601852007070369 | Poll Dorset      | -3.78  | -1.04 | -0.72   | -1.86   |
| s1611432007070025 | Poll Dorset      | -3.46  | 0.02  | 0.08    | -0.51   |
| s1611582007070190 | Poll Dorset      | -2.14  | 0.16  | -0.06   | -0.70   |
| s1612352007072025 | Poll Dorset      | -2.01  | -2.45 | -1.45   | -2.21   |
| s1614152007070440 | Poll Dorset      | -3.95  | -2.16 | -1.78   | -3.24   |
| s1618922006060050 | Poll Dorset      | -1.09  | -0.46 | -0.46   | -0.79   |
| s1619722006061831 | Poll Dorset      | -0.97  | -1.10 | -0.88   | -1.25   |

| s1622882007070644 | Poll Dorset   | -1.15 | -0.86 | -1.16 | -1.85 |
|-------------------|---------------|-------|-------|-------|-------|
| s1623682007070468 | Poll Dorset   | -5.06 | -1.06 | -0.73 | -2.02 |
| s1636772007070839 | Poll Dorset   | -7.80 | -1.00 | -1.50 | -2.52 |
| s1637212007070311 | Poll Dorset   | -1.13 | -0.99 | -0.21 | -0.88 |
| s1640732007070364 | Poll Dorset   | -4.28 | -2.55 | -1.42 | -2.75 |
| s1700622007070144 | Texel         | -3.58 | 0.24  | 0.04  | -0.38 |
| s1700802007071532 | Texel         | -1.57 | -1.27 | -0.38 | -1.32 |
| s1702232007070046 | Texel         | -5.01 | -1.40 | -0.90 | -1.88 |
| s1704062007070028 | Texel         | -1.74 | -0.61 | -0.05 | -0.73 |
| s1704202007070224 | Texel         | -3.33 | -1.24 | -1.21 | -2.33 |
| s1900282007071494 | Suffolk       | -3.17 | -1.07 | -0.81 | -1.38 |
| s1900602007070267 | Suffolk       | -3.52 | -1.67 | -1.24 | -2.21 |
| s1901112007077058 | Suffolk       | -3.08 | -1.44 | -1.54 | -2.48 |
| s1918502001010120 | Suffolk       | -2.56 | 0.13  | -0.49 | -1.27 |
| s1920452007070508 | Suffolk       | -3.05 | -1.46 | -0.91 | -1.63 |
| s2300022007070098 | White Suffolk | -5.70 | -0.63 | -0.05 | -0.53 |
| s2300092007070279 | White Suffolk | -2.47 | -0.04 | -0.38 | -0.97 |
| s2300152007070143 | White Suffolk | -3.32 | -1.79 | -1.11 | -2.37 |
| s2300262005050650 | White Suffolk | 1.95  | -0.73 | -0.99 | -1.72 |
| s2300262007072446 | White Suffolk | -2.06 | -0.78 | -0.70 | -1.40 |
| s2300342007074914 | White Suffolk | -3.28 | -2.20 | -0.85 | -2.16 |
| s2300432007070591 | White Suffolk | -4.10 | -0.61 | 0.13  | -0.68 |
| s2300912007070008 | White Suffolk | -2.58 | -1.90 | -1.29 | -2.42 |
| s2301132007070040 | White Suffolk | -4.55 | -1.28 | -0.75 | -1.48 |
| s2303182008080262 | White Suffolk | -2.28 | -0.80 | -0.13 | -0.59 |
| s2303242007075630 | White Suffolk | -5.12 | -0.17 | -0.45 | -0.91 |
| s2304502007071456 | White Suffolk | -1.26 | -0.72 | -0.52 | -1.40 |
|                   |               | 1     | 1     | 1     |       |

| s4800302008080078 | Prime Samm   | -3.26 | -1.98 | -0.58 | -1.75 |
|-------------------|--------------|-------|-------|-------|-------|
| s4800392007070062 | Prime Samm   | -1.94 | -2.52 | -1.14 | -2.30 |
| s4800552007070068 | Prime Samm   | -2.03 | -0.75 | -0.20 | -0.99 |
| s4800872006060421 | Prime Samm   | -2.79 | -2.02 | -1.66 | -2.74 |
| s4800992006060191 | Prime Samm   | -5.00 | -0.73 | -0.49 | -1.17 |
| s5000482007070260 | Merino       | -1.07 | -1.59 | -2.30 | -3.24 |
| s5000872006060096 | Merino       | -0.23 | 0.47  | -0.04 | -0.70 |
| s5007882007071254 | Merino       | -2.77 | -0.45 | 0.03  | -1.03 |
| s5018852006TRIMPH | Merino       | -1.59 | -0.75 | -0.58 | -1.41 |
| s5024252006023997 | Merino       | -5.34 | -0.63 | 0.09  | -0.63 |
| s5030542004040585 | Merino       | -0.94 | -1.90 | -0.89 | -1.78 |
| s5030972005051737 | Merino       | -3.05 | -1.90 | -1.22 | -2.83 |
| s5034252006060205 | Merino       | -3.11 | -1.34 | -0.55 | -1.49 |
| s5037892007LB0753 | Merino       | -0.61 | 0.23  | 0.22  | -0.21 |
| s5038632006OL3626 | Merino       | -1.97 | 0.42  | -0.49 | -0.43 |
| s5039462007OLY716 | Merino       | -3.97 | -1.46 | -0.90 | -1.77 |
| s5039822006060225 | Merino       | -3.59 | -0.59 | -0.82 | -1.75 |
| s5044702006060022 | Merino       | -3.63 | -1.06 | -0.84 | -1.14 |
| s5046152004040024 | Merino       | -3.00 | -0.27 | -0.57 | -1.09 |
| s5047432000000503 | Merino       | -1.78 | -2.64 | -1.27 | -2.25 |
| s5049022005005345 | Merino       | -6.41 | -1.98 | -1.63 | -3.38 |
| s5049162007070719 | Merino       | -3.63 | -1.38 | -1.08 | -2.06 |
| s50923420060C0573 | Merino       | -4.91 | -0.80 | -0.79 | -1.67 |
| s5100032007070949 | Dohne Merino | -4.01 | -1.35 | -0.87 | -1.89 |
| s5100092007070376 | Dohne Merino | -3.70 | -1.29 | -1.06 | -2.03 |
| s5100302005050068 | Dohne Merino | -4.36 | -0.80 | -0.68 | -1.13 |
| s5100492007071700 | Dohne Merino | -0.87 | -0.96 | -0.12 | -0.93 |

| s5101402006060368 | Dohne Merino | -1.18 | -1.16 | -0.85 | -2.16 |
|-------------------|--------------|-------|-------|-------|-------|
| s6004082007070069 | Poll Merino  | -2.68 | -1.50 | -0.17 | -1.45 |
| s6005532007070002 | Poll Merino  | -4.93 | 1.28  | -0.51 | -0.51 |
| s6005712006060058 | Poll Merino  | -3.66 | -1.05 | 0.13  | -0.42 |
| s6008152006060120 | Poll Merino  | -3.12 | -0.94 | 0.00  | -0.51 |
| s6010532003031078 | Poll Merino  | -1.54 | -3.25 | -1.38 | -2.91 |
| s6010822007071257 | Poll Merino  | -3.11 | -2.65 | -1.27 | -2.91 |
| s6011272007070121 | Poll Merino  | -2.29 | -1.03 | -0.85 | -1.35 |
| s6012502004407812 | Poll Merino  | -4.61 | 0.31  | 0.58  | -0.84 |
| s6012882006063091 | Poll Merino  | -5.48 | -1.24 | -2.52 | -3.26 |
| s6013072005050165 | Poll Merino  | -2.05 | -0.39 | -0.73 | -1.87 |
| s6013162007070023 | Poll Merino  | -2.47 | -0.73 | -0.50 | -1.04 |
| s6013322004000WD2 | Poll Merino  | 0.63  | 1.37  | 0.21  | 0.46  |
| s6013562007000449 | Poll Merino  | -1.58 | -1.64 | -0.44 | -1.12 |
| s6013652006060052 | Poll Merino  | -3.68 | -2.59 | -2.65 | -3.28 |
| s6090542006066533 | Poll Merino  | -4.92 | -1.80 | -0.62 | -1.81 |
| s6091542004040062 | Poll Merino  | -6.40 | -2.25 | -1.77 | -3.48 |

Table 12.1: The sires ranked by best linear unbiased predictor (BLUP) for each of the EQ variables for the Loin cut

| Sire              | Breed            | Rank<br>Tender | Rank<br>Juicy | Rank<br>Flavour | Rank<br>Overall |
|-------------------|------------------|----------------|---------------|-----------------|-----------------|
| s020041200707J039 | Border Leicester | 94             | 92            | 94              | 94              |
| s020041200707J040 | Border Leicester | 52             | 25            | 11              | 13              |
| s0219292007070261 | Border Leicester | 19             | 41            | 75              | 60              |
| s0244112006060369 | Border Leicester | 35             | 78            | 72              | 69              |
| s0246862007070179 | Border Leicester | 53             | 56            | 51              | 57              |

| s0300182004045220 | Corriedale  | 28 | 51 | 23 | 29 |
|-------------------|-------------|----|----|----|----|
| s0300362005050134 | Corriedale  | 81 | 57 | 71 | 76 |
| s0315272003030360 | Corriedale  | 42 | 2  | 24 | 7  |
| s0318972006060386 | Corriedale  | 36 | 27 | 50 | 61 |
| s0600032006060121 | Bond        | 47 | 74 | 56 | 43 |
| s1500152003030196 | Coopworth   | 16 | 44 | 34 | 41 |
| s1500292007070244 | Coopworth   | 61 | 9  | 58 | 47 |
| s1500392006061009 | Coopworth   | 68 | 91 | 90 | 92 |
| s1500482007070769 | Coopworth   | 22 | 21 | 33 | 20 |
| s1500622006060070 | Coopworth   | 78 | 75 | 60 | 44 |
| s1600012008080010 | Poll Dorset | 71 | 40 | 27 | 32 |
| s1601852007070369 | Poll Dorset | 25 | 49 | 47 | 34 |
| s1611432007070025 | Poll Dorset | 37 | 83 | 86 | 87 |
| s1611582007070190 | Poll Dorset | 64 | 85 | 79 | 79 |
| s1612352007072025 | Poll Dorset | 69 | 8  | 10 | 22 |
| s1614152007070440 | Poll Dorset | 24 | 12 | 4  | 6  |
| s1618922006060050 | Poll Dorset | 85 | 76 | 66 | 77 |
| s1619722006061831 | Poll Dorset | 87 | 43 | 35 | 59 |
| s1622882007070644 | Poll Dorset | 83 | 58 | 20 | 35 |
| s1623682007070468 | Poll Dorset | 8  | 46 | 45 | 28 |
| s1636772007070839 | Poll Dorset | 1  | 52 | 9  | 14 |
| s1637212007070311 | Poll Dorset | 84 | 53 | 73 | 74 |
| s1640732007070364 | Poll Dorset | 18 | 6  | 12 | 11 |
| s1700622007070144 | Texel       | 33 | 87 | 85 | 90 |
| s1700802007071532 | Texel       | 77 | 37 | 69 | 56 |
| s1702232007070046 | Texel       | 9  | 31 | 31 | 31 |
| s1704062007070028 | Texel       | 74 | 72 | 81 | 78 |

| s1704202007070224 | Texel         | 38 | 39 | 19 | 18 |
|-------------------|---------------|----|----|----|----|
| s1900282007071494 | Suffolk       | 43 | 45 | 42 | 54 |
| s1900602007070267 | Suffolk       | 34 | 22 | 17 | 23 |
| s1901112007077058 | Suffolk       | 48 | 30 | 8  | 15 |
| s1918502001010120 | Suffolk       | 58 | 84 | 64 | 58 |
| s1920452007070508 | Suffolk       | 49 | 29 | 29 | 46 |
| s2300022007070098 | White Suffolk | 4  | 69 | 80 | 84 |
| s2300092007070279 | White Suffolk | 59 | 82 | 70 | 71 |
| s2300152007070143 | White Suffolk | 39 | 20 | 22 | 17 |
| s2300262005050650 | White Suffolk | 93 | 67 | 28 | 42 |
| s2300262007072446 | White Suffolk | 65 | 62 | 48 | 52 |
| s2300342007074914 | White Suffolk | 40 | 11 | 37 | 24 |
| s2300432007070591 | White Suffolk | 20 | 71 | 89 | 81 |
| s2300912007070008 | White Suffolk | 57 | 17 | 14 | 16 |
| s2301132007070040 | White Suffolk | 15 | 36 | 44 | 49 |
| s2303182008080262 | White Suffolk | 63 | 61 | 77 | 83 |
| s2303242007075630 | White Suffolk | 7  | 81 | 67 | 73 |
| s2304502007071456 | White Suffolk | 80 | 68 | 59 | 53 |
| s4800302008080078 | Prime Samm    | 41 | 15 | 53 | 40 |
| s4800392007070062 | Prime Samm    | 72 | 7  | 21 | 19 |
| s4800552007070068 | Prime Samm    | 67 | 63 | 74 | 70 |
| s4800872006060421 | Prime Samm    | 54 | 13 | 6  | 12 |
| s4800992006060191 | Prime Samm    | 10 | 65 | 63 | 62 |
| s5000482007070260 | Merino        | 86 | 24 | 3  | 5  |
| s5000872006060096 | Merino        | 91 | 90 | 82 | 80 |
| s5007882007071254 | Merino        | 55 | 77 | 84 | 68 |
| s5018852006TRIMPH | Merino        | 75 | 64 | 54 | 51 |
| s5024252006023997 | Merino       | 6  | 70 | 87 | 82 |
|-------------------|--------------|----|----|----|----|
| s5030542004040585 | Merino       | 88 | 18 | 32 | 37 |
| s5030972005051737 | Merino       | 50 | 16 | 18 | 10 |
| s5034252006060205 | Merino       | 45 | 34 | 57 | 48 |
| s5037892007LB0753 | Merino       | 90 | 86 | 92 | 91 |
| s5038632006OL3626 | Merino       | 70 | 89 | 65 | 88 |
| s5039462007OLY716 | Merino       | 23 | 28 | 30 | 38 |
| s5039822006060225 | Merino       | 32 | 73 | 41 | 39 |
| s5044702006060022 | Merino       | 30 | 47 | 40 | 63 |
| s5046152004040024 | Merino       | 51 | 80 | 55 | 66 |
| s5047432000000503 | Merino       | 73 | 4  | 16 | 21 |
| s5049022005005345 | Merino       | 2  | 14 | 7  | 2  |
| s5049162007070719 | Merino       | 31 | 32 | 25 | 26 |
| s50923420060C0573 | Merino       | 13 | 59 | 43 | 45 |
| s5100032007070949 | Dohne Merino | 21 | 33 | 36 | 30 |
| s5100092007070376 | Dohne Merino | 26 | 35 | 26 | 27 |
| s5100302005050068 | Dohne Merino | 17 | 60 | 49 | 64 |
| s5100492007071700 | Dohne Merino | 89 | 54 | 78 | 72 |
| s5101402006060368 | Dohne Merino | 82 | 42 | 38 | 25 |
| s6004082007070069 | Poll Merino  | 56 | 26 | 76 | 50 |
| s6005532007070002 | Poll Merino  | 11 | 93 | 61 | 85 |
| s6005712006060058 | Poll Merino  | 29 | 48 | 88 | 89 |
| s6008152006060120 | Poll Merino  | 44 | 55 | 83 | 86 |
| s6010532003031078 | Poll Merino  | 79 | 1  | 13 | 8  |
| s6010822007071257 | Poll Merino  | 46 | 3  | 15 | 9  |
| s6011272007070121 | Poll Merino  | 62 | 50 | 39 | 55 |
| s6012502004407812 | Poll Merino  | 14 | 88 | 93 | 75 |

| s6012882006063091 | Poll Merino | 5  | 38 | 2  | 4  |
|-------------------|-------------|----|----|----|----|
| s6013072005050165 | Poll Merino | 66 | 79 | 46 | 33 |
| s6013162007070023 | Poll Merino | 60 | 66 | 62 | 67 |
| s6013322004000WD2 | Poll Merino | 92 | 94 | 91 | 93 |
| s6013562007000449 | Poll Merino | 76 | 23 | 68 | 65 |
| s6013652006060052 | Poll Merino | 27 | 5  | 1  | 3  |
| s6090542006066533 | Poll Merino | 12 | 19 | 52 | 36 |
| s6091542004040062 | Poll Merino | 3  | 10 | 5  | 1  |

# Table 13.1: The correlations between the sire BLUP estimates for each of the EQ variables for the Loin cut

|                | Tender | Juicy | Flavour | Overall Liking |
|----------------|--------|-------|---------|----------------|
|                |        |       |         |                |
| Tender         |        | 0.22  | 0.27    | 0.37           |
|                |        |       |         |                |
| Juicy          |        |       | 0.68    | 0.80           |
| ,              |        |       |         |                |
| Flavour        |        |       |         | 0.90           |
|                |        |       |         |                |
| Overall Liking |        |       |         |                |
| 5              |        |       |         |                |

Table 14.1: The sires best linear unbiased predictor (BLUP) and rankings for the Star Classification 1, 2, 3 verses Star Classification 4, 5 for the Loin cut.

| Sire              | Breed            | Star 1, 2, 3 v Sta4 | Rank |
|-------------------|------------------|---------------------|------|
|                   |                  | 4, 5                |      |
|                   |                  |                     |      |
| s020041200707J039 | Border Leicester | 0.19                | 94   |
| s020041200707J040 | Border Leicester | -0.19               | 31   |
| s0219292007070261 | Border Leicester | -0.27               | 7    |
| s0244112006060369 | Border Leicester | -0.06               | 83   |
| s0246862007070179 | Border Leicester | -0.18               | 46   |
| s0300182004045220 | Corriedale       | -0.24               | 15   |

| s0300362005050134 | Corriedale  | 0.06  | 93 |
|-------------------|-------------|-------|----|
| s0315272003030360 | Corriedale  | -0.02 | 89 |
| s0318972006060386 | Corriedale  | -0.26 | 8  |
| s0600032006060121 | Bond        | -0.18 | 43 |
| s1500152003030196 | Coopworth   | -0.16 | 55 |
| s1500292007070244 | Coopworth   | -0.05 | 85 |
| s1500392006061009 | Coopworth   | -0.25 | 12 |
| s1500482007070769 | Coopworth   | -0.19 | 32 |
| s1500622006060070 | Coopworth   | -0.17 | 51 |
| s1600012008080010 | Poll Dorset | -0.15 | 57 |
| s1601852007070369 | Poll Dorset | -0.13 | 67 |
| s1611432007070025 | Poll Dorset | -0.09 | 78 |
| s1611582007070190 | Poll Dorset | -0.15 | 58 |
| s1612352007072025 | Poll Dorset | -0.20 | 26 |
| s1614152007070440 | Poll Dorset | -0.20 | 28 |
| s1618922006060050 | Poll Dorset | -0.21 | 23 |
| s1619722006061831 | Poll Dorset | -0.03 | 88 |
| s1622882007070644 | Poll Dorset | -0.22 | 21 |
| s1623682007070468 | Poll Dorset | -0.22 | 19 |
| s1636772007070839 | Poll Dorset | -0.26 | 11 |
| s1637212007070311 | Poll Dorset | -0.03 | 87 |
| s1640732007070364 | Poll Dorset | -0.17 | 54 |
| s1700622007070144 | Texel       | -0.20 | 25 |
| s1700802007071532 | Texel       | -0.08 | 80 |
| s1702232007070046 | Texel       | -0.19 | 29 |
| s1704062007070028 | Texel       | -0.11 | 73 |
| s1704202007070224 | Texel       | -0.18 | 44 |

| s1900282007071494 | Suffolk       | -0.17 | 52 |
|-------------------|---------------|-------|----|
| s1900602007070267 | Suffolk       | -0.17 | 53 |
| s1901112007077058 | Suffolk       | -0.12 | 71 |
| s1918502001010120 | Suffolk       | -0.17 | 49 |
| s1920452007070508 | Suffolk       | -0.16 | 56 |
| s2300022007070098 | White Suffolk | -0.12 | 69 |
| s2300092007070279 | White Suffolk | -0.19 | 33 |
| s2300152007070143 | White Suffolk | -0.09 | 77 |
| s2300262005050650 | White Suffolk | -0.12 | 68 |
| s2300262007072446 | White Suffolk | -0.13 | 64 |
| s2300342007074914 | White Suffolk | -0.21 | 22 |
| s2300432007070591 | White Suffolk | -0.19 | 37 |
| s2300912007070008 | White Suffolk | -0.18 | 38 |
| s2301132007070040 | White Suffolk | -0.17 | 50 |
| s2303182008080262 | White Suffolk | -0.19 | 35 |
| s2303242007075630 | White Suffolk | -0.21 | 24 |
| s2304502007071456 | White Suffolk | -0.08 | 79 |
| s4800302008080078 | Prime Samm    | -0.18 | 39 |
| s4800392007070062 | Prime Samm    | -0.19 | 30 |
| s4800552007070068 | Prime Samm    | -0.05 | 84 |
| s4800872006060421 | Prime Samm    | -0.12 | 70 |
| s4800992006060191 | Prime Samm    | -0.26 | 10 |
| s5000482007070260 | Merino        | -0.14 | 61 |
| s5000872006060096 | Merino        | -0.10 | 76 |
| s5007882007071254 | Merino        | -0.13 | 66 |
| s5018852006TRIMPH | Merino        | 0.01  | 90 |
| s5024252006023997 | Merino        | -0.25 | 13 |

| s5030542004040585 | Merino       | -0.20 | 27 |
|-------------------|--------------|-------|----|
| s5030972005051737 | Merino       | -0.31 | 4  |
| s5034252006060205 | Merino       | -0.22 | 20 |
| s5037892007LB0753 | Merino       | -0.10 | 74 |
| s5038632006OL3626 | Merino       | 0.04  | 91 |
| s5039462007OLY716 | Merino       | -0.18 | 47 |
| s5039822006060225 | Merino       | -0.14 | 60 |
| s5044702006060022 | Merino       | -0.18 | 45 |
| s5046152004040024 | Merino       | -0.34 | 3  |
| s5047432000000503 | Merino       | -0.19 | 36 |
| s5049022005005345 | Merino       | -0.26 | 9  |
| s5049162007070719 | Merino       | -0.19 | 34 |
| s50923420060C0573 | Merino       | -0.13 | 65 |
| s5100032007070949 | Dohne Merino | -0.22 | 17 |
| s5100092007070376 | Dohne Merino | -0.18 | 40 |
| s5100302005050068 | Dohne Merino | -0.23 | 16 |
| s5100492007071700 | Dohne Merino | -0.05 | 86 |
| s5101402006060368 | Dohne Merino | -0.10 | 75 |
| s6004082007070069 | Poll Merino  | -0.14 | 59 |
| s6005532007070002 | Poll Merino  | -0.13 | 63 |
| s6005712006060058 | Poll Merino  | -0.18 | 48 |
| s6008152006060120 | Poll Merino  | -0.07 | 81 |
| s6010532003031078 | Poll Merino  | -0.18 | 41 |
| s6010822007071257 | Poll Merino  | -0.18 | 42 |
| s6011272007070121 | Poll Merino  | -0.35 | 2  |
| s6012502004407812 | Poll Merino  | -0.22 | 18 |
| s6012882006063091 | Poll Merino  | -0.24 | 14 |

| s6013072005050165 | Poll Merino | 0.05  | 92 |
|-------------------|-------------|-------|----|
| s6013162007070023 | Poll Merino | -0.13 | 62 |
| s6013322004000WD2 | Poll Merino | -0.07 | 82 |
| s6013562007000449 | Poll Merino | -0.12 | 72 |
| s6013652006060052 | Poll Merino | -0.37 | 1  |
| s6090542006066533 | Poll Merino | -0.27 | 6  |
| s6091542004040062 | Poll Merino | -0.29 | 5  |

## Table 15.1: The best linear unbiased predictors (BLUP) for each of the sires on each of the EQ variables for the Topside cut.

| Sire              | Breed            | Tender | Juicy | Flavour | Overall |
|-------------------|------------------|--------|-------|---------|---------|
| s020041200707J039 | Border Leicester | 3.01   | 1.16  | 0.08    | 1.08    |
| s020041200707J040 | Border Leicester | -4.99  | -2.17 | -1.03   | -2.43   |
| s0219292007070261 | Border Leicester | -3.01  | -1.06 | -0.47   | -1.49   |
| s0244112006060369 | Border Leicester | -2.30  | -0.68 | 0.59    | -0.63   |
| s0246862007070179 | Border Leicester | -3.36  | -1.80 | -0.02   | -1.00   |
| s0300182004045220 | Corriedale       | -1.39  | -0.28 | 0.82    | 0.07    |
| s0300362005050134 | Corriedale       | -3.35  | -1.26 | -0.28   | -0.85   |
| s0315272003030360 | Corriedale       | -9.17  | -3.34 | -3.36   | -5.06   |
| s0318972006060386 | Corriedale       | -1.07  | -0.81 | 0.32    | -0.73   |
| s0600032006060121 | Bond             | -2.59  | -0.18 | -0.20   | -1.28   |
| s1500152003030196 | Coopworth        | -1.66  | -0.78 | 0.97    | -0.33   |
| s1500292007070244 | Coopworth        | -3.33  | -1.76 | -0.67   | -1.73   |
| s1500392006061009 | Coopworth        | -1.94  | -0.39 | 0.60    | -0.24   |
| s1500482007070769 | Coopworth        | -5.84  | -2.64 | -1.65   | -2.70   |
| s1500622006060070 | Coopworth        | -2.28  | -0.21 | 0.38    | -0.35   |
| s1600012008080010 | Poll Dorset      | -3.47  | -2.07 | -0.62   | -1.08   |

| s1601852007070369 | Poll Dorset   | -3.64 | -1.50 | -0.72 | -1.56 |
|-------------------|---------------|-------|-------|-------|-------|
| s1611432007070025 | Poll Dorset   | -1.13 | 0.05  | 1.52  | 0.77  |
| s1611582007070190 | Poll Dorset   | -3.18 | -1.42 | 0.32  | -0.77 |
| s1612352007072025 | Poll Dorset   | -2.54 | -1.01 | -0.22 | -1.20 |
| s1614152007070440 | Poll Dorset   | -6.31 | -2.81 | -1.77 | -3.33 |
| s1618922006060050 | Poll Dorset   | 0.55  | 0.27  | 1.68  | 1.08  |
| s1619722006061831 | Poll Dorset   | -5.31 | -0.94 | -0.67 | -2.12 |
| s1622882007070644 | Poll Dorset   | -5.61 | -1.67 | -0.86 | -2.85 |
| s1623682007070468 | Poll Dorset   | -2.82 | -1.01 | -0.31 | -1.57 |
| s1636772007070839 | Poll Dorset   | -3.72 | -1.73 | -0.67 | -1.37 |
| s1637212007070311 | Poll Dorset   | -2.23 | -1.30 | 0.21  | -0.26 |
| s1640732007070364 | Poll Dorset   | -4.19 | -1.36 | -0.06 | -1.73 |
| s1700622007070144 | Texel         | -1.41 | -1.01 | 0.60  | -0.21 |
| s1700802007071532 | Texel         | -3.89 | -1.22 | -0.39 | -1.17 |
| s1702232007070046 | Texel         | -2.73 | -1.10 | 0.34  | -1.01 |
| s1704062007070028 | Texel         | -3.11 | -1.66 | -0.71 | -1.42 |
| s1704202007070224 | Texel         | -2.59 | -1.16 | 0.25  | -0.81 |
| s1900282007071494 | Suffolk       | -3.16 | -0.37 | 0.18  | -0.50 |
| s1900602007070267 | Suffolk       | -4.52 | -2.17 | -0.64 | -2.13 |
| s1901112007077058 | Suffolk       | -1.18 | -0.49 | 1.69  | 0.59  |
| s1918502001010120 | Suffolk       | -2.19 | -0.19 | 0.49  | -0.34 |
| s1920452007070508 | Suffolk       | -1.86 | -1.01 | 0.43  | -0.24 |
| s2300022007070098 | White Suffolk | -2.42 | -1.15 | 0.36  | -0.80 |
| s2300092007070279 | White Suffolk | -1.19 | -0.44 | 0.04  | -0.41 |
| s2300152007070143 | White Suffolk | -4.84 | -1.12 | -1.33 | -2.36 |
| s2300262005050650 | White Suffolk | -5.25 | -1.59 | -0.61 | -3.03 |
| s2300262007072446 | White Suffolk | -3.97 | -1.63 | -0.35 | -1.28 |

| s2300342007074914 | White Suffolk | -2.92 | -1.53 | -0.78 | -2.18 |
|-------------------|---------------|-------|-------|-------|-------|
| s2300432007070591 | White Suffolk | -3.69 | -1.16 | -0.25 | -1.54 |
| s2300912007070008 | White Suffolk | -3.61 | -1.70 | -0.57 | -1.12 |
| s2301132007070040 | White Suffolk | -4.03 | -1.40 | -0.66 | -1.62 |
| s2303182008080262 | White Suffolk | -0.89 | -0.37 | 1.19  | 0.06  |
| s2303242007075630 | White Suffolk | -3.65 | -1.11 | 0.18  | -1.09 |
| s2304502007071456 | White Suffolk | -2.42 | -0.83 | 0.36  | -0.35 |
| s4800302008080078 | Prime Samm    | -4.49 | -1.56 | -1.28 | -2.68 |
| s4800392007070062 | Prime Samm    | -1.83 | -1.20 | 0.08  | -0.67 |
| s4800552007070068 | Prime Samm    | 0.12  | 0.27  | 1.07  | 0.61  |
| s4800872006060421 | Prime Samm    | -4.94 | -1.24 | -1.17 | -2.10 |
| s4800992006060191 | Prime Samm    | -3.22 | -1.54 | -0.60 | -1.72 |
| s5000482007070260 | Merino        | -4.25 | -1.64 | -2.30 | -2.91 |
| s5000872006060096 | Merino        | -4.65 | -0.45 | -0.72 | -2.20 |
| s5007882007071254 | Merino        | -4.38 | -1.52 | 0.09  | -1.54 |
| s5018852006TRIMPH | Merino        | -2.56 | -1.15 | -0.20 | -0.55 |
| s5024252006023997 | Merino        | -0.17 | -0.22 | 0.60  | 0.59  |
| s5030542004040585 | Merino        | -6.28 | -1.65 | -1.00 | -2.56 |
| s5030972005051737 | Merino        | -3.25 | -1.28 | -0.44 | -1.09 |
| s5034252006060205 | Merino        | -0.87 | -0.54 | 1.63  | 0.62  |
| s5037892007LB0753 | Merino        | 1.72  | -0.01 | 2.47  | 2.17  |
| s5038632006OL3626 | Merino        | 1.73  | 1.38  | 2.31  | 2.17  |
| s5039462007OLY716 | Merino        | -3.93 | -2.23 | -0.69 | -1.77 |
| s5039822006060225 | Merino        | -5.43 | -2.16 | -0.96 | -2.10 |
| s5044702006060022 | Merino        | -3.78 | -1.61 | -0.36 | -2.60 |
| s5046152004040024 | Merino        | -4.20 | -1.54 | -0.41 | -1.85 |
| s5047432000000503 | Merino        | -4.97 | -2.18 | -1.25 | -2.52 |

| s5049022005005345 | Merino       | -6.33 | -2.12 | 0.39  | -2.24 |
|-------------------|--------------|-------|-------|-------|-------|
| s5049162007070719 | Merino       | -1.07 | -0.64 | 1.12  | 0.45  |
| s50923420060C0573 | Merino       | -4.65 | -1.82 | -1.61 | -3.20 |
| s5100032007070949 | Dohne Merino | -3.66 | -1.02 | -0.39 | -1.55 |
| s5100092007070376 | Dohne Merino | -4.52 | -2.03 | 0.50  | -1.09 |
| s5100302005050068 | Dohne Merino | -2.11 | -0.77 | 0.18  | -0.09 |
| s5100492007071700 | Dohne Merino | -2.14 | -0.94 | -0.03 | -0.91 |
| s5101402006060368 | Dohne Merino | -1.72 | -0.57 | 1.16  | 0.38  |
| s6004082007070069 | Poll Merino  | -2.15 | -0.65 | -0.03 | -0.82 |
| s6005532007070002 | Poll Merino  | -0.52 | -0.87 | 0.87  | -0.23 |
| s6005712006060058 | Poll Merino  | -5.16 | -1.76 | -1.44 | -2.14 |
| s6008152006060120 | Poll Merino  | -2.83 | -1.41 | -0.22 | -1.64 |
| s6010532003031078 | Poll Merino  | -3.96 | -2.87 | -2.12 | -2.90 |
| s6010822007071257 | Poll Merino  | -4.77 | -1.97 | -1.75 | -2.44 |
| s6011272007070121 | Poll Merino  | -2.76 | -0.65 | 0.41  | -0.95 |
| s6012502004407812 | Poll Merino  | -4.20 | -1.62 | -0.26 | -1.20 |
| s6012882006063091 | Poll Merino  | -5.82 | -1.59 | -0.87 | -1.39 |
| s6013072005050165 | Poll Merino  | -3.98 | -0.54 | 1.57  | -0.21 |
| s6013162007070023 | Poll Merino  | -1.26 | -0.14 | 0.26  | 0.49  |
| s6013322004000WD2 | Poll Merino  | -1.94 | -0.37 | 1.46  | -0.31 |
| s6013562007000449 | Poll Merino  | 3.66  | 1.07  | 2.03  | 0.67  |
| s6013652006060052 | Poll Merino  | -3.35 | -1.86 | 0.04  | -2.23 |
| s6090542006066533 | Poll Merino  | -5.89 | -2.90 | -2.09 | -3.04 |
| s6091542004040062 | Poll Merino  | -5.40 | -1.80 | -1.36 | -3.01 |

# Table 16.1: The sires ranked by best linear unbiased predictor (BLUP) for each of the EQ variables for the Topside cut

| Sire                                      | Breed            | Rank   | Rank  | Rank    | Rank    |
|-------------------------------------------|------------------|--------|-------|---------|---------|
|                                           |                  | Tender | Juicy | Flavour | Overall |
|                                           |                  |        |       |         |         |
| s020041200707J039                         | Border Leicester | 93     | 93    | 56      | 91      |
| s020041200707.1040                        | Border Leicester | 14     | 8     | 15      | 16      |
| 30200412007070040                         |                  | 17     | 0     | 10      | 10      |
| s0219292007070261                         | Border Leicester | 52     | 55    | 34      | 39      |
|                                           |                  |        |       |         |         |
| s0244112006060369                         | Border Leicester | 64     | 68    | 75      | 64      |
| e0246862007070170                         | Border Leicester | /3     | 18    | 52      | 54      |
| 30240002007070179                         | Dorder Leicester | 40     | 10    | 52      | 54      |
| s0300182004045220                         | Corriedale       | 78     | 82    | 79      | 81      |
|                                           |                  |        |       |         |         |
| s0300362005050134                         | Corriedale       | 44     | 44    | 42      | 57      |
| 0215272002020260                          | Corriodolo       | 1      | 1     | 1       | 1       |
| 50315272005050500                         | Comedale         | I      | 1     | I       | 1       |
| s0318972006060386                         | Corriedale       | 83     | 65    | 65      | 62      |
|                                           |                  |        |       |         |         |
| s0600032006060121                         | Bond             | 58     | 86    | 48      | 44      |
| - 4 5 0 0 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | O a a more with  | 70     | 00    | 04      | 74      |
| \$1500152003030196                        | Coopworth        | 76     | 66    | 81      | 71      |
| s1500292007070244                         | Coopworth        | 46     | 20    | 25      | 29      |
|                                           | Coopmontin       | 10     | 20    | 20      | 20      |
| s1500392006061009                         | Coopworth        | 71     | 78    | 77      | 75      |
|                                           |                  |        |       |         | 10      |
| s1500482007070769                         | Coopworth        | 6      | 5     | 7       | 10      |
| s1500622006060070                         | Coopworth        | 65     | 84    | 69      | 69      |
| 3130002200000070                          | Coopwortin       | 00     | 04    | 05      | 05      |
| s1600012008080010                         | Poll Dorset      | 42     | 12    | 30      | 52      |
|                                           |                  |        |       |         |         |
| s1601852007070369                         | Poll Dorset      | 40     | 37    | 21      | 35      |
| c1611422007070025                         | Poll Dorsot      | 82     | 80    | 97      | 00      |
| 51011432007070025                         | Fuil Duisel      | 02     | 09    | 01      | 90      |
| s1611582007070190                         | Poll Dorset      | 49     | 38    | 64      | 61      |
|                                           |                  |        |       |         |         |
| s1612352007072025                         | Poll Dorset      | 61     | 58    | 46      | 46      |
| 4044450007070440                          |                  | -      |       |         | -       |
| s1614152007070440                         | Poll Dorset      | 3      | 4     | 5       | 2       |
| s1618922006060050                         | Poll Dorset      | 90     | 91    | 90      | 92      |
|                                           |                  |        |       |         |         |

| s1619722006061831 | Poll Dorset   | 11 | 61 | 27 | 24 |
|-------------------|---------------|----|----|----|----|
| s1622882007070644 | Poll Dorset   | 8  | 23 | 19 | 9  |
| s1623682007070468 | Poll Dorset   | 55 | 57 | 41 | 34 |
| s1636772007070839 | Poll Dorset   | 36 | 21 | 26 | 42 |
| s1637212007070311 | Poll Dorset   | 66 | 42 | 61 | 73 |
| s1640732007070364 | Poll Dorset   | 28 | 41 | 49 | 30 |
| s1700622007070144 | Texel         | 77 | 60 | 76 | 77 |
| s1700802007071532 | Texel         | 34 | 46 | 37 | 47 |
| s1702232007070046 | Texel         | 57 | 54 | 66 | 53 |
| s1704062007070028 | Texel         | 51 | 24 | 23 | 40 |
| s1704202007070224 | Texel         | 59 | 49 | 62 | 59 |
| s1900282007071494 | Suffolk       | 50 | 79 | 60 | 66 |
| s1900602007070267 | Suffolk       | 21 | 9  | 29 | 23 |
| s1901112007077058 | Suffolk       | 81 | 75 | 91 | 86 |
| s1918502001010120 | Suffolk       | 67 | 85 | 73 | 70 |
| s1920452007070508 | Suffolk       | 73 | 59 | 72 | 74 |
| s2300022007070098 | White Suffolk | 62 | 51 | 67 | 60 |
| s2300092007070279 | White Suffolk | 80 | 77 | 54 | 67 |
| s2300152007070143 | White Suffolk | 17 | 52 | 11 | 17 |
| s2300262005050650 | White Suffolk | 12 | 31 | 31 | 5  |
| s2300262007072446 | White Suffolk | 31 | 27 | 40 | 43 |
| s2300342007074914 | White Suffolk | 53 | 35 | 20 | 21 |
| s2300432007070591 | White Suffolk | 37 | 48 | 44 | 37 |
| s2300912007070008 | White Suffolk | 41 | 22 | 33 | 48 |
| s2301132007070040 | White Suffolk | 29 | 40 | 28 | 33 |
| s2303182008080262 | White Suffolk | 85 | 81 | 85 | 80 |
| s2303242007075630 | White Suffolk | 39 | 53 | 58 | 50 |

| s2304502007071456 | White Suffolk | 63 | 64 | 68 | 68 |
|-------------------|---------------|----|----|----|----|
| s4800302008080078 | Prime Samm    | 23 | 32 | 12 | 11 |
| s4800392007070062 | Prime Samm    | 74 | 47 | 55 | 63 |
| s4800552007070068 | Prime Samm    | 89 | 90 | 82 | 87 |
| s4800872006060421 | Prime Samm    | 16 | 45 | 14 | 25 |
| s4800992006060191 | Prime Samm    | 48 | 34 | 32 | 31 |
| s5000482007070260 | Merino        | 25 | 26 | 2  | 7  |
| s5000872006060096 | Merino        | 19 | 76 | 22 | 20 |
| s5007882007071254 | Merino        | 24 | 36 | 57 | 38 |
| s5018852006TRIMPH | Merino        | 60 | 50 | 47 | 65 |
| s5024252006023997 | Merino        | 88 | 83 | 78 | 85 |
| s5030542004040585 | Merino        | 4  | 25 | 16 | 13 |
| s5030972005051737 | Merino        | 47 | 43 | 35 | 49 |
| s5034252006060205 | Merino        | 86 | 74 | 89 | 88 |
| s5037892007LB0753 | Merino        | 91 | 88 | 94 | 94 |
| s5038632006OL3626 | Merino        | 92 | 94 | 93 | 93 |
| s5039462007OLY716 | Merino        | 33 | 6  | 24 | 28 |
| s5039822006060225 | Merino        | 9  | 10 | 17 | 26 |
| s5044702006060022 | Merino        | 35 | 29 | 39 | 12 |
| s5046152004040024 | Merino        | 26 | 33 | 36 | 27 |
| s5047432000000503 | Merino        | 15 | 7  | 13 | 14 |
| s5049022005005345 | Merino        | 2  | 11 | 70 | 18 |
| s5049162007070719 | Merino        | 84 | 71 | 83 | 83 |
| s50923420060C0573 | Merino        | 20 | 16 | 8  | 3  |
| s5100032007070949 | Dohne Merino  | 38 | 56 | 38 | 36 |
| s5100092007070376 | Dohne Merino  | 22 | 13 | 74 | 51 |
| s5100302005050068 | Dohne Merino  | 70 | 67 | 59 | 79 |

| s5100492007071700 | Dohne Merino | 69 | 62 | 50 | 56 |
|-------------------|--------------|----|----|----|----|
| s5101402006060368 | Dohne Merino | 75 | 72 | 84 | 82 |
| s6004082007070069 | Poll Merino  | 68 | 70 | 51 | 58 |
| s6005532007070002 | Poll Merino  | 87 | 63 | 80 | 76 |
| s6005712006060058 | Poll Merino  | 13 | 19 | 9  | 22 |
| s6008152006060120 | Poll Merino  | 54 | 39 | 45 | 32 |
| s6010532003031078 | Poll Merino  | 32 | 3  | 3  | 8  |
| s6010822007071257 | Poll Merino  | 18 | 14 | 6  | 15 |
| s6011272007070121 | Poll Merino  | 56 | 69 | 71 | 55 |
| s6012502004407812 | Poll Merino  | 27 | 28 | 43 | 45 |
| s6012882006063091 | Poll Merino  | 7  | 30 | 18 | 41 |
| s6013072005050165 | Poll Merino  | 30 | 73 | 88 | 78 |
| s6013162007070023 | Poll Merino  | 79 | 87 | 63 | 84 |
| s6013322004000WD2 | Poll Merino  | 72 | 80 | 86 | 72 |
| s6013562007000449 | Poll Merino  | 94 | 92 | 92 | 89 |
| s6013652006060052 | Poll Merino  | 45 | 15 | 53 | 19 |
| s6090542006066533 | Poll Merino  | 5  | 2  | 4  | 4  |
| s6091542004040062 | Poll Merino  | 10 | 17 | 10 | 6  |

### Table 17.1: The correlations between the sire BLUP estimates for each of the EQ variables for the Topside cut

|                | Tender | Juicy | Flavour | Overall Liking |
|----------------|--------|-------|---------|----------------|
| Tender         |        | 0.85  | 0.80    | 0.89           |
| Juicy          |        |       | 0.79    | 0.84           |
| Flavour        |        |       |         | 0.90           |
| Overall Liking |        |       |         |                |

## Table 18.1: The sires best linear unbiased predictor (BLUP) and rankings for the Star Classification 1, 2, 3 verses Star Classification 4, 5 for the Topside cut.

| Ciro                     | Drood            | Stor 1 2 2 V Stol   | Dook |
|--------------------------|------------------|---------------------|------|
| Sile                     | Dieeu            | Star 1, 2, 3 V Sta4 | Rank |
|                          |                  | 4, 5                |      |
|                          |                  |                     |      |
| s020041200707J039        | Border Leicester | 0.19                | 94   |
| 00200112001010000        |                  | 0110                | 0.1  |
| <u>-0200442007071040</u> | Dordor Laisaatar | 0.10                | 20   |
| SU20041200707J040        | Border Leicester | -0.19               | 29   |
|                          |                  |                     |      |
| s0219292007070261        | Border Leicester | -0.27               | 6    |
|                          |                  |                     |      |
| s0244112006060369        | Border Leicester | -0.06               | 83   |
| 00211112000000000        |                  | 0.00                | 00   |
| 00246862007070170        | Pordor Loioootor | 0.19                | 20   |
| 50246662007070179        | Border Leicester | -0.18               | 30   |
|                          |                  |                     |      |
| s0300182004045220        | Corriedale       | -0.24               | 14   |
|                          |                  |                     |      |
| \$0300362005050134       | Corriedale       | 0.06                | 93   |
| 0000002000000101         | Comodalo         | 0.00                | 00   |
| -02152720020202020       | Corriedale       | 0.02                | 80   |
| \$0315272003030360       | Comedale         | -0.02               | 89   |
|                          |                  |                     |      |
| s0318972006060386        | Corriedale       | -0.26               | 8    |
|                          |                  |                     |      |
| s0600032006060121        | Bond             | -0.18               | 39   |
|                          |                  |                     |      |
| 01500152002020106        | Coopworth        | 0.16                | 55   |
| \$1500152005050196       | Coopworth        | -0.16               | 55   |
|                          |                  |                     |      |
| s1500292007070244        | Coopworth        | -0.05               | 84   |
|                          |                  |                     |      |
| s1500392006061009        | Coopworth        | -0.25               | 12   |
|                          |                  |                     |      |
| s1500482007070769        | Coopworth        | -0.19               | 30   |
| 3100040200707070709      | Coopworth        | -0.13               | 50   |
| 1                        |                  |                     |      |
| s1500622006060070        | Coopworth        | -0.17               | 49   |
|                          |                  |                     |      |

| s1600012008080010 | Poll Dorset   | -0.15 | 57 |
|-------------------|---------------|-------|----|
| s1601852007070369 | Poll Dorset   | -0.13 | 62 |
| s1611432007070025 | Poll Dorset   | -0.09 | 77 |
| s1611582007070190 | Poll Dorset   | -0.15 | 58 |
| s1612352007072025 | Poll Dorset   | -0.20 | 25 |
| s1614152007070440 | Poll Dorset   | -0.20 | 26 |
| s1618922006060050 | Poll Dorset   | -0.21 | 22 |
| s1619722006061831 | Poll Dorset   | -0.03 | 87 |
| s1622882007070644 | Poll Dorset   | -0.22 | 17 |
| s1623682007070468 | Poll Dorset   | -0.22 | 18 |
| s1636772007070839 | Poll Dorset   | -0.26 | 9  |
| s1637212007070311 | Poll Dorset   | -0.03 | 88 |
| s1640732007070364 | Poll Dorset   | -0.17 | 50 |
| s1700622007070144 | Texel         | -0.20 | 27 |
| s1700802007071532 | Texel         | -0.08 | 79 |
| s1702232007070046 | Texel         | -0.19 | 31 |
| s1704062007070028 | Texel         | -0.11 | 73 |
| s1704202007070224 | Texel         | -0.18 | 40 |
| s1900282007071494 | Suffolk       | -0.17 | 51 |
| s1900602007070267 | Suffolk       | -0.17 | 52 |
| s1901112007077058 | Suffolk       | -0.12 | 68 |
| s1918502001010120 | Suffolk       | -0.17 | 53 |
| s1920452007070508 | Suffolk       | -0.16 | 56 |
| s2300022007070098 | White Suffolk | -0.12 | 69 |
| s2300092007070279 | White Suffolk | -0.19 | 32 |
| s2300152007070143 | White Suffolk | -0.09 | 78 |
| s2300262005050650 | White Suffolk | -0.12 | 70 |

| s2300262007072446 | White Suffolk | -0.13 | 63 |
|-------------------|---------------|-------|----|
| s2300342007074914 | White Suffolk | -0.21 | 23 |
| s2300432007070591 | White Suffolk | -0.19 | 33 |
| s2300912007070008 | White Suffolk | -0.18 | 41 |
| s2301132007070040 | White Suffolk | -0.17 | 54 |
| s2303182008080262 | White Suffolk | -0.19 | 34 |
| s2303242007075630 | White Suffolk | -0.21 | 24 |
| s2304502007071456 | White Suffolk | -0.08 | 80 |
| s4800302008080078 | Prime Samm    | -0.18 | 42 |
| s4800392007070062 | Prime Samm    | -0.19 | 35 |
| s4800552007070068 | Prime Samm    | -0.05 | 85 |
| s4800872006060421 | Prime Samm    | -0.12 | 71 |
| s4800992006060191 | Prime Samm    | -0.26 | 10 |
| s5000482007070260 | Merino        | -0.14 | 59 |
| s5000872006060096 | Merino        | -0.10 | 74 |
| s5007882007071254 | Merino        | -0.13 | 64 |
| s5018852006TRIMPH | Merino        | 0.01  | 90 |
| s5024252006023997 | Merino        | -0.25 | 13 |
| s5030542004040585 | Merino        | -0.20 | 28 |
| s5030972005051737 | Merino        | -0.31 | 4  |
| s5034252006060205 | Merino        | -0.22 | 19 |
| s5037892007LB0753 | Merino        | -0.10 | 75 |
| s5038632006OL3626 | Merino        | 0.04  | 91 |
| s5039462007OLY716 | Merino        | -0.18 | 43 |
| s5039822006060225 | Merino        | -0.14 | 60 |
| s5044702006060022 | Merino        | -0.18 | 44 |
| s5046152004040024 | Merino        | -0.34 | 3  |

| \$5047432000000503 | Marina       | _0.10 | 36 |
|--------------------|--------------|-------|----|
| 53047432000000303  |              | -0.19 |    |
| s5049022005005345  | Merino       | -0.26 | 11 |
| s5049162007070719  | Merino       | -0.19 | 37 |
| s50923420060C0573  | Merino       | -0.13 | 65 |
| s5100032007070949  | Dohne Merino | -0.22 | 20 |
| s5100092007070376  | Dohne Merino | -0.18 | 45 |
| s5100302005050068  | Dohne Merino | -0.23 | 16 |
| s5100492007071700  | Dohne Merino | -0.05 | 86 |
| s5101402006060368  | Dohne Merino | -0.10 | 76 |
| s6004082007070069  | Poll Merino  | -0.14 | 61 |
| s6005532007070002  | Poll Merino  | -0.13 | 66 |
| s6005712006060058  | Poll Merino  | -0.18 | 46 |
| s6008152006060120  | Poll Merino  | -0.07 | 81 |
| s6010532003031078  | Poll Merino  | -0.18 | 47 |
| s6010822007071257  | Poll Merino  | -0.18 | 48 |
| s6011272007070121  | Poll Merino  | -0.35 | 2  |
| s6012502004407812  | Poll Merino  | -0.22 | 21 |
| s6012882006063091  | Poll Merino  | -0.24 | 15 |
| s6013072005050165  | Poll Merino  | 0.05  | 92 |
| s6013162007070023  | Poll Merino  | -0.13 | 67 |
| s6013322004000WD2  | Poll Merino  | -0.07 | 82 |
| s6013562007000449  | Poll Merino  | -0.12 | 72 |
| s6013652006060052  | Poll Merino  | -0.37 | 1  |
| s6090542006066533  | Poll Merino  | -0.27 | 7  |
| s6091542004040062  | Poll Merino  | -0.29 | 5  |

# Table 19.1: Correlations Between Best Linear Unbiased Predictors (BLUP) for Siresfor EQ Cuts on the Loin and the Topside

| EQ Variable    | Correlation |
|----------------|-------------|
| Tender         | 0.27        |
| Juicy          | 0.56        |
| Flavour        | 0.37        |
| Overall Liking | 0.56        |

#### Table 20.1: Ioin BLUP Estimates for the Sires Without Covariates

| Sire              | Breed            | Tender | Juicy | Flavour | Overall |
|-------------------|------------------|--------|-------|---------|---------|
| s020041200707J039 | Border Leicester | 2.14   | 0.77  | 0.53    | 1.25    |
| s020041200707J040 | Border Leicester | -1.77  | -0.99 | -0.71   | -1.62   |
| s0219292007070261 | Border Leicester | -3.95  | -1.01 | -0.75   | -2.14   |
| s0244112006060369 | Border Leicester | -0.86  | 0.83  | -0.21   | -0.24   |
| s0246862007070179 | Border Leicester | -2.55  | -2.28 | -0.63   | -1.11   |
| s0300182004045220 | Corriedale       | -2.65  | -1.18 | -0.77   | -1.40   |
| s0300362005050134 | Corriedale       | 0.15   | 1.41  | 0.55    | 0.63    |
| s0315272003030360 | Corriedale       | -1.62  | -1.21 | -1.83   | -3.15   |
| s0318972006060386 | Corriedale       | -3.46  | -1.92 | -0.85   | -2.19   |
| s0600032006060121 | Bond             | -2.14  | -0.77 | -0.53   | -1.25   |
| s1500152003030196 | Coopworth        | -2.92  | -1.26 | -0.61   | -1.61   |
| s1500292007070244 | Coopworth        | -1.23  | -0.02 | -0.30   | -1.09   |
| s1500392006061009 | Coopworth        | -1.15  | -0.82 | 0.23    | -0.28   |
| s1500482007070769 | Coopworth        | -4.09  | -1.57 | -1.46   | -2.32   |
| s1500622006060070 | Coopworth        | -0.24  | 0.31  | -0.07   | -0.34   |
| s1600012008080010 | Poll Dorset      | 0.05   | -0.49 | 0.37    | 0.12    |
| s1601852007070369 | Poll Dorset      | -3.02  | -1.06 | -1.17   | -2.38   |

| s1611432007070025 | Poll Dorset   | -2.97 | -1.91 | -0.33 | -1.09 |
|-------------------|---------------|-------|-------|-------|-------|
| s1611582007070190 | Poll Dorset   | -2.33 | -0.14 | -0.29 | -1.31 |
| s1612352007072025 | Poll Dorset   | -2.15 | -2.36 | -1.73 | -3.14 |
| s1614152007070440 | Poll Dorset   | -4.34 | -2.17 | -1.34 | -3.04 |
| s1618922006060050 | Poll Dorset   | 0.58  | 0.36  | 0.20  | -0.19 |
| s1619722006061831 | Poll Dorset   | 1.71  | 2.82  | 1.35  | 1.54  |
| s1622882007070644 | Poll Dorset   | 1.16  | 1.89  | 1.40  | 1.20  |
| s1623682007070468 | Poll Dorset   | -4.92 | -2.82 | -1.68 | -2.54 |
| s1636772007070839 | Poll Dorset   | -8.10 | -3.29 | -2.50 | -4.18 |
| s1637212007070311 | Poll Dorset   | 1.23  | 1.39  | 0.51  | 0.82  |
| s1640732007070364 | Poll Dorset   | -3.29 | -0.77 | -0.71 | -0.87 |
| s1700622007070144 | Texel         | -2.08 | -1.13 | -1.21 | -2.08 |
| s1700802007071532 | Texel         | 0.43  | 1.08  | 0.13  | 0.23  |
| s1702232007070046 | Texel         | -5.40 | -2.71 | -1.47 | -2.81 |
| s1704062007070028 | Texel         | -1.15 | -0.52 | -0.32 | -1.09 |
| s1704202007070224 | Texel         | -2.50 | -0.55 | 0.23  | -0.49 |
| s1900282007071494 | Suffolk       | -2.45 | -0.81 | -0.35 | -1.27 |
| s1900602007070267 | Suffolk       | -2.94 | -1.35 | -0.57 | -1.13 |
| s1901112007077058 | Suffolk       | -1.86 | 0.21  | -0.33 | -1.17 |
| s1918502001010120 | Suffolk       | -1.84 | -0.87 | -0.74 | -1.37 |
| s1920452007070508 | Suffolk       | -1.59 | -1.04 | -0.67 | -1.33 |
| s2300022007070098 | White Suffolk | -5.26 | -2.62 | -2.31 | -3.74 |
| s2300092007070279 | White Suffolk | -1.37 | 0.35  | -0.51 | -1.06 |
| s2300152007070143 | White Suffolk | -2.30 | -1.34 | -0.77 | -1.37 |
| s2300262005050650 | White Suffolk | 1.37  | 1.20  | 1.13  | 0.87  |
| s2300262007072446 | White Suffolk | -0.94 | -0.22 | 0.32  | -0.05 |
| s2300342007074914 | White Suffolk | -0.25 | 0.96  | -0.60 | -0.44 |

| s2300432007070591 | White Suffolk | -3.41 | -1.78 | -1.05 | -2.44 |
|-------------------|---------------|-------|-------|-------|-------|
| s2300912007070008 | White Suffolk | -2.58 | -1.00 | -0.86 | -1.63 |
| s2301132007070040 | White Suffolk | -3.98 | -2.15 | -0.76 | -1.94 |
| s2303182008080262 | White Suffolk | -0.12 | 0.96  | 1.04  | 0.61  |
| s2303242007075630 | White Suffolk | -3.38 | -0.72 | -0.74 | -1.44 |
| s2304502007071456 | White Suffolk | -1.33 | -1.52 | -0.40 | -1.11 |
| s4800302008080078 | Prime Samm    | -2.37 | 0.32  | -0.01 | 0.41  |
| s4800392007070062 | Prime Samm    | -0.64 | 0.45  | -0.22 | -0.70 |
| s4800552007070068 | Prime Samm    | -1.22 | -0.53 | -0.15 | -1.17 |
| s4800872006060421 | Prime Samm    | -1.91 | -0.46 | -0.86 | -1.41 |
| s4800992006060191 | Prime Samm    | -4.40 | -2.88 | -1.25 | -2.61 |
| s5000482007070260 | Merino        | -0.97 | -1.28 | 0.14  | -0.71 |
| s5000872006060096 | Merino        | 1.58  | 1.55  | 1.64  | 1.01  |
| s5007882007071254 | Merino        | -0.57 | 1.08  | 0.43  | 0.11  |
| s5018852006TRIMPH | Merino        | -2.40 | -0.36 | 0.13  | -0.42 |
| s5024252006023997 | Merino        | -1.52 | -0.66 | -0.33 | -0.98 |
| s5030542004040585 | Merino        | -2.25 | -1.10 | -0.19 | -0.82 |
| s5030972005051737 | Merino        | -4.24 | -1.65 | -2.48 | -3.36 |
| s5034252006060205 | Merino        | -1.51 | 0.93  | 0.27  | -0.38 |
| s5037892007LB0753 | Merino        | -2.02 | -1.95 | -0.45 | -1.69 |
| s5038632006OL3626 | Merino        | -1.34 | 0.77  | -0.09 | -0.69 |
| s5039462007OLY716 | Merino        | 0.56  | -0.42 | 0.38  | -0.03 |
| s5039822006060225 | Merino        | -1.67 | -1.57 | -0.57 | -1.82 |
| s5044702006060022 | Merino        | -3.30 | -0.68 | -0.54 | -1.29 |
| s5046152004040024 | Merino        | -2.45 | -2.25 | -0.96 | -2.33 |
| s5047432000000503 | Merino        | -2.10 | -1.27 | 0.09  | -0.27 |
| s5049022005005345 | Merino        | -1.86 | -0.75 | -0.42 | -0.94 |
|                   |               | 1     | 1     | 1     | 1     |

| s5049162007070719 | Merino       | -2.91 | -0.73 | -1.24 | -2.17 |
|-------------------|--------------|-------|-------|-------|-------|
| s50923420060C0573 | Merino       | 0.31  | 1.13  | 0.11  | 0.82  |
| s5100032007070949 | Dohne Merino | -5.88 | -2.68 | -1.55 | -2.48 |
| s5100092007070376 | Dohne Merino | -2.31 | -0.07 | -0.41 | -0.77 |
| s5100302005050068 | Dohne Merino | -4.66 | -1.95 | -1.61 | -2.64 |
| s5100492007071700 | Dohne Merino | -2.59 | -0.27 | -0.25 | -0.99 |
| s5101402006060368 | Dohne Merino | -2.31 | 0.07  | -0.21 | -0.99 |
| s6004082007070069 | Poll Merino  | -4.35 | -2.24 | -1.24 | -2.24 |
| s6005532007070002 | Poll Merino  | -0.82 | -0.46 | -0.94 | -1.38 |
| s6005712006060058 | Poll Merino  | -0.18 | -0.89 | 0.15  | -0.48 |
| s6008152006060120 | Poll Merino  | -1.28 | -0.26 | -0.08 | -0.95 |
| s6010532003031078 | Poll Merino  | -3.54 | -1.41 | -0.79 | -2.03 |
| s6010822007071257 | Poll Merino  | -3.93 | -0.51 | 0.15  | -1.71 |
| s6011272007070121 | Poll Merino  | -2.64 | -0.61 | 0.15  | -0.32 |
| s6012502004407812 | Poll Merino  | 0.29  | 0.33  | -0.13 | 0.25  |
| s6012882006063091 | Poll Merino  | -1.24 | -0.55 | 0.12  | -0.40 |
| s6013072005050165 | Poll Merino  | -1.08 | -1.07 | 0.01  | -0.66 |
| s6013162007070023 | Poll Merino  | -3.40 | -3.54 | -1.27 | -2.67 |
| s6013322004000WD2 | Poll Merino  | -3.71 | -1.07 | -1.98 | -2.50 |
| s6013562007000449 | Poll Merino  | -2.27 | -0.79 | -1.03 | -2.45 |
| s6013652006060052 | Poll Merino  | -1.87 | -0.56 | -0.39 | -0.86 |
| s6090542006066533 | Poll Merino  | 1.71  | 1.69  | 0.19  | 0.66  |
| s6091542004040062 | Poll Merino  | 0.38  | -1.33 | -0.10 | -0.44 |
| l                 |              |       |       |       |       |

#### Table 21.1: Topside BLUP Estimates for the Sires, Without Covariates

| Sire | Breed | Tender | Juicy | Flavour | Overall |
|------|-------|--------|-------|---------|---------|

| s020041200707J039 Border Leicester 2.37 1.35 0.78 1.27   s020041200707J040 Border Leicester -3.54 -1.57 -1.57 -1.99   s0219292007070261 Border Leicester -3.89 -2.71 -1.39 -2.14   s0244112006060369 Border Leicester -3.25 -2.16 -1.53 -2.24   s030018200404520 Corriedale -3.50 -1.73 -1.53 -2.20   s0300362005050134 Corriedale -2.91 -2.37 -0.09 -1.43   s0318972006060386 Corriedale -3.62 -1.73 -1.34 -2.01   s0600032006060121 Bond -2.37 -1.35 -0.78 -1.27   s1500152003030196 Coopworth -3.64 -2.05 -1.87 -2.65   s1500292007070244 Coopworth -1.22 -1.62 -0.38 -0.19   s1500482007070769 Coopworth -1.26 -0.21 -0.31 -0.73   s16101852007070369 Poll Dorset -1.68 -1.32                                                                                                                   |                   |                  |       |       |       |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|-------|-------|-------|-------|
| s020041200707J040 Border Leicester -3.54 -1.57 -1.57 -1.99   s0219292007070261 Border Leicester -3.89 -2.71 1.39 -2.14   s0244112006060369 Border Leicester 1.13 1.21 1.71 1.37   s0246862007070179 Border Leicester -3.25 -2.16 -1.53 -2.24   s0300182004045220 Corriedale -3.50 -1.73 -1.53 -2.20   s0300362005050134 Corriedale 1.01 -0.05 0.85 1.10   s0315272003030360 Corriedale -3.62 -1.73 -1.34 -2.01   s0600032006060121 Bond -2.37 -1.35 -0.78 -1.27   s1500152003030196 Coopworth -3.64 -2.05 -1.87 -2.65   s15004820070707044 Coopworth -1.22 -1.62 -0.38 -0.19   s1500482007070769 Coopworth -1.36 -0.77 -0.53 -0.58   s160012008080010 Poll Dorset -1.68 -1.32                                                                                                                       | s020041200707J039 | Border Leicester | 2.37  | 1.35  | 0.78  | 1.27  |
| s0219292007070261 Border Leicester -3.89 -2.71 -1.39 -2.14   s0244112006060369 Border Leicester 1.13 1.21 1.71 1.37   s0246862007070179 Border Leicester -3.25 -2.16 -1.53 -2.24   s0300182004045220 Corriedale -3.50 -1.73 -1.53 -2.20   s0300362005050134 Corriedale 1.01 -0.05 0.85 1.10   s0315272003030300 Corriedale -2.91 -2.37 -0.09 -1.43   s0318972006060386 Corriedale -3.62 -1.73 -1.34 -2.01   s060003200606121 Bond -2.37 -1.35 -0.78 -1.27   s1500152003030196 Coopworth -2.51 -0.80 0.13 -1.17   s1500292007070244 Coopworth -2.20 -1.11 -0.38 -0.19   s1500482007070769 Coopworth -1.22 -1.62 -0.38 -0.19   s1601852007070369 Poll Dorset -1.68 -1.32 <td< td=""><td>s020041200707J040</td><td>Border Leicester</td><td>-3.54</td><td>-1.57</td><td>-1.57</td><td>-1.99</td></td<> | s020041200707J040 | Border Leicester | -3.54 | -1.57 | -1.57 | -1.99 |
| s0244112006060369 Border Leicester 1.13 1.21 1.71 1.37   s0246862007070179 Border Leicester -3.25 -2.16 -1.53 -2.24   s0300182004045220 Corriedale -3.50 -1.73 -1.53 -2.20   s0300362005050134 Corriedale 1.01 -0.05 0.85 1.10   s0315272003030360 Corriedale -2.91 -2.37 -0.09 -1.43   s0318972006060386 Corriedale -3.62 -1.73 -1.34 -2.01   s0600032006060121 Bond -2.37 -1.35 -0.78 -1.27   s1500152003030196 Coopworth -3.64 -2.05 -1.87 -2.65   s1500292007070244 Coopworth -2.51 -0.80 0.13 -1.17   s1500482007070769 Coopworth -1.22 -1.62 -0.38 -0.19   s1500482007070369 Poll Dorset -1.68 -1.32 -0.92 -1.60   s1601852007070369 Poll Dorset -2.75 -2.08 -1.                                                                                                                              | s0219292007070261 | Border Leicester | -3.89 | -2.71 | -1.39 | -2.14 |
| s0246862007070179 Border Leicester -3.25 -2.16 -1.53 -2.24   s0300182004045220 Corriedale -3.50 -1.73 -1.53 -2.20   s0300362005050134 Corriedale 1.01 -0.05 0.85 1.10   s0315272003030360 Corriedale -2.91 -2.37 -0.09 -1.43   s0318972006060386 Corriedale -3.62 -1.73 -1.34 -2.01   s0600032006060121 Bond -2.37 -1.35 -0.78 -1.27   s1500152003030196 Coopworth -3.64 -2.05 -1.87 -2.65   s1500292007070244 Coopworth -2.51 -0.80 0.13 -1.17   s1500482007070769 Coopworth -1.22 -1.62 -0.38 -0.19   s1500482007070769 Coopworth -1.26 -0.111 -0.73 -0.53 -0.58   s1600012008080010 Poll Dorset -1.68 -1.32 -0.92 -1.60   s1611852007070369 Poll Dorset -2.75 -2.08                                                                                                                              | s0244112006060369 | Border Leicester | 1.13  | 1.21  | 1.71  | 1.37  |
| s0300182004045220 Corriedale -3.50 -1.73 -1.53 -2.20   s0300362005050134 Corriedale 1.01 -0.05 0.85 1.10   s0315272003030360 Corriedale -2.91 -2.37 -0.09 -1.43   s0318972006060386 Corriedale -3.62 -1.73 -1.34 -2.01   s0600032006060121 Bond -2.37 -1.35 -0.78 -1.27   s1500152003030196 Coopworth -3.64 -2.05 -1.87 -2.65   s1500292007070244 Coopworth -2.51 -0.80 0.13 -1.17   s1500392006061009 Coopworth -1.22 -1.62 -0.38 -0.19   s1500482007070769 Coopworth -1.26 -0.111 -0.73 -0.53   s160012008080010 Poll Dorset -1.68 -1.32 -0.92 -1.60   s1611852007070369 Poll Dorset -2.75 -2.08 -1.16 -1.94   s1611582007070190 Poll Dorset -3.69 -2.12 -0.93                                                                                                                                    | s0246862007070179 | Border Leicester | -3.25 | -2.16 | -1.53 | -2.24 |
| s0300362005050134 Corriedale 1.01 -0.05 0.85 1.10   s0315272003030360 Corriedale -2.91 -2.37 -0.09 -1.43   s0318972006060386 Corriedale -3.62 -1.73 -1.34 -2.01   s0600032006060121 Bond -2.37 -1.35 -0.78 -1.27   s1500152003030196 Coopworth -3.64 -2.05 -1.87 -2.65   s1500292007070244 Coopworth -2.51 -0.80 0.13 -1.17   s1500482007070769 Coopworth -1.22 -1.62 -0.38 -0.19   s1500482007070769 Coopworth -1.36 -0.77 -0.53 -0.58   s160012008080010 Poll Dorset -1.68 -1.32 -0.92 -1.60   s1601852007070369 Poll Dorset -2.75 -2.08 -1.16 -1.94   s1611432007070025 Poll Dorset -3.69 -2.12 -0.93 -1.70   s1612352007072025 Poll Dorset -3.69 -2.12 -0.93                                                                                                                                    | s0300182004045220 | Corriedale       | -3.50 | -1.73 | -1.53 | -2.20 |
| s0315272003030360 Corriedale -2.91 -2.37 -0.09 -1.43   s0318972006060386 Corriedale -3.62 -1.73 -1.34 -2.01   s0600032006060121 Bond -2.37 -1.35 -0.78 -1.27   s1500152003030196 Coopworth -3.64 -2.05 -1.87 -2.65   s1500292007070244 Coopworth -2.51 -0.80 0.13 -1.17   s1500392006061009 Coopworth -1.22 -1.62 -0.38 -0.19   s1500482007070769 Coopworth -2.20 -1.11 -0.31 -0.73   s1500622006060070 Coopworth -1.36 -0.77 -0.53 -0.58   s1600012008080010 Poll Dorset -1.68 -1.32 -0.92 -1.60   s161143200707025 Poll Dorset -2.75 -2.08 -1.16 -1.94   s16112352007072025 Poll Dorset -3.69 -2.12 -0.93 -1.70   s1618922006060050 Poll Dorset -3.98 -2.49 -1.74 <td>s0300362005050134</td> <td>Corriedale</td> <td>1.01</td> <td>-0.05</td> <td>0.85</td> <td>1.10</td>                         | s0300362005050134 | Corriedale       | 1.01  | -0.05 | 0.85  | 1.10  |
| s0318972006060386 Corriedale -3.62 -1.73 -1.34 -2.01   s0600032006060121 Bond -2.37 -1.35 -0.78 -1.27   s1500152003030196 Coopworth -3.64 -2.05 -1.87 -2.65   s1500292007070244 Coopworth -2.51 -0.80 0.13 -1.17   s1500392006061009 Coopworth -1.22 -1.62 -0.38 -0.19   s1500482007070769 Coopworth -1.26 -0.31 -0.73   s1500622006060070 Coopworth -1.36 -0.77 -0.53 -0.58   s160012008080010 Poll Dorset -1.68 -1.32 -0.92 -1.60   s1601852007070369 Poll Dorset -2.75 -2.08 -1.16 -1.94   s1611432007070190 Poll Dorset -3.69 -2.21 -0.93 -1.70   s1612352007070255 Poll Dorset -3.10 -2.21 -1.62 -1.62   s1614152007070440 Poll Dorset -2.78 -1.57 -1.10 -1.53 <td>s0315272003030360</td> <td>Corriedale</td> <td>-2.91</td> <td>-2.37</td> <td>-0.09</td> <td>-1.43</td>                      | s0315272003030360 | Corriedale       | -2.91 | -2.37 | -0.09 | -1.43 |
| s0600032006060121 Bond -2.37 -1.35 -0.78 -1.27   s1500152003030196 Coopworth -3.64 -2.05 -1.87 -2.65   s1500292007070244 Coopworth -2.51 -0.80 0.13 -1.17   s1500392006061009 Coopworth -1.22 -1.62 -0.38 -0.19   s1500482007070769 Coopworth -2.20 -1.11 -0.31 -0.73   s1500622006060070 Coopworth -1.36 -0.77 -0.53 -0.58   s1600012008080010 Poll Dorset -1.68 -1.32 -0.92 -1.60   s1601852007070369 Poll Dorset -2.75 -2.08 -1.16 -1.94   s1611432007070025 Poll Dorset -3.69 -2.12 -0.93 -1.70   s1612352007070205 Poll Dorset -3.69 -2.21 -1.56 -1.62   s1614152007070440 Poll Dorset -3.98 -2.49 -1.74 -2.03   s1618922006060050 Poll Dorset -3.98 -2.49 -1.74<                                                                                                                              | s0318972006060386 | Corriedale       | -3.62 | -1.73 | -1.34 | -2.01 |
| s1500152003030196Coopworth-3.64-2.05-1.87-2.65s1500292007070244Coopworth-2.51-0.800.13-1.17s1500392006061009Coopworth-1.22-1.62-0.38-0.19s1500482007070769Coopworth-2.20-1.11-0.31-0.73s1500622006060070Coopworth-1.36-0.77-0.53-0.58s1600012008080010Poll Dorset-1.68-1.32-0.92-1.60s1601852007070369Poll Dorset-1.26-0.21-0.31-0.74s1611432007070025Poll Dorset-2.75-2.08-1.16-1.94s1611582007070190Poll Dorset-3.69-2.12-0.93-1.70s1612352007072025Poll Dorset-3.10-2.21-1.56-1.62s1618922006060050Poll Dorset-3.98-2.49-1.74-2.03s1619722006061831Poll Dorset-1.91-1.050.580.51s1622882007070644Poll Dorset-2.65-1.51-1.68-2.21s1636772007070839Poll Dorset-2.66-1.51-1.68-2.21s1636772007070311Poll Dorset2.471.171.711.85                                                                     | s0600032006060121 | Bond             | -2.37 | -1.35 | -0.78 | -1.27 |
| \$1500292007070244Coopworth-2.51-0.800.13-1.17\$1500392006061009Coopworth-1.22-1.62-0.38-0.19\$1500482007070769Coopworth-2.20-1.11-0.31-0.73\$150062200600070Coopworth-1.36-0.77-0.53-0.58\$1600012008080010Poll Dorset-1.68-1.32-0.92-1.60\$1601852007070369Poll Dorset-1.26-0.21-0.31-0.74\$1611432007070025Poll Dorset-2.75-2.08-1.16-1.94\$1611582007070190Poll Dorset-3.69-2.12-0.93-1.70\$161235200707025Poll Dorset-3.10-2.21-1.56-1.62\$1614152007070440Poll Dorset-3.98-2.49-1.74-2.03\$1619722006061831Poll Dorset-1.911.050.580.51\$162882007070448Poll Dorset-2.65-1.51-1.68-2.21\$1636772007070839Poll Dorset-2.65-1.51-1.68-2.21\$1637212007070311Poll Dorset2.471.171.711.85                                                                                                         | s1500152003030196 | Coopworth        | -3.64 | -2.05 | -1.87 | -2.65 |
| \$1500392006061009Coopworth-1.22-1.62-0.38-0.19\$1500482007070769Coopworth-2.20-1.11-0.31-0.73\$1500622006060070Coopworth-1.36-0.77-0.53-0.58\$1600012008080010Poll Dorset-1.68-1.32-0.92-1.60\$1601852007070369Poll Dorset-1.26-0.21-0.31-0.74\$1611432007070025Poll Dorset-2.75-2.08-1.16-1.94\$1611582007070190Poll Dorset-3.69-2.12-0.93-1.70\$1612352007072025Poll Dorset-3.10-2.21-1.56-1.62\$1614152007070440Poll Dorset-3.98-2.49-1.74-2.03\$161892200606050Poll Dorset-2.78-1.57-1.10-1.53\$1619722006061831Poll Dorset-1.91-1.050.580.51\$1623682007070468Poll Dorset-2.65-1.51-1.68-2.21\$1636772007070839Poll Dorset-2.64-4.12-2.91-4.35\$1637212007070311Poll Dorset2.471.171.711.85                                                                                                   | s1500292007070244 | Coopworth        | -2.51 | -0.80 | 0.13  | -1.17 |
| \$1500482007070769Coopworth-2.20-1.11-0.31-0.73\$1500622006060070Coopworth-1.36-0.77-0.53-0.58\$1600012008080010Poll Dorset-1.68-1.32-0.92-1.60\$1601852007070369Poll Dorset-1.26-0.21-0.31-0.74\$1611432007070025Poll Dorset-2.75-2.08-1.16-1.94\$1611582007070190Poll Dorset-3.69-2.12-0.93-1.70\$1612352007072025Poll Dorset-3.10-2.21-1.56-1.62\$1614152007070440Poll Dorset-3.98-2.49-1.74-2.03\$1618922006060050Poll Dorset-2.78-1.57-1.10-1.53\$1619722006061831Poll Dorset-1.91-1.050.580.51\$1623682007070448Poll Dorset-2.65-1.51-1.68-2.21\$1636772007070839Poll Dorset-2.65-1.51-1.68-2.21\$1637212007070311Poll Dorset2.471.171.711.85                                                                                                                                                 | s1500392006061009 | Coopworth        | -1.22 | -1.62 | -0.38 | -0.19 |
| \$1500622006060070Coopworth-1.36-0.77-0.53-0.58\$1600012008080010Poll Dorset-1.68-1.32-0.92-1.60\$1601852007070369Poll Dorset-1.26-0.21-0.31-0.74\$1611432007070025Poll Dorset-2.75-2.08-1.16-1.94\$1611582007070190Poll Dorset-3.69-2.12-0.93-1.70\$1612352007072025Poll Dorset-3.10-2.21-1.56-1.62\$1614152007070440Poll Dorset-3.98-2.49-1.74-2.03\$1618922006060050Poll Dorset-2.78-1.57-1.10-1.53\$1619722006061831Poll Dorset-1.91-1.050.580.51\$1623682007070468Poll Dorset-2.65-1.51-1.68-2.21\$1636772007070839Poll Dorset-2.471.171.711.85                                                                                                                                                                                                                                                | s1500482007070769 | Coopworth        | -2.20 | -1.11 | -0.31 | -0.73 |
| \$1600012008080010Poll Dorset-1.68-1.32-0.92-1.60\$1601852007070369Poll Dorset-1.26-0.21-0.31-0.74\$1611432007070025Poll Dorset-2.75-2.08-1.16-1.94\$1611582007070190Poll Dorset-3.69-2.12-0.93-1.70\$1612352007072025Poll Dorset-3.10-2.21-1.56-1.62\$1614152007070440Poll Dorset-3.98-2.49-1.74-2.03\$1618922006060050Poll Dorset-2.78-1.57-1.10-1.53\$1619722006061831Poll Dorset-1.91-1.050.580.51\$1623682007070468Poll Dorset-2.65-1.51-1.68-2.21\$1636772007070311Poll Dorset2.471.171.711.85                                                                                                                                                                                                                                                                                                | s1500622006060070 | Coopworth        | -1.36 | -0.77 | -0.53 | -0.58 |
| \$1601852007070369Poll Dorset-1.26-0.21-0.31-0.74\$1611432007070025Poll Dorset-2.75-2.08-1.16-1.94\$1611582007070190Poll Dorset-3.69-2.12-0.93-1.70\$1612352007072025Poll Dorset-3.10-2.21-1.56-1.62\$1614152007070440Poll Dorset-3.98-2.49-1.74-2.03\$1618922006060050Poll Dorset-2.78-1.57-1.10-1.53\$1619722006061831Poll Dorset1.340.911.781.83\$1622882007070644Poll Dorset-1.91-1.050.580.51\$1636772007070839Poll Dorset-2.65-1.51-1.68-2.21\$1637212007070311Poll Dorset2.471.171.711.85                                                                                                                                                                                                                                                                                                    | s1600012008080010 | Poll Dorset      | -1.68 | -1.32 | -0.92 | -1.60 |
| \$1611432007070025Poll Dorset-2.75-2.08-1.16-1.94\$1611582007070190Poll Dorset-3.69-2.12-0.93-1.70\$1612352007072025Poll Dorset-3.10-2.21-1.56-1.62\$1614152007070440Poll Dorset-3.98-2.49-1.74-2.03\$1618922006060050Poll Dorset-2.78-1.57-1.10-1.53\$1619722006061831Poll Dorset1.340.911.781.83\$1622882007070644Poll Dorset-1.91-1.050.580.51\$1636772007070839Poll Dorset-2.65-1.51-1.68-2.21\$1637212007070311Poll Dorset2.471.171.711.85                                                                                                                                                                                                                                                                                                                                                     | s1601852007070369 | Poll Dorset      | -1.26 | -0.21 | -0.31 | -0.74 |
| \$1611582007070190Poll Dorset-3.69-2.12-0.93-1.70\$1612352007072025Poll Dorset-3.10-2.21-1.56-1.62\$1614152007070440Poll Dorset-3.98-2.49-1.74-2.03\$1618922006060050Poll Dorset-2.78-1.57-1.10-1.53\$1619722006061831Poll Dorset1.340.911.781.83\$1622882007070644Poll Dorset-1.91-1.050.580.51\$1623682007070468Poll Dorset-2.65-1.51-1.68-2.21\$1636772007070839Poll Dorset-6.64-4.12-2.91-4.35\$1637212007070311Poll Dorset2.471.171.711.85                                                                                                                                                                                                                                                                                                                                                     | s1611432007070025 | Poll Dorset      | -2.75 | -2.08 | -1.16 | -1.94 |
| \$1612352007072025Poll Dorset-3.10-2.21-1.56-1.62\$1614152007070440Poll Dorset-3.98-2.49-1.74-2.03\$1618922006060050Poll Dorset-2.78-1.57-1.10-1.53\$1619722006061831Poll Dorset1.340.911.781.83\$1622882007070644Poll Dorset-1.91-1.050.580.51\$1623682007070468Poll Dorset-2.65-1.51-1.68-2.21\$1636772007070839Poll Dorset-6.64-4.12-2.91-4.35\$1637212007070311Poll Dorset2.471.171.711.85                                                                                                                                                                                                                                                                                                                                                                                                      | s1611582007070190 | Poll Dorset      | -3.69 | -2.12 | -0.93 | -1.70 |
| \$1614152007070440Poll Dorset-3.98-2.49-1.74-2.03\$1618922006060050Poll Dorset-2.78-1.57-1.10-1.53\$1619722006061831Poll Dorset1.340.911.781.83\$1622882007070644Poll Dorset-1.91-1.050.580.51\$1623682007070468Poll Dorset-2.65-1.51-1.68-2.21\$1636772007070839Poll Dorset-6.64-4.12-2.91-4.35\$1637212007070311Poll Dorset2.471.171.711.85                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s1612352007072025 | Poll Dorset      | -3.10 | -2.21 | -1.56 | -1.62 |
| \$1618922006060050Poll Dorset-2.78-1.57-1.10-1.53\$1619722006061831Poll Dorset1.340.911.781.83\$1622882007070644Poll Dorset-1.91-1.050.580.51\$1623682007070468Poll Dorset-2.65-1.51-1.68-2.21\$1636772007070839Poll Dorset-6.64-4.12-2.91-4.35\$1637212007070311Poll Dorset2.471.171.711.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s1614152007070440 | Poll Dorset      | -3.98 | -2.49 | -1.74 | -2.03 |
| \$1619722006061831Poll Dorset1.340.911.781.83\$1622882007070644Poll Dorset-1.91-1.050.580.51\$1623682007070468Poll Dorset-2.65-1.51-1.68-2.21\$1636772007070839Poll Dorset-6.64-4.12-2.91-4.35\$1637212007070311Poll Dorset2.471.171.711.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s1618922006060050 | Poll Dorset      | -2.78 | -1.57 | -1.10 | -1.53 |
| \$1622882007070644Poll Dorset-1.91-1.050.580.51\$1623682007070468Poll Dorset-2.65-1.51-1.68-2.21\$1636772007070839Poll Dorset-6.64-4.12-2.91-4.35\$1637212007070311Poll Dorset2.471.171.711.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s1619722006061831 | Poll Dorset      | 1.34  | 0.91  | 1.78  | 1.83  |
| \$1623682007070468Poll Dorset-2.65-1.51-1.68-2.21\$1636772007070839Poll Dorset-6.64-4.12-2.91-4.35\$1637212007070311Poll Dorset2.471.171.711.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s1622882007070644 | Poll Dorset      | -1.91 | -1.05 | 0.58  | 0.51  |
| \$1636772007070839Poll Dorset-6.64-4.12-2.91-4.35\$1637212007070311Poll Dorset2.471.171.711.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s1623682007070468 | Poll Dorset      | -2.65 | -1.51 | -1.68 | -2.21 |
| s1637212007070311 Poll Dorset 2.47 1.17 1.71 1.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s1636772007070839 | Poll Dorset      | -6.64 | -4.12 | -2.91 | -4.35 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s1637212007070311 | Poll Dorset      | 2.47  | 1.17  | 1.71  | 1.85  |

| s1640732007070364 | Poll Dorset   | -4.48 | -1.12 | -1.35 | -2.20 |
|-------------------|---------------|-------|-------|-------|-------|
| s1700622007070144 | Texel         | -3.03 | -1.38 | -1.35 | -2.36 |
| s1700802007071532 | Texel         | -0.26 | -0.31 | -0.48 | 0.28  |
| s1702232007070046 | Texel         | -3.63 | -1.63 | -0.69 | -1.85 |
| s1704062007070028 | Texel         | -1.46 | -2.02 | -0.45 | -1.13 |
| s1704202007070224 | Texel         | -3.47 | -1.41 | -0.95 | -1.30 |
| s1900282007071494 | Suffolk       | -1.74 | -1.32 | -0.36 | -1.06 |
| s1900602007070267 | Suffolk       | -3.34 | -2.24 | -1.56 | -2.13 |
| s1901112007077058 | Suffolk       | -1.40 | -0.99 | -0.50 | -0.56 |
| s1918502001010120 | Suffolk       | -2.59 | -1.04 | -0.53 | -1.22 |
| s1920452007070508 | Suffolk       | -2.72 | -1.10 | -0.88 | -1.34 |
| s2300022007070098 | White Suffolk | -2.19 | -2.14 | -0.10 | -0.57 |
| s2300092007070279 | White Suffolk | -1.49 | -0.67 | -0.21 | -0.35 |
| s2300152007070143 | White Suffolk | -1.28 | -1.27 | -0.18 | -0.63 |
| s2300262005050650 | White Suffolk | -5.26 | -2.25 | -1.66 | -2.86 |
| s2300262007072446 | White Suffolk | 0.29  | -0.41 | -0.04 | 0.01  |
| s2300342007074914 | White Suffolk | -0.65 | -0.32 | -0.58 | -0.54 |
| s2300432007070591 | White Suffolk | -4.58 | -1.37 | -1.86 | -3.03 |
| s2300912007070008 | White Suffolk | -3.98 | -2.29 | -1.35 | -1.94 |
| s2301132007070040 | White Suffolk | -4.32 | -2.02 | -2.48 | -3.83 |
| s2303182008080262 | White Suffolk | -2.00 | -1.33 | -0.05 | -0.56 |
| s2303242007075630 | White Suffolk | -2.93 | -1.81 | -1.47 | -1.24 |
| s2304502007071456 | White Suffolk | -1.26 | -0.73 | 0.18  | -0.47 |
| s4800302008080078 | Prime Samm    | -1.77 | -0.99 | -0.62 | -1.41 |
| s4800392007070062 | Prime Samm    | -2.75 | -0.91 | -0.29 | -0.97 |
| s4800552007070068 | Prime Samm    | -2.26 | -1.69 | -0.46 | -0.70 |
| s4800872006060421 | Prime Samm    | -3.77 | -1.21 | -0.73 | -1.55 |

| s4800992006060191 | Prime Samm   | -1.68 | -1.75 | -1.66 | -1.84 |
|-------------------|--------------|-------|-------|-------|-------|
| s5000482007070260 | Merino       | -1.48 | -0.97 | 0.04  | -0.38 |
| s5000872006060096 | Merino       | 0.45  | 0.62  | -0.05 | 0.73  |
| s5007882007071254 | Merino       | 1.78  | 0.82  | 1.61  | 1.19  |
| s5018852006TRIMPH | Merino       | -1.49 | -1.33 | 0.52  | 0.28  |
| s5024252006023997 | Merino       | 0.63  | -0.27 | -0.31 | -0.35 |
| s5030542004040585 | Merino       | -4.52 | -2.06 | -1.60 | -1.61 |
| s5030972005051737 | Merino       | -4.79 | -2.26 | -3.21 | -3.37 |
| s5034252006060205 | Merino       | -4.05 | -1.21 | -1.24 | -2.44 |
| s5037892007LB0753 | Merino       | -4.33 | -2.87 | -1.89 | -3.12 |
| s5038632006OL3626 | Merino       | -1.17 | -0.22 | 0.27  | 0.99  |
| s5039462007OLY716 | Merino       | 0.58  | 0.18  | -0.21 | 0.09  |
| s5039822006060225 | Merino       | 0.15  | -0.38 | -0.44 | -0.01 |
| s5044702006060022 | Merino       | -4.85 | -1.88 | -1.62 | -2.21 |
| s5046152004040024 | Merino       | -1.57 | -1.25 | -0.07 | -0.73 |
| s5047432000000503 | Merino       | -2.41 | -0.92 | 0.21  | -0.50 |
| s5049022005005345 | Merino       | -2.68 | -2.46 | -1.07 | -1.59 |
| s5049162007070719 | Merino       | -5.21 | -2.72 | -1.82 | -2.56 |
| s50923420060C0573 | Merino       | -1.10 | -1.01 | -0.67 | -2.05 |
| s5100032007070949 | Dohne Merino | -6.87 | -3.17 | -1.58 | -4.59 |
| s5100092007070376 | Dohne Merino | -3.72 | -1.79 | -1.52 | -2.36 |
| s5100302005050068 | Dohne Merino | -2.63 | -1.72 | -0.01 | -0.72 |
| s5100492007071700 | Dohne Merino | -2.84 | -1.69 | -1.39 | -2.35 |
| s5101402006060368 | Dohne Merino | -2.48 | -1.47 | -1.08 | -1.80 |
| s6004082007070069 | Poll Merino  | -4.27 | -1.77 | -0.64 | -1.60 |
| s6005532007070002 | Poll Merino  | -2.12 | -0.84 | -0.34 | -0.43 |
| s6005712006060058 | Poll Merino  | 0.50  | -0.83 | -0.31 | 0.25  |
|                   |              | 1     | 1     | 1     | 1     |

| s6008152006060120 | Poll Merino | -2.35 | -1.05 | -0.07 | -0.83 |
|-------------------|-------------|-------|-------|-------|-------|
| s6010532003031078 | Poll Merino | -2.95 | -1.38 | -0.84 | -0.94 |
| s6010822007071257 | Poll Merino | -1.66 | -0.39 | -0.92 | -1.25 |
| s6011272007070121 | Poll Merino | -2.04 | -1.55 | -1.03 | -1.02 |
| s6012502004407812 | Poll Merino | -2.14 | -2.04 | -1.08 | -1.73 |
| s6012882006063091 | Poll Merino | -0.77 | -0.94 | -0.59 | -0.56 |
| s6013072005050165 | Poll Merino | -2.31 | -2.28 | -0.92 | -1.97 |
| s6013162007070023 | Poll Merino | -2.63 | -3.34 | -3.54 | -3.54 |
| s6013322004000WD2 | Poll Merino | -3.42 | -1.17 | -0.50 | -0.64 |
| s6013562007000449 | Poll Merino | -4.29 | -1.04 | 0.70  | -0.87 |
| s6013652006060052 | Poll Merino | -0.91 | -0.34 | -0.56 | 0.26  |
| s6090542006066533 | Poll Merino | -1.23 | -0.62 | 0.96  | -0.30 |
| s6091542004040062 | Poll Merino | 4.88  | 1.42  | 1.53  | 0.88  |

#### Table 22.1: Loin Sire Ranks for the EQ Variables, With and Without Covariates

|                   |                  | Tender          | Tender       | Juicy     | Juicy        | Flavour   | Flavour      |
|-------------------|------------------|-----------------|--------------|-----------|--------------|-----------|--------------|
|                   |                  | Rank<br>without | Rank<br>with | Rank      | Rank<br>With | Rank      | Rank<br>With |
|                   |                  | Without         | covariate    | Without   | covariate    | Without   | covariate    |
| Sire Number       | Breed            | covariate       |              | covariate |              | covariate |              |
| s020041200707J039 | Border Leicester | 94              | 93           | 80        | 92           | 88        | 94           |
| s020041200707J040 | Border Leicester | 54              | 14           | 40        | 25           | 33        | 11           |
| s0219292007070261 | Border Leicester | 13              | 52           | 38        | 41           | 30        | 75           |
| s0244112006060369 | Border Leicester | 72              | 64           | 81        | 78           | 59        | 72           |
| s0246862007070179 | Border Leicester | 32              | 43           | 9         | 56           | 36        | 51           |
| s0300182004045220 | Corriedale       | 28              | 78           | 31        | 51           | 28        | 23           |
| s0300362005050134 | Corriedale       | 81              | 44           | 90        | 57           | 89        | 71           |
| s0315272003030360 | Corriedale       | 56              | 1            | 30        | 2            | 5         | 24           |
| s0318972006060386 | Corriedale       | 17              | 83           | 16        | 27           | 25        | 50           |
| s0600032006060121 | Bond             | 45              | 58           | 47        | 74           | 42        | 56           |
| s1500152003030196 | Coopworth        | 26              | 76           | 29        | 44           | 37        | 34           |
| s1500292007070244 | Coopworth        | 65              | 46           | 70        | 9            | 54        | 58           |
| s1500392006061009 | Coopworth        | 67              | 71           | 43        | 91           | 80        | 90           |
| s1500482007070769 | Coopworth        | 11              | 6            | 20        | 21           | 11        | 33           |
| s1500622006060070 | Coopworth        | 77              | 65           | 73        | 75           | 66        | 60           |
| s1600012008080010 | Poll Dorset      | 80              | 42           | 60        | 40           | 84        | 27           |
| s1601852007070369 | Poll Dorset      | 23              | 40           | 36        | 49           | 18        | 47           |
| s1611432007070025 | Poll Dorset      | 24              | 82           | 17        | 83           | 50        | 86           |
| s1611582007070190 | Poll Dorset      | 38              | 49           | 68        | 85           | 55        | 79           |
| s1612352007072025 | Poll Dorset      | 44              | 61           | 8         | 8            | 6         | 10           |
| s1614152007070440 | Poll Dorset      | 9               | 3            | 12        | 12           | 12        | 4            |
| s1618922006060050 | Poll Dorset      | 87              | 90           | 77        | 76           | 79        | 66           |

| s1619722006061831 | Poll Dorset   | 92 | 11 | 94 | 43 | 92 | 35 |
|-------------------|---------------|----|----|----|----|----|----|
| s1622882007070644 | Poll Dorset   | 88 | 8  | 93 | 58 | 93 | 20 |
| s1623682007070468 | Poll Dorset   | 5  | 55 | 4  | 46 | 7  | 45 |
| s1636772007070839 | Poll Dorset   | 1  | 36 | 2  | 52 | 1  | 9  |
| s1637212007070311 | Poll Dorset   | 89 | 66 | 89 | 53 | 87 | 73 |
| s1640732007070364 | Poll Dorset   | 22 | 28 | 46 | 6  | 34 | 12 |
| s1700622007070144 | Texel         | 47 | 77 | 32 | 87 | 17 | 85 |
| s1700802007071532 | Texel         | 85 | 34 | 86 | 37 | 73 | 69 |
| s1702232007070046 | Texel         | 3  | 57 | 5  | 31 | 10 | 31 |
| s1704062007070028 | Texel         | 68 | 51 | 58 | 72 | 53 | 81 |
| s1704202007070224 | Texel         | 33 | 59 | 55 | 39 | 81 | 19 |
| s1900282007071494 | Suffolk       | 34 | 50 | 44 | 45 | 49 | 42 |
| s1900602007070267 | Suffolk       | 25 | 21 | 24 | 22 | 40 | 17 |
| s1901112007077058 | Suffolk       | 51 | 81 | 72 | 30 | 52 | 8  |
| s1918502001010120 | Suffolk       | 53 | 67 | 42 | 84 | 31 | 64 |
| s1920452007070508 | Suffolk       | 57 | 73 | 37 | 29 | 35 | 29 |
| s2300022007070098 | White Suffolk | 4  | 62 | 7  | 69 | 3  | 80 |
| s2300092007070279 | White Suffolk | 60 | 80 | 76 | 82 | 43 | 70 |
| s2300152007070143 | White Suffolk | 41 | 17 | 25 | 20 | 27 | 22 |
| s2300262005050650 | White Suffolk | 90 | 12 | 88 | 67 | 91 | 28 |
| s2300262007072446 | White Suffolk | 71 | 31 | 67 | 62 | 83 | 48 |
| s2300342007074914 | White Suffolk | 76 | 53 | 83 | 11 | 38 | 37 |
| s2300432007070591 | White Suffolk | 18 | 37 | 18 | 71 | 19 | 89 |
| s2300912007070008 | White Suffolk | 31 | 41 | 39 | 17 | 23 | 14 |
| s2301132007070040 | White Suffolk | 12 | 29 | 13 | 36 | 29 | 44 |
| s2303182008080262 | White Suffolk | 79 | 85 | 84 | 61 | 90 | 77 |
| s2303242007075630 | White Suffolk | 20 | 39 | 50 | 81 | 32 | 67 |

| s2304502007071456 | White Suffolk | 62 | 63 | 22 | 68 | 47 | 59 |
|-------------------|---------------|----|----|----|----|----|----|
| s4800302008080078 | Prime Samm    | 37 | 23 | 74 | 15 | 67 | 53 |
| s4800392007070062 | Prime Samm    | 74 | 74 | 78 | 7  | 57 | 21 |
| s4800552007070068 | Prime Samm    | 66 | 89 | 57 | 63 | 61 | 74 |
| s4800872006060421 | Prime Samm    | 49 | 16 | 61 | 13 | 24 | 6  |
| s4800992006060191 | Prime Samm    | 7  | 48 | 3  | 65 | 14 | 63 |
| s5000482007070260 | Merino        | 70 | 25 | 27 | 24 | 74 | 3  |
| s5000872006060096 | Merino        | 91 | 19 | 91 | 90 | 94 | 82 |
| s5007882007071254 | Merino        | 75 | 24 | 85 | 77 | 86 | 84 |
| s5018852006TRIMPH | Merino        | 36 | 60 | 64 | 64 | 72 | 54 |
| s5024252006023997 | Merino        | 58 | 88 | 52 | 70 | 51 | 87 |
| s5030542004040585 | Merino        | 43 | 4  | 33 | 18 | 60 | 32 |
| s5030972005051737 | Merino        | 10 | 47 | 19 | 16 | 2  | 18 |
| s5034252006060205 | Merino        | 59 | 86 | 82 | 34 | 82 | 57 |
| s5037892007LB0753 | Merino        | 48 | 91 | 15 | 86 | 44 | 92 |
| s5038632006OL3626 | Merino        | 61 | 92 | 79 | 89 | 64 | 65 |
| s5039462007OLY716 | Merino        | 86 | 33 | 63 | 28 | 85 | 30 |
| s5039822006060225 | Merino        | 55 | 9  | 21 | 73 | 39 | 41 |
| s5044702006060022 | Merino        | 21 | 35 | 51 | 47 | 41 | 40 |
| s5046152004040024 | Merino        | 35 | 26 | 10 | 80 | 21 | 55 |
| s5047432000000503 | Merino        | 46 | 15 | 28 | 4  | 69 | 16 |
| s5049022005005345 | Merino        | 52 | 2  | 48 | 14 | 45 | 7  |
| s5049162007070719 | Merino        | 27 | 84 | 49 | 32 | 16 | 25 |
| s50923420060C0573 | Merino        | 83 | 20 | 87 | 59 | 70 | 43 |
| s5100032007070949 | Dohne Merino  | 2  | 38 | 6  | 33 | 9  | 36 |
| s5100092007070376 | Dohne Merino  | 39 | 22 | 69 | 35 | 46 | 26 |
| s5100302005050068 | Dohne Merino  | 6  | 70 | 14 | 60 | 8  | 49 |

| s5100492007071700 | Dohne Merino | 30 | 69 | 65 | 54 | 56 | 78 |
|-------------------|--------------|----|----|----|----|----|----|
| s5101402006060368 | Dohne Merino | 40 | 75 | 71 | 42 | 58 | 38 |
| s6004082007070069 | Poll Merino  | 8  | 68 | 11 | 26 | 15 | 76 |
| s6005532007070002 | Poll Merino  | 73 | 87 | 62 | 93 | 22 | 61 |
| s6005712006060058 | Poll Merino  | 78 | 13 | 41 | 48 | 75 | 88 |
| s6008152006060120 | Poll Merino  | 63 | 54 | 66 | 55 | 65 | 83 |
| s6010532003031078 | Poll Merino  | 16 | 32 | 23 | 1  | 26 | 13 |
| s6010822007071257 | Poll Merino  | 14 | 18 | 59 | 3  | 77 | 15 |
| s6011272007070121 | Poll Merino  | 29 | 56 | 53 | 50 | 76 | 39 |
| s6012502004407812 | Poll Merino  | 82 | 27 | 75 | 88 | 62 | 93 |
| s6012882006063091 | Poll Merino  | 64 | 7  | 56 | 38 | 71 | 2  |
| s6013072005050165 | Poll Merino  | 69 | 30 | 35 | 79 | 68 | 46 |
| s6013162007070023 | Poll Merino  | 19 | 79 | 1  | 66 | 13 | 62 |
| s6013322004000WD2 | Poll Merino  | 15 | 72 | 34 | 94 | 4  | 91 |
| s6013562007000449 | Poll Merino  | 42 | 94 | 45 | 23 | 20 | 68 |
| s6013652006060052 | Poll Merino  | 50 | 45 | 54 | 5  | 48 | 1  |
| s6090542006066533 | Poll Merino  | 93 | 5  | 92 | 19 | 78 | 52 |
| s6091542004040062 | Poll Merino  | 84 | 10 | 26 | 10 | 63 | 5  |

|                   |                  | Rank Overall Liking | Rank Overall Liking |
|-------------------|------------------|---------------------|---------------------|
| Sire Number       | Breed            | Without covariate   | With covariate      |
| s020041200707J039 | Border Leicester | 93                  | 94                  |
| s020041200707J040 | Border Leicester | 30                  | 13                  |
| s0219292007070261 | Border Leicester | 22                  | 60                  |
| s0244112006060369 | Border Leicester | 76                  | 69                  |
| s0246862007070179 | Border Leicester | 46                  | 57                  |
| s0300182004045220 | Corriedale       | 34                  | 29                  |
| s0300362005050134 | Corriedale       | 86                  | 76                  |
| s0315272003030360 | Corriedale       | 4                   | 7                   |
| s0318972006060386 | Corriedale       | 20                  | 61                  |
| s0600032006060121 | Bond             | 42                  | 43                  |
| s1500152003030196 | Coopworth        | 31                  | 41                  |
| s1500292007070244 | Coopworth        | 50                  | 47                  |
| s1500392006061009 | Coopworth        | 74                  | 92                  |
| s1500482007070769 | Coopworth        | 18                  | 20                  |
| s1500622006060070 | Coopworth        | 72                  | 44                  |
| s1600012008080010 | Poll Dorset      | 81                  | 32                  |
| s1601852007070369 | Poll Dorset      | 16                  | 34                  |
| s1611432007070025 | Poll Dorset      | 48                  | 87                  |
| s1611582007070190 | Poll Dorset      | 39                  | 79                  |
| s1612352007072025 | Poll Dorset      | 5                   | 22                  |
| s1614152007070440 | Poll Dorset      | 6                   | 6                   |
| s1618922006060050 | Poll Dorset      | 77                  | 77                  |
| s1619722006061831 | Poll Dorset      | 94                  | 59                  |
| s1622882007070644 | Poll Dorset      | 92                  | 35                  |
| s1623682007070468 | Poll Dorset      | 11                  | 28                  |
| s1636772007070839 | Poll Dorset      | 1                   | 14                  |

| s1637212007070311 | Poll Dorset   | 89 | 74 |
|-------------------|---------------|----|----|
| s1640732007070364 | Poll Dorset   | 57 | 11 |
| s1700622007070144 | Texel         | 23 | 90 |
| s1700802007071532 | Texel         | 82 | 56 |
| s1702232007070046 | Texel         | 7  | 31 |
| s1704062007070028 | Texel         | 49 | 78 |
| s1704202007070224 | Texel         | 65 | 18 |
| s1900282007071494 | Suffolk       | 41 | 54 |
| s1900602007070267 | Suffolk       | 45 | 23 |
| s1901112007077058 | Suffolk       | 43 | 15 |
| s1918502001010120 | Suffolk       | 37 | 58 |
| s1920452007070508 | Suffolk       | 38 | 46 |
| s2300022007070098 | White Suffolk | 2  | 84 |
| s2300092007070279 | White Suffolk | 51 | 71 |
| s2300152007070143 | White Suffolk | 36 | 17 |
| s2300262005050650 | White Suffolk | 90 | 42 |
| s2300262007072446 | White Suffolk | 78 | 52 |
| s2300342007074914 | White Suffolk | 67 | 24 |
| s2300432007070591 | White Suffolk | 15 | 81 |
| s2300912007070008 | White Suffolk | 29 | 16 |
| s2301132007070040 | White Suffolk | 25 | 49 |
| s2303182008080262 | White Suffolk | 85 | 83 |
| s2303242007075630 | White Suffolk | 32 | 73 |
| s2304502007071456 | White Suffolk | 47 | 53 |
| s4800302008080078 | Prime Samm    | 84 | 40 |
| s4800392007070062 | Prime Samm    | 62 | 19 |
| s4800552007070068 | Prime Samm    | 44 | 70 |

| s4800872006060421 | Prime Samm   | 33 | 12 |
|-------------------|--------------|----|----|
| s4800992006060191 | Prime Samm   | 10 | 62 |
| s5000482007070260 | Merino       | 61 | 5  |
| s5000872006060096 | Merino       | 91 | 80 |
| s5007882007071254 | Merino       | 80 | 68 |
| s5018852006TRIMPH | Merino       | 69 | 51 |
| s5024252006023997 | Merino       | 54 | 82 |
| s5030542004040585 | Merino       | 59 | 37 |
| s5030972005051737 | Merino       | 3  | 10 |
| s5034252006060205 | Merino       | 71 | 48 |
| s5037892007LB0753 | Merino       | 28 | 91 |
| s5038632006OL3626 | Merino       | 63 | 88 |
| s5039462007OLY716 | Merino       | 79 | 38 |
| s5039822006060225 | Merino       | 26 | 39 |
| s5044702006060022 | Merino       | 40 | 63 |
| s5046152004040024 | Merino       | 17 | 66 |
| s5047432000000503 | Merino       | 75 | 21 |
| s5049022005005345 | Merino       | 56 | 2  |
| s5049162007070719 | Merino       | 21 | 26 |
| s50923420060C0573 | Merino       | 88 | 45 |
| s5100032007070949 | Dohne Merino | 13 | 30 |
| s5100092007070376 | Dohne Merino | 60 | 27 |
| s5100302005050068 | Dohne Merino | 9  | 64 |
| s5100492007071700 | Dohne Merino | 52 | 72 |
| s5101402006060368 | Dohne Merino | 53 | 25 |
| s6004082007070069 | Poll Merino  | 19 | 50 |
| s6005532007070002 | Poll Merino  | 35 | 85 |

#### B.LSM.0033 - Towards the development of a next generation MSA lamb model – statistical support

| s6005712006060058 | Poll Merino | 66 | 89 |
|-------------------|-------------|----|----|
| s6008152006060120 | Poll Merino | 55 | 86 |
| s6010532003031078 | Poll Merino | 24 | 8  |
| s6010822007071257 | Poll Merino | 27 | 9  |
| s6011272007070121 | Poll Merino | 73 | 55 |
| s6012502004407812 | Poll Merino | 83 | 75 |
| s6012882006063091 | Poll Merino | 70 | 4  |
| s6013072005050165 | Poll Merino | 64 | 33 |
| s6013162007070023 | Poll Merino | 8  | 67 |
| s6013322004000WD2 | Poll Merino | 12 | 93 |
| s6013562007000449 | Poll Merino | 14 | 65 |
| s6013652006060052 | Poll Merino | 58 | 3  |
| s6090542006066533 | Poll Merino | 87 | 36 |
| s6091542004040062 | Poll Merino | 68 | 1  |

| Table 23.1: | <b>Topside Sire</b> | Ranks for t | he EQ | Variables, | With and | Without | Covariates |
|-------------|---------------------|-------------|-------|------------|----------|---------|------------|
|-------------|---------------------|-------------|-------|------------|----------|---------|------------|

|                   |                  | Tender<br>Rank<br>without | Tender<br>Rank<br>with | Juicy<br>Rank        | Juicy<br>Rank<br>With | Flavour<br>Rank      | Flavour<br>Rank<br>With |
|-------------------|------------------|---------------------------|------------------------|----------------------|-----------------------|----------------------|-------------------------|
| Sire Number       | Breed            | covariate                 | covariate              | Without<br>covariate | covariate             | Without<br>covariate | covariate               |
| s020041200707J039 | Border Leicester | 92                        | 93                     | 93                   | 93                    | 87                   | 56                      |
| s020041200707J040 | Border Leicester | 24                        | 14                     | 37                   | 8                     | 16                   | 15                      |
| s0219292007070261 | Border Leicester | 17                        | 52                     | 6                    | 55                    | 23                   | 34                      |
| s0244112006060369 | Border Leicester | 89                        | 64                     | 92                   | 68                    | 93                   | 75                      |
| s0246862007070179 | Border Leicester | 29                        | 43                     | 16                   | 18                    | 19                   | 52                      |
| s0300182004045220 | Corriedale       | 25                        | 78                     | 31                   | 82                    | 20                   | 79                      |
| s0300362005050134 | Corriedale       | 88                        | 44                     | 86                   | 44                    | 88                   | 42                      |
| s0315272003030360 | Corriedale       | 34                        | 1                      | 9                    | 1                     | 72                   | 1                       |
| s0318972006060386 | Corriedale       | 23                        | 83                     | 30                   | 65                    | 28                   | 65                      |
| s0600032006060121 | Bond             | 48                        | 58                     | 46                   | 86                    | 43                   | 48                      |
| s1500152003030196 | Coopworth        | 21                        | 76                     | 21                   | 66                    | 6                    | 81                      |
| s1500292007070244 | Coopworth        | 45                        | 46                     | 72                   | 20                    | 80                   | 25                      |
| s1500392006061009 | Coopworth        | 75                        | 71                     | 36                   | 78                    | 60                   | 77                      |
| s1500482007070769 | Coopworth        | 52                        | 6                      | 57                   | 5                     | 63                   | 7                       |
| s1500622006060070 | Coopworth        | 70                        | 65                     | 73                   | 84                    | 53                   | 69                      |
| s1600012008080010 | Poll Dorset      | 61                        | 42                     | 50                   | 12                    | 39                   | 30                      |
| s1601852007070369 | Poll Dorset      | 72                        | 40                     | 85                   | 37                    | 66                   | 21                      |
| s1611432007070025 | Poll Dorset      | 37                        | 82                     | 19                   | 89                    | 30                   | 87                      |
| s1611582007070190 | Poll Dorset      | 20                        | 49                     | 18                   | 38                    | 37                   | 64                      |
| s1612352007072025 | Poll Dorset      | 30                        | 61                     | 15                   | 58                    | 18                   | 46                      |
| s1614152007070440 | Poll Dorset      | 15                        | 3                      | 7                    | 4                     | 9                    | 5                       |
| s1618922006060050 | Poll Dorset      | 36                        | 90                     | 38                   | 91                    | 31                   | 90                      |

| s1619722006061831 | Poll Dorset   | 90 | 11 | 90 | 61 | 94 | 27 |
|-------------------|---------------|----|----|----|----|----|----|
| s1622882007070644 | Poll Dorset   | 58 | 8  | 60 | 23 | 85 | 19 |
| s1623682007070468 | Poll Dorset   | 41 | 55 | 40 | 57 | 10 | 41 |
| s1636772007070839 | Poll Dorset   | 2  | 36 | 1  | 21 | 3  | 26 |
| s1637212007070311 | Poll Dorset   | 93 | 66 | 91 | 42 | 92 | 61 |
| s1640732007070364 | Poll Dorset   | 9  | 28 | 56 | 41 | 27 | 49 |
| s1700622007070144 | Texel         | 31 | 77 | 43 | 60 | 26 | 76 |
| s1700802007071532 | Texel         | 81 | 34 | 82 | 46 | 56 | 37 |
| s1702232007070046 | Texel         | 22 | 57 | 35 | 54 | 45 | 66 |
| s1704062007070028 | Texel         | 68 | 51 | 24 | 24 | 58 | 23 |
| s1704202007070224 | Texel         | 26 | 59 | 42 | 49 | 36 | 62 |
| s1900282007071494 | Suffolk       | 60 | 50 | 49 | 79 | 61 | 60 |
| s1900602007070267 | Suffolk       | 28 | 21 | 14 | 9  | 17 | 29 |
| s1901112007077058 | Suffolk       | 69 | 81 | 65 | 75 | 55 | 91 |
| s1918502001010120 | Suffolk       | 44 | 67 | 62 | 85 | 52 | 73 |
| s1920452007070508 | Suffolk       | 39 | 73 | 58 | 59 | 41 | 72 |
| s2300022007070098 | White Suffolk | 53 | 62 | 17 | 51 | 71 | 67 |
| s2300092007070279 | White Suffolk | 65 | 80 | 75 | 77 | 68 | 54 |
| s2300152007070143 | White Suffolk | 71 | 17 | 51 | 52 | 70 | 11 |
| s2300262005050650 | White Suffolk | 3  | 12 | 13 | 31 | 11 | 31 |
| s2300262007072446 | White Suffolk | 83 | 31 | 77 | 27 | 77 | 40 |
| s2300342007074914 | White Suffolk | 80 | 53 | 81 | 35 | 50 | 20 |
| s2300432007070591 | White Suffolk | 7  | 37 | 45 | 48 | 7  | 44 |
| s2300912007070008 | White Suffolk | 16 | 41 | 10 | 22 | 25 | 33 |
| s2301132007070040 | White Suffolk | 11 | 29 | 23 | 40 | 4  | 28 |
| s2303182008080262 | White Suffolk | 57 | 85 | 47 | 81 | 75 | 85 |
| s2303242007075630 | White Suffolk | 33 | 39 | 26 | 53 | 22 | 58 |

| s2304502007071456 | White Suffolk | 73 | 63 | 74 | 64 | 81 | 68 |
|-------------------|---------------|----|----|----|----|----|----|
| s4800302008080078 | Prime Samm    | 59 | 23 | 64 | 32 | 48 | 12 |
| s4800392007070062 | Prime Samm    | 38 | 74 | 69 | 47 | 67 | 55 |
| s4800552007070068 | Prime Samm    | 51 | 89 | 34 | 90 | 57 | 82 |
| s4800872006060421 | Prime Samm    | 18 | 16 | 54 | 45 | 44 | 14 |
| s4800992006060191 | Prime Samm    | 62 | 48 | 29 | 34 | 12 | 32 |
| s5000482007070260 | Merino        | 67 | 25 | 66 | 26 | 79 | 2  |
| s5000872006060096 | Merino        | 84 | 19 | 88 | 76 | 76 | 22 |
| s5007882007071254 | Merino        | 91 | 24 | 89 | 36 | 91 | 57 |
| s5018852006TRIMPH | Merino        | 66 | 60 | 48 | 50 | 84 | 47 |
| s5024252006023997 | Merino        | 87 | 88 | 83 | 83 | 65 | 78 |
| s5030542004040585 | Merino        | 8  | 4  | 20 | 25 | 14 | 16 |
| s5030972005051737 | Merino        | 6  | 47 | 12 | 43 | 2  | 35 |
| s5034252006060205 | Merino        | 14 | 86 | 53 | 74 | 29 | 89 |
| s5037892007LB0753 | Merino        | 10 | 91 | 4  | 88 | 5  | 94 |
| s5038632006OL3626 | Merino        | 76 | 92 | 84 | 94 | 83 | 93 |
| s5039462007OLY716 | Merino        | 86 | 33 | 87 | 6  | 69 | 24 |
| s5039822006060225 | Merino        | 82 | 9  | 79 | 10 | 59 | 17 |
| s5044702006060022 | Merino        | 5  | 35 | 25 | 29 | 13 | 39 |
| s5046152004040024 | Merino        | 64 | 26 | 52 | 33 | 73 | 36 |
| s5047432000000503 | Merino        | 47 | 15 | 68 | 7  | 82 | 13 |
| s5049022005005345 | Merino        | 40 | 2  | 8  | 11 | 34 | 70 |
| s5049162007070719 | Merino        | 4  | 84 | 5  | 71 | 8  | 83 |
| s50923420060C0573 | Merino        | 77 | 20 | 63 | 16 | 46 | 8  |
| s5100032007070949 | Dohne Merino  | 1  | 38 | 3  | 56 | 15 | 38 |
| s5100092007070376 | Dohne Merino  | 19 | 22 | 27 | 13 | 21 | 74 |
| s5100302005050068 | Dohne Merino  | 42 | 70 | 32 | 67 | 78 | 59 |
| s5100492007071700 | Dohne Merino | 35 | 69 | 33 | 62 | 24 | 50 |
|-------------------|--------------|----|----|----|----|----|----|
| s5101402006060368 | Dohne Merino | 46 | 75 | 41 | 72 | 33 | 84 |
| s6004082007070069 | Poll Merino  | 13 | 68 | 28 | 70 | 47 | 51 |
| s6005532007070002 | Poll Merino  | 55 | 87 | 70 | 63 | 62 | 80 |
| s6005712006060058 | Poll Merino  | 85 | 13 | 71 | 19 | 64 | 9  |
| s6008152006060120 | Poll Merino  | 49 | 54 | 59 | 39 | 74 | 45 |
| s6010532003031078 | Poll Merino  | 32 | 32 | 44 | 3  | 42 | 3  |
| s6010822007071257 | Poll Merino  | 63 | 18 | 78 | 14 | 40 | 6  |
| s6011272007070121 | Poll Merino  | 56 | 56 | 39 | 69 | 35 | 71 |
| s6012502004407812 | Poll Merino  | 54 | 27 | 22 | 28 | 32 | 43 |
| s6012882006063091 | Poll Merino  | 79 | 7  | 67 | 30 | 49 | 18 |
| s6013072005050165 | Poll Merino  | 50 | 30 | 11 | 73 | 38 | 88 |
| s6013162007070023 | Poll Merino  | 43 | 79 | 2  | 87 | 1  | 63 |
| s6013322004000WD2 | Poll Merino  | 27 | 72 | 55 | 80 | 54 | 86 |
| s6013562007000449 | Poll Merino  | 12 | 94 | 61 | 92 | 86 | 92 |
| s6013652006060052 | Poll Merino  | 78 | 45 | 80 | 15 | 51 | 53 |
| s6090542006066533 | Poll Merino  | 74 | 5  | 76 | 2  | 89 | 4  |
| s6091542004040062 | Poll Merino  | 94 | 10 | 94 | 17 | 90 | 10 |

|                   |                  | Rank Overall Liking | Rank Overall Liking |
|-------------------|------------------|---------------------|---------------------|
| Sire Number       | Breed            | Without covariate   | With covariate      |
| s020041200707J039 | Border Leicester | 91                  | 91                  |
| s020041200707J040 | Border Leicester | 25                  | 16                  |
| s0219292007070261 | Border Leicester | 20                  | 39                  |
| s0244112006060369 | Border Leicester | 92                  | 64                  |
| s0246862007070179 | Border Leicester | 15                  | 54                  |
| s0300182004045220 | Corriedale       | 18                  | 81                  |
| s0300362005050134 | Corriedale       | 89                  | 57                  |
| s0315272003030360 | Corriedale       | 41                  | 1                   |
| s0318972006060386 | Corriedale       | 24                  | 62                  |
| s0600032006060121 | Bond             | 45                  | 44                  |
| s1500152003030196 | Coopworth        | 9                   | 71                  |
| s1500292007070244 | Coopworth        | 49                  | 29                  |
| s1500392006061009 | Coopworth        | 77                  | 75                  |
| s1500482007070769 | Coopworth        | 58                  | 10                  |
| s1500622006060070 | Coopworth        | 64                  | 69                  |
| s1600012008080010 | Poll Dorset      | 36                  | 52                  |
| s1601852007070369 | Poll Dorset      | 57                  | 35                  |
| s1611432007070025 | Poll Dorset      | 28                  | 90                  |
| s1611582007070190 | Poll Dorset      | 33                  | 61                  |
| s1612352007072025 | Poll Dorset      | 34                  | 46                  |
| s1614152007070440 | Poll Dorset      | 23                  | 2                   |
| s1618922006060050 | Poll Dorset      | 40                  | 92                  |
| s1619722006061831 | Poll Dorset      | 93                  | 24                  |
| s1622882007070644 | Poll Dorset      | 85                  | 9                   |
| s1623682007070468 | Poll Dorset      | 16                  | 34                  |
| s1636772007070839 | Poll Dorset      | 2                   | 42                  |

| s1637212007070311 | Poll Dorset   | 94 | 73 |
|-------------------|---------------|----|----|
| s1640732007070364 | Poll Dorset   | 19 | 30 |
| s1700622007070144 | Texel         | 13 | 77 |
| s1700802007071532 | Texel         | 83 | 47 |
| s1702232007070046 | Texel         | 29 | 53 |
| s1704062007070028 | Texel         | 50 | 40 |
| s1704202007070224 | Texel         | 44 | 59 |
| s1900282007071494 | Suffolk       | 51 | 66 |
| s1900602007070267 | Suffolk       | 21 | 23 |
| s1901112007077058 | Suffolk       | 67 | 86 |
| s1918502001010120 | Suffolk       | 48 | 70 |
| s1920452007070508 | Suffolk       | 43 | 74 |
| s2300022007070098 | White Suffolk | 65 | 60 |
| s2300092007070279 | White Suffolk | 75 | 67 |
| s2300152007070143 | White Suffolk | 63 | 17 |
| s2300262005050650 | White Suffolk | 8  | 5  |
| s2300262007072446 | White Suffolk | 79 | 43 |
| s2300342007074914 | White Suffolk | 69 | 21 |
| s2300432007070591 | White Suffolk | 7  | 37 |
| s2300912007070008 | White Suffolk | 27 | 48 |
| s2301132007070040 | White Suffolk | 3  | 33 |
| s2303182008080262 | White Suffolk | 68 | 80 |
| s2303242007075630 | White Suffolk | 47 | 50 |
| s2304502007071456 | White Suffolk | 71 | 68 |
| s4800302008080078 | Prime Samm    | 42 | 11 |
| s4800392007070062 | Prime Samm    | 53 | 63 |
| s4800552007070068 | Prime Samm    | 61 | 87 |

| s4800872006060421 | Prime Samm   | 39 | 25 |
|-------------------|--------------|----|----|
| s4800992006060191 | Prime Samm   | 30 | 31 |
| s5000482007070260 | Merino       | 73 | 7  |
| s5000872006060096 | Merino       | 86 | 20 |
| s5007882007071254 | Merino       | 90 | 38 |
| s5018852006TRIMPH | Merino       | 84 | 65 |
| s5024252006023997 | Merino       | 74 | 85 |
| s5030542004040585 | Merino       | 35 | 13 |
| s5030972005051737 | Merino       | 5  | 49 |
| s5034252006060205 | Merino       | 11 | 88 |
| s5037892007LB0753 | Merino       | 6  | 94 |
| s5038632006OL3626 | Merino       | 88 | 93 |
| s5039462007OLY716 | Merino       | 80 | 28 |
| s5039822006060225 | Merino       | 78 | 26 |
| s5044702006060022 | Merino       | 17 | 12 |
| s5046152004040024 | Merino       | 59 | 27 |
| s5047432000000503 | Merino       | 70 | 14 |
| s5049022005005345 | Merino       | 38 | 18 |
| s5049162007070719 | Merino       | 10 | 83 |
| s50923420060C0573 | Merino       | 22 | 3  |
| s5100032007070949 | Dohne Merino | 1  | 36 |
| s5100092007070376 | Dohne Merino | 12 | 51 |
| s5100302005050068 | Dohne Merino | 60 | 79 |
| s5100492007071700 | Dohne Merino | 14 | 56 |
| s5101402006060368 | Dohne Merino | 31 | 82 |
| s6004082007070069 | Poll Merino  | 37 | 58 |
| s6005532007070002 | Poll Merino  | 72 | 76 |

| s6005712006060058 | Poll Merino | 81 | 22 |
|-------------------|-------------|----|----|
| s6008152006060120 | Poll Merino | 56 | 32 |
| s6010532003031078 | Poll Merino | 54 | 8  |
| s6010822007071257 | Poll Merino | 46 | 15 |
| s6011272007070121 | Poll Merino | 52 | 55 |
| s6012502004407812 | Poll Merino | 32 | 45 |
| s6012882006063091 | Poll Merino | 66 | 41 |
| s6013072005050165 | Poll Merino | 26 | 78 |
| s6013162007070023 | Poll Merino | 4  | 84 |
| s6013322004000WD2 | Poll Merino | 62 | 72 |
| s6013562007000449 | Poll Merino | 55 | 89 |
| s6013652006060052 | Poll Merino | 82 | 19 |
| s6090542006066533 | Poll Merino | 76 | 4  |
| s6091542004040062 | Poll Merino | 87 | 6  |

**Figure 1.1**. Comparison of the Residuals With, and Without the Consumer Random Effect being Included in the Statistical Model. A Normal Distribution is overlaid on each Histogram



Histogram of Residuals for Tender without Consumer within Pick





## Milestone 2

## The Effect of Consumers Having Different References for EQ Scores

Figure 1.2 shows a histogram of the least squares estimates for the EQ variable Overall Liking for each consumer within pick for the Loin. The x - axis represents least squares means for Overall Liking for the individual consumers. It is clear that there are no distinct groups of consumers represented by an identifiable "cut off". Rather there is a continuum of response of consumer judgement where there is a smooth decreasing frequency of a reference scale for EQ judgement. In particular, there is no clear point of truncation that makes the population consumer response more symmetrical.

An important question to address is whether these consumer evaluations are consistent. For example, does a consumer that rates tenderness lower than the bulk of consumers (i.e. is a member of the asymmetric tail of the distribution) also rate juiciness, flavour and overall liking lower. Importantly is this consumers star rating also consistent with the ratings of the other EQ variables. This problem is addressed by fitting the consumer within pick to the ratios of the scores of the EQ variables If there were large significant consumer differences in these ratios this would be an indication that there was no consistency in the reference points within a consumer. That is, there would be no proportionality in how a consumer scored each of the EQ variables for a given meat sample. To clarify the purpose of this analysis suppose for 2 hypothetical consumers tasting the same meat one scored tenderness as 60 and juicy as 50, while the second scored tenderness as 70 and juiciness as 58. The numbers are different but the relative proportions are the same. This infers that while the consumers are using different scores their scales to differentiate the meat are the same. So, if there are significant numbers of consumers who are using different EQ reference points (which we have identified), but are also using different scales as evidenced by significantly different proportional ratios of the EQ variables, then a test for consumer differences in the EQ ratios will show this. Out of about 7500 evaluations there were only 10 that showed significant deviations in the EQ variable ratios (after Bonferroni correction). These are the ones that might be deemed rogue consumers, delivering inconsistent judgements. This number was so small that it would not affect the results of the analysis. That is, the analysis shows that while consumers have different EQ variable scoring reference points, they are consistent in their reporting of the scale of those variables. Different consumers rate the same meat quality in the same proportion, so an analysis can ignore differences in EQ variable reference points. Indeed, the extremely low cases where the consumer responses were not proportional could very likely be due to a poor meat sample. However, if this was the case the low incidence is a credit to the care given to the preparation of the meat samples.

Further evidence of within consumer consistency is given in Table 1.2 which shows that the relationships between the EQ variables and the star rating are not materially altered by removing the consumer effect. That is, if a consumer deviated from the bulk of the other consumers in their evaluation of an EQ variable then they showed a similar deviation for the star rating.

These 2 analyses suggest that all the relationships are proportional and a reliable discriminant function can be constructed. Thus, this analysis will ignore this issue of consumers having different reference points, assuming that that each consumer adjusts

each score to the same proportion, enabling consistent estimators of the relationships between the consumer scores and the evaluation of the star category.

## Discriminant Analysis for the Effect of EQ Variable on Star Eating Quality Category

Table 2.2a shows the coefficients for the discriminant function for classifying the star rating based on the 4 EQ variables for the Loin. Table 2.2b shows the coefficients for the Topside, which required a quadratic term in Overall Liking to discriminant the star category correctly. Table 3.2 shows the numbers of correctly and incorrectly classified variables and their percentages using the discriminant function in Table 2.2, The best linear discriminant function would thus miss classify 17% of the star 4 Loin cuts as star 5 and 19% of the Loin cuts as the lower star 3. Similarly 32% of the star 5 Loin cuts would be miss classified to a lower star rating. Using principal component scores instead of the actual variables did not improve this prediction. It is notable that there is poorer identification of meat cuts classified as star 4 in the Topside than in the Loin.

Using Overall Liking as a single discriminant variable for star rating gives a discriminant coefficient of 0.0848 for this single EQ variable for the Loin. For Topside the quadratic function was 0.8197(Overall Liking) + 0.1803(Overall Liking)<sup>2</sup>. The classification accuracy of this strategy is given in Table 4.2a for the Loin and Table 4.2b for the Topside. It is clear that the consideration of the EQ variables tender, juicy and flavour adds nothing to the discrimination power of overall liking applied alone for the Loin. This result is consistent with the larger coefficient for Overall Liking in the linear discriminant function shown in Table 2.2. However, for the Topside a considerable degradation of predictive performance occurs for discriminating star categories 4 and 5.

The result of excluding Overall Liking from the discriminant function that is using only tender juicy and flavour, is shown in Table 5a for the Loin and Table 5.2b for the Topside. The accuracy of prediction for the Loin using only the 3 EQ variables is very similar to that of using all 4 EQ variables or just Overall Liking alone. This suggests that the EQ variables tender, juicy and flavour could be used to discriminate the star category of the Loin cut without reference to Overall Liking, which is harder to define. The Topside shows much poorer prediction for star categories 4 and 5 when either Overall Liking is used as a single (quadratic) predictor, or if tender, juicy and flavour are used without Overall Liking compared with using all EQ variables.

## Discrimination for Different Sire Breeds

The accuracy of discrimination of star category through the EQ variables for each of the sire breeds in the trial is given in Table 6a for the Loin and Table 6.2b for the Topside. The poor discrimination into star categories 4 and 5 for the Topside may reflect the lower numbers in these categories contributing to the discriminant function.

## Discrimination for Different Dam Breeds

The accuracy of discrimination of star category through the EQ variables for the 2 dam breed is given in Table 7.2a for the Loin and Table 7.2b for the Topside. These results are more consistent with the full analysis than the results for the sire breeds, probably due to the higher numbers involved. There was no significant effect of the dam.

## Testing 2 Stage Discrimination for Improving Allocation to Premium Meat Quality

. A 2 stage discriminant analysis was tested to see if the error rates for the 4 and 5 star categories could be improved.. This analysis takes the meat allocated to star 4 by the first discriminant function and then seeks a second discrimination of this meat that partitions it into meat that is 5 star and meat that is 4 star or less. However, this procedure was not able to improve the prediction of the star rating from the values of the EQ variables.

## Forcing Overall Liking to Have Less Influence on Meat Quality Discrimination

Forcing Overall Liking to have a coefficient in the discriminant function that is 40% of the influence of the other variables (tender, juicy, flavour) can be accomplished by dividing the Overall Liking score by a factor of 0.35. However, this makes no difference to the discrimination accuracy (it is the same as if no change was made to Overall Liking). If the goal is to reduce the influence of Overall Liking on the discrimination procedure then an option is to "blur" the information in this variable by rounding its value to be a multiple of 10. This reduces the contribution of Overall Liking to 58% from 69% of the discriminant function for the Loin. It had no effect on the accuracy of the star category prediction in Tables 3a and 3b.

An alternative approach is to remove all the covariance from Overall Liking associated with the EQ variables tender, juicy and flavour through a regression of Overall Liking on these variables. The residuals from this analysis are then used in place of the Overall Liking scores. This procedure gives almost the same predictions for the star categories as Table 3, but the discriminant coefficients for the Loin are now 0.0222(tender); 0.0150(juicy); 0.0512(flavour); 0.0612(Overall Liking). In this case the coefficient for Overall Liking gives 41% of the weight to the discriminant function.

## Multinomial Logit Analysis of Discrimination

An alternative analysis to discriminant functions is to use logit analyses to find a discriminating relationship between the star categories based on the EQ variables. This analysis has better properties, being less dependent on covariance structure.

The multinomial logit estimates for the effect of the EQ variables on the star categories are shown in Table 8a for the Loin and Table 8b for the Topside.

To calculate the probabilities of a meat sample being in a given star rating given the values of the EQ variables tender, juicy, flavour and overall liking the procedure is:

- 1. Calculate exp(Intercept +  $b_1$  tender +  $b_2$  juicy +  $b_3$  flavour +  $b_4$  overall liking) for each of the 3 logit regression in Table 7. For example, for tender = 60; juicy = 70; flavour = 65 and overall liking = 70 then for star 3 exp(-4.9361 + 0.0064 x 60 + 0.0059 x 70 + 0.0273 x 65 + 0.0962 x 70) = 78.9962
- 2. Sum these results for each star rating case. 78.9962 + 54.7293 + 2.4473 = 136.1729
- 3. The probability of being in the reference star rating (star 2) given the values for the EQ variables is  $\frac{1}{1+136.1729} = 0.007$ .

4. The probability of being in each of the other star rating is the value of exp(regression) as calculated in item (1) divided by 1 + the sum. For the probability of the example being in start 3 this is  $\frac{78.9962}{1+136.1729} = 0.58$ . Similar calculations for show that the probability of being in star 4 is 0.40, and in star 5 is 0.02 for the given values of the EQ variables.

These calculations are best coded into a computer program which can then calculate the probabilities of being in a particular star category given the values of the EQ variables. The star category having the highest estimated probability would be the category within which the meat would be allocated. This procedure has the advantage of showing easily when there is a significant probability of the meat being in a different star category. For example given a set of EQ variables the probability of the meat being star 4 might be 52% and 48% of being star 5. The meat would be allocated to star 4 because this has the highest estimated probability, but note the strong contention that it is star category 5.

## Moderation of Tender by Flavour

If flavour moderates the judgement of tenderness in allocating a star rating then this would be expected to be expressed as a significant interaction of tender and flavour in the multinomial logit calculation. However, a calculation shows that there is no significant interaction between tender and flavour in discriminating the eating quality of sheep meat as measured by the star rating.

The lack of interaction between tender and flavour in influencing the star category is further illustrated in Figure 2.2, which shows the result of fitting a generalised additive model smoother. The plot shows no evidence of departure from an additive effect of both variables. This smoother analysis appears to rule out the existence of some complicated functional relationship of tender and flavour on the star category.

## Discussion

The use of a discriminant function to allocate meat to each of 4 meat quality star categories (2 to 5 star) appears to work well, giving between 60% and 70% of correct star category allocations. The exception is the prediction of star 4 samples in the Topside cut. In this respect the issues noted with consumers having different reference frames, and also the propensity of some consumers to round up their scores so that there are higher frequencies of scores in the tens (50, 60, 70, 80, 90) suggests that little more accuracy can be gained, at least in terms of simple allocation strategies. The reliability of any discriminant function is limited by the accuracy of the consumer evaluations. This problem is illustrated by Figure 3 which shows the variation for Overall Liking within consumer. The large amount of variation is notable, and the effect of this variation on the limiting the accuracy of any discriminant function is will have to use other information besides consumer evaluations.

The strategy for prediction applied here treats all errors the same across all star categories. This might not be the best strategy from a marketing perspective. It might be better to find a discrimination procedure that improves the error rates at the premium star categories at the risk of poorer allocation at the lower star categories. This is a question to address under the next milestone. One issue worth pursuing is to find some kind of second discrimination

procedure that can be applied to further sort that meat allocated to the premium star categories with the aim of reducing the number of samples misclassified as premium. An attempt to do this by applying a second standard discrimination function did not work. But other strategies might. This is also a topic for the next milestone.

The analysis suggests that an adequate discrimination can be achieved by using either Overall Liking alone, or by using just tender, juicy and flavour without Overall Liking. Given that the EQ variables tender, juicy and flavour are more objective than Overall Liking this is a result worth noting

A discrimination strategy can be constructed using either discriminant analysis as in past analyses of meat quality, or using multinomial logits. Both provide very similar outcomes, however, logit analysis is more flexible, especially in dealing with interactions among the prediction variables, and also has fewer assumptions than discriminant analysis.

The disadvantage is that the calculation of the allocation of a sample is more complex, especially for multinomial logits (more than 2 categories to deal with) than binary logits (2 categories). However, this calculation can be automated into a "black box".

As noted, logit analysis also gives the probabilities of a sample being in each of the categories of interest, and the standard errors of these probabilities are given. This enables an uncertainty to be associated with each probability calculation. This attribute may be useful in refining an allocation strategy, where for example the probabilities of a sample being in different categories are similar. For example, such a strategy might be to only allocate meat to a premium category if the probability of being in that category is e.g. higher than 0.6. This strategy would disqualify meat that had a 51% chance of being in the premium category (and would be so allocated) compared to a relatively high chance of being less than premium. These are issues for discussion with the people using this tool.

The complication of multinomial logit analysis has precluded its application to discriminant analysis previously. This situation has now been rectified, and suitable software is available.

**Table 1.2**: Correlations between the EQ variables and the star rating for the Loin for eating quality for the raw data and for the residuals after fitting consumer within pick as a fixed effects

| EQ Variable    | Raw data | Residuals after fitting<br>consumer within pick |
|----------------|----------|-------------------------------------------------|
| Tender         | 0.66     | 0.59                                            |
| Juicy          | 0.67     | 0.60                                            |
| Flavour        | 0.74     | 0.67                                            |
| Overall Liking | 0.79     | 0.72                                            |

Table 2.2a Star Rating Discriminant Function Coefficients for the Loin

| EQ Variable    | Discriminant Coefficient | Percentage |
|----------------|--------------------------|------------|
| Tender         | 0.0097                   | 11%        |
| Juicy          | 0.0064                   | 7%         |
| Flavour        | 0.0118                   | 13%        |
| Overall Liking | 0.0612                   | 69%        |

**Table 2.2b** Star rating discriminant function coefficients for the Topside QuadraticDiscriminant Function for Topside

| EQ Variable            | Quadratic Discriminant | Percentage |
|------------------------|------------------------|------------|
|                        | Coefficient            |            |
| Tender                 | -0.0128                | 29%        |
| Juicy                  | -0.0019                | 4%         |
| Flavour                | -0.0046                | 11%        |
| Overall Liking         | -0.0240                | 55%        |
| Overall Liking squared | -0.0003                | 1%         |

**Table 3.2a**: Number of correct and incorrect classifications of the star rating for the Loin for the Linear discriminant function given in Table 2a

| Star Rating | Estimated as 2 | Estimated as 3 | Estimated as 4 | Estimated as 5 |
|-------------|----------------|----------------|----------------|----------------|
| Actual 2    | 357            | 187            | 2              | 0              |
| Actual 3    | 172            | 1743           | 614            | 62             |
| Actual 4    | 1              | 490            | 1663           | 452            |
| Actual 5    |                | 30             | 554            | 1216           |

#### Percentages

| Star Rating | Estimated as 2 | Estimated as 3 | Estimated as 4 | Estimated as 5 |
|-------------|----------------|----------------|----------------|----------------|
| Actual 2    | 65             | 34             | 1              | 0              |
| Actual 3    | 7              | 67             | 24             | 2              |
| Actual 4    | 0.             | 19             | 64             | 17             |
| Actual 5    | 0              | 2              | 32             | 66             |

**Table 3.2b**: Number of correct and incorrect classifications of the star rating for the Topside for the discriminant function given in Table 2b.

| Star Rating | Estimated as 2 | Estimated as 3 | Estimated as 4 | Estimated as 5 |
|-------------|----------------|----------------|----------------|----------------|
| Actual 2    | 1643           | 548            | 6              | 0              |
| Actual 3    | 401            | 2743           | 424            | 44             |
| Actual 4    | 9              | 471            | 561            | 209            |
| Actual 5    | 0              | 32             | 106            | 252            |

#### Percentages

| Star Rating | Estimated as 2 | Estimated as 3 | Estimated as 4 | Estimated as 5 |
|-------------|----------------|----------------|----------------|----------------|
| Actual 2    | 75             | 25             | 0              | 0              |
| Actual 3    | 11             | 76             | 12             | 1              |

| Actual 4 | 0 | 38 | 45 | 17 |
|----------|---|----|----|----|
| Actual 5 | 0 | 8  | 27 | 65 |

**Table 4.2a**: Numbers of correctly and incorrectly classified star categories and the percentages when using the EQ variable overall liking as the single discriminant variable for the Loin.

| Star Rating | Estimated as 2 | Estimated as 3 | Estimated as 4 | Estimated as 5 |
|-------------|----------------|----------------|----------------|----------------|
| Actual 2    | 335            | 204            | 7              | 0              |
| Actual 3    | 174            | 1712           | 633            | 72             |
| Actual 4    | 4              | 542            | 1600           | 463            |
| Actual 5    |                | 41             | 575            | 1184           |

| Star Rating | Estimated as 2 | Estimated as 3 | Estimated as 4 | Estimated as 5 |
|-------------|----------------|----------------|----------------|----------------|
| Actual 2    | 61             | 37             | 2              | 0              |
| Actual 3    | 7              | 66             | 24             | 3              |
| Actual 4    | 0              | 21             | 61             | 18             |
| Actual 5    | 0              | 2              | 32             | 66             |

**Table 4.2b**: Numbers of correctly and incorrectly classified star categories and the percentages when using the EQ variable overall liking as the single discriminant variable for the Topside.

| Star Rating | Estimated as 2 | Estimated as 3 | Estimated as 4 | Estimated as 5 |
|-------------|----------------|----------------|----------------|----------------|
| Actual 2    | 1677           | 515            | 5              | 0              |
| Actual 3    | 435            | 2792           | 361            | 24             |
| Actual 4    | 8              | 546            | 603            | 9              |
| 3Actual 5   | 0              | 26             | 194            | 170            |

| Star Rating | Estimated as 2 | Estimated as 3 | Estimated as 4 | Estimated as 5 |
|-------------|----------------|----------------|----------------|----------------|
| Actual 2    | 76             | 23             | 1              | 0              |
| Actual 3    | 12             | 77             | 10             | 1              |
| Actual 4    | 0              | 47             | 53             | 0              |
| Actual 5    | 0              | 7              | 49             | 44             |

**Table 5.2a**: Number of correct and incorrect classifications of the star rating for the Loin for the Discriminant function based on Tender, Juicy and Flavour only.

| Star Rating | Estimated as 2 | Estimated as 3 | Estimated as 4 | Estimated as 5 |
|-------------|----------------|----------------|----------------|----------------|
| Actual 2    | 274            | 269            | 3              | 0              |
| Actual 3    | 130            | 1682           | 656            | 133            |
| Actual 4    | 7              | 518            | 1266           | 815            |
| Actual 5    | 1              | 46             | 358            | 1375           |

Percentages

| Star Rating | Estimated as 2 | Estimated as 3 | Estimated as 4 | Estimated as 5 |
|-------------|----------------|----------------|----------------|----------------|
| Actual 2    | 50             | 50             | 0              |                |
| Actual 3    | 5              | 65             | 25             | 5              |
| Actual 4    | 0              | 20             | 49             | 31             |
| Actual 5    | 0              | 3              | 20             | 77             |

**Table 5.2b**: Number of correct and incorrect classifications of the star rating for the Topside for the Discriminant function based on Tender, Juicy and Flavour only.

| Star Rating | Estimated as 2 | Estimated as 3 | Estimated as 4 | Estimated as 5 |
|-------------|----------------|----------------|----------------|----------------|
| Actual 2    | 1545           | 645            | 7              | 0              |
| Actual 3    | 472            | 2727           | 381            | 32             |
| Actual 4    | 8              | 543            | 537            | 162            |
| Actual 5    | 1              | 40             | 124            | 225            |

Percentages

| Star Rating | Estimated as 2 | Estimated as 3 | Estimated as 4 | Estimated as 5 |
|-------------|----------------|----------------|----------------|----------------|
| Actual 2    | 70             | 29             | 1              | 0              |
| Actual 3    | 13             | 76             | 11             | 0              |
| Actual 4    | 0              | 44             | 43             | 13             |
| Actual 5    | 0              | 10             | 32             | 58             |

**Table 6.2a**: Percentage of correct predictions based on a discriminant function of all the EQ variables for the star rating for each of the sire breeds for the Loin

| Sire Breed       | Star 2 | Star 3 | Star4 | Star 5 |
|------------------|--------|--------|-------|--------|
| Bond             | 30     | 38     | 68    | 73     |
| Border Leicester | 45     | 66     | 73    | 47     |
| Coopworth        | 72     | 60     | 67    | 66     |
| Corriedale       | 75     | 72     | 66    | 79     |
| Dohne Merino     | 80     | 73     | 63    | 75     |
| Merino           | 84     | 58     | 62    | 74     |
| Poll Dorset      | 68     | 72     | 65    | 61     |
| Poll Merino      | 55     | 63     | 65    | 72     |
| Prime Samm       | 76     | 62     | 59    | 78     |
| Suffolk          | 63     | 64     | 56    | 77     |
| White Suffolk    | 61     | 67     | 66    | 62     |
| Texel            | 62     | 68     | 63    | 61     |

**Table 6.2b**: Percentage of correct predictions based on a discriminant function of all the EQ variables for the star rating for each of the sire breeds for the Topside

| Sire Breed       | Star 2 | Star 3 | Star4 | Star 5 |
|------------------|--------|--------|-------|--------|
| Bond             | 83     | 73     | 64    | 0      |
| Border Leicester | 73     | 71     | 50    | 67     |
| Coopworth        | 77     | 77     | 32    | 64     |

| Corriedale    | 75 | 71 | 61 | 47 |
|---------------|----|----|----|----|
| Dohne Merino  | 79 | 75 | 24 | 68 |
| Merino        | 77 | 78 | 47 | 45 |
| Poll Dorset   | 74 | 74 | 42 | 68 |
| Poll Merino   | 76 | 78 | 41 | 75 |
| Prime Samm    | 67 | 76 | 50 | 53 |
| Suffolk       | 71 | 71 | 36 | 68 |
| White Suffolk | 77 | 72 | 48 | 67 |
| Texel         | 73 | 77 | 41 | 49 |

**Table 7.2a**: Percentage of correct predictions based on a discriminant function of all the EQ variables for the star rating for each of the dam breeds for the Loin

| Dam Breed | Star 2 | Star 3 | Star4 | Star 5 |
|-----------|--------|--------|-------|--------|
| Merino    | 66     | 67     | 63    | 71     |
| BLM       | 66     | 68     | 68    | 51     |

**Table 7.2b**: Percentage of correct predictions based on a discriminant function of all the EQ variables for the star rating for each of the dam breeds for the Topside

| Dam Breed | Star 2 | Star 3 | Star4 | Star 5 |
|-----------|--------|--------|-------|--------|
| Merino    | 76     | 75     | 48    | 63     |
| BLM       | 71     | 76     | 38    | 75     |

**Table 8.2a**: Multinomial logit estimates for the star rating depending on the EQ variables for the Loin. The reference is star 2.

| Star rating | Intercept  | tender   | juicy    | flavour  | Overall liking |
|-------------|------------|----------|----------|----------|----------------|
| 3           | -4.9361 ±  | 0.0064 ± | 0.0059 ± | 0.0273 ± | 0.0962 ±       |
|             | 0.2631     | 0.0038   | 0.0040   | 0.0058   | 0.0077         |
| 4           | -13.5736 ± | 0.0265 ± | 0.0153 ± | 0.0354 ± | 0.1802 ±       |
|             | 0.3648     | 0.0046   | 0.0047   | 0.0069   | 0.0093         |
|             |            |          |          |          |                |
| 5           | -27.0739 ± | 0.0496 ± | 0.0344 ± | 0.0572 ± | 0.2696 ±       |
|             | 0.5691     | 0.0064   | 0.0056   | 0.0090   | 0.0121         |

**Table 8.2b**: Multinomial logit estimates for the star rating depending on the EQ variables for the Topside. The reference is star 2.

| Star rating | Intercept  | tender   | juicy    | flavour  | Overall liking |
|-------------|------------|----------|----------|----------|----------------|
| 3           | -5.3742 ±  | 0.0166 ± | 0.0019 ± | 0.0089 ± | 0.1058 ±       |
|             | 0.1589     | 0.0026   | 0.0026   | 0.0032   | 0.0047         |
| 4           | -13.7908 ± | 0.0417 ± | 0.0066 ± | 0.0147 ± | 0.1798 ±       |
|             | 0.3024     | 0.0038   | 0.0039   | 0.0055   | 0.0073         |

| 5 | -26.3800 ± | 0.0704 ± | 0.0116 ± | 0.0408 ± | 0.2568 ± |
|---|------------|----------|----------|----------|----------|
|   | 0.7706     | 0.0075   | 0.0066   | 0.0125   | 0.0153   |





Frequency of Consumer Mean Scores for Overall Liking

**Overall Liking Score** 

**Figure 2.2**; A 3D plot of star category against tender and flavour as fitted by a generalised additive model smoother.



tender

Figure 3: Histogram of the within consumer residuals for Overall Liking.



Residual of Overall Liking Within Consumer

## Milestone 3

#### Relationship between Overall Liking and Tenderness, Juiciness and Flavour

The sensory variable overall liking is not well defined in the sense of being associated with a particular meat quality trait, especially a measureable trait. Overall liking is correlated to the other sensory variables and might be thought of as including the attributes of these variables plus any aspect of eating quality that was not represented by the other sensory variables. In this respect overall liking is a check on the efficacy of the other sensory variables to capture the key aspects of eating quality to the consumer.

The residuals from overall liking after fitting the other sensory variables, tenderness, juiciness and flavour then measures what eating quality attributes might be lacking in a description of sheep meat eating quality by these 3 variables.

The regression coefficients describing the relationships between overall liking and the sensory variables tenderness, juiciness' and flavour are given in Table 1.3 for both the Loin and Topside cuts. The high adjusted R – squared values for both cuts indicate that most of the eating quality attributed detected by the consumer are captured by the 3 sensory variables tenderness, juiciness and flavour.

The similarity of the regression coefficients between the loin and the topside cuts is notable as are the proportions of variance in overall liking captured by the relationship with the other sensory variables. The residual error for the topside cut is larger than for the loin cut, although this difference is not significant.

The frequency distribution of the residuals from overall liking after fitting the other 3 sensory variables is shown in Figure 1.3. This frequency distribution has significant (P < 0.001) positive kurtosis. This means the distribution is peaked, with fat tails, which describes a situation where there are a high proportion of large deviations in this variable. That is, there are a high number of cases where the consumer's evaluation of overall liking includes aspects unrelated to tenderness, juiciness and flavour – at least in the linear (proportional) sense. One must be aware that these high deviations might result from complex nonlinear associations of tenderness, juiciness and flavour detected by the consumer.

When the residuals from overall liking were fitted to the linear mixed model which included the effects of sire breed, kill group, sire within sire breed within kill group and consumer within pick there were no significant effects for any factor. The intra – class correlation coefficient for consumer within pick was 0.14 for the loin cut. This suggests that there were no important attributes of consumer eating quality associated with the factors of interest that were not captured by the 3 sensory variables tenderness, juiciness and flavour.

#### Linking Sire Variance to Consumer Eating Quality Score

The sire within sire breed within kill group intra – class correlation coefficient for the optimal discriminant function for the loin (reported in milestone 2) was 0.05. This low value was probably the result of the perturbations in consumer judgements referred to in the introduction.

The linear canonical function for the loin cut which maximised the relationship with the sire effect was found to be a contrast between tenderness and juiciness:

2.0273(tender) - 0.6943(juicy)

The sensory variable flavour did not improve the canonical correlation with sires for the loin, so was not included. Neither did the residuals of overall liking contribute, suggesting that there were no eating quality attribute associated with a sheep sire effect not already measured by tenderness and juiciness.

This canonical function gave an intra – class correlation for the sire within sire breed within Kill group effect of 0.08 for the loin cut. While still low, this figure was considerably higher than the intra – class correlation of 0.05 calculated for the optimal linear discriminant function reported in Milestone 2.

The topside cut provided a maximal canonical correlation function that was also a contrast between tenderness and juiciness of:

3.5(tender) - 0.25(juicy)

Similarly, flavour and overall liking residuals did not add anything to this relationship. However, the high positive correlation of flavour to tenderness and juiciness for both loin and topside cuts would ensure that flavour variation was represented in the relationship with sires.

However, for the topside cut there were a range of coefficients between 2 and 5 for the tender and between 0.1 and 1.0 for the juicy which gave essential the same sire intra – class correlation coefficient of 0.05. This figure was marginally better than the sire intra – class correlation coefficient for the optimal discrimination function for the topside cut of 0.03.

The logit coefficients for the sire based linear canonical function are given in Table 2.3 for the loin cut and Table 3.3 for the topside cut.

The predictability of these new sire based discriminant functions are shown in Table 4.3 for the loin cut and Table 5.3 for the topside cut. The accuracy of the new sire based discriminant function for the loin cut is very similar to that of the optimal discriminant function. Indeed, this sire based discriminant function is better at discriminating between loin cuts of consumer star 4 and 5. However, the accuracy of the new sire based discriminant function for the topside cut is much poorer than that of the optimal discriminant function for this cut.

The residuals calculated after fitting the full model were significantly (P < 0.01) skewed and significantly (P < 0.01) kurtosis. This was undoubtedly due to the asymmetric nature of the consumer judgements described earlier. Trimming the data set by removing all data points that had absolute residuals greater than 10 resulted in a notable improvement in estimation. The sire intra – class correlation for the optimal discriminant function improved to 0.2 for the loin and 0.16 for the topside. This trimming removed 2265 data points from 7546 data points in the Loin measurements (30%) for the loin and 4325 observations from 7561 observations (57) for the topside cut. Trimming less data points in the set by including those data cases with absolute residuals that were greater than 10 did not improve the sire intra – class correlation much over the complete data case. This result implies that the nature of the

frequency distributions for the eating quality variables induced by asymmetric consumer behaviour needs attention.

Fitting statistical models that did not include the sire breed effect or included a non significant maternal effect, or breed type, did not improve the sire intra – class correlation. It was noted in the report for milestone 1 of this project that maternal breed or breed type had no significant effect of the sensory variables.

#### Seeking a Better Cut - off for Discriminating Consumer Eating Quality Scores

Figures 2.3 to 6.3 show the distributions for each of the eating quality star ratings for the loin cut of the calculated probability from the logit based discriminant function of being classified in the correct consumer rated category. These graphs illustrate the difficulty of seeking cut – off scores that better define the consumer eating quality star ratings in terms of the EQ sensory variables. Ideally one would seek a discontinuity in the probability (frequency) estimates of meat with given sensory variable attributes of being in a given star group. Such a discontinuity is apparent for those EQ star ratings that are far apart (e.g. star 2 v star5), but there is no obvious cut off for any adjacent consumer eating quality scores.

The inclusion of estimates of the economic value of the meat cuts might change this situation. Economic values would define the cost of classification errors, whether incorrectly classifying a meat cut up or down. For example, it might be economic to make it harder to get a meat cut into star 5 because the cost of incorrectly classifying star 4 as star 5 is high.

#### Nonlinear Relationships

To this stage of the analysis the relationships between variables of interest have been restricted to the linear case. This may be an undue restriction because nonlinear relationships that cannot be approximated linearly will be missed. Nonlinear relationships, between, for example, overall liking and the other sensory variables, can be described by the total correlation. Total correlation refers to a means of, finding unknown functions f(x) and g(y) that maximise the product moment correlation between these functions of the variables rather than the variables. For example, the task is to find these unknown functions so that the correlation between the functions f(overall liking) and g(tender, juicy, flavour) is maximised. This is a difficult task since the form of the functions must be derived from the data.

The Alternating Conditional Expectation algorithm was applied to estimate any nonlinear relationships among the sensory variables, and with the sire effect. The relationship between the optimal nonlinear function of overall liking and the optimal nonlinear function of tender, juicy and flavour did not differ significantly from a linear function. However, the optimal nonlinear function relating tender, juicy and flavour to consumer (as a category variable) showed a distinct, though non – significant discontinuity in tenderness and juiciness at the mean of these variables.

Applying this nonlinear relationship with tenderness and juiciness to the mixed linear model did not change the estimates of the intra – class correlations for the sires, but did affect the intra – class correlations for the consumer within pick. For tenderness the consumer within pick intra – class correlation increased from 0.23 for tender measurements less than the mean to 0.41 for tender measurements greater than the mean. For juiciness the

corresponding intra – class correlations were 0.29 less than the mean for juiciness and 0.36 for greater than the mean.

# Relationship of Sire Best Linear Unbiased Predictions to Carcass Variables Best Linear Unbiased Predictions

It should be noted that the variance components for the sire effects on the sensory variables are relatively low. Thus it should not be expected that the impact of a particular sire on meat eating quality would be high, or even noticeable, when compared with other factors such as the consumer effect. In this respect there is insufficient variation associated with a sire effect to classify sheep meat eating quality on this basis.

Table 6.3 shows the sire BLUPs corrected for deviations due to sire breed for each of the sensory variables and for the linear discriminant function. The sires in Table 6.3 are ranked by the value of the linear discriminant function, showing the preference of consumers for the progeny of particular sires. It is clear that sires of the Merino breed are ranked high and sires of the Poll Dorset breed are ranked low. However, sire ranks are confounded to some extent by the variation in consumer judgement where subclass numbers for particular sires are low as previously noted.

Table 7.3 shows the correlations between the sire BLUPs for the carcass variables and the sire BLUPs for the optimal discriminant function for the sire BLUPs for the sensory variables. There are relatively high correlations between the discriminant function values and intra – muscular fat, shear – force and GR fat tissue, suggesting aspects of a genetic relationship between these carcass variables and sheep meat eating quality.

The best prediction equation relating the optimal discriminant function of the sire BLUP's for tenderness, juiciness, flavour and overall liking and the sire BLUPs for the carcass variables was

Discriminant BLUP =  $6.46(\pm 0.0202) - 0.0768(\pm 0.0164)$ SHEARF5 +  $0.0823(\pm 0.0102)$ HGRFAT

This regression accounted for 45% of the variation in the optimal discriminant function using the sire BLUPs for the sensory variables (tender, juicy, flavour and overall liking) for the star ranked eating quality.

An alternative prediction equation that used the intra – muscular fat measurement instead of the HGRFAT measurement was:

Discriminant BLUP = 6.46(±0.0225) - 0.0553(±0.0132)SHEARF5 + 0.1398(±0.0513)IMF

This equation accounted for 35% of the variation in the optimal discriminant function using the sire BLUPs for the sensory variables (tender, juicy, flavour and overall liking) for the star ranked eating quality. The standard deviation of the regression is 0.1942.

The relationship of the discriminant function with the sire breeding values is given by the regression:

Discriminant BLUP =  $3.5005(\pm 0.1147) - 0.1100(\pm 0.0244)$ PWWT -  $0.3836(\pm 0.1076)$ PEMD +  $0.5907(\pm 0.1908)$ PFAT

This regression on the sire breeding values accounted for 55% of the variation in the sire BLUPs of the linear discriminant function.

By relating the sire BLUP estimates for the logit equations defining the probabilities that meat with given sensory variable values to the BLUP values for the carcass variables, the improvement in the probability (frequency) that a given sire would produce meat classified as EQ star 5 was improved by 0.07 for each unit decrease in the shear – force BLUP estimate for the given sire. The improvement in the probability (frequency) that a given sire would produce meat classified as EQ star 4 was improved by 0.004 for each unit decrease in the shear – force BLUP estimate for the given sire. The shear 4 was improved by 0.001 for each unit decrease in the shear – force BLUP estimate for the given sire, and by 0.011 for each unit increase in the amount of intra – muscular fat.

The regression between the logit calculated probabilities and the shear – force and intra – muscular fat accounted for 40% of the variance in the logit calculated probabilities. Given the prediction accuracy of the discrimination function illustrated in the report for Milestone 2 any association of a particular sire with sheep meat eating quality would be inaccurate. However, the results indicate that a slow improvement in sheep meat eating quality through sire selection might be feasible.

Table 8.3 shows logit calculation for the probabilities that the average progeny from each sire would be classed as consumer star 4. This calculation is consistent with the results from discriminant analysis. It is clear that some sires are more likely to sire progeny with consumer star 4 eating quality, while other sires tend to have progeny more likely to be in consumer star 3. However, the differences are not great, reflecting the strength of other influences on consumer eating quality. The probability that the average progeny from any sire is in star 5 is low.

The practice of clipping the data to remove consumer evaluations that were extreme was tested to see if such a procedure would improve the sire effect on eating quality. Accordingly, those observations with residuals on Overall Liking after fitting the full model greater than an absolute value of 5 units (±5 units) were removed. The sire BLUPs for this amended data set are shown in Table 9.3. A new logit analysis was performed on this amended data set to obtain the coefficients to calculate the probabilities that a meat sample with given sensory variable characteristics would fall into the different eating quality star classifications. These calculations based on the sire BLUPs were as follows:

 $X1 = \exp(-4.9361 + 0.0064 \times \text{tender} + 0.0059 \times \text{juicy} + 0.0273 \times \text{flavour} + 0.0962 \times \text{overall})$   $X2 = \exp(-13.573 + 0.0265 \times \text{tender} + 0.0153 \times \text{juicy} + 0.0354 \times \text{flavour} + 0.1802 \times \text{overall})$   $X3 = \exp(-27.079 + 0.0496 \times \text{tender} + 0.0344 \times \text{juicy} + 0.0572 \times \text{flavour} + 0.2696 \times \text{overall})$  Star 2 = 1/(1 + X1 + X2 + X3) Star 3 = X1 / (1 + X1 + X2 + X3)Star 4 = X2 / (1 + X1 + X2 + X3) Star 5 = X3 / (1 + X1 + X2 + X3)

Table 10.3 gives the probabilities calculated from the above procedure that progeny from each sire will be allocated to each of the 4 star eating quality categories after removing those observations in each of the sensory variables that had an absolute deviation greater than 5 units ( $\pm$ 5 units). This action provided much more scope in terms of the discrimination of sires for sheep meat eating quality, as may be noted from a comparison of Tables 8.3 and 10.3.

## Discussion

The relationship of overall liking to the other sensory variables (tenderness, juiciness and flavour) through the residuals formed after fitting these variables to overall liking shows that there exists substantial variation in eating quality as judged by the consumer not linearly associated with the other 3 sensory variables. The fat tails of the frequency distribution of the overall liking residuals illustrate this issue. In the report for Milestone 2 it was noted that differences in consumer reference points for judging eating quality and the sensory variables were significant, but consistent between sensory variable within consumer. This means that the high residual deviations for overall liking were unlikely to be associated with different consumer reference points and probably captures other aspects of sheep meat eating quality not associated with tenderness, juiciness or flavour.

These large deviations, that might be associated with complex interactions defining eating quality, though not dominant, appear to be sufficiently frequent to confound relationships between consumer judged eating quality and traits in the animal open to genetic improvement.

The lack of any relationships between the residuals of overall liking and the factors of interest, especially sire variation, suggests that those aspects of sheep meat eating quality not linearly associated with the 3 sensory variables (tenderness, juiciness and flavour) are not an issue for these unexplained factors. That is, for the goal of genetic improvement of consumer sheep meat eating quality consideration of the 3 sensory variables tenderness, juiciness and flavour is sufficient.

The optimal discrimination in the sense of providing the best classification for sheep meat eating quality across all 4 consumer star ratings presents an uncomfortable degree of miss – classification at all consumer star ratings. This degree of miss – classification cannot be improved by hierarchical discrimination procedures whereby a second discrimination function is sought for e.g. discriminating meat cuts already classified as star 4 or star 5. This was reported on in Milestone 2. The analysis reported here suggests that miss – classification is due to aspects not captured in the simple models applied here.

This limit in discrimination of consumer eating quality based on the sensory variables, tenderness, juiciness and flavour appears to reside in the variability of consumer judgement of eating quality, where consumers adopt different reference points for their judgement. Although this consumer characteristic confounds the classification of sheep meat eating quality it nevertheless is an important feature of real sheep meat eating consumer behaviour and must be considered. This means that a given (perhaps significant?) proportion of consumers will always judge sheep meat poorly that the majority of consumers consider to be excellent quality. Defining such interactions in a manner required for objective analysis will need research by food scientists. It would seem that there is scope here for research

aiming to understand this phenomenon, with the advantage of perhaps being able to define sheep meat with characteristics to suit different palettes

This consumer behaviour also confounds the goal of designing a program for genetic improvement of sheep with better meat eating quality. Varying the cut – off points for star classification through the sensory variables did not confer any advantage, probably because of the poor relationship of consumer star rating to the sensory variables as measured by the intra – class correlation coefficient.

As an alternative to varying the cut – off points of the optimal discriminant function it is suggested that another discriminant function, which is sub – optimal for consumer classification, but optimal for genetic progress in sheep eating quality be adopted. One approach is to use the linear function is based on the canonical correlation between the residuals of the linear model calculated without fitting the sire within sire breed within kill group effect, and the sire effect. Using this construction as a discriminant function considerably increases the intra-class correlation for the sires (enabling better scope for selection for eating quality) without materially decreasing the effectiveness of the classification for consumer eating quality for the loin cut. That is, a sub – optimal discriminant function had similar discrimination accuracy to the optimal case for the loin cut.

However, for the topside cut the best linear function of the sensory variables for maximising the sire intra – class correlation provided very poor predictability in terms of the consumer eating quality. Alternatively, the optimal linear discriminant function for consumer predictability showed lower sire intra – class correlation, and if applied in a breeding program would lead to a lower rate of genetic gain directed to improving the eating quality of this cut. This suggests that measurements of eating quality for genetic selection might be based on the better eating quality cuts like the Loin.

It is notable that adding either flavour and/or the residuals from overall liking to the new linear discriminant function based on maximising the potential for genetic progress in sheep meat eating quality did not improve the situation. This is an advantage since both flavour and overall liking are subjective variables difficult to measure and undoubtedly with considerable consumer variation.

The alternative approach of redefining the population of consumers to include only those consumer judgements that deviate from the population mean by plus or minus 5 units provides a significantly better delineation of between sire differences. If sires were selected using a ranking based on this subpopulation, genetic progress to improve eating quality for this subpopulation might be expected. The important question is how such a strategy relates to the general population of consumers in terms of an increasing the number of animals judged to be in the high eating quality categories.

The idea of using a linear function in the sensory variables to direct selection for consumer sheep meat eating quality that is sub – optimal for predicting/discriminating consumer eating quality needs debate and examination in the science community. There may be other nonlinear functions of the sensory variables that better serve the 2 goals of consumer predictability and efficient genetic selection. Such a formulation might require a better understanding, and correction for, the variability in consumer's perceptions/judgements

about the desirability of sheep meat. Undoubtedly, such variation in consumer perceptions contributes to the uncertainties in formulating a sheep meat eating quality improvement program.

An attempt to investigate nonlinear relationships among the variables of interest using ideas from total correlation did not identify useful relationships. However, the increase in the consumer within pick intra – class correlation for those samples rated above average for both tenderness and juiciness points towards an understanding of consumer behaviour in regard to sheep meat eating quality. When tenderness and juiciness were judged to be above average consumers became more consistent in their ratings. However, this did not improve the intra – class correlation with sires, and so while identifying an interesting aspect of consumer behaviour this does not advance the case for improved animal breeding. This observation about the heterogeneity of consumer judgement is consistent with finding a canonical function that had similar discrimination to the optimal for the loin cut, which has a higher eating quality score than the topside, where the canonical function showed very poor discrimination ability.

This analysis and the earlier analyses present a consistent picture of gaps in the scientific understanding of the consumer judgement of sheep meat eating quality. In particular, the variation in consumer reference points (that nevertheless are consistent over both the sensory variables and the EQ classification), with the low (but higher than normal) frequency of deviations in judgement. While of relatively low frequency these deviations are sufficient to confound any links between consumer eating quality and variables that can be directly measured and linked to animal performance. One would hope for the identification of a proxy variable characterising these deviations that can be used as a covariate and better line up the consumer judgement of eating quality with selection of animals for genetic improvement of this trait. This may be a goal for future research.

The marked improvement in the relationship between the consumer eating quality and the linear discriminant function of the eating quality variables induced by drastic trimming of the data suggests that the asymmetry of consumer judgement is a factor of great importance. In essence this response to data trimming is evidence that a better understanding of the frequency distributions underlying consumer judgement is needed. If a suitable frequency distribution describing how consumer judgement varied could be derived, then the analysis should be redone with this basis. Currently the necessary treatment of consumer within pick as a random variable tends to align this variable with a normal distribution – which it clearly is not. I understand there are ways to proceed further, based on ideas of an analysis of skewness, or analysis of kurtosis related to an analysis of variance that might be fruitful. However, pursuing these directions is a major undertaking. The question is whether this is valuable in terms of the insights and better genetic estimates that might result.

An illustration of the difficulties introduced by the consumer variation of subjective judgement of sheep meat eating quality may be given. If the analysis is carried out for overall liking in the loin cut, ignoring the consumer effect (i.e. regarding the consumer variance as part of the error variance) then 2068 observations out of 7473 total observations have a deviation below -10 units – or a deviation of over 10% from the estimated mean. This is a frequency of about 0.3, which is also the probability that an observation will deviate from the consumer average judgement of overall liking. If 10 consumers are randomly selected to judge the meat from a given sire the probability that at least half of those consumers (<=5) will downgrade the meat

by more than 10% of the consumer average is 0.1. The probability of at least 3 of the consumers downgrading the meat more than 10% is 0.27. In the first case it would be expected that about 10 of the 97 sires measured would be thus affected. This clearly contributes to the sire variance and reduces the genetic "signal.

This example illustrates the limitations of using the subjective judgments of a heterogeneous group of consumers to rank sires for sheep meat eating quality. However, the consistency of judgments within a consumer noted earlier also suggest that a better basis for analysis might be possible if a good description of the frequency distribution of consumer responses could be found. Suppose for the sake of argument that the observed consistency of consumer response could be used in a simple test to rank consumers. This ranking could be used as a covariate in the analyses to correct for the skewed frequency distribution. It could also be applied to better allocate consumers to samples to ensure a representative sampling of the sire attributes.

Using the sire BLUP estimates as response variables appears to have a similar effect to trimming the data. The sire BLUPs are estimated in the presence of the consumer within pick effect, and while the consumer within pick estimates are treated as a normal distribution by the variance component estimation process it seems to remove a sufficient amount of variability from the eating quality variables to expose sire effects. Thus the variation in the sire BLUP estimates are low as are the variations in the logit estimates of the probabilities of average of the progeny from a sire being in a given eating quality classification. That is, using the sire BLUP estimates as response variables is similar to trimming the data to remove the high proportion of outliers. In this respect this type of analysis better defined in terms of the population of consumers than an arbitrary trimming of the data

However, the relationships between the sire BLUPs for the shear – force and GR tissue depth or intra – muscular fat, and the optimal discriminant function based on the sire BLUPs for the sensory variables (tenderness, juiciness, flavour and overall liking) indicate that selection for tenderness measured by shear – force and GR fat or intra – muscular fat would result in an improvement in sheep meat eating quality. The high amount of variation in the optimal discriminant function accounted for by shear – force and GR fat or intra – muscular fat is encouraging. However, the uncertain reliability of the discriminant function to identify the consumer eating quality classification must be kept in mind.

It is also noted that the sire components of the linear discriminant function are strongly related to the sire breeding values for post weaning weight, post weaning eye muscle area and post weaning fat. It also appears that selection on these attributes would directly improve sheep meat eating quality as defined by the linear discriminant function.

**Table 1.3.** Regression coefficients for the regression of overall liking on tenderness, juiciness and flavour for the loin and topside cuts

| Factor    | Loin            | Topside         |
|-----------|-----------------|-----------------|
| Intercept | 1.8300 ± 0.3127 | 0.2200 ± 0.2803 |
| Tender    | 0.2059 ± 0.0060 | 0.2912 ± 0.0062 |
| Juicy     | 0.1415 ± 0.0057 | 0.1497 ± 0.0070 |
| flavour   | 0.6437 ± 0.0057 | 0.5603 ± 0.0068 |

| Adjusted R <sup>2</sup> | 0.89  | 0.86  |
|-------------------------|-------|-------|
| Residual                | 6.661 | 8.670 |
| standard error          |       |       |

**Table 2.3**: Multinomial logit estimates for the star rating depending on the canonical linearfunction EQ variables for the Loin. The reference is star 2. The canonical function is2.0273(tender) - 0.6943(juicy)

| Star rating | Intercept | Canonical function |
|-------------|-----------|--------------------|
| 3           | -0.2771 ± | 0.0234 ±           |
|             | 0.1143    | 0.0014             |
| 4           | -3.2353 ± | 0.0524 ±           |
|             | 0.1568    | 0.0017             |
| 5           | -7.0380 ± | 0.0815 ±           |
|             | 0.2288    | 0.0022             |

**Table 3.3**: Multinomial logit estimates for the star rating depending on the canonical linear function EQ variables for the Topside. The reference is star 2. The canonical function is 3.5(tender) – 0.25(juicy)

| Star rating | Intercept  | Canonical |
|-------------|------------|-----------|
|             |            | function  |
| 3           | -1.9763 ±  | 0.0019 ±  |
|             | 0.0731     | 0.00055   |
| 4           | -6.7768 ±  | 0.0373 ±  |
|             | 0.1656     | 0.00085   |
| 5           | -14.3260 ± | 0.0613 ±  |
|             | 0.4805     | 0.0018    |

**Table 4.3:** The number of samples correctly and incorrectly classified for the loin cut for discrimination using the canonical function, and for comparison, using the optimal linear discriminant function.

| Star Rating | Estimate 2 | Estimate 3 | Estimate 4 | Estimate 5 |
|-------------|------------|------------|------------|------------|
| Actual 2    | 264        | 275        | 7          | 0          |
| Actual 3    | 103        | 1818       | 590        | 75         |
| Actual 4    | 0          | 595        | 1518       | 501        |
| Actual 5    | 0          | 44         | 524        | 1232       |

(a) Canonical discriminant 2.0273(tender) – 0.6943(juicy)

<sup>(</sup>b) Optimal discriminant function

| Star Rating | Estimate 2 | Estimate 3 | Estimate 4 | Estimate 5 |
|-------------|------------|------------|------------|------------|
| Actual 2    | 357        | 187        | 2          | 0          |
| Actual 3    | 172        | 1743       | 614        | 62         |
| Actual 4    | 1          | 490        | 1663       | 452        |
| Actual 5    |            | 30         | 554        | 1216       |

**Table 5.3:** The number of samples correctly and incorrectly classified for the topside cut for discrimination using the canonical function, and for comparison, using the optimal linear discriminant function

| (a) Canomical a | serminant sisteriae | , 0120()410,7 |            |            |
|-----------------|---------------------|---------------|------------|------------|
| Star Rating     | Estimate 2          | Estimate 3    | Estimate 4 | Estimate 5 |
| Actual 2        | 1643                | 548           | 6          | 0          |
| Actual 3        | 401                 | 2743          | 424        | 44         |
| Actual 4        | 9                   | 471           | 561        | 209        |
| Actual 5        | 0                   | 32            | 106        | 252        |

(a) Canonical discriminant 3.5(tender) – 0.25(juicy)

(b) Optimal discriminant function

| Star Rating | Estimate 2 | Estimate 3 | Estimate 4 | Estimate 5 |
|-------------|------------|------------|------------|------------|
| Actual 2    | 1053       | 1015       | 107        | 24         |
| Actual 3    | 720        | 2467       | 355        | 71         |
| Actual 4    | 128        | 728        | 318        | 77         |
| Actual 5    | 39         | 145        | 126        | 81         |

**Table 6.3.** The sire BLUP estimates corrected for sire breed for each of the sensory variables and the linear discriminant function. Sires are ranked by the value of the linear discriminant function.

| sire               | breed              | tender             | juicy   | flavour | overall | discriminant |
|--------------------|--------------------|--------------------|---------|---------|---------|--------------|
| s4800552007070068  | Prime Samm         | 81.6874            | 73.8689 | 75.8638 | 78.1847 | 6.9452       |
| s5044702006060022  | Merino             | 80.4416            | 73.4703 | 74.3812 | 78.0300 | 6.9036       |
| s4800872006060421  | Prime Samm         | 79.5447            | 73.4141 | 74.6845 | 77.3054 | 6.8538       |
| s5030542004040585  | Merino             | 80.6781            | 71.9123 | 74.6299 | 77.1686 | 6.8462       |
| s5018852006TRIMP   |                    |                    |         |         |         |              |
| Н                  | Merino             | 78.6125            | 73.2597 | 74.5303 | 76.8304 | 6.8129       |
| s5039462007OLY716  | Merino             | 78.0420            | 71.0759 | 74.3492 | 76.9376 | 6.7978       |
| s5024252006023997  | Merino             | 78.7943            | 73.1159 | 74.1812 | 76.5287 | 6.7911       |
| s4800992006060191  | Prime Samm         | 77.7195            | 71.9678 | 74.3777 | 76.7721 | 6.7906       |
| s4800392007070062  | Prime Samm         | 79.1436            | 71.0529 | 74.3969 | 76.4915 | 6.7816       |
| s6013322004000WD   |                    |                    |         |         |         |              |
| 2                  | Poll Merino        | 79.7555            | 72.8214 | 73.5047 | 76.2359 | 6.7727       |
| s5047432000000503  | Merino             | 77.8163            | 72.2643 | 73.8497 | 76.4368 | 6.7667       |
| s5007882007071254  | Merino             | 77.8898            | 71.2580 | 74.0744 | 76.3918 | 6.7608       |
| s5000872006060096  | Merino             | 78.6136            | 71.6924 | 73.9411 | 76.2430 | 6.7600       |
| s5039822006060225  | Merino             | 78.2670            | 71.5858 | 73.8424 | 76.2617 | 6.7559       |
|                    | Border             |                    |         |         |         |              |
| s0219292007070261  | Leicester          | 75.9971            | 72.4083 | 73.7303 | 76.1198 | 6.7291       |
| s6008152006060120  | Poll Merino        | 78.3358            | 71.4661 | 73.1890 | 75.8345 | 6.7219       |
| s5034252006060205  | Merino             | 76.8297            | 71.6614 | 73.7280 | 75.9237 | 6.7204       |
| s5022512006066030  | Merino             | 78.1147            | 70.3940 | 73.8178 | 75.5249 | 6.7014       |
| s5030972005051737  | Merino             | 78.4572            | 70.7765 | 73.6985 | 75.4088 | 6.6987       |
| s5038632006OL3626  | Merino             | 77.9833            | 71.6868 | 72.8515 | 75.5321 | 6.6974       |
| s2301132007070040  | White Suffolk      | 77.5246            | 72.3013 | 73.5920 | 75.2693 | 6.6896       |
| s6013562007000449  | Poll Merino        | 78.4187            | 69.8001 | 73.2099 | 75.1344 | 6.6695       |
| s6010532003031078  | Poll Merino        | 76.8150            | 70.5864 | 73.4278 | 75.1783 | 6.6642       |
| s5043622006LON449  | Merino             | 77.2181            | 71.6193 | 73.0439 | 75.0575 | 6.6628       |
|                    | Border             | 70.0000            | 00 7470 |         |         | 0.0000       |
| s020041200707J039  | Leicester          | 76.8833            | 69.7179 | 73.0544 | 75.2714 | 6.6606       |
| s6005712006060058  | Poll Merino        | 75.4041            | 70.5225 | 73.4544 | 75.2520 | 6.6549       |
| \$5037892007LB0753 | Merino             | 77.6711            | 70.0862 | 73.3047 | 74.8798 | 6.6496       |
| \$1900282007071494 | Suffolk            | 76.1507            | 70.6496 | 72.8738 | 75.1365 | 6.6491       |
| \$6010822007071257 |                    | 76.9666            | 70.0588 | 73.3208 | 74.9164 | 6.6450       |
| \$2303182008080262 |                    | 79.2185            | 72.4153 | 73.3820 | 74.1620 | 6.6365       |
| -5101102006060208  | Donne              | 70 774 4           | 70 0740 | 70 0000 | 74 0070 | 6 6202       |
| \$5101402006060368 |                    | 76.7714            | 70.8743 | 73.2302 | 74.6370 | 0.0302       |
| \$6013162007070023 |                    | 76.1816            | 70.5774 | 72.9287 | 74.7248 | 6.6244       |
| SZ303242007075630  |                    | 78.9198            | 71.6220 | 73.5713 | 73.8703 | 6.6129       |
| \$5049022005005345 | Ivierino<br>Marina | 75.4816            | 70.3941 | 72.6650 | 74.5857 | 6.6048       |
| S5040152004040024  |                    | 14.2010<br>73.7000 | 09.0003 | 72.0040 | 74.7510 | 0.5994       |
| 50090542006065533  |                    | 13.1998            | 09.0004 | 13.0919 | 14.25/b | 0.5089       |
| SZ3045020070702000 |                    | 77.9406            | 71.4973 | 12.1408 | 73.4403 | 0.5005       |
| 50005532007070002  |                    | 75.0040            | 70.0319 | 71 0040 | 13.8903 | 0.0001       |
| SOU15522006060480  |                    | 75.8916            | 10.08/4 | 71.8019 | 73.8606 | 0.5561       |
| SZ300432007070591  |                    | 75.0004            | 07.5445 | 72.4522 | 74.2735 | 0.5551       |
| \$1700802007071532 | I exel             | 75.9034            | 69.7116 | 72.3808 | 73.7200 | 6.5482       |

| s1500292007070244                       | Coopworth                  | 75.2421 | 68.8232 | 72.3835 | 73.7685  | 6.5391    |
|-----------------------------------------|----------------------------|---------|---------|---------|----------|-----------|
| s1640732007070364                       | Poll Dorset                | 75.3105 | 68.6910 | 72.3535 | 73.6111  | 6.5289    |
| s6004082007070069                       | Poll Merino                | 74.5080 | 69.7294 | 72.5243 | 73.5625  | 6.5268    |
| s1700622007070144                       | Texel                      | 74,7972 | 68,1333 | 72,1289 | 73,7436  | 6.5258    |
| s1704062007070028                       | Texel                      | 76 1031 | 68 4190 | 72 0108 | 73 5173  | 6.5251    |
| s1702232007070046                       | Texel                      | 75 9154 | 68 6201 | 71 9673 | 73 5173  | 6 5240    |
| 01102202001010010                       | Dohne                      | 70.0101 | 00.0201 | 11.0010 | 10.0110  | 0.0210    |
| \$5100492007071700                      | Merino                     | 77 7820 | 67 6927 | 71 3758 | 73 3842  | 6 5211    |
| \$5000482007070260                      | Merino                     | 75 2370 | 60 1/80 | 71.5750 | 73 5563  | 6 5187    |
| s6013072005050165                       | Poll Merino                | 75.2010 | 70 3469 | 72 2085 | 73 1525  | 6 5153    |
| s1018502001010120                       | Suffolk                    | 76.0204 | 68 1404 | 72.2303 | 73 3313  | 6 5115    |
| s1910502001010120                       | Boll Morino                | 70.0294 | 70 0990 | 71 2525 | 73.3313  | 6.4961    |
| s0012002000003091                       | Poll Merino<br>Poll Derect | 74.3527 | 60 0067 | 71.3020 | 73.1095  | 6.4955    |
| \$1619722006061831                      |                            | 73.0072 | 00.0007 | 72.3337 | 73.2400  | 0.4000    |
| \$2300262007072446                      |                            | 74.5173 | 67.8943 | 71.9465 | 73.0662  | 0.4780    |
| \$0300362005050134                      | Corriedale                 | 76.0885 | 68.9674 | 70.8141 | 72.8771  | 6.4751    |
| s60112/2007070121                       | Poll Merino                | /4.654/ | 67.6129 | 72.0601 | 72.9405  | 6.4711    |
| s50923420060C0573                       | Merino                     | 75.6504 | 68.6283 | 71.0079 | 72.8585  | 6.4699    |
| /                                       | Border                     |         |         |         |          |           |
| s0246862007070179                       | Leicester                  | 75.1851 | 67.8465 | 71.1128 | 72.9372  | 6.4664    |
| s6013652006060052                       | Poll Merino                | 75.5212 | 69.1754 | 70.7879 | 72.7987  | 6.4659    |
| s5049162007070719                       | Merino                     | 75.2921 | 68.2407 | 70.9347 | 72.8119  | 6.4602    |
| s6012502004407812                       | Poll Merino                | 74.4214 | 68.4012 | 71.4997 | 72.7574  | 6.4561    |
| s4800302008080078                       | Prime Samm                 | 75.5045 | 69.1178 | 72.3733 | 72.2837  | 6.4525    |
|                                         | Dohne                      |         |         |         |          |           |
| s5100302005050068                       | Merino                     | 77.1512 | 68.1197 | 70.3028 | 72.4894  | 6.4503    |
|                                         | Border                     |         |         |         |          |           |
| s0244112006060369                       | Leicester                  | 75.1189 | 68.6529 | 70.5956 | 72.1407  | 6.4161    |
| s1920452007070508                       | Suffolk                    | 73.7425 | 66.7471 | 71.2230 | 72.4106  | 6.4144    |
|                                         | Dohne                      |         |         |         |          |           |
| s5100092007070376                       | Merino                     | 76.2575 | 69.1057 | 70.5247 | 71.8086  | 6.4089    |
| s2300022007070098                       | White Suffolk              | 74.5405 | 68.0189 | 70.4244 | 72.1580  | 6.4054    |
| s6091542004040062                       | Poll Merino                | 71.8070 | 68.5427 | 71.3146 | 71.6945  | 6.3644    |
|                                         | Border                     |         |         |         |          |           |
| s0236662006060976                       | Leicester                  | 73.5317 | 67.4777 | 70.3408 | 71.6992  | 6.3631    |
|                                         | Dohne                      |         |         |         |          |           |
| s5100032007070949                       | Merino                     | 73.6441 | 66.3451 | 70.0083 | 71.6542  | 6.3503    |
| s1900602007070267                       | Suffolk                    | 73.3218 | 67.3170 | 70.4333 | 71.4372  | 6.3451    |
| s2300912007070008                       | White Suffolk              | 73.3495 | 65.4125 | 70.5104 | 71.3591  | 6.3293    |
| s2300342007074914                       | White Suffolk              | 71.4409 | 66.3395 | 70.3128 | 71.1943  | 6.3043    |
| s1901112007077058                       | Suffolk                    | 72.3936 | 65.6325 | 70.1320 | 71.0873  | 6.3004    |
| s0300182004045220                       | Corriedale                 | 72.2523 | 67.0921 | 69.4421 | 70,9142  | 6.2896    |
| s2300152007070143                       | White Suffolk              | 72 0411 | 65 9115 | 70.0632 | 70 8230  | 6 2817    |
| \$2300262005050650                      | White Suffolk              | 70 9092 | 64 9590 | 70 2523 | 70.6920  | 6 2589    |
| s1600012008080010                       | Poll Dorset                | 72 4168 | 66 2561 | 69 3029 | 70.0020  | 6 2588    |
| s1622882007070644                       | Poll Dorset                | 73 2744 | 65 8251 | 68 8061 | 70.4300  | 6 2567    |
| s160185200707070360                     | Poll Dorept                | 72 1611 | 65 5258 | 69 5288 | 70 3881  | 6 2475    |
| e230000200707070209                     | White Suffell              | 71 205/ | 65 1061 | 60 80// | 70.0632  | 6 2211    |
| s161235200707072025                     | Poll Doroot                | 72 0705 | 65 0195 | 68 6251 | 60 0/52  | 6 2057    |
| a1627212007070244                       | Poll Doroct                | 70 2045 | 64 1720 | 60.0001 | 60 7220  | 6 1720    |
| 51031212001010311<br>c16267720070702020 |                            | 71 6420 | 64 1006 | 69 2250 | 60 1 200 | 6 1 4 2 4 |
| 51030772007070839                       |                            | 11.0430 | 04.1920 | 00.3230 | 09.1200  | 0.1421    |
| 50315272003030360                       | Connedale                  | 70.7714 | 62.9697 | 00.3403 | 09.1037  | 0.1251    |
| S1500622006060070                       |                            | /1.216/ | 63.7440 | 68.1312 | 00.7313  | 6.1091    |
| s1704202007070224                       | l exel                     | 69.4352 | 64.3322 | 68.6355 | 68.7601  | 6.1033    |

| s1618922006060050 | Poll Dorset | 70.7280 | 63.5711 | 67.4405 | 68.1315 | 6.0584 |
|-------------------|-------------|---------|---------|---------|---------|--------|
| s1614152007070440 | Poll Dorset | 67.5464 | 62.7924 | 67.3571 | 68.1943 | 6.0254 |
| s1500152003030196 | Coopworth   | 68.3800 | 63.3124 | 67.6813 | 67.6601 | 6.0079 |
| s0600032006060121 | Bond        | 67.6909 | 61.4865 | 67.6141 | 67.8373 | 5.9996 |
| s1623682007070468 | Poll Dorset | 67.4706 | 62.0475 | 67.2143 | 67.4568 | 5.9731 |
| s0318972006060386 | Corriedale  | 67.7292 | 62.4851 | 66.8655 | 66.6791 | 5.9267 |
| s1611432007070025 | Poll Dorset | 65.7779 | 60.6112 | 66.2798 | 66.4258 | 5.8733 |
| s1500392006061009 | Coopworth   | 68.5912 | 61.0981 | 66.2754 | 65.9178 | 5.8726 |
| s1500482007070769 | Coopworth   | 66.3231 | 61.2564 | 66.6072 | 65.9069 | 5.8548 |
| s1611582007070190 | Poll Dorset | 62.6277 | 60.1690 | 65.4870 | 64.8155 | 5.7320 |

**Table 7.3.** Correlations between the sire BLUP values for the optimal discriminant function and the BLUP values for the carcass measurements of the loin cut.

|                | IMF  | CEMA  | LLFAT | HGRFAT | SHEARF5 |
|----------------|------|-------|-------|--------|---------|
| Optimal linear | 0.49 | -0.32 | -0.04 | -0.40  | -0.53   |
| Discriminant   |      |       |       |        |         |
| IMF            |      | -0.31 | -0.05 | -0.40  | -0.53   |
| CEMA           |      |       | 0.08  | 0.08   | 0.56    |
| LLFAT          |      |       |       | 0.28   | 0.0     |
| HGRFAT         |      |       |       |        | 0.05    |
| SHEARF5        |      |       |       |        |         |
|                | •    | •     | •     | •      | •       |

**Table 8.3.** Calculation from the logit analysis of the probability that progeny from a given sire would be classified by consumers as star 4.

| sire              | Breed            | Probability in star 4 |
|-------------------|------------------|-----------------------|
| s5046152004040024 | Merino           | 0.55                  |
| s5039822006060225 | Merino           | 0.55                  |
| s5007882007071254 | Merino           | 0.55                  |
| s4800552007070068 | Prime Samm       | 0.54                  |
| s4800992006060191 | Prime Samm       | 0.54                  |
| s5034252006060205 | Merino           | 0.54                  |
| s5030972005051737 | Merino           | 0.54                  |
| s5024252006023997 | Merino           | 0.54                  |
| s5000872006060096 | Merino           | 0.54                  |
| s4800872006060421 | Prime Samm       | 0.54                  |
| s5038632006OL3626 | Merino           | 0.54                  |
| s4800392007070062 | Prime Samm       | 0.54                  |
| s5049022005005345 | Merino           | 0.54                  |
| s5044702006060022 | Merino           | 0.54                  |
| s020041200707J040 | Border Leicester | 0.54                  |
| s5049162007070719 | Merino           | 0.54                  |
| s6010532003031078 | Poll Merino      | 0.54                  |
| s5047432000000503 | Merino           | 0.54                  |
| s5037892007LB0753 | Merino           | 0.54                  |

| s5018852006TRIMPH             | Merino           | 0.54 |
|-------------------------------|------------------|------|
| s6008152006060120             | Poll Merino      | 0.53 |
| s6013652006060052             | Poll Merino      | 0.53 |
| s6004082007070069             | Poll Merino      | 0.53 |
| s020041200707J039             | Border Leicester | 0.53 |
| s6091542004040062             | Poll Merino      | 0.53 |
| s6011272007070121             | Poll Merino      | 0.53 |
| \$5030542004040585            | Merino           | 0.53 |
| s5101402006060368             | Dohne Merino     | 0.53 |
| s6012502004407812             | Poll Merino      | 0.53 |
| s6013322004000WD2             | Poll Merino      | 0.53 |
| s50923420060C0573             | Merino           | 0.53 |
| s6010822007071257             | Poll Merino      | 0.53 |
| \$1500292007070244            | Coopworth        | 0.53 |
| s5100032007070949             | Dobne Merino     | 0.53 |
| s2300432007070591             | White Suffolk    | 0.53 |
| s6005532007070002             | Poll Merino      | 0.53 |
| s6005712006060058             | Poll Merino      | 0.53 |
| s6013162007070023             | Poll Merino      | 0.53 |
| s6013562007000449             | Poll Merino      | 0.52 |
| e1000282007000443             | Suffolk          | 0.52 |
| s1610722006061831             | Poll Dorset      | 0.52 |
| s6013072005050165             | Poll Morino      | 0.52 |
| s2300262007072446             | White Suffolk    | 0.52 |
| se000542006066533             |                  | 0.52 |
| <pre>\$0090542000000535</pre> | Full Mellino     | 0.52 |
| c5100302005050068             | Dobno Morino     | 0.52 |
| s5100302003030000             | Dohne Merino     | 0.52 |
| s503946200701 V716            | Merino           | 0.52 |
| \$2300912007070008            | White Suffolk    | 0.52 |
| s5100092007070376             |                  | 0.52 |
| \$2300022007070098            | White Suffolk    | 0.52 |
| s1700622007070144             |                  | 0.52 |
| s1900602007070267             | Suffolk          | 0.52 |
| s17022320070702046            | Tevel            | 0.52 |
| s1704062007070028             | Texel            | 0.52 |
| s1901112007077058             | Suffolk          | 0.52 |
| \$1700802007071532            | Texel            | 0.52 |
| s1640732007070364             | Poll Dorset      | 0.51 |
| s5000482007070260             | Merino           | 0.51 |
| s0300362005050134             | Corriedale       | 0.51 |
| s2300342007074914             | White Suffolk    | 0.51 |
| s1920452007070508             | Suffolk          | 0.51 |
| s6012882006063091             | Poll Merino      | 0.51 |
| s2300092007070279             | White Suffolk    | 0.51 |
| s2300262005050650             | White Suffolk    | 0.51 |
| s0246862007070179             | Border Leicester | 0.51 |
| s2300152007070143             | White Suffolk    | 0.51 |
| s0244112006060369             | Border Leicester | 0.51 |
| s0219292007070261             | Border Leicester | 0.51 |
| s0300182004045220             | Corriedale       | 0.51 |
| s1622882007070644             | Poll Dorset      | 0.51 |
| s1637212007070311             | Poll Dorset      | 0.50 |

| s2301132007070040 | White Suffolk | 0.50 |
|-------------------|---------------|------|
| s1636772007070839 | Poll Dorset   | 0.50 |
| s1704202007070224 | Texel         | 0.50 |
| s1601852007070369 | Poll Dorset   | 0.50 |
| s1618922006060050 | Poll Dorset   | 0.50 |
| s2304502007071456 | White Suffolk | 0.50 |
| s1623682007070468 | Poll Dorset   | 0.50 |
| s2303242007075630 | White Suffolk | 0.49 |
| s2303182008080262 | White Suffolk | 0.49 |
| s1600012008080010 | Poll Dorset   | 0.49 |
| s4800302008080078 | Prime Samm    | 0.49 |
| s0315272003030360 | Corriedale    | 0.49 |
| s1612352007072025 | Poll Dorset   | 0.49 |
| s0600032006060121 | Bond          | 0.49 |
| s1500622006060070 | Coopworth     | 0.48 |
| s0318972006060386 | Corriedale    | 0.48 |
| s1614152007070440 | Poll Dorset   | 0.48 |
| s1500152003030196 | Coopworth     | 0.48 |
| s1500482007070769 | Coopworth     | 0.48 |
| s1611432007070025 | Poll Dorset   | 0.48 |
| s1500392006061009 | Coopworth     | 0.48 |
| s1611582007070190 | Poll Dorset   | 0.47 |

**Table 9.3.** Sire BLUP values for the sensory variables when the residuals for overall liking with absolute value greater than 5 units are removed.

| Sire              | Breed         | Tender  | Juicy   | Flavour | Overall |
|-------------------|---------------|---------|---------|---------|---------|
| s5044702006060022 | Merino        | 82.3194 | 75.7913 | 77.2534 | 81.7479 |
| s5039462007OLY716 | Merino        | 80.3197 | 73.1791 | 78.0831 | 81.6471 |
| s5030542004040585 | Merino        | 83.364  | 74.6926 | 78.1646 | 80.7959 |
| s4800552007070068 | Prime Samm    | 81.8634 | 75.4814 | 78.6298 | 80.4648 |
| s6008152006060120 | Poll Merino   | 82.6701 | 75.3481 | 76.6491 | 80.3869 |
|                   | Border        |         |         |         |         |
| s0219292007070261 | Leicester     | 79.4651 | 75.2332 | 79.6259 | 81.2147 |
| s5038632006OL3626 | Merino        | 80.1539 | 75.561  | 77.9199 | 80.5206 |
| s4800872006060421 | Prime Samm    | 79.9747 | 75.2678 | 77.8155 | 80.785  |
| s2301132007070040 | White Suffolk | 79.515  | 75.4298 | 77.2825 | 80.2369 |
| s5039822006060225 | Merino        | 81.0967 | 73.7433 | 77.114  | 80.074  |
| s6013322004000WD2 | Poll Merino   | 82.2346 | 74.1645 | 76.9885 | 79.6606 |
| s4800992006060191 | Prime Samm    | 81.6022 | 74.1345 | 76.8089 | 79.7574 |
| s5018852006TRIMPH | Merino        | 80.6303 | 75.4637 | 77.0301 | 79.5957 |
| s5024252006023997 | Merino        | 81.7914 | 74.8008 | 77.2325 | 79.6318 |
| s2304502007071456 | White Suffolk | 80.2646 | 74.7959 | 78.4704 | 79.1483 |
| s504743200000503  | Merino        | 81.2973 | 74.1148 | 76.6557 | 79.5809 |
| s5007882007071254 | Merino        | 82.3625 | 74.7304 | 77.2635 | 79.2566 |
| s5000872006060096 | Merino        | 81.439  | 73.8536 | 76.9756 | 79.1526 |
| s6010822007071257 | Poll Merino   | 80.6433 | 73.7457 | 77.4648 | 79.2785 |
| s6013162007070023 | Poll Merino   | 80.6246 | 73.4172 | 76.6911 | 79.1119 |
| s4800392007070062 | Prime Samm    | 80.8561 | 73.0821 | 76.8838 | 78.9172 |
| s5034252006060205 | Merino        | 78.7183 | 73.8192 | 76.5647 | 79.2031 |

|                     |               | 04 4400 | 70 7400 | 70 7000 | 70 5004 |
|---------------------|---------------|---------|---------|---------|---------|
| s5037892007LB0753   | Merino        | 81.4468 | 73.7103 | 76.7029 | 78.5961 |
| s2303242007075630   | White Suffolk | 80.2114 | 74.4726 | /8.12// | 78.5272 |
| s2303182008080262   | White Suffolk | 80.6549 | 74.095  | 77.4738 | 78.4838 |
| s6010532003031078   | Poll Merino   | 80.3026 | 73.444  | 77.2265 | 78.6824 |
| s5030972005051737   | Merino        | 82.2471 | 73.6592 | 76.7596 | 78.388  |
| s6005712006060058   | Poll Merino   | 78.8185 | 72.9842 | 76.8222 | 79.1869 |
| s6013562007000449   | Poll Merino   | 80.9109 | 71.417  | 77.3646 | 78.8324 |
| s5043622006LON449   | Merino        | 81.1113 | 74.5859 | 76.0479 | 78.2561 |
| s5000482007070260   | Merino        | 78.8935 | 73.0741 | 76.9179 | 78.5753 |
| s5101402006060368   | Dohne Merino  | 79.8374 | 73.5284 | 77.1555 | 78.1795 |
| s6005532007070002   | Poll Merino   | 79.0505 | 73.572  | 77.2166 | 78.6126 |
| s5049022005005345   | Merino        | 79.6855 | 73.7371 | 76.2271 | 78.4025 |
| s4800302008080078   | Prime Samm    | 80.0471 | 73.6213 | 77.0791 | 78.0277 |
| s6013652006060052   | Poll Merino   | 79.6832 | 72.9803 | 75.4997 | 78.0571 |
| s1900282007071494   | Suffolk       | 78.0118 | 72.6877 | 75.5244 | 77.8945 |
| s6090542006066533   | Poll Merino   | 77.7783 | 72.7714 | 76.4992 | 77.9953 |
| s5015522006060480   | Merino        | 78.2427 | 73.4875 | 75.9627 | 78.1118 |
| s1700622007070144   | Texel         | 77.3756 | 70.2754 | 75.8723 | 77.9084 |
| s1700802007071532   | Texel         | 78.4363 | 72.2702 | 76.0088 | 77.4201 |
| s1704062007070028   | Texel         | 78,1815 | 71.2874 | 75.4691 | 77.5163 |
| s6012502004407812   | Poll Merino   | 78.4476 | 71,9358 | 76.5492 | 77.6021 |
| s1702232007070046   | Texel         | 78,7008 | 71,7015 | 75,2399 | 77.3827 |
| s1918502001010120   | Suffolk       | 79 1061 | 70 8246 | 75 0394 | 77 2376 |
| s5100302005050068   | Dohne Merino  | 79 6693 | 71 0171 | 74 6099 | 77 2873 |
| \$1640732007070364  | Poll Dorset   | 78.0986 | 71 4581 | 75 6265 | 77 2156 |
| s50923420060C0573   | Merino        | 79.4815 | 71.4017 | 74 6109 | 76 6847 |
| \$5022512006066030  | Merino        | 81 2315 | 72 8401 | 75 7512 | 76.816  |
| s2300/32007070591   | White Suffolk | 77 1173 | 70.3786 | 7/ 021/ | 77 /318 |
| s5100092007070376   | Dohne Merino  | 78 6386 | 72.0456 | 76 2007 | 76 6969 |
| s5100092007070370   | Dohne Merino  | 70.0000 | 70.2800 | 74 6344 | 76.0303 |
| \$50/9162007070719  | Merino        | 78 2053 | 71 2538 | 74.0044 | 76 3733 |
| c0300362005050134   | Corriodalo    | 78 /021 | 71.2550 | 74.0238 | 76 4452 |
| \$0300302003030134  | Bordor        | 70.4921 | 71.4009 | 74.0230 | 70.4452 |
| c0200/1200707 1030  | Loicostor     | 77 0010 | 71 3067 | 74 8832 | 76 6024 |
| s150020200707020244 | Coopworth     | 77.6627 | 71.5007 | 74.0032 | 76.5012 |
| s1300292007070244   | Boll Morino   | 79 7205 | 72 9572 | 75 /210 | 76.3566 |
| s6004082007070009   | Poll Merino   | 76.7205 | 72.0072 | 75.4319 | 76.3002 |
| 50091542004040002   | Poil Merino   | 10.1442 | 73.4370 | 75.4401 | 70.3902 |
| c0246862007070170   | Loicostor     | 77 1203 | 60 5302 | 74 0835 | 76 5731 |
| \$0240802007070179  | White Suffalk | 76 6025 | 60 7516 | 74.9033 | 76.6442 |
| \$2300202007072440  | Doll Morino   | 70.0025 | 72 0261 | 74.5521 | 76.0443 |
| s6012002000003091   | Poll Merino   | 77 4520 | 73.9301 | 74.0000 | 76.2495 |
| 21610722006061921   |               | 76.2060 | 71.1137 | 75.0714 | 70.009  |
| \$1019722000001831  |               | 70.3009 | 71.4000 | 70.1014 | 75.7039 |
| \$2300022007070098  |               | 11.2608 | 70.0568 | 12.8836 | 75.6701 |
| -024444000000000    | Border        | 76 4000 | 70.0404 | 72 0755 | 75 0074 |
| 5024411200606050405 |               |         | 70.0464 | 13.9155 | 10.00/1 |
| 50013072003030500   |               | 70,0004 | 12.1153 | 72 4000 | 13.4213 |
| \$1920452007070508  | SUTTOIK       | 10.8631 | 68.7259 | 13.4282 | 15.5136 |
| 00006660006060070   | Border        | 75 5777 | 70 4475 | 74 0400 | 75 0077 |
| 502300020000000976  |               | 10.0/// | 10.41/5 | 74.0439 | 10.30// |
| 52300912007070008   |               | 10.4210 | 00.3/0/ | 13.0095 | 10.2400 |
| s5046152004040024   |               | /6.2/   | 12.0367 | 75.3912 | 15.4388 |
| s1622882007070644   | Poll Dorset   | 75.3732 | 68.2876 | 12.7774 | /5.157  |
| B.LSM.0033 - Towards the development of a next generation MSA lamb model – statistical sur | pport |
|--------------------------------------------------------------------------------------------|-------|
|--------------------------------------------------------------------------------------------|-------|

| s0300182004045220 | Corriedale    | 75.0641 | 70.3037 | 73.47   | 75.1901 |
|-------------------|---------------|---------|---------|---------|---------|
| s1600012008080010 | Poll Dorset   | 75.0669 | 68.685  | 72.6735 | 74.6245 |
| s1900602007070267 | Suffolk       | 76.0982 | 69.3877 | 73.0774 | 74.654  |
| s5100032007070949 | Dohne Merino  | 77.2317 | 69.7871 | 72.511  | 74.9244 |
| s1901112007077058 | Suffolk       | 75.6344 | 68.5239 | 72.8558 | 74.7221 |
| s2300342007074914 | White Suffolk | 73.6988 | 69.041  | 73.1715 | 73.9558 |
| s1637212007070311 | Poll Dorset   | 73.2813 | 67.3    | 72.5173 | 74.0513 |
| s2300152007070143 | White Suffolk | 75.0991 | 68.1914 | 72.4575 | 73.7702 |
| s2300262005050650 | White Suffolk | 73.8332 | 67.4718 | 73.0671 | 74.0026 |
| s2300092007070279 | White Suffolk | 75.5084 | 68.1467 | 72.3593 | 73.3162 |
| s1612352007072025 | Poll Dorset   | 74.2177 | 66.103  | 71.5813 | 73.31   |
| s1636772007070839 | Poll Dorset   | 74.8372 | 67.3651 | 71.5416 | 73.1841 |
| s1601852007070369 | Poll Dorset   | 73.6574 | 66.3025 | 71.8244 | 73.2055 |
| s0315272003030360 | Corriedale    | 73.7166 | 65.9239 | 71.7624 | 73.2583 |
| s1500622006060070 | Coopworth     | 73.692  | 65.4439 | 71.0385 | 72.4569 |
| s1704202007070224 | Texel         | 72.5561 | 67.9624 | 71.8647 | 72.4565 |
| s1618922006060050 | Poll Dorset   | 73.6258 | 67.3522 | 71.1081 | 72.404  |
| s1614152007070440 | Poll Dorset   | 70.5974 | 65.4587 | 70.0981 | 72.1831 |
| s1623682007070468 | Poll Dorset   | 71.3446 | 65.1583 | 70.9652 | 71.644  |
| s1500152003030196 | Coopworth     | 71.6718 | 65.6803 | 70.3335 | 70.8593 |
| s0600032006060121 | Bond          | 70.9829 | 64.662  | 70.4685 | 71.0917 |
| s0318972006060386 | Corriedale    | 70.1265 | 65.0725 | 69.436  | 69.8194 |
| s1500482007070769 | Coopworth     | 69.9924 | 63.9331 | 69.9915 | 69.8832 |
| s1500392006061009 | Coopworth     | 70.8016 | 63.9899 | 69.4282 | 69.2896 |
| s1611432007070025 | Poll Dorset   | 68.3599 | 62.6423 | 68.5607 | 69.7039 |
| s1611582007070190 | Poll Dorset   | 65.8905 | 63.7462 | 68.4155 | 67.6206 |

**Table 10.3.** Probabilities of eating quality classification based on sire BLUP values for the optimal discriminant function when data from each sensory variable is clipped to remove all observations with residuals greater than absolute value 5. Probabilities may be interpreted as frequency of progeny in each star classification.

| Sire              | Breed            | Prob   | Prob   | Prob   | Prob   |
|-------------------|------------------|--------|--------|--------|--------|
|                   |                  | Star 2 | Star 3 | Star 4 | Star 5 |
| s5044702006060022 | Merino           | 0      | 0.19   | 0.61   | 0.19   |
| s5039462007OLY716 | Merino           | 0      | 0.2    | 0.61   | 0.18   |
| s5030542004040585 | Merino           | 0      | 0.2    | 0.61   | 0.18   |
| s4800552007070068 | Prime Samm       | 0      | 0.21   | 0.62   | 0.17   |
| s6008152006060120 | Poll Merino      | 0      | 0.22   | 0.62   | 0.17   |
| s0219292007070261 | Border Leicester | 0      | 0.2    | 0.61   | 0.18   |
| s5038632006OL3626 | Merino           | 0      | 0.22   | 0.62   | 0.17   |
| s4800872006060421 | Prime Samm       | 0      | 0.21   | 0.62   | 0.17   |
| s2301132007070040 | White Suffolk    | 0      | 0.23   | 0.62   | 0.16   |
| s5039822006060225 | Merino           | 0      | 0.23   | 0.61   | 0.15   |
| s6013322004000WD2 | Poll Merino      | 0      | 0.23   | 0.61   | 0.15   |
| s4800992006060191 | Prime Samm       | 0      | 0.23   | 0.61   | 0.15   |
| s5018852006TRIMPH | Merino           | 0      | 0.24   | 0.61   | 0.15   |
| s5024252006023997 | Merino           | 0      | 0.23   | 0.61   | 0.15   |

| c2204502007071456  | White Suffelk           | 0 | 0.24 | 0.61 | 014  |
|--------------------|-------------------------|---|------|------|------|
| c5047432000000503  | Marino                  | 0 | 0.24 | 0.01 | 0.14 |
| c5007882007071254  | Merino                  | 0 | 0.24 | 0.01 | 0.15 |
| s5007882007071254  | Marina                  | 0 | 0.24 | 0.01 | 0.15 |
| \$5000872006060096 |                         | 0 | 0.24 | 0.01 | 0.14 |
| \$6010822007071257 |                         | 0 | 0.24 | 0.01 | 0.14 |
| \$6013162007070023 |                         | 0 | 0.25 | 0.61 | 0.14 |
| s4800392007070062  | Prime Samm              | 0 | 0.25 | 0.61 | 0.13 |
| s5034252006060205  | Merino                  | 0 | 0.25 | 0.61 | 0.13 |
| s5037892007LB0753  | Merino                  | 0 | 0.26 | 0.61 | 0.13 |
| s2303242007075630  | White Suffolk           | 0 | 0.26 | 0.61 | 0.13 |
| s2303182008080262  | White Suffolk           | 0 | 0.26 | 0.61 | 0.13 |
| s6010532003031078  | Poll Merino             | 0 | 0.26 | 0.61 | 0.13 |
| s5030972005051737  | Merino                  | 0 | 0.26 | 0.61 | 0.13 |
| s6005712006060058  | Poll Merino             | 0 | 0.26 | 0.61 | 0.13 |
| s6013562007000449  | Poll Merino             | 0 | 0.26 | 0.61 | 0.13 |
| s5043622006LON449  | Merino                  | 0 | 0.26 | 0.61 | 0.13 |
| s5000482007070260  | Merino                  | 0 | 0.27 | 0.61 | 0.12 |
| s5101402006060368  | Dohne Merino            | 0 | 0.27 | 0.61 | 0.12 |
| s6005532007070002  | Poll Merino             | 0 | 0.26 | 0.61 | 0.13 |
| s5049022005005345  | Merino                  | 0 | 0.27 | 0.61 | 0.12 |
| s4800302008080078  | Prime Samm              | 0 | 0.27 | 0.61 | 0.12 |
| s6013652006060052  | Poll Merino             | 0 | 0.28 | 0.61 | 0.12 |
| s1900282007071494  | Suffolk                 | 0 | 0.29 | 0.6  | 0.11 |
| s6090542006066533  | Poll Merino             | 0 | 0.28 | 0.6  | 0.11 |
| s5015522006060480  | Merino                  | 0 | 0.28 | 0.6  | 0.11 |
| s1700622007070144  | Tevel                   | 0 | 0.20 | 0.0  | 0.11 |
| s1700802007070144  | Texel                   | 0 | 0.3  | 0.0  | 0.1  |
| s1700002007071552  | Toxol                   | 0 | 0.3  | 0.0  | 0.1  |
| s601250200/070020  | Poll Morino             | 0 | 0.0  | 0.0  | 0.1  |
| c1702222007070046  |                         | 0 | 0.29 | 0.0  | 0.11 |
| s1702232007070040  | Suffolk                 | 0 | 0.3  | 0.0  | 0.1  |
| S1910302001010120  | Suiloik<br>Debee Merine | 0 | 0.3  | 0.0  | 0.1  |
| s5100302005050008  | Donne Menno             | 0 | 0.3  | 0.0  | 0.1  |
| \$1640732007070364 | Poli Dorset             | 0 | 0.3  | 0.6  | 0.1  |
| \$50923420060C0573 | Ivierino                | 0 | 0.31 | 0.59 | 0.09 |
| \$5022512006066030 |                         | 0 | 0.3  | 0.6  | 0.1  |
| \$2300432007070591 | VVnite Suffolk          | 0 | 0.31 | 0.59 | 0.1  |
| s5100092007070376  | Dohne Merino            | 0 | 0.31 | 0.59 | 0.1  |
| s5100492007071700  | Dohne Merino            | 0 | 0.32 | 0.59 | 0.09 |
| s5049162007070719  | Merino                  | 0 | 0.32 | 0.59 | 0.09 |
| s0300362005050134  | Corriedale              | 0 | 0.32 | 0.59 | 0.09 |
| s020041200707J039  | Border Leicester        | 0 | 0.32 | 0.59 | 0.09 |
| s1500292007070244  | Coopworth               | 0 | 0.32 | 0.59 | 0.09 |
| s6004082007070069  | Poll Merino             | 0 | 0.32 | 0.59 | 0.09 |
| s6091542004040062  | Poll Merino             | 0 | 0.32 | 0.59 | 0.09 |
| s0246862007070179  | Border Leicester        | 0 | 0.33 | 0.58 | 0.09 |
| s2300262007072446  | White Suffolk           | 0 | 0.33 | 0.58 | 0.08 |
| s6012882006063091  | Poll Merino             | 0 | 0.32 | 0.59 | 0.09 |
| s6011272007070121  | Poll Merino             | 0 | 0.31 | 0.59 | 0.09 |
| s1619722006061831  | Poll Dorset             | 0 | 0.34 | 0.58 | 0.08 |
| s2300022007070098  | White Suffolk           | 0 | 0.35 | 0.57 | 0.07 |
| s0244112006060369  | Border Leicester        | 0 | 0.35 | 0.57 | 0.08 |
| s6013072005050165  | Poll Merino             | 0 | 0.34 | 0.58 | 0.08 |
| s1920452007070508  | Suffolk                 | 0 | 0.36 | 0.57 | 0.07 |

B.LSM.0033 - Towards the development of a next generation MSA lamb model – statistical support

| s0236662006060976 | Border Leicester | 0 | 0.36 | 0.57 | 0.07 |
|-------------------|------------------|---|------|------|------|
| s2300912007070008 | White Suffolk    | 0 | 0.37 | 0.56 | 0.07 |
| s5046152004040024 | Merino           | 0 | 0.35 | 0.57 | 0.08 |
| s1622882007070644 | Poll Dorset      | 0 | 0.37 | 0.56 | 0.06 |
| s0300182004045220 | Corriedale       | 0 | 0.37 | 0.56 | 0.07 |
| s1600012008080010 | Poll Dorset      | 0 | 0.39 | 0.55 | 0.06 |
| s1900602007070267 | Suffolk          | 0 | 0.38 | 0.56 | 0.06 |
| s5100032007070949 | Dohne Merino     | 0 | 0.37 | 0.56 | 0.07 |
| s1901112007077058 | Suffolk          | 0 | 0.38 | 0.55 | 0.06 |
| s2300342007074914 | White Suffolk    | 0 | 0.4  | 0.54 | 0.05 |
| s1637212007070311 | Poll Dorset      | 0 | 0.41 | 0.54 | 0.05 |
| s2300152007070143 | White Suffolk    | 0 | 0.41 | 0.54 | 0.05 |
| s2300262005050650 | White Suffolk    | 0 | 0.41 | 0.54 | 0.05 |
| s2300092007070279 | White Suffolk    | 0 | 0.41 | 0.53 | 0.05 |
| s1612352007072025 | Poll Dorset      | 0 | 0.43 | 0.52 | 0.05 |

**Figure 1.3.** Histogram of the residuals of overall liking from the topside cut after fitting the other sensory variables tenderness, juiciness and flavour.





**Figure 2.3.** Histograms for sheep meat with Consumer Star rating 5 (excellent) and the frequency of classification into each consumer star grade by the optimal discriminant function for the loin cut



**Figure 4.3.** Histograms for sheep meat with Consumer Star rating 4 and the frequency of classification by the optimal discriminant function for the loin cut



# Frequency of Star 4 EQ Score

Calculated Probability of Star 4

**Figure 5.3.** Histograms for sheep meat with Consumer Star rating 3 and the frequency of classification by the optimal discriminant function for the loin cut



Frequency of Star 3 EQ Score

Calculated Probability of Star 3

**Figure 6.3.** Histograms for sheep meat with Consumer Star rating 2 and the frequency of classification by the optimal discriminant function for the loin cut



Frequency of Star 2 EQ Score

Calculated Probability of Star 2

# Milestones 4 and 5

# The Relationship between Overall Liking and Tenderness, Juiciness and Flavour

The regression coefficients for the Loin and the Topside relating overall liking to the other sensory variables tenderness, juiciness and flavour are shown in Table 1.5. The regression formed from these coefficients was used to calculate the residuals for Overall Liking presumed to describe those aspects of eating quality not captured in Tenderness, Juiciness and Flavour. These estimates are similar to the estimates for year 2010 reported earlier.

## Effect of Year, Sire Breed, Kill Group and Sire on the Sensory Variables

Table 2.5 shows the differences between years for Smell, Tenderness, Juiciness, Flavour, Overall Liking and the residuals on Overall Liking for the Loin and the Topside cuts. Tenderness is marginally better (P < 0.05) in year 2009, while Smell, Juiciness, Flavour and Overall Liking were unaffected. However, the residuals on Overall Liking were highly significantly (P < 0.001) greater in year 2009. This implies that an aspect of eating quality not captured in Tenderness, Juiciness or Flavour differed between years. The size of this difference presented in Table 1.5 suggests an important as well as a significant effect. However this effect cannot be identified in the current analysis

The Topside cut showed greater between year differences, notably for Juiciness and Flavour, although the residual on Overall Liking was unaffected. The sources of these effects are not apparent.

The sheep meat from drop 2010 was consistently estimated as poorer quality than for drop 2009. However, the existence of extra breeds (Dorper and White Dorper) and a suite of different sires in year 2010 make this difference difficult to interpret.

Table 3.5 shows the variance components for the random effects for the Loin and the Topside cuts. The variance in the sensory variables associated with sires is higher in the Loin than in the Topside, but still small. The intraclass correlations are 0.09 for Tenderness and 0.06 for Overall Liking. In the Topside Overall Liking has an intraclass correlation of 0.08. The variance components for the sensory variables associated with Kill Group is also low, suggesting that kill group is not an important source of variation.

The major source of variation in the sensory variables is associated with consumer variation, and appears to be associated with consumers using different reference points in their assessment of meat quality. This issue and the asymmetric nature of consumer judgement of eating quality have been well canvassed in earlier reports to the MLA on this project. Clipping the data based on the residuals for overall liking alleviated this effect.

Tables 4.5 and 5.5 give the least squares means for the sire breeds for the Loin and Topside cuts respectively. Tables 6.5 and 7.5 present the significant (P < 0.05) sire breed comparisons for the Loin and Topside cuts respectively. There were no sire breed effects for the residuals on Overall Liking. That is, there were no sire breed effects for eating quality that were not related to tenderness, juiciness or flavour.

Tables 8.5 and 9.5 show the least squares means for the sire breeds when the variables intramuscular fat, linear and quadratic and shear force 5. Intramuscular fat, linear and quadratic has a significant (P < 0.05) on all the sensory variables for the Loin cut, but only for flavour for the Topside cut. Shear force 5 measurements are significantly (P < 0.05) related to all the sensory variables in both Loin and Topside cuts. Inclusion of these covariates did not materially alter the relationships between the sire breeds.

Table 10.5 shows the BLUP estimates for the sires within sire breed and the ranking of these sires for the Loin cut. Table 11.5 shows the BLUP estimates for the sires within sire breed and the ranking of these sires for the Topside cut. Table 12.5 gives the correlations between the ranks of the sire BLUP estimates for each cut and sensory variable. These correlations are uniformly high suggesting an underlying stability in the allocation of an eating quality index to differences between sires.

# The Effect of Consumer Star Rating on the Year, Sire Breed, Kill Group and Sire.

Table 13.5 shows the variance components for the logit analysis of star classifications 2 and 3 (standard quality) *verses* star classifications 4 and 5 (excellent quality). Notably the variance components for sire within sire breed for star 4 *verses* star 5 are effectively zero.

The comparisons of star classifications 2 and 3 (judged low eating quality) with star classifications 4 and 5 (judged high eating quality) for each of the 2 years of measurement for each cut are shown in Table 14.5

Table 15.5 presents the logit estimates for the sire breeds for star classifications 2 and 3 *verses* star classifications 4 and 5 for the loin and topside cuts. Table 16.5 gives the specific significant differences between breeds. There was no significant sire breed differences in the proportions classified as star 5 compared to star 4.

Tables 17.5 and 18.5 give the sire BLUP estimates and the ranking for the logit analysis of star classifications 2 and 3 *verses* star classifications 4 and 5 for the Loin and Topside cuts respectively. As the sire variance component for the logit analysis of star 4 *verses* star 5 for both meat cuts was zero these BLUP estimates were irrelevant and not presented.

# Discriminant Analysis

The optimal linear discriminant function of tenderness, juiciness flavour and overall liking for the loin cut is

Stars = 0.0234(tender) + 0.0150(juicy) + 0.0471(flavour) + 0.0645(residuals overall liking)

This means that a change in flavor and in the consumer judgement of eating quality by overall liking independent of tender, juicy and flavor had approximately twice the impact of tenderness or juiciness on the star classification. For the topside cut the optimal linear discriminant function is

Stars = 0.0284(tender) + 0.0118(juicy) + 0.0330(flavour) + 0.0531(residuals overall liking)

Where the relative impacts of tenderness, jiciness, flavor and residuals on overall liking on the star classification are similar to that of the loin cut. The numbers and percentages for the

loin and topside cuts successfully classified using the optimal discriminant functions is given in Table 19.5

Table 20.5 shows the multinomial logit estimates for each cut for predicting the star classification of sheep meat using data on the sensory variables tenderness, juiciness flavour and the residual on overall liking after fitting tenderness, juiciness and flavour. The advantage of the logit formulation of discriminant analysis is that the probabilities of a meat sample with a set of measurements of the sensory variables can be calculated. The method of calculation using logits was set out in an earlier report of this project, and is repeated here for completeness.

To calculate the probabilities of a meat sample being in a given star rating given the values of the EQ variables tender, juicy, flavour and overall liking the procedure is:

- 5. Calculate exp(Intercept +  $b_1$  tender +  $b_2$  juicy +  $b_3$  flavour +  $b_4$  overall liking) for each of the 3 logit regression in Table 20. For example, for tender = 60; juicy = 70; flavour = 65 and overall liking = 70 then for star 3 for the loin exp(-4.2989 + 0.0310 x 60 + 0.0206 x 70 + 0.0783 x 65 + 0.1084 x 70) = 78.9962
- 6. Sum these results for each star rating case. 78.9962 + 54.7293 + 2.4473 = 136.1729
- 7. The probability of being in the reference star rating (star 2) given the values for the EQ variables is  $\frac{1}{1+136.1729} = 0.007$ .
- 8. The probability of being in each of the other star rating is the value of exp(regression) as calculated in item (1) divided by 1 + the sum. For the probability of the example being in start 3 this is  $\frac{78.9962}{1+136.1729} = 0.58$ . Similar calculations for show that the probability of being in star 4 is 0.40, and in star 5 is 0.02 for the given values of the EQ variables.

9.

# Analysis of Clipped Data

The analysis made clear that between consumer variations in their judgements of meat eating quality was a problem, in particular the existence of different references points for different consumers and the asymmetric nature of some of the judgements introduced variation that tended to obscure important features of biological interest. To address this situation the data was 'clipped' by calculating the residuals from the analysis of Overall Liking and eliminating all those observations with an absolute value greater than 10 units.

Table 21.5 shows the variance components for the loin and topside cuts for the analysis of the clipped data. The sire intraclass correlation goes from 0.06 in the full data set to 0.23 in the clipped data set for the loin, and from 0.08 in the full data set to 0.31 in the clipped data set in the Topside. Table 22.5 gives the sire BLUP estimates and their ranks for the discriminant function for the clipped data for the loin and topside cuts. The correlation of the ranks for each cut was 0.81.

# Relationship of Sire Best Linear Unbiased Predictions to Carcass Variables Best Linear Unbiased Predictions

It should be noted that the variance components for the sire effects on the sensory variables are relatively low. Thus it should not be expected that the impact of a particular sire on meat eating quality would be high, or even noticeable, when compared with other factors such as

the consumer effect. In this respect there is insufficient variation associated with a sire effect to classify sheep meat eating quality on this basis.

Table 22.5 shows the sire BLUPs corrected for deviations due to sire breed for each of the sensory variables and for the linear discriminant function. The sires in Table 22.5 are ranked by the value of the linear discriminant function, showing the preference of consumers for the progeny of particular sires. It is clear that sires of the Merino breed are ranked high and sires of the Poll Dorset breed are ranked low. However, sire ranks are confounded to some extent by the variation in consumer judgement where subclass numbers for particular sires are low as previously noted. The correlation between the 10% clipped discriminant function for each loin and topside cut was 0.63. The correlation between the ranks of the 10% clipped discriminant function for each loin and topside cut was 0.33.

The correlation between the sire BLUPs (corrected for sire breed) for the 10% clipped loin discriminant function and the sire BLUPs for the probability that a meat cut would be classified as star 4 or star 5 was 0.26 (P < 0.01)for the loin and 0.28 (P < 0.01) for the topside. This means that the sire BLUP values for the 10% clipped discriminant function were moderately related to the consumer judgement of eating quality in terms of discriminating those sires producing meat of better eating quality.

Tables 23.5 and 24.5 show the probabilities (frequencies) calculated from estimates of the logits that a given sire of a given breed will produce progeny with meat eating quality classified in one of the star ratings. Rounding errors mean that the sums across all star classifications may not add to 100%. These probabilities were calculated for each meat cut using the equations in Table 20.5.

# Meat Colour Measurements

Table 25.5 shows the variance components for the 3 colour measurements, CFL, CFa and CFb. The differences between the loin and topside cuts for these measurements were less than 10<sup>-16</sup> units, so the results for both cuts are combined. Table 25.5 shows very strong sire effects on meat colour, with intraclass correlations from Table 25 of 0.65 for CFL, 0.73 for CFa, and 0.67 for CFb. Table 26.5 presents the sire breed effects for these colour measurements and Table 27.5 shows the significant sire breed comparisons. It can be seen the only significant sire breed effect is due to the Prime Samm breed having stronger meat colour measurements than other breeds for CFL and CFa. There were no significant sire breed effects for meat colour measurement CFb.

Table 28.5 shows the sire BLUP estimates and their ranks for each of the meat colour measurements. The size of the intraclass correlations indicates that there are considerable sire within sire breed effects for these traits.

Table 29.5 and Table 30.5 give the correlations between the sire BLUP values for the optimal linear discriminant function and the sire BLUP values for several important carcass attributes. It shows that intramuscular fat and shear force 5 sire BLUP values are not related to the discriminant function sire BLUP values, suggesting that these aspects of meat quality are not related to sire differences. CEMA, the fat measurements and LMY are moderately correlated indicating sire differences in discriminating sheep meat eating quality are associated with these variables.

There was a significant (P < 0.02) relationship between the sire BLUP for the amount of intramuscular fat in a loin cut and the sire BLUP for the probability (frequency) with which that cut would be graded as high eating quality (star 4 or star 5). The correlation was r = 0.15. However, though the relationship was significant the predictability was low

#### Discussion

Flavour

The most notable aspect of this analysis is the small between year effects. This meant that the results for the combined years 2009 and 2010 were very similar. The year 2010 introduced a range of different sires and 2 new sire breeds (Dorper and White Dorper), however the results remained consistent. This is encouraging since it suggests that a program for improving sheep meat eating quality based on manipulating genetics would be stable between years.

The association of meat colour with the sire is notably strong and would clearly respond to selection if required. The propensity for the Prime Samm breed to have a stronger colour measurement than that of the other breeds is also clear.

The same difficulties with asymmetric consumer judgements persisted in year 2010, adding evidence to the suggestion in earlier reports that this is a fact about the sheep meat customer base. A separate paper formally presenting these results may be useful in calling the attention of professionals in marketing and consumer studies to this issue.

Using clipped data by discarding those observations with overall liking residuals greater than 10 units markedly improved the proportion of variance attributed to the sire effect. It is presumed that clipping the data in this way removed disturbances due to the more extreme asymmetric consumer judgements, and thus presented a more realistic association between genetics and meat eating quality

|            | Loin              | Topside           |
|------------|-------------------|-------------------|
| Intercept  | $2.033 \pm 0.252$ | 0.126 ± 0.218     |
| Tenderness | 0.206 ± 0.005     | 0.298 ± 0.005     |
| Juiciness  | $0.136 \pm 0.005$ | $0.154 \pm 0.006$ |

 $0.648 \pm 0.005$ 

**Table 1.5.** Regression coefficients for Overall Liking on Tenderness, Juiciness and Flavour for Loin and Topside cuts

**Table 2.5.** Least Squares estimates for the Year Effect of the Sensory Variables for the Loin and the Topside Cuts

| Cut  | Year | Smell       | Tender                   | Juicy                 | Flavour              | Overall Liking | Residual              |
|------|------|-------------|--------------------------|-----------------------|----------------------|----------------|-----------------------|
|      |      |             |                          | -                     |                      | -              | Overall Liking        |
| Loin | 2009 | 69.5 ± 0.60 | $76.0^{*} \pm 1.12$      | 69.5 ± 1.15           | 72.3 ± 0.87          | 73.8 ± 0.95    | $2.12^{***} \pm 0.36$ |
|      | 2010 | 69.9 ± 0.54 | 72.1 ± 1.02              | 66.6 ± 1.04           | 70.9 ± 0.79          | 71.9 ± 0.86    | 0.26 ± 0.33           |
|      |      |             |                          |                       |                      |                |                       |
| Тор  | 2009 | 67.0 ± 0.57 | 52.1 <sup>*</sup> ± 1.81 | 52.5 <sup>***</sup> ± | 58.4 <sup>**</sup> ± | 55.9 ± 1.39    | 0.10 ± 0.20           |
| Side |      |             |                          | 1.27                  | 1.08                 |                |                       |
|      | 2010 | 65.5 ± 0.51 | 46.9 ± 1.62              | 46.2 ±1.15            | 54.2 ± 0.98          | 51.2 ± 1.26    | 0.01 ± 0.18           |

 $0.551 \pm 0.006$ 

| Cut     | Random Effect                           | Smell | Tender | Juicy | Flavour | Overall |
|---------|-----------------------------------------|-------|--------|-------|---------|---------|
| Loin    | Consumer within<br>Pick                 | 156.7 | 136.6  | 182.7 | 155.1   | 147.2   |
|         | Pick                                    | 8.9   | 9.6    | 10.9  | 7.8     | 8.3     |
|         | Sire with sire breed within Kill group: | 0.36  | 21.8   | 15.5  | 8.2     | 14.6    |
|         | Kill group                              | 0.14  | 2.7    | 2.8   | 1.4     | 1.8     |
|         | Residual                                | 159.9 | 231.2  | 259.9 | 235.5   | 220.5   |
|         |                                         |       |        |       |         |         |
| Topside | Consumer within<br>Pick                 | 179.8 | 178.5  | 206.0 | 187.2   | 180.2   |
|         | Pick                                    | 8.6   | 9.6    | 10.7  | 9.5     | 9.1     |
|         | Sire with sire breed within Kill group: | 0.0   | 0.0    | 22.5  | 15.6    | 26.5    |
|         | Kill group                              | 0.0   | 9.4    | 4.0   | 2.5     | 5.1     |
|         | Residual                                | 176.1 | 380.0  | 308.4 | 288.8   | 304.3   |

**Table 3.5:** The variance components for the random effects for the Loin and Topside cuts.

| Sire Breed       | Smell       | Tender      | Juicy       | Flavour     | Overall Liking | Residual        |
|------------------|-------------|-------------|-------------|-------------|----------------|-----------------|
|                  |             |             |             |             |                | Overall Liking  |
| Bond             | 71.7 ± 2.28 | 77.5 ± 3.55 | 73.1 ± 3.51 | 73.6 ± 3.03 | 77.1 ± 3.22    | 1.82 ± 0.94     |
| Border Leicester | 70.5 ± 0.74 | 74.9 ± 1.37 | 68.9 ± 1.35 | 71.4 ± 1.08 | 73.7 ± 1.18    | 0.59 ± 0.27     |
| Coopworth        | 69.2 ± 0.74 | 73.1 ± 1.35 | 67.1 ± 1.33 | 71.1 ± 1.07 | 72.3 ± 1.16    | -0.09 ± 0.27    |
| Corriedale       | 70.1 ± 0.71 | 76.7 ± 1.36 | 70.5 ± 1.33 | 73.6 ± 1.05 | 75.2 ± 1.15    | 0.24 ±0.26      |
| Dohne Merino     | 70.3 ± 0.69 | 76.0 ± 1.31 | 68.9 ± 1.29 | 72.6 ± 1.02 | 74.1 ± 1.11    | 0.01 ± 0.25     |
| Dorper           | 70.4 ± 1.14 | 74.4 ± 3.06 | 66.7 ± 2.85 | 71.3 ± 2.14 | 73.3 ± 2.51    | $0.45 \pm 0.43$ |
| Merino           | 70.2 ± 0.62 | 76.7 ± 1.24 | 70.6 ± 1.23 | 73.5 ± 0.93 | 75.5 ± 1.02    | 0.31 ± 0.21     |
| Poll Dorset      | 69.6 ± 0.52 | 68.4 ± 1.06 | 63.4 ± 1.05 | 68.4 ± 0.79 | 68.7 ± 0.87    | -0.28 ± 0.16    |
| Poll Merino      | 70.3 ± 0.66 | 76.4 ± 1.30 | 70.4 ± 1.28 | 73.3 ± 0.98 | 74.9 ± 1.08    | $0.04 \pm 0.22$ |
| Prime Samm       | 69.9 ± 0.67 | 78.9 ± 1.23 | 73.1 ± 1.22 | 75.2 ± 0.96 | 76.7 ± 1.05    | 0.24 ± 0.24     |
| Suffolk          | 68.4 ± 0.71 | 74.2 ± 1.38 | 67.7 ± 1.34 | 71.5 ± 1.06 | 72.4 ± 1.17    | -0.20 ± 0.26    |
| Texel            | 68.2 ± 0.75 | 70.1 ± 1.43 | 64.6 ± 1.40 | 68.2 ± 1.10 | 68.9 ± 1.22    | -0.52 ± 0.28    |
| White Dorper     | 70.3 ± 0.82 | 77.4 ± 2.35 | 69.8 ± 2.23 | 72.4 ± 1.60 | 74.5 ± 1.86    | 0.30 ± 0.28     |
| White Suffolk    | 69.1 ± 0.56 | 71.5 ± 1.07 | 65.8 ± 1.07 | 70.4 ± 0.82 | 71.2 ± 0.90    | 0.01 ± 0.18     |

**Table 4.5.** The least squares means and standard errors for the sire breed for the Loin cut for each of the sensory variables

**Table 5.5.** The least squares means and standard errors for the sire breed for the Topside cut for each of the sensory variables

| Sire Breed       | Smell       | Tender      | Juicy       | Flavour     | Overall Liking | Residual<br>Overall Liking |
|------------------|-------------|-------------|-------------|-------------|----------------|----------------------------|
| Bond             | 71.1 ± 2.30 | 48.8 ± 2.30 | 49.8 ± 3.82 | 60.8 ± 3.50 | 58.4 ± 3.91    | 2.41 ± 1.19                |
| Border Leicester | 66.9 ± 0.75 | 51.4 ± 0.75 | 51.4 ± 1.44 | 57.8 ± 1.28 | 55.5 ± 1.52    | 0.21 ± 0.36                |

| Coopworth     | 66.6 ± 0.75 | 49.4 ± 0.75 | 48.7 ± 1.43 | 57.0 ± 1.27 | 53.7 ± 1.51 | -0.14 ± 0.36     |
|---------------|-------------|-------------|-------------|-------------|-------------|------------------|
| Corriedale    | 67.2 ± 0.71 | 52.6 ± 0.71 | 51.6 ± 1.41 | 57.6 ± 1.25 | 55.2 ± 1.49 | -0.38 ± 0.34     |
| Dohne Merino  | 66.3 ± 0.70 | 50.7 ± 0.70 | 49.3 ± 1.37 | 56.4 ± 1.21 | 54.1 ± 1.45 | 0.04 ± 0.33      |
| Dorper        | 67.1 ± 1.08 | 51.1 ± 1.08 | 52.2 ± 3.06 | 57.9 ± 2.65 | 55.5 ± 3.27 | 0.28 ± 0.56      |
| Merino        | 66.0 ± 0.61 | 51.1 ± 0.61 | 49.4 ± 1.22 | 56.4 ± 1.08 | 53.8 ± 1.30 | -0.46 ± 0.28     |
| Poll Dorset   | 65.2 ± 0.51 | 43.9 ± 0.51 | 45.7 ± 1.08 | 52.8 ± 0.94 | 49.4 ± 1.16 | 0.11 ± 0.22      |
| Poll Merino   | 65.7 ± 0.65 | 50.2 ± 0.65 | 48.9 ± 1.31 | 56.9 ± 1.15 | 54.3 ± 1.38 | 0.31 ± 0.30      |
| Prime Samm    | 66.4 ± 0.67 | 53.5 ± 0.67 | 52.4 ± 1.29 | 58.6 ± 1.14 | 57.2 ± 1.36 | 0.73 ± 0.31      |
| Suffolk       | 66.2 ± 0.71 | 49.5 ± 0.71 | 49.3 ± 1.44 | 56.7 ± 1.27 | 53.8 ± 1.51 | 0.10 ± 0.34      |
| Texel         | 66.9 ± 0.76 | 46.4 ± 0.76 | 47.9 ± 1.49 | 55.2 ± 1.32 | 51.6 ± 1.57 | $-0.03 \pm 0.36$ |
| White Dorper  | 67.2 ± 0.74 | 52.1 ± 0.74 | 51.4 ± 2.27 | 57.1 ± 1.95 | 55.4 ± 2.45 | 0.64 ± 0.39      |
| White Suffolk | 65.7 ± 0.55 | 47.6 ± 0.54 | 47.6 ± 1.11 | 55.1 ± 0.97 | 51.7 ± 1.19 | -0.34 ± 0.24     |
|               |             |             |             |             |             |                  |

**Table 6.5.** Significant (P < 0.05) sire breed comparisons for the Loin cut for each of the sensory variables.

#### Loin Tender

| Si            | re Breed Comparis | Difference in    | Significance |      |
|---------------|-------------------|------------------|--------------|------|
|               |                   |                  | estimates    |      |
| Poll Dorset   | V                 | Border Leicester | -6.45        | 0.01 |
| Poll Dorset   | V                 | Corriedale       | -8.27        | 0.01 |
| Texel         | V                 | Corriedale       | -6.63        | 0.01 |
| Poll Dorset   | V                 | Dohne Merino     | -7.58        | 0.01 |
| Poll Dorset   | V                 | Merino           | -8.29        | 0.01 |
| Texel         | V                 | Merino           | -6.65        | 0.01 |
| White Suffolk | V                 | Merino           | -5.24        | 0.01 |
| Poll Merino   | V                 | Poll Dorset      | 8.00         | 0.01 |
| Prime Samm    | V                 | Poll Dorset      | 10.48        | 0.01 |
| Suffolk       | V                 | Poll Dorset      | 5.76         | 0.01 |
| Texel         | V                 | Poll Merino      | -6.36        | 0.01 |
| Texel         | V                 | Prime Samm       | -8.84        | 0.01 |
| White Suffolk | V                 | Prime Samm       | -7.43        | 0.01 |
| Prime Samm    | V                 | Coopworth        | 5.77         | 0.01 |

| White Suffolk | V | Corriedale   | Corriedale -5.21 |      |
|---------------|---|--------------|------------------|------|
| White Dorper  | V | Poll Dorset  | 8.97             | 0.02 |
| White Suffolk | V | Poll Merino  | -4.95            | 0.02 |
| Texel         | V | Dohne Merino | -5.94            | 0.02 |
| Poll Dorset   | V | Coopworth    | -4.71            | 0.05 |

# Juicy

| Sire Breed Comparison |   | Difference in<br>estimates | Significance |      |
|-----------------------|---|----------------------------|--------------|------|
| Poll Dorset           | V | Border Leicester           | -5.54        | 0.01 |
| Prime Samm            | V | Coopworth                  | 6.02         | 0.01 |
| Poll Dorset           | V | Corriedale                 | -7.10        | 0.01 |
| Poll Dorset           | V | Dohne Merino               | -5.54        | 0.01 |
| Poll Dorset           | V | Merino                     | -7.22        | 0.01 |
| Texel                 | V | Merino                     | -6.04        | 0.01 |
| Poll Merino           | V | Poll Dorset                | 7.02         | 0.01 |
| Prime Samm            | V | Poll Dorset                | 9.71         | 0.01 |
| Texel                 | V | Prime Samm                 | -8.53        | 0.01 |
| White Suffolk         | V | Prime Samm                 | -7.29        | 0.01 |
| White Suffolk         | V | Merino                     | -4.80        | 0.01 |
| Texel                 | V | Poll Merino                | -5.84        | 0.01 |
| Suffolk               | V | Prime Samm                 | -5.46        | 0.02 |
| Texel                 | V | Corriedale                 | -5.93        | 0.02 |
| White Suffolk         | V | Poll Merino                | -4.60        | 0.03 |
| White Suffolk         | V | Corriedale                 | -4.69        | 0.04 |

# Flavour

| Sire Breed Comparison |              |              | Difference in<br>estimates | Significance |
|-----------------------|--------------|--------------|----------------------------|--------------|
| Poll Dorset           | v Corriedale |              | -5.20                      | 0.01         |
| Texel                 | V            | Corriedale   | -5.35                      | 0.01         |
| Poll Dorset           | V            | Dohne Merino | -4.27                      | 0.01         |
| Poll Dorset           | V            | Merino       | -5.13                      | 0.01         |
| Texel                 | V            | Merino       | -5.27                      | 0.01         |
| Poll Merino           | V            | Poll Dorset  | 4.89                       | 0.01         |
| Prime Samm            | V            | Poll Dorset  | 6.78                       | 0.01         |
| Texel                 | V            | Poll Merino  | -5.03                      | 0.01         |
| Texel                 | V            | Prime Samm   | -6.92                      | 0.01         |
| White Suffolk         | V            | Prime Samm   | -4.76                      | 0.01         |
| Texel                 | V            | Dohne Merino | -4.41                      | 0.03         |
| Prime Samm            | V            | Coopworth    | 4.04                       | 0.04         |

| Sire Breed Comparison |   |                  | Difference in<br>estimates | Significance |
|-----------------------|---|------------------|----------------------------|--------------|
| Poll Dorset           | V | Border Leicester | -5.01                      | 0.01         |
| Poll Dorset           | V | v Corriedale     |                            | 0.01         |
| Texel                 | V | Corriedale       | -6.29                      | 0.01         |
| Poll Dorset           | V | Dohne Merino     | -5.49                      | 0.01         |
| Poll Dorset           | V | Merino           | -6.88                      | 0.01         |
| Texel                 | V | Merino           | -6.63                      | 0.01         |
| White Suffolk         | V | Merino           | -4.36                      | 0.01         |
| Poll Merino           | V | Poll Dorset      | 6.27                       | 0.01         |
| Prime Samm            | V | Poll Dorset      | 8.01                       | 0.01         |
| Texel                 | V | Poll Merino      | -6.01                      | 0.01         |
| Texel                 | V | Prime Samm       | -7.76                      | 0.01         |
| White Suffolk         | V | Prime Samm       | -5.49                      | 0.01         |
| Texel                 | V | Dohne Merino     | -5.23                      | 0.01         |
| White Suffolk         | V | Corriedale       | -4.02                      | 0.05         |
| Prime Samm            | V | Coopworth        | 4.38                       | 0.05         |
| White Suffolk         | V | Poll Merino      | -3.74                      | 0.05         |

# Overall

**Table 7.5** Significant (P < 0.05) sire breed comparisons for the Topside cut for each of the sensory variables.

#### Tender

| Si            | Sire Breed Comparison |              |       | Significance |
|---------------|-----------------------|--------------|-------|--------------|
|               |                       | estimates    |       |              |
| Poll Dorset   | v Border Leicester    |              | -7.55 | 0.01         |
| Poll Dorset   | V                     | Corriedale   | -8.75 | 0.01         |
| Poll Dorset   | V                     | Dohne Merino | -6.82 | 0.01         |
| Poll Dorset   | V                     | Merino       | -7.20 | 0.01         |
| Poll Merino   | V                     | Poll Dorset  | 6.35  | 0.01         |
| Prime Samm    | V                     | Poll Dorset  | 9.64  | 0.01         |
| White Suffolk | V                     | Prime Samm   | -5.86 | 0.01         |
| Texel         | V                     | Prime Samm   | -7.09 | 0.01         |
| Suffolk       | V                     | Poll Dorset  | 5.67  | 0.04         |
| Poll Dorset   | V                     | Coopworth    | -5.49 | 0.05         |

# Juicy

| Sire Breed Comparison |                    |             | Difference in<br>estimates | Significance |
|-----------------------|--------------------|-------------|----------------------------|--------------|
| Poll Dorset           | v Border Leicester |             | -5.65                      | 0.01         |
| Poll Dorset           | V                  | Corriedale  | -5.93                      | 0.01         |
| Prime Samm            | V                  | Poll Dorset | 6.73                       | 0.01         |
| White Suffolk         | V                  | Prime Samm  | -4.85                      | 0.01         |

## Flavour

| Sire Breed Comparison |   |                  | Difference in<br>estimates | Significance |
|-----------------------|---|------------------|----------------------------|--------------|
| Poll Dorset           | V | Border Leicester | -5.00                      | 0.01         |
| Poll Dorset           | V | Corriedale       | -4.81                      | 0.01         |
| Prime Samm            | V | Poll Dorset      | 5.74                       | 0.01         |
| Poll Merino           | V | Poll Dorset      | 4.11                       | 0.02         |
| Poll Dorset           | V | Merino           | -3.63                      | 0.04         |
| Poll Dorset           | V | Coopworth        | -4.19                      | 0.05         |

# **Overall Liking**

| Sire Breed Comparison |              |                  | Difference in<br>estimates | Significance |
|-----------------------|--------------|------------------|----------------------------|--------------|
| Poll Dorset           | V            | Border Leicester | -6.06                      | 0.01         |
| Poll Dorset           | v Corriedale |                  | -5.77                      | 0.01         |
| Prime Samm            | V            | Poll Dorset      | 7.73                       | 0.01         |
| White Suffolk         | V            | Prime Samm       | -5.50                      | 0.01         |
| Poll Merino           | V            | Poll Dorset      | 4.84                       | 0.01         |

| Poll Dorset | V | Merino       | -4.33 | 0.02 |
|-------------|---|--------------|-------|------|
| Poll Dorset | V | Dohne Merino | -4.63 | 0.04 |
| Texel       | V | Prime Samm   | -5.57 | 0.04 |

**Table 8.5.** Least squares means and standard error for sire breed for the Loin cut including covariables intramuscular fat and shear force 5.

| Sire Breed              | Smell                    | Tender                    | Juicy                        | Flavour                       | Overall<br>Liking            |
|-------------------------|--------------------------|---------------------------|------------------------------|-------------------------------|------------------------------|
| Bond                    | 71.4 ± 2.27              | 77.3 ± 3.34               | 72.5 ± 3.39                  | 73.4 ± 2.91                   | 76.8 ± 3.03                  |
| Border Leicester        | 70.5 ± 0.75              | 74.9 ± 1.34               | 69.2 ± 1.36                  | 71.5 ± 1.05                   | 73.8 ± 1.15                  |
| Coopworth               | 69.3 ± 0.74              | 73.1 ± 1.31               | 67.2 ± 1.34                  | 71.2 ± 1.04                   | 72.4 ± 1.13                  |
| Corriedale              | 70.3 ± 0.71              | 77.1 ± 1.31               | 71.1 ± 1.34                  | 74.0 ± 1.01                   | 75.7 ± 1.12                  |
| Dohne Merino            | 70.2 ± 0.70              | 75.5 ± 1.28               | 68.4 ± 1.31                  | 72.2 ± 0.99                   | 73.6 ± 1.09                  |
| Dorper                  | 70.1 ± 1.14              | 73.0 ± 2.80               | 65.9 ± 2.68                  | 70.9 ± 1.94                   | 72.4 ± 2.26                  |
| Merino                  | 70.2 ± 0.63              | 76.7 ± 1.21               | 70.6 ± 1.24                  | 73.3 ± 0.90                   | 75.5 ± 1.00                  |
| Poll Dorset             | 70.1 ± 0.54              | 69.9 ± 1.06               | 64.7 ± 1.10                  | 69.5 ± 0.79                   | 70.0 ± 0.88                  |
| Poll Merino             | 70.2 ± 0.66              | 76.5 ± 1.26               | 70.3 ± 1.29                  | 73.1 ± 0.95                   | 74.8 ± 1.05                  |
| Prime Samm              | 69.2 ± 0.68              | 76.9 ± 1.23               | 71.3 ± 1.26                  | 73.7 ± 0.96                   | 75.0 ± 1.05                  |
| Suffolk                 | 68.4 ± 0.71              | 73.9 ± 1.32               | 67.5 ± 1.34                  | 71.1 ± 1.02                   | 71.1 ± 1.13                  |
| Texel                   | 68.7 ± 0.76              | 71.3 ± 1.38               | 65.7 ± 1.40                  | 69.3 ± 1.07                   | 70.2 ± 1.17                  |
| White Dorper            | 70.0 ± 0.85              | 76.4 ± 2.22               | 68.9 ± 2.17                  | 71.8 ± 1.50                   | 73.7 ± 1.74                  |
| White Suffolk           | 69.1 ± 0.57              | 71.8 ± 1.07               | 66.0 ± 1.11                  | 70.5 ± 0.82                   | 71.4 ± 0.90                  |
| Covariates              |                          |                           |                              |                               |                              |
| Intra – muscular<br>fat | 1.74 ± 0.89 <sup>*</sup> | 4.13 ± 1.30 <sup>*</sup>  | 4.73 ±<br>1.33 <sup>**</sup> | 4.93 ±<br>1.16 <sup>**</sup>  | 5.16 ±<br>1.20 <sup>**</sup> |
| IM Fat quadratic        | -0.11 ±.09               | -0.26 ± 0.13 <sup>*</sup> | -0.28 ± 0.13                 | -0.36 ±<br>0.11 <sup>**</sup> | -0.36 ±<br>0.12 <sup>*</sup> |
| Shear force 5           | -0.08 ± 0.02**           | -0.28 ± 0.03***           | -0.17 ± 0.03***              | -0.17 ± 0.02***               | -0.20 ± 0.03***              |

**Table 9.5.** Least squares means and standard error for sire breed for the Topside cut including covariables intramuscular fat and shear force 5.

| Sire Breed           | Smell        | Tender          | Juicy                          | Flavour                  |
|----------------------|--------------|-----------------|--------------------------------|--------------------------|
| Bond                 | 71.2 ± 2.32  | 48.0 ± 4.43     | 49.2 ± 3.77                    | 60.8 ± 3.48              |
| Border Leicester     | 66.9 ± 0.76  | 51.2 ± 1.84     | 51.3 ± 1.46                    | 57.6 ± 1.30              |
| Coopworth            | 66.6 ± 0.76  | 49.3 ± 1.82     | 48.8 ± 1.44                    | 57.1 ± 1.29              |
| Corriedale           | 67.3 ± 0.72  | 52.9 ± 1.80     | 52.0 ± 1.42                    | 57.9 ± 1.26              |
| Dohne Merino         | 66.2 ± 0.71  | 50.2 ± 1.77     | 48.0 ± 1.39                    | 56.3 ± 1.23              |
| Dorper               | 67.1 ± 1.12  | 50.2 ± 3.87     | 51.5 ± 3.01                    | 57.5 ± 2.63              |
| Merino               | 65.9 ± 0.63  | 51.0 ± 1.61     | 49.4 ± 1.24                    | 56.4 ± 1.10              |
| Poll Dorset          | 65.3 ± 0.53  | 44.8 ± 1.47     | 46.5 ± 1.12                    | 53.4 ± 0.97              |
| Poll Merino          | 65.6 ± 0.67  | 50.3 ± 1.69     | 48.8 ± 1.32                    | 56.8 ± 1.17              |
| Prime Samm           | 66.3 ± 0.69  | 51.9 ± 1.69     | 51.1 ± 1.33                    | 57.8 ± 1.17              |
| Suffolk              | 66.2 ± 0.72  | 49.4 ± 1.83     | 49.2 ± 1.44                    | 56.5 ± 1.27              |
| Texel                | 67.1 ± 0.78  | 47.4 ± 1.90     | 49.0 ± 1.50                    | 55.8 ± 1.34              |
| White Dorper         | 67.2 ± 0.78  | 51.7 ± 2.98     | 51.0 ± 2.27                    | 56.8 ± 1.97              |
| White Suffolk        | 65.7 ± 0.56  | 47.8 ± 1.49     | 47.7 ± 1.14                    | 55.0 ± 0.99              |
| Covariates           |              |                 |                                |                          |
| Intra – muscular fat | 1.54 ± 0.93  | 0.62 ± 1.71     | 2.38 ± 1.50                    | 3.36 ± 1.40 <sup>*</sup> |
| IM Fat quadratic     | -0.14 ± 0.09 | 0.05 ± 1.17     | -0.01 ± 0.01                   | -0.26 ± 0.14             |
| Shear force 5        | -0.02 ± 0.02 | -0.21 ± 0.03 ** | -0.01 ±<br>0.003 <sup>**</sup> | -0.08 ± 0.03**           |

**Table 10.5.** The BLUP estimates for the sires within sire breed and their ranking for the Loin cut.

| Sire Number       | Breed  | Tender | Rank   | Juicy | Rank  |
|-------------------|--------|--------|--------|-------|-------|
|                   |        |        | Tender | -     | Juicy |
| s0600032006060121 | Bond   | 77.5   | 39     | 73.3  | 5     |
| s0237802008080157 | Border | 76.6   | 62     | 71.0  | 35    |

|                    | Leicester  |      |     |      |     |
|--------------------|------------|------|-----|------|-----|
|                    | Border     |      |     |      |     |
| s0244112006060369  | Leicester  | 76.5 | 63  | 70.6 | 47  |
|                    | Border     |      |     |      |     |
| s020041200707J039  | Leicester  | 76.5 | 64  | 69.9 | 68  |
|                    | Border     |      |     |      |     |
| s0236912008088370  | Leicester  | 75.4 | 83  | 69.2 | 84  |
|                    | Border     |      |     |      |     |
| s0219292007070261  | Leicester  | 75.3 | 87  | 68.9 | 92  |
|                    | Border     |      |     |      |     |
| s0246862007070179  | Leicester  | 74.3 | 107 | 68.8 | 94  |
|                    | Border     |      |     |      |     |
| \$0247152008080085 | Leicester  | 73.8 | 113 | 68.1 | 105 |
|                    | Border     | 1010 |     | 0011 | 100 |
| \$0236662006060976 | Leicester  | 73.2 | 116 | 67.6 | 114 |
| 00200002000000000  | Border     | 10.2 | 110 | 07.0 |     |
| \$0241662008080220 | Leicester  | 72.8 | 123 | 67.2 | 121 |
| 30241002000000220  | Border     | 72.0 | 120 | 01.2 | 121 |
| s0250022008085020  | Leicester  | 72.7 | 126 | 67.2 | 122 |
| s0230022008083029  | Coopworth  | 75.2 | 120 | 68.6 | 08  |
| s1500022000000070  | Coopworth  | 73.3 | 100 | 67.0 | 109 |
| \$1500292008080181 | Coopworth  | 74.0 | 100 | 67.5 | 100 |
| \$1500392006061009 | Coopworth  | 74.6 | 103 | 67.5 | 116 |
| \$1500292007070244 | Coopworth  | 74.4 | 105 | 67.5 | 117 |
| s1500992007071449  | Coopworth  | 72.9 | 121 | 66.8 | 126 |
| s1500152003030196  | Coopworth  | 72.5 | 131 | 66.6 | 130 |
| s1500482007070769  | Coopworth  | 71.9 | 140 | 66.3 | 137 |
| s1500482008080808  | Coopworth  | 69.5 | 164 | 65.4 | 149 |
| s0319232001011072  | Corriedale | 78.5 | 17  | 72.4 | 18  |
| s0300362005050134  | Corriedale | 78.5 | 20  | 72.3 | 19  |
| s0323612006060209  | Corriedale | 78.1 | 23  | 71.0 | 36  |
| s0318972008080282  | Corriedale | 77.2 | 43  | 70.4 | 50  |
| s0324012007070002  | Corriedale | 76.4 | 66  | 70.1 | 60  |
| s0315272003030360  | Corriedale | 76.2 | 68  | 70.1 | 61  |
| s0300182004045220  | Corriedale | 75.4 | 84  | 70.0 | 64  |
| s0314602006543022  | Corriedale | 75.3 | 85  | 69.7 | 71  |
| \$0318972006060386 | Corriedale | 75.1 | 89  | 69.0 | 89  |
| s0322722008080072  | Corriedale | 73.0 | 120 | 67.6 | 113 |
|                    | Dohne      |      |     | 0110 |     |
| \$5100492007071700 | Merino     | 77.6 | 35  | 70.0 | 65  |
| 00100102001011100  | Dohne      | 11.0 | 00  | 10.0 | 00  |
| \$5100072008084048 | Merino     | 77 / | 40  | 69.4 | 80  |
| 33100072008084048  | Dohno      | //.4 | 40  | 09.4 |     |
| c5101402006060268  | Morino     | 77 1 | 16  | 60.1 | 95  |
| 53101402006060368  | Debre      | //.1 | 40  | 09.1 | 00  |
| ~5400072008082052  | Donne      | 70.0 | 61  | CO 1 | 07  |
| \$5100072008083953 | Merino     | 76.6 | 61  | 69.1 | 87  |
| 54007000707070000  | Donne      | 70.0 | 70  | 00.4 |     |
| s5100732007070006  | Merino     | 76.0 | 72  | 69.1 | 88  |
|                    | Dohne      |      |     |      |     |
| s5101462007070128  | Merino     | 76.0 | 73  | 69.0 | 91  |
|                    | Dohne      |      |     |      |     |
| s5100092007070376  | Merino     | 75.9 | 74  | 68.8 | 93  |
|                    | Dohne      |      |     |      |     |
| s5100292008088124  | Merino     | 75.2 | 88  | 68.5 | 101 |

|                   | Dohne       |      |     |       |     |
|-------------------|-------------|------|-----|-------|-----|
| s5100032007070949 | Merino      | 74.6 | 102 | 68.2  | 103 |
|                   | Dohne       |      |     |       |     |
| s5100302005050068 | Merino      | 73.1 | 118 | 66.8  | 127 |
| s4000302007071209 | Dorper      | 76.8 | 56  | 69.7  | 72  |
| s4000302007070056 | Dorper      | 76.4 | 65  | 67.7  | 111 |
| s4000302007070617 | Dorper      | 72.6 | 127 | 65.3  | 150 |
| s5000872006060096 | Merino      | 80.7 | 2   | 73.9  | 4   |
| s5037892007LB0753 | Merino      | 79.8 | 6   | 73.2  | 8   |
| s5047432000000503 | Merino      | 79.4 | 8   | 72.8  | 11  |
| s5007882007071254 | Merino      | 78.4 | 21  | 72.8  | 13  |
| s5034252006060205 | Merino      | 78.1 | 24  | 72.7  | 15  |
| s5038632006OL3626 | Merino      | 77.9 | 28  | 72.1  | 20  |
| s5030972005051737 | Merino      | 77.8 | 30  | 72.0  | 21  |
| s5018852006TRIMP  |             |      |     | . 2.0 |     |
| H                 | Merino      | 77.7 | 31  | 71.9  | 22  |
| s5015522006060480 | Merino      | 77.7 | 32  | 71.6  | 25  |
| s5044702006060022 | Merino      | 77.6 | 33  | 71.4  | 28  |
| s5030542004040585 | Merino      | 77.5 | 36  | 71.4  | 29  |
| s5030702008080121 | Merino      | 77.5 | 37  | 71.3  | 30  |
| s5007882008081290 | Merino      | 77.5 | 38  | 71.3  | 31  |
| s5049162007070719 | Merino      | 77.2 | 41  | 71.2  | 33  |
| s50505020080G0856 | Merino      | 77.1 | 45  | 70.9  | 38  |
| s5046152004040024 | Merino      | 77.1 | 47  | 70.7  | 40  |
| s5017042007L68007 | Merino      | 77.0 | 48  | 70.7  | 41  |
| s5035642007WHI393 | Merino      | 77.0 | 49  | 70.6  | 44  |
| s5039822006060225 | Merino      | 77.0 | 51  | 70.6  | 45  |
| s5000482007070260 | Merino      | 77.0 | 52  | 70.6  | 46  |
| s5022512006066030 | Merino      | 76.9 | 54  | 70.4  | 49  |
| s5023022006006580 | Merino      | 76.7 | 58  | 70.3  | 55  |
| s5043622006LON449 | Merino      | 76.7 | 60  | 70.2  | 57  |
| s5003182007070022 | Merino      | 76.1 | 70  | 70.1  | 62  |
| s5038842008081981 | Merino      | 75.7 | 78  | 70.0  | 63  |
| s5039462007OLY716 | Merino      | 75.6 | 80  | 69.9  | 66  |
| s5037892008080124 | Merino      | 75.6 | 81  | 69.8  | 69  |
| s5024252006023997 | Merino      | 75.0 | 91  | 69.8  | 70  |
| s5044822007070461 | Merino      | 74.9 | 92  | 69.4  | 79  |
| s50923420060C0573 | Merino      | 74.6 | 98  | 69.2  | 82  |
| s5049022005005345 | Merino      | 74.6 | 99  | 68.7  | 95  |
| s501587200606M276 | Merino      | 74.2 | 109 | 67.6  | 112 |
| s5044702008080588 | Merino      | 74.1 | 112 | 67.2  | 123 |
| s5049162008080600 | Merino      | 70.4 | 154 | 67.0  | 125 |
| s1622882007070644 | Poll Dorset | 72.7 | 125 | 66.5  | 131 |
| s1637212007070311 | Poll Dorset | 72.4 | 134 | 66.3  | 136 |
| s1611432008080203 | Poll Dorset | 71.5 | 145 | 66.2  | 138 |
| s1619722006061831 | Poll Dorset | 71.3 | 147 | 66.1  | 140 |
| s1600012008080010 | Poll Dorset | 70.9 | 152 | 65.6  | 147 |
| s1636772008081037 | Poll Dorset | 70.3 | 155 | 64.4  | 162 |
| s1640732007070364 | Poll Dorset | 69.9 | 161 | 64.1  | 163 |
| s1640002009090052 | Poll Dorset | 69.8 | 163 | 64.0  | 164 |
| s1618922006060050 | Poll Dorset | 69.5 | 165 | 64.0  | 166 |
| s1612352007072025 | Poll Dorset | 69.4 | 167 | 63.7  | 168 |
| s1627502008080481 | Poll Dorset | 69.3 | 168 | 63.7  | 169 |

| c1612252009090609                        | Poll Dorset | 60.2         | 160 | 62.6 | 170 |
|------------------------------------------|-------------|--------------|-----|------|-----|
| \$1012332000000000<br>\$1620472008080210 | Poll Dorset | 60.2         | 170 | 63.6 | 170 |
| s1611/320070707025                       | Poll Dorset | 68.7         | 170 | 63.3 | 172 |
| s1603362008080541                        | Poll Dorset | 68.5         | 172 | 63.2 | 172 |
| s16228820080800341                       | Poll Dorset | 68.4         | 173 | 63.1 | 173 |
| c1610722000000133                        | Poll Dorset | 69.1         | 174 | 62.1 | 174 |
| c1618862008080157                        | Poll Dorset | 67.6         | 175 | 62.6 | 175 |
| s1611582007070100                        | Poll Dorset | 67.5         | 170 | 62.0 | 170 |
| c1614152007070190                        | Poll Dorset | 67.0         | 170 | 62.3 | 170 |
| s1601852007070440                        | Poll Dorset | 66.8         | 1/9 | 62.3 | 179 |
| c1622682007070309                        | Poll Dorset | 65.5         | 101 | 61.7 | 192 |
| s1623082007070408                        | Poll Dorset | 65.0         | 102 | 61.0 | 102 |
| s1600852008080021                        | Poll Dorset | 00.Z         | 103 | 60.0 | 103 |
| s1636772007070639                        | Poll Dorset | 03.0<br>62.7 | 104 | 60.9 | 104 |
| \$1635282007070182                       | Poil Dorset | 63.7         | 185 | 60.8 | 185 |
| S6013322004000VVD                        | Dell Marina | 90 F         | 2   | 744  | 2   |
| 2                                        | Poll Merino | 80.5         | 3   | 74.4 | 2   |
| \$6010822007071257                       | Poll Merino | 78.9         | 10  | 73.3 | 0   |
| \$6013562007000449                       | Poll Merino | 78.6         | 13  | 71.8 | 23  |
| \$6012442007070304                       | Poll Merino | 78.5         | 15  | 71.5 | 26  |
| \$6008152006060120                       | Poll Merino | 78.1         | 22  | 71.5 | 27  |
| \$6008152007070323                       | Poll Merino | 77.9         | 27  | 71.0 | 37  |
| s6010532003031078                        | Poll Merino | 77.8         | 29  | 70.9 | 39  |
| s6011272007070121                        | Poll Merino | 77.2         | 44  | 70.6 | 42  |
| s6012792007070470                        | Poll Merino | 77.0         | 50  | 70.6 | 43  |
| s6013162007070023                        | Poll Merino | 76.9         | 53  | 70.5 | 48  |
| s6091542006060306                        | Poll Merino | 76.8         | 55  | 70.4 | 52  |
| s6004082007070069                        | Poll Merino | /6.8         | 57  | 70.4 | 53  |
| s6010822008081288                        | Poll Merino | /6./         | 59  | 70.4 | 54  |
| s6008802006060627                        | Poll Merino | 76.3         | 67  | 70.2 | 58  |
| s6012502004407812                        | Poll Merino | 76.1         | 69  | 70.2 | 59  |
| s6013072005050165                        | Poll Merino | 76.0         | 71  | 69.9 | 67  |
| s6010532007071190                        | Poll Merino | 75.8         | 77  | 69.6 | 73  |
| s6013652006060052                        | Poll Merino | 75.6         | 82  | 69.6 | 75  |
| s6005712006060904                        | Poll Merino | 74.9         | 93  | 69.6 | 76  |
| s6013362008RAS004                        | Poll Merino | 74.9         | 94  | 69.5 | 77  |
| s6005712006060058                        | Poll Merino | 74.9         | 95  | 69.3 | 81  |
| s6005532007070002                        | Poll Merino | 74.8         | 96  | 69.1 | 86  |
| s6012882006063091                        | Poll Merino | 74.4         | 106 | 69.0 | 90  |
| s6090542006066533                        | Poll Merino | 73.8         | 115 | 68.7 | 96  |
| s6001052007071080                        | Poll Merino | 72.9         | 122 | 68.7 | 97  |
| s6091542004040062                        | Poll Merino | 72.5         | 128 | 68.6 | 99  |
| s6011272008088254                        | Poll Merino | 72.5         | 132 | 68.0 | 106 |
| s4800402008080217                        | Prime Samm  | 80.5         | 4   | 74.5 | 1   |
| s4800392007070062                        | Prime Samm  | 79.9         | 5   | 74.2 | 3   |
| s4800552007070068                        | Prime Samm  | 79.5         | 7   | 73.3 | 7   |
| s4801222005051010                        | Prime Samm  | 79.3         | 9   | 73.2 | 9   |
| s4801222008080343                        | Prime Samm  | 78.6         | 14  | 72.8 | 12  |
| s4800872006060421                        | Prime Samm  | 78.5         | 18  | 72.7 | 14  |
| s4800302008080078                        | Prime Samm  | 78.5         | 19  | 72.6 | 16  |
| s4801042008080549                        | Prime Samm  | 78.0         | 25  | 72.6 | 17  |
| s4800302008080111                        | Prime Samm  | 77.9         | 26  | 71.8 | 24  |
| s4800992006060191                        | Prime Samm  | 75.8         | 76  | 70.4 | 51  |
| s1900282007071494                        | Suffolk     | 75.6         | 79  | 68.5 | 100 |

| s1901112007077058 | Suffolk       | 75.0 | 90  | 68.2 | 104 |
|-------------------|---------------|------|-----|------|-----|
| s1920452008080594 | Suffolk       | 74.7 | 97  | 67.9 | 107 |
| s1912012008080094 | Suffolk       | 74.6 | 104 | 67.8 | 109 |
| s1913622007070027 | Suffolk       | 74.2 | 108 | 67.8 | 110 |
| s1918502001010120 | Suffolk       | 74.1 | 110 | 67.3 | 118 |
| s1900602008080369 | Suffolk       | 73.8 | 114 | 67.2 | 120 |
| s1916612008080491 | Suffolk       | 73.2 | 117 | 67.1 | 124 |
| s1900602007070267 | Suffolk       | 73.0 | 119 | 66.4 | 135 |
| s1920452007070508 | Suffolk       | 72.1 | 137 | 66.2 | 139 |
| s1700802007071532 | Texel         | 72.5 | 133 | 65.9 | 142 |
| s1700622007070144 | Texel         | 71.9 | 139 | 65.7 | 144 |
| s1704202007070224 | Texel         | 70.1 | 156 | 65.3 | 153 |
| s1700812008080039 | Texel         | 70.0 | 157 | 64.4 | 161 |
| s1704062007070028 | Texel         | 68.8 | 171 | 64.0 | 165 |
| s1702232007070046 | Texel         | 67.8 | 176 | 62.6 | 177 |
| s1702232004040080 | Texel         | 67.0 | 180 | 62.2 | 181 |
| s4702062007077118 | White Dorper  | 81.1 | 1   | 73.0 | 10  |
| s4700442008084825 | White Dorper  | 79.0 | 10  | 71.2 | 32  |
| s4701392006060057 | White Dorper  | 78.7 | 12  | 71.1 | 34  |
| s4701142007071345 | White Dorper  | 78.5 | 16  | 70.3 | 56  |
| s4700702003030011 | White Dorper  | 77.6 | 34  | 69.4 | 78  |
| s4701792008080386 | White Dorper  | 77.2 | 42  | 69.2 | 83  |
| s4701142006060036 | White Dorper  | 74.6 | 101 | 68.5 | 102 |
| s2301002007070677 | White Suffolk | 75.9 | 75  | 69.6 | 74  |
| s2300262005050650 | White Suffolk | 74.1 | 111 | 67.5 | 115 |
| s2300992008080097 | White Suffolk | 72.7 | 124 | 67.3 | 119 |
| s2300012008080022 | White Suffolk | 72.5 | 129 | 66.7 | 128 |
| s2304502007071456 | White Suffolk | 72.5 | 130 | 66.7 | 129 |
| s2301132008080205 | White Suffolk | 72.3 | 135 | 66.5 | 132 |
| s2303182008080262 | White Suffolk | 72.3 | 136 | 66.5 | 133 |
| s2300302008080116 | White Suffolk | 72.0 | 138 | 66.4 | 134 |
| s2300262007072446 | White Suffolk | 71.8 | 141 | 66.0 | 141 |
| s2300152007070143 | White Suffolk | 71.8 | 142 | 65.8 | 143 |
| s2300262008083813 | White Suffolk | 71.6 | 143 | 65.7 | 145 |
| s2300912007070008 | White Suffolk | 71.5 | 144 | 65.6 | 146 |
| s2301132007070040 | White Suffolk | 71.3 | 146 | 65.5 | 148 |
| s2300152009090255 | White Suffolk | 71.2 | 148 | 65.3 | 151 |
| s2303242008085244 | White Suffolk | 71.1 | 149 | 65.3 | 152 |
| s2300432008080644 | White Suffolk | 71.0 | 150 | 65.2 | 154 |
| s2300092007070279 | White Suffolk | 71.0 | 151 | 65.2 | 155 |
| s2300342007074914 | White Suffolk | 70.9 | 153 | 65.1 | 156 |
| s2300432008080136 | White Suffolk | 70.0 | 158 | 65.1 | 157 |
| s2303242007075630 | White Suffolk | 70.0 | 159 | 65.1 | 158 |
| s2300022008080234 | White Suffolk | 70.0 | 160 | 64.9 | 159 |
| s2300432007070591 | White Suffolk | 69.9 | 162 | 64.8 | 160 |
| s2300022007070098 | White Suffolk | 69.5 | 166 | 63.9 | 167 |

| Sire Number        | Breed               | Flavour | Rank    | Overall | Rank    |
|--------------------|---------------------|---------|---------|---------|---------|
|                    |                     |         | Flavour | Liking  | Overall |
|                    |                     |         |         |         | Liking  |
| s0600032006060121  | Bond                | 73.8    | 44      | 77.3    | 9       |
|                    | Border              |         |         |         |         |
| s020041200707J039  | Leicester           | 72.3    | 88      | 75.3    | 52      |
|                    | Border              |         |         |         |         |
| s0244112006060369  | Leicester           | 71.9    | 101     | 75.2    | 57      |
|                    | Border              |         |         |         |         |
| s0246862007070179  | Leicester           | 71.8    | 102     | 74.3    | 78      |
|                    | Border              | 74.0    | 100     | - 4 0   | 70      |
| s0236662006060976  | Leicester           | /1.8    | 103     | 74.3    | 79      |
| -004000007070004   | Border              | 74 7    | 407     | 74.0    | 05      |
| s0219292007070261  | Leicester           | /1./    | 107     | 74.0    | 85      |
| -022790200000157   | Border              | 74 4    | 110     | 70.0    | 102     |
| 50237802008080157  | Leicester           | /1.4    | 118     | /3.3    | 103     |
| -0241662008080220  | Doruer              | 70.0    | 120     | 72.0    | 100     |
| 50241002008080220  | Bordor              | 70.9    | 120     | 72.9    | 109     |
| c0250022008085029  | Loicostor           | 70.8    | 126     | 72 /    | 117     |
| 30230022000003023  | Border              | 70.0    | 120     | 12.4    | 117     |
| \$0236912008088370 | Leicester           | 70.7    | 130     | 72.3    | 118     |
| 3020001200000010   | Border              | 10.1    | 100     | 72.0    | 110     |
| \$0247152008080085 | Leicester           | 70.0    | 146     | 72.2    | 120     |
| s1500292008080181  | Coopworth           | 72.1    | 95      | 73.6    | 94      |
| s1500392006061009  | Coopworth           | 71.9    | 98      | 73.5    | 97      |
| s1500622006060070  | Coopworth           | 71.6    | 110     | 73.5    | 99      |
| s1500292007070244  | Coopworth           | 71.4    | 117     | 72.7    | 112     |
| s1500992007071449  | Coopworth           | 70.9    | 122     | 71.9    | 125     |
| s1500152003030196  | Coopworth           | 70.8    | 128     | 71.9    | 126     |
| s1500482007070769  | Coopworth           | 70.5    | 134     | 71.7    | 135     |
| s1500482008080808  | Coopworth           | 69.9    | 147     | 70.2    | 155     |
| s0319232001011072  | Corriedale          | 74.9    | 9       | 77.0    | 13      |
| s0300362005050134  | Corriedale          | 74.3    | 19      | 76.9    | 14      |
| s0314602006543022  | Corriedale          | 74.1    | 28      | 75.9    | 34      |
| s0318972008080282  | Corriedale          | 73.6    | 47      | 75.4    | 49      |
| s0323612006060209  | Corriedale          | 73.6    | 48      | 75.2    | 56      |
| s0324012007070002  | Corriedale          | 73.3    | 63      | 74.8    | 64      |
| s0318972006060386  | Corriedale          | 73.2    | 66      | 74.7    | 68      |
| s0300182004045220  | Corriedale          | 73.1    | 68      | 74.0    | 86      |
| s0322722008080072  | Corriedale          | 72.6    | 80      | 73.2    | 106     |
| s0315272003030360  | Corriedale          | 72.1    | 96      | 72.5    | 116     |
|                    | Dohne               |         |         |         |         |
| s5100072008084048  | Merino              | 73.8    | 43      | 75.4    | 48      |
|                    | Dohne               |         |         |         |         |
| s5101462007070128  | Merino              | 73.5    | 50      | 75.1    | 58      |
|                    | Dohne               | 70.0    |         |         |         |
| s5100072008083953  | Merino              | /3.0    | 70      | /4.7    | 69      |
| ~F10110000000000   | Donne               | 70.0    |         | 74.4    | 75      |
| 55101402006060368  | IVIERINO<br>Debre c | 72.8    | //      | 74.4    | /5      |
| \$5100092007070376 | Donne               | 72.8    | 78      | 74.3    | 76      |

|                     | Merino      |              |          |      |          |
|---------------------|-------------|--------------|----------|------|----------|
|                     | Dohne       |              |          |      |          |
| s5100032007070949   | Merino      | 72.5         | 84       | 74.3 | 77       |
|                     | Dohne       |              |          |      |          |
| s5100292008088124   | Merino      | 72.4         | 85       | 73.8 | 89       |
|                     | Dohne       |              |          |      |          |
| s5100732007070006   | Merino      | 72.4         | 87       | 73.8 | 90       |
|                     | Dohne       |              |          |      |          |
| s5100492007071700   | Merino      | 71.9         | 99       | 73.3 | 104      |
|                     | Dohne       |              |          |      |          |
| s5100302005050068   | Merino      | 71.5         | 113      | 72.2 | 121      |
| s4000302007071209   | Dorper      | 74.4         | 15       | 75.6 | 43       |
| s4000302007070056   | Dorper      | 71.7         | 106      | 73.9 | 88       |
| s4000302007070617   | Dorper      | 69.5         | 155      | 72.1 | 122      |
| \$5000872006060096  | Merino      | 75.9         | 1        | 78.3 | 1        |
| s5015522006060480   | Merino      | 75.1         | 8        | 78.2 | 2        |
| s5007882007071254   | Merino      | 74.7         | 12       | 77.8 | 4        |
| s5035642007WHI393   | Merino      | 74.5         | 14       | 77.4 | 8        |
| \$5030542004040585  | Merino      | 74.4         | 16       | 77.2 | 12       |
| \$5003182007070022  | Merino      | 74.3         | 21       | 76.6 | 12       |
| \$5034252006060205  | Morino      | 74.3         | 21       | 76.6 | 10       |
| s50378020071 B0753  | Morino      | 74.2         | 23       | 76.6 | 19       |
| s5037892007EB0733   | Morino      | 74.2         | 24       | 76.5 | 20       |
| s5047452000000505   | Morino      | 74.1         | 25       | 76.5 | 21       |
| s501005200011(IMF11 | Morino      | 74.1         | 20       | 76.4 | 22       |
| s5030702008080121   | Morino      | 74.1         | 20       | 76.4 | 23       |
| s5022512000000000   | Morino      | 74.0         | 30       | 76.2 | 24       |
| s5030972005051737   | Merino      | 74.0         | 33       | 76.2 | 28       |
| \$5000482007070260  | Merino      | 73.0         | 37       | 76.1 | 20       |
| \$5007882008081200  | Merino      | 73.8         | 30       | 75.0 | 23       |
| \$5049162007070719  | Morino      | 73.8         | <u> </u> | 75.8 | 38       |
| s5049102007070719   | Morino      | 73.0         | 41       | 75.0 | 30       |
| s5038032000CL3020   | Morino      | 73.5         | 40       | 75.7 |          |
| s5025022000000580   | Morino      | 73.5         | 49<br>52 | 75.7 | 41       |
| s501587200606M276   | Morino      | 73.5         | 53       | 75.5 | 42       |
| s5013072000000270   | Morino      | 73.5         | 57       | 75.5 | 45       |
| s5043622006LON449   | Morino      | 73.4         | 58       | 75.3 | 40<br>50 |
| s5045022000LON449   | Morino      | 73.4         | 50       | 75.3 | 50       |
| \$5030822006060225  | Morino      | 73.3         | 61       | 75.0 | 61       |
| \$5039822000000225  | Morino      | 73.3         | 67       | 73.0 | 66       |
| \$5030042000001901  | Morino      | 73.1         | 60       | 74.0 | 71       |
| \$5049022005005345  | Morino      | 73.0         | 70       | 74.0 | 71       |
| s5057692006060124   | Marino      | 72.0         | 79       | 74.4 | 73       |
| \$5044622007070461  | Merino      | 72.0         | 02       | 74.2 | 00<br>97 |
| \$5092342008000573  | Marino      | 72.5         | 03       | 73.9 | 07       |
| \$50505020080G0856  | Merino      | 72.4         | 86       | 73.6 | 95       |
| \$5049162008080600  | Merino      | 72.3         | 89       | 73.4 | 100      |
| \$5024252006023997  | Merino      | 71.8         | 105      | 72.7 | 113      |
| \$5044702008080588  |             | 71.5         | 111      | 72.3 | 119      |
| 51022002000000444   | Poll Dorset | 70.0         | 132      | 71.9 | 12/      |
| S1019/22000001831   |             | 10.4         | 130      | 74.0 | 132      |
| \$1037212007070311  |             | 09.8<br>60.0 |          | /1.0 | 13/      |
| 51040002009090052   |             | 09.0         | 154      | 70.5 | 151      |
| \$1611432008080203  | Poll Dorset | 69.1         | 158      | 70.0 | 156      |

| 40075000000404                           |             | 00.4      | 450                | 70.0                                         | 4            |
|------------------------------------------|-------------|-----------|--------------------|----------------------------------------------|--------------|
| \$1627502008080481                       | Poll Dorset | 69.1      | 159                | /0.0                                         | 157          |
| \$1611432007070025                       | Poll Dorset | 68.9      | 160                | 69.9                                         | 158          |
| s1622882008080077                        | Poll Dorset | 68.8      | 162                | 69.7                                         | 160          |
| s1612352008080608                        | Poll Dorset | 68.8      | 163                | 69.6                                         | 163          |
| s1618922006060050                        | Poll Dorset | 68.7      | 164                | 69.4                                         | 164          |
| s1600012008080010                        | Poll Dorset | 68.7      | 166                | 69.4                                         | 166          |
| s1640732007070364                        | Poll Dorset | 68.7      | 167                | 69.3                                         | 167          |
| s1611582007070190                        | Poll Dorset | 68.6      | 168                | 69.2                                         | 168          |
| s1629472008080219                        | Poll Dorset | 68.6      | 169                | 69.2                                         | 169          |
| s1636772008081037                        | Poll Dorset | 68.5      | 170                | 68.9                                         | 172          |
| s1603362008080541                        | Poll Dorset | 68.4      | 171                | 68.7                                         | 173          |
| s1619722009090133                        | Poll Dorset | 68.3      | 172                | 68.7                                         | 174          |
| s1614152007070440                        | Poll Dorset | 68.3      | 174                | 68.3                                         | 175          |
| s1618862008080157                        | Poll Dorset | 68.1      | 176                | 67.9                                         | 176          |
| s1612352007072025                        | Poll Dorset | 67.5      | 179                | 67.6                                         | 177          |
| s1601852007070369                        | Poll Dorset | 67.4      | 180                | 66.9                                         | 181          |
| s1623682007070468                        | Poll Dorset | 67.3      | 181                | 66.2                                         | 182          |
| s1600852008080021                        | Poll Dorset | 67.1      | 182                | 65.9                                         | 183          |
| s1636772007070839                        | Poll Dorset | 66.6      | 184                | 65.7                                         | 184          |
| s1635282007070182                        | Poll Dorset | 66.4      | 185                | 65.4                                         | 185          |
| s6008152006060120                        | Poll Merino | 74.9      | 10                 | 77.5                                         | 6            |
| s6012442007070304                        | Poll Merino | 74.4      | 18                 | 77.5                                         | 7            |
| s6013322004000WD2                        | Poll Merino | 74.3      | 20                 | 76.3                                         | 25           |
| s6010822007071257                        | Poll Merino | 74.0      | 31                 | 76.0                                         | 30           |
| s6005712006060058                        | Poll Merino | 74.0      | 34                 | 76.0                                         | 31           |
| s6010532007071190                        | Poll Merino | 73.0      | 35                 | 76.0                                         | 32           |
| s6011272007070121                        | Poll Merino | 73.0      | 36                 | 75.9                                         | 36           |
| s6013162007070023                        | Poll Merino | 73.8      | 38                 | 75.7                                         | 40           |
| s6004082007070069                        | Poll Merino | 73.8      | 40                 | 75.6                                         | 40           |
| s6013562007000449                        | Poll Merino | 73.8      | 40                 | 75.3                                         | 53           |
| s6010532003031078                        | Poll Merino | 73.6      | 42                 | 75.2                                         | 54           |
| \$6001052003031070                       | Poll Morino | 73.5      | - <u>+0</u><br>-51 | 75.2                                         | 55           |
| s6001032007071080                        | Poll Merino | 73.5      | 54                 | 73.2                                         | - <u>5</u> 5 |
| \$0090342000000333                       | Poll Merino | 73.5      | 54                 | 74.9                                         | 65           |
| s00080200000027                          | Poll Merino | 73.4      | 55                 | 74.0                                         | 67           |
| \$6091542006060306<br>\$6005712006060004 | Poll Merino | 73.4      |                    | 74.7                                         | 70           |
| \$6003712006060904                       |             | 73.3      | 02                 | 74.0                                         | 70           |
| \$6006152007070323                       | Poll Merino | 72.9      | 72                 | 74.4                                         | 74           |
| \$6012792007070470                       | Poll Merino | 72.9      | 73                 | 74.2                                         | 01           |
| \$6012502004407812                       | Poll Merino | 72.8      | 75                 | 74.1                                         | 83           |
| \$6005532007070002                       | Poli Merino | 72.8      | 76                 | 74.1                                         | 84           |
| \$6013072005050165                       | Poll Merino | 72.6      | 81                 | 73.8                                         | 91           |
| \$6010822008081288                       | Poli Merino | 72.2      | 90                 | 73.7                                         | 93           |
| \$6013362008RAS004                       | Poli Merino | 72.1      | 93                 | 73.5                                         | 98           |
| s6011272008088254                        | Poll Merino | /1.9      | 100                | 73.4                                         | 101          |
| s6091542004040062                        | Poll Merino | 71.8      | 104                | 73.2                                         | 105          |
| s6012882006063091                        | Poll Merino | 71.7      | 108                | 72.5                                         | 115          |
| s6013652006060052                        | Poll Merino | 71.5      | 112                | 71.5                                         | 140          |
| 400400000000000000000000000000000000000  | Prime       |           | _                  | <b>—</b> ——————————————————————————————————— | _            |
| s4801222005051010                        | Samm        | 75.9      | 2                  | 78.1                                         | 3            |
| 40004000000000000                        | Prime       | <b></b> ~ | _                  |                                              | _            |
| s4800402008080217                        | Samm        | /5.6      | 3                  | /7.6                                         | 5            |
| 400000000000000000000000000000000000000  | Prime       |           |                    |                                              |              |
| s4800302008080111                        | Samm        | 75.4      | 4                  | 77.2                                         | 10           |

| s4800552007070068         Samm         75.2         5         76.9         15           s480122200808033         Samm         75.1         6         76.9         16           s4800302007070062         Samm         75.1         7         76.7         17           s480030200800078         Samm         74.8         11         76.0         33           s4800302008080549         Samm         74.6         13         75.9         35           s4800872006060421         Samm         74.4         17         75.4         47           s4800872006060491         Samm         74.0         29         74.2         82           s1920452008080594         Sulfolk         73.0         71         73.7         92           s190208200701494         Sulfolk         72.2         91         73.5         96           s1912012008080394         Sulfolk         71.5         114         72.8         110           s1900602008080395         Sulfolk         71.4         115         72.8         111           s1918622007070265         Sulfolk         70.9         121         71.8         130           s191062007070267         Sulfolk         70.9         123 <th></th> <th>Prime</th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                              |                     | Prime   |      |     |      |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|------|-----|------|------|
| Stabilization         Prime<br>S4801222008080343         Prime<br>Samm         Total         O         Fore           s4801222008080343         Samm         75.1         6         76.9         16           s4800392007070062         Samm         75.1         7         76.7         17           s48003020080078         Samm         74.8         11         76.0         33           s4800872006060421         Samm         74.6         13         75.9         35           s4800872006060191         Samm         74.4         17         75.4         47           s4800992006060191         Samm         74.0         29         74.2         82           s1920452008080594         Sulfolk         72.1         94         73.2         107           s1900120070768         Sulfolk         71.4         116         71.9         129           s1910120080080894         Sulfolk         71.4         116         71.8         130           s19011200707058         Sulfolk         71.4         116         71.8         131           s1901602007070227         Sulfolk         70.0         121         71.8         130           s1920452007070024         Texel         68.2 <td>s4800552007070068</td> <td>Samm</td> <td>75.2</td> <td>5</td> <td>76.9</td> <td>15</td>                                                                                                                                                                                                                                   | s4800552007070068   | Samm    | 75.2 | 5   | 76.9 | 15   |
| s4801222008080343         Samm         75.1         6         76.9         16           s4800392007070062         Samm         75.1         7         76.7         17           s4800302008080078         Samm         74.8         11         76.0         33           s4801042008080549         Samm         74.8         11         75.1         47           s4800872006060421         Samm         74.4         17         75.4         47           s4800992006060191         Samm         74.0         29         74.2         82           s1920452008060594         Sulfolk         73.0         71         73.5         96           s191201200808094         Sulfolk         71.2         114         72.8         110           s191201200808094         Sulfolk         71.5         114         72.8         111           s1912050001010120         Sulfolk         71.4         115         71.8         130           s19120502007070268         Sulfolk         70.9         121         71.8         130           s1900602007070267         Sulfolk         70.0         144         70.6         148           s17004200707024         Texel         68.7                                                                                                                                                                                                                                                                                                                                                    |                     | Prime   |      |     |      |      |
| S4800392007070062         Prime<br>S4800302008080078         Prime<br>Samm         75.1         7         76.7         17           s4800302008080078         Samm         74.8         11         76.0         33           s4801042008080549         Samm         74.8         11         76.0         33           s480092006060191         Samm         74.4         17         75.4         47           s480092006060191         Samm         74.0         29         74.2         82           s1920452008080594         Suffolk         73.0         71         73.7         92           s1900282007071494         Suffolk         71.4         94         73.2         107           s1900602008080369         Suffolk         71.4         115         72.8         111           s1913522007070263         Suffolk         71.4         116         71.9         129           s1913622007070267         Suffolk         70.9         123         71.8         130           s19204520080491         Suffolk         70.0         144         70.6         144           s170802007070267         Suffolk         70.0         144         70.4         144           s170081200070701532                                                                                                                                                                                                                                                                                                                              | s4801222008080343   | Samm    | 75.1 | 6   | 76.9 | 16   |
| s4800392007070062         Samm         75.1         7         76.7         17           s4800302008080078         Samm         74.8         11         76.0         33           s4801042008080549         Samm         74.6         13         75.9         35           s4800872006060421         Samm         74.4         17         75.4         47           s480099200606191         Samm         74.0         29         74.2         82           s1920452008080594         Suffolk         73.0         71         73.7         92           s192020800094         Suffolk         71.5         114         72.8         110           s191201200808094         Suffolk         71.4         115         72.8         111           s191001200808094         Suffolk         71.4         116         71.9         128           s1912012007070508         Suffolk         70.9         121         71.8         130           s191205007070267         Suffolk         70.0         144         70.6         148           s1704202007070224         Texel         68.7         165         69.7         161           s17008120080039         Texel         67.7         177                                                                                                                                                                                                                                                                                                                                           |                     | Prime   |      |     |      |      |
| S4800302008080078         Prime<br>S4801042008080549         Prime<br>Samm         74.8         11         76.0         33           s4801042008080549         Samm         74.6         13         75.9         35           s4800872006060421         Samm         74.4         17         75.4         47           s4800872006060421         Samm         74.4         17         75.4         47           s480087200606060191         Samm         74.0         29         74.2         82           s1920452008080594         Suffolk         73.0         71         73.7         92           s1900802008080369         Suffolk         71.5         114         72.8         110           s19108020007070268         Suffolk         71.4         115         72.8         111           s1913822007070027         Suffolk         70.9         121         71.8         130           s191062007070267         Suffolk         70.9         123         71.8         131           s1906802007070224         Texel         68.8         161         70.4         154           s1700802007070244         Texel         68.2         175         69.0         171           s1702232004040080                                                                                                                                                                                                                                                                                                                           | s4800392007070062   | Samm    | 75.1 | 7   | 76.7 | 17   |
| s4800302008080078         Samm         74.8         11         76.0         33           s4801042008080549         Samm         74.6         13         75.9         35           s4800872006060421         Samm         74.4         17         75.4         47           s4800992006060191         Samm         74.0         29         74.2         82           s1920452008080594         Suffolk         73.0         71         73.7         92           s190028007071494         Suffolk         72.1         94         73.2         107           s190080008080369         Suffolk         71.4         115         72.8         111           s1912012008080369         Suffolk         71.4         116         71.9         128           s1912012008080369         Suffolk         71.4         116         71.9         128           s1913620007070027         Suffolk         70.9         121         71.8         131           s1916612008080491         Suffolk         70.0         134         71.4         116         71.9         128           s1700822007070508         Suffolk         70.0         144         70.6         148         170.4         154                                                                                                                                                                                                                                                                                                                                            |                     | Prime   |      |     |      |      |
| S4801042008080549         Prime<br>Samm         74.6         13         75.9         35           s4800872006060421         Samm         74.4         17         75.4         47           s4800992006060191         Samm         74.0         29         74.2         82           s1920452008080594         Suffolk         73.0         71         73.7         92           s1900282007071494         Suffolk         72.2         91         73.5         96           s1912012008080094         Suffolk         71.5         114         72.8         110           s1900602008080369         Suffolk         71.4         115         72.8         111           s1913622007070227         Suffolk         70.9         121         71.8         130           s1920452007070267         Suffolk         70.9         123         71.8         131           s1930602007070267         Suffolk         70.0         144         70.6         148           s170402007070247         Texel         68.7         165         69.7         161           s170080200707144         Texel         68.2         175         69.0         171           s1702232004040080         Texel         67.7                                                                                                                                                                                                                                                                                                                               | s4800302008080078   | Samm    | 74.8 | 11  | 76.0 | 33   |
| s4801042008080549         Samm         74.6         13         75.9         35           s4800872006060421         Samm         74.4         17         75.4         47           s4800992006060191         Samm         74.0         29         74.2         82           s1920452008080594         Suffolk         73.0         71         73.7         92           s1900282007071494         Suffolk         72.2         91         73.5         96           s1912012008080369         Suffolk         71.4         14         72.8         111           s19111200707058         Suffolk         71.4         116         71.9         129           s1930262007070027         Suffolk         70.4         117         134         131           s190602007070267         Suffolk         70.9         123         71.8         131           s190602007070267         Suffolk         70.0         144         70.6         143           s17064202007070247         Texel         68.7         165         69.7         161           s170080200707144         Texel         68.2         175         69.0         171           s1702232004040080         Texel         67.6                                                                                                                                                                                                                                                                                                                                            |                     | Prime   |      |     |      |      |
| S4800872006060421         Prime<br>Samm         74.4         17         75.4         47           s4800992006060191         Samm         74.0         29         74.2         82           s1920452008080594         Suffolk         73.0         71         73.7         92           s1900282007071494         Suffolk         72.1         94         73.2         107           s1910212008080369         Suffolk         71.4         115         72.1         94         73.2         107           s1900602008080369         Suffolk         71.4         116         72.8         110           s19120201010120         Suffolk         71.4         116         71.9         129           s191362200707027         Suffolk         70.9         121         71.8         130           s1920452007070268         Suffolk         70.0         144         70.6         148           s1704202007070224         Texel         68.7         165         69.7         161           s170080200707023         Texel         68.2         175         69.0         171           s1702232004040080         Texel         67.6         178         67.4         179           s1702082007070144<                                                                                                                                                                                                                                                                                                                               | s4801042008080549   | Samm    | 74.6 | 13  | 75.9 | 35   |
| s4800872006060421         Samm         74.4         17         75.4         47           Prime         Prima         Prime         Prima                                                                                                                                                                                                                                                                     |                     | Prime   |      |     |      |      |
| s4800992006060191         Prime<br>Samm         74.0         29         74.2         82           s1920452008080594         Suffolk         73.0         71         73.7         92           s1902082007071494         Suffolk         72.2         91         73.5         96           s191012008080094         Suffolk         71.5         114         72.8         110           s190112007077058         Suffolk         71.4         116         71.9         129           s19136220070702027         Suffolk         71.4         116         71.9         129           s1913622007070508         Suffolk         70.9         121         71.8         131           s190602007070267         Suffolk         70.0         144         70.6         148           s170402007070224         Texel         68.8         161         70.4         154           s170082007070144         Texel         68.2         175         69.0         171           s1702232007070028         Texel         67.6         178         67.4         179           s17008120880393         Texel         67.0         183         67.1         180           s47020620070771345         Dorper                                                                                                                                                                                                                                                                                                                                        | s4800872006060421   | Samm    | 74.4 | 17  | 75.4 | 47   |
| s4800992006060191         Samm         74.0         29         74.2         82           s1920452008080594         Suffolk         73.0         71         73.7         92           s1900282007071494         Suffolk         72.2         91         73.5         96           s1912012008080094         Suffolk         71.5         114         72.8         110           s1900602008080369         Suffolk         71.4         115         72.8         111           s1918502001010120         Suffolk         71.4         115         72.8         111           s1918502007070027         Suffolk         70.9         121         71.8         133           s1900602007070267         Suffolk         70.9         123         71.8         131           s190602007070247         Texel         68.8         161         70.4         154           s170080200707152         Texel         68.7         165         69.7         161           s1700812008080491         Suffolk         70.0         131         71.7         67.5         178           s1700812007070144         Texel         68.7         165         69.7         161           s1700812008080039         Tex                                                                                                                                                                                                                                                                                                                                  |                     | Prime   |      |     |      |      |
| s1920452008080594         Suffolk         73.0         71         73.7         92           s1900282007071494         Suffolk         72.2         91         73.5         96           s1912012008080094         Suffolk         72.1         94         73.2         107           s1900602008080369         Suffolk         71.4         115         72.8         111           s1918502001010120         Suffolk         71.4         116         71.9         129           s1913622007070508         Suffolk         70.9         121         71.8         130           s1920452007070508         Suffolk         70.9         123         71.8         131           s190602007070508         Suffolk         70.0         144         70.6         148           s1704202007070524         Texel         68.8         161         70.4         154           s170082007070124         Texel         68.2         175         69.0         171           s17008200707040         Texel         67.7         177         67.5         178           s1702232004040080         Texel         67.0         183         67.1         180           s4700142008080380         Dorper         7                                                                                                                                                                                                                                                                                                                                  | s4800992006060191   | Samm    | 74.0 | 29  | 74.2 | 82   |
| s1900282007071494         Suffolk         72.2         91         73.5         96           s1912012008080094         Suffolk         72.1         94         73.2         107           s1900602008080369         Suffolk         71.4         114         72.8         110           s190112007077058         Suffolk         71.4         116         71.9         129           s191362200707027         Suffolk         70.9         121         71.8         131           s1900620007070267         Suffolk         70.9         123         71.8         131           s1900620007070267         Suffolk         70.0         144         70.6         148           s1700802007070224         Texel         68.7         165         69.7         161           s1700822007070144         Texel         68.2         175         69.0         171           s17008200707044         Texel         67.6         178         67.4         179           s1700223200400080         Texel         67.6         178         67.4         179           s1702023200707046         Texel         67.6         178         67.1         180           s4700142008080386         Dorper         7                                                                                                                                                                                                                                                                                                                                  | s1920452008080594   | Suffolk | 73.0 | 71  | 73.7 | 92   |
| s1912012008080094         Suffolk         72.1         94         73.2         107           s1900602008080369         Suffolk         71.5         114         72.8         110           s1901112007077058         Suffolk         71.4         115         72.8         111           s1918502001010120         Suffolk         71.4         116         71.9         129           s1913622007070027         Suffolk         70.9         121         71.8         131           s1900602007070267         Suffolk         70.6         131         71.7         134           s1916612008080491         Suffolk         70.0         144         70.6         148           s1704022007070224         Texel         68.8         161         70.4         154           s1700802007071532         Texel         68.2         175         69.0         171           s1702232004040080         Texel         67.6         178         67.4         179           s170223200707046         Texel         67.6         178         67.1         180           white              59         76.3         26           s4700420007071345                                                                                                                                                                                                                                                                                                                                                                                          | s1900282007071494   | Suffolk | 72.2 | 91  | 73.5 | 96   |
| s1900602008080369         Suffolk         71.5         114         72.8         110           s1901112007077058         Suffolk         71.4         115         72.8         111           s1918502001010120         Suffolk         71.4         116         71.9         129           s1913622007070027         Suffolk         70.9         121         71.8         130           s1920452007070508         Suffolk         70.9         123         71.8         131           s1906020007070267         Suffolk         70.6         131         71.7         134           s1916612008080491         Suffolk         70.0         144         70.6         148           s1704202007070224         Texel         68.7         165         69.7         161           s1700802007071532         Texel         68.7         165         69.7         161           s17002230040080         Texel         67.6         178         67.4         179           s170022300707046         Texel         67.6         178         67.4         179           s170406200707028         Texel         67.0         183         67.1         180           White         St70042008084825                                                                                                                                                                                                                                                                                                                                           | s1912012008080094   | Suffolk | 72.1 | 94  | 73.2 | 107  |
| s19011200707058         Suffolk         71.4         115         72.8         111           s1911200707058         Suffolk         71.4         116         71.9         129           s1913622007070027         Suffolk         70.9         121         71.8         130           s1920452007070508         Suffolk         70.9         123         71.8         131           s1900602007070267         Suffolk         70.6         131         71.7         134           s1916612008080491         Suffolk         70.0         144         70.6         148           s1704202007070224         Texel         68.7         165         69.7         161           s170080200707144         Texel         68.2         175         69.0         171           s170081200808039         Texel         67.6         178         67.4         179           s170223200707046         Texel         67.6         178         67.4         179           s1704062007077118         Dorper         74.2         22         77.2         11           s470142006060036         Dorper         73.3         59         76.3         26           White         s4701792008080386         Dorper </td <td>s1900602008080369</td> <td>Suffolk</td> <td>71.5</td> <td>114</td> <td>72.8</td> <td>110</td>                                                                                                                                                                                                                             | s1900602008080369   | Suffolk | 71.5 | 114 | 72.8 | 110  |
| S1918502001010120         Suffolk         71.4         116         71.9         129           s1913622007070027         Suffolk         70.9         121         71.8         130           s1920452007070508         Suffolk         70.9         123         71.8         131           s1900602007070267         Suffolk         70.6         131         71.7         134           s1916612008080491         Suffolk         70.0         144         70.6         148           s1704202007070224         Texel         68.8         161         70.4         154           s1700802007071532         Texel         68.2         175         69.7         161           s1700812008080039         Texel         67.7         177         67.5         178           s1702232004040080         Texel         67.6         178         67.4         179           s1702032007070028         Texel         67.0         183         67.1         180           white         Dorper         74.2         22         77.2         11           s4700142008084825         Dorper         73.3         59         76.3         26           white         s4701792008080386         Dorper                                                                                                                                                                                                                                                                                                                                         | s1901112007077058   | Suffolk | 71.4 | 115 | 72.8 | 111  |
| Signal Science         Suffolk         Total         Title         Tite         Title         Title                                                                                                                                                                                                                                                  | s1918502001010120   | Suffolk | 71.4 | 116 | 71.9 | 129  |
| 0100000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s1913622007070027   | Suffolk | 70.9 | 121 | 71.8 | 130  |
| 0130102002007070267         Suffolk         70.6         131         71.7         134           s1900602007070224         Texel         68.8         161         70.4         154           s1700802007070224         Texel         68.8         161         70.4         154           s1700820070701532         Texel         68.7         165         69.7         161           s170082007070144         Texel         68.2         175         69.0         171           s1700223004040080         Texel         67.6         178         67.4         179           s170232004040080         Texel         67.6         178         67.4         179           s1704062007070028         Texel         67.0         183         67.1         180           s4702062007071345         Dorper         73.3         59         76.3         26           White              59         51.3         51           s4700142008084825         Dorper         73.2         65         75.3         51         51           s4701792008080386         Dorper         72.9         74.6         72         72         74.6         72 </td <td>s1920452007070508</td> <td>Suffolk</td> <td>70.9</td> <td>123</td> <td>71.8</td> <td>131</td>                                                                                                                                                                                                                                                                                         | s1920452007070508   | Suffolk | 70.9 | 123 | 71.8 | 131  |
| 0100000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s1900602007070267   | Suffolk | 70.6 | 131 | 71.0 | 134  |
| S1704202007070224         Texel         68.8         161         70.4         154           s1704202007070224         Texel         68.7         165         69.7         161           s1700802007071532         Texel         68.3         173         69.4         165           s1700812008080039         Texel         68.2         175         69.0         171           s1702232007070046         Texel         67.6         178         67.4         179           s170406200707028         Texel         67.6         178         67.4         179           s170406200707028         Texel         67.0         183         67.1         180           s4701142007071345         Dorper         73.3         59         76.3         26           white         s4701792008084825         Dorper         73.2         65         75.3         51           s4701792008080386         Dorper         72.9         74         75.1         59           s4701792008080386         Dorper         72.2         92         74.6         72           s4701142006060036         Dorper         72.0         97         73.4         102           White         s2301002007070677                                                                                                                                                                                                                                                                                                                                            | s1916612008080491   | Suffolk | 70.0 | 144 | 70.6 | 148  |
| S1700802007071532         Texel         68.7         165         69.7         161           s1700802007070144         Texel         68.3         173         69.4         165           s1700802007070144         Texel         68.2         175         69.0         171           s1700822007070144         Texel         68.2         175         69.0         171           s1702232004040080         Texel         67.6         178         67.4         179           s1702232007070046         Texel         67.6         178         67.4         179           s1702062007070028         Texel         67.0         183         67.1         180           white              67.3         26           s470142007071345         Dorper         73.3         59         76.3         26           white             59           s4700442008084825         Dorper         72.9         74         75.1         59           s4700702003030011         Dorper         72.9         74.6         72           white           5300060057         Dorper <t< td=""><td>s1704202007070224</td><td></td><td>68.8</td><td>161</td><td>70.0</td><td>154</td></t<>                                                                                                                                                                                                                                                                                                                                                                | s1704202007070224   |         | 68.8 | 161 | 70.0 | 154  |
| S1700022007071044         Texel         68.3         173         69.4         165           s1700622007070144         Texel         68.3         173         69.4         165           s1700622007070144         Texel         68.2         175         69.0         171           s1702232004040080         Texel         67.7         177         67.5         178           s1702232007070046         Texel         67.6         178         67.4         179           s1704062007070028         Texel         67.0         183         67.1         180           s470206200707118         Dorper         74.2         22         77.2         11           s470142007071345         Dorper         73.3         59         76.3         26           white         s470142007071345         Dorper         73.2         65         75.3         51           s4701792008080386         Dorper         72.9         74         75.1         59           s4701792008080386         Dorper         72.0         97         73.4         102           white         s4701392006060057         Dorper         72.0         97         73.4         102           s2301020070706677                                                                                                                                                                                                                                                                                                                                             | s1700802007070224   | Texel   | 68.7 | 165 | 69.7 | 161  |
| S170002200707070144         Texel         60.5         175         63.4         105           s1700812008080039         Texel         68.2         175         69.0         171           s1702232004040080         Texel         67.7         177         67.5         178           s170232007070046         Texel         67.6         178         67.4         179           s17020232007070028         Texel         67.0         183         67.1         180           s4702062007077118         Dorper         74.2         22         77.2         11           white         s4701142007071345         Dorper         73.3         59         76.3         26           s470142008084825         Dorper         73.2         65         75.3         51           white         s4701792008080386         Dorper         72.9         74         75.1         59           s4700702003030011         Dorper         72.2         92         74.6         72           s4701142006060036         Dorper         72.0         97         73.4         102           s4701392006060057         Dorper         70.4         137         72.6         114           s2300102007070677                                                                                                                                                                                                                                                                                                                                         | s1700622007071332   |         | 68.3 | 173 | 69.4 | 165  |
| 3170001200000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$1700812008080039  |         | 68.2 | 175 | 69.0 | 171  |
| S1702232007070046         Texel         67.6         177         07.3         179           s1702232007070046         Texel         67.6         178         67.4         179           s1702232007070028         Texel         67.0         183         67.1         180           white         White         White         171         172         11           s4702062007077118         Dorper         74.2         22         77.2         11           s4701142007071345         Dorper         73.3         59         76.3         26           White         s4700442008084825         Dorper         73.2         65         75.3         51           s4701792008080386         Dorper         72.9         74         75.1         59           White         s4701792008080386         Dorper         72.2         92         74.6         72           s4701142006060036         Dorper         72.0         97         73.4         102           s4701392006060057         Dorper         70.4         137         72.6         114           s2301002007070677         Suffolk         73.2         64         75.0         62           White         s23001320070700                                                                                                                                                                                                                                                                                                                                           | s1700012000000039   |         | 67.7 | 173 | 67.5 | 178  |
| S1702232007070040         Texel         07.0         170         07.4         173           s1704062007070028         Texel         67.0         183         67.1         180           White         Dorper         74.2         22         77.2         11           s4702062007077118         Dorper         73.3         59         76.3         26           White         White           3         51         3         51           s4701142007071345         Dorper         73.3         59         76.3         26           White            3         51         3         51           s4700442008084825         Dorper         72.9         74         75.1         59         3           white            3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 <td>s1702232004040000</td> <td></td> <td>67.6</td> <td>178</td> <td>67.4</td> <td>170</td>                                                                                                                                                                                                                                                                                                                                                                             | s1702232004040000   |         | 67.6 | 178 | 67.4 | 170  |
| S1704002007070020         Texel         07.0         100         07.1         100           white         Dorper         74.2         22         77.2         11           white         White         59         76.3         26           s4700442008084825         Dorper         73.2         65         75.3         51           white         white         54700702003030011         Dorper         72.9         74         75.1         59           s4700702003030011         Dorper         72.0         97         73.4         102           white         s4701142006060036         Dorper         70.4         137         72.6         114           s2301002007070677         Suffolk         73.2         64         75.0         62           white         s2300262005050650         Suffolk         71.6         109         73.1         108           s230                                                                                                                                                                                                                                                                                                                                                                              | s1702232007070040   |         | 67.0 | 183 | 67.4 | 180  |
| white         74.2         22         77.2         11           White         White         73.3         59         76.3         26           White         White         73.3         59         76.3         26           White         White         73.2         65         75.3         51           s4700442008084825         Dorper         73.2         65         75.3         51           White         White         74.7         75.1         59           s4700702003030011         Dorper         72.9         74         75.1         59           White         White         72.9         74.6         72           s4700702003030011         Dorper         72.0         97         73.4         102           White         90         97         73.4         102         90           s4701392006060057         Dorper         70.4         137         72.6         114           s2301002007070677         Suffolk         73.2         64         75.0         62           White         9         73.1         108         9         114           s2300262005050650         Suffolk         71.6         109 <td>31704002007070028</td> <td>W/bito</td> <td>07.0</td> <td>105</td> <td>07.1</td> <td>100</td>                                                                                                                                                                                                                                                                                          | 31704002007070028   | W/bito  | 07.0 | 105 | 07.1 | 100  |
| s4702002007077110       Doper       74.2       22       77.2       11         White       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s4702062007077118   | Dorpor  | 74.2 | 22  | 77.2 | 11   |
| s4701142007071345         Dorper         73.3         59         76.3         26           White                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34702002007077118   | W/bito  | 74.2 | 22  | 11.2 |      |
| S4701142007071545         Dolper         73.2         55         76.3         20           white         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                         | \$4701142007071345  | Dorner  | 73.3 | 59  | 76.3 | 26   |
| s4700442008084825         Dorper         73.2         65         75.3         51           white         white                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34701142007071343   | W/bito  | 70.0 |     | 70.5 | 20   |
| S4700442000004023         Dolper         73.2         0.5         73.3         51           S4701792008080386         Dorper         72.9         74         75.1         59           S4700702003030011         Dorper         72.2         92         74.6         72           S4701142006060036         Dorper         72.0         97         73.4         102           S4701392006060057         Dorper         70.4         137         72.6         114           S4701392006060057         Dorper         70.4         137         72.6         114           S2301002007070677         Suffolk         73.2         64         75.0         62           White         S2300262005050650         Suffolk         71.6         109         73.1         108           S2300102007070040         Suffolk         71.2         119         72.1         123           White         S2300262007072446         Suffolk         70.9         124         71.9         124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$4700442008084825  | Dorper  | 73.2 | 65  | 75.3 | 51   |
| s4701792008080386         Dorper         72.9         74         75.1         59           s4700702003030011         Dorper         72.2         92         74.6         72           s4701142006060036         Dorper         72.0         97         73.4         102           s4701392006060036         Dorper         70.4         137         72.6         114           s4701392006060057         Dorper         70.4         137         72.6         114           s2301002007070677         Suffolk         73.2         64         75.0         62           White         s2300262005050650         Suffolk         71.6         109         73.1         108           s2301132007070040         Suffolk         71.2         119         72.1         123           White         s2300262007072446         Suffolk         70.9         124         71.9         124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34700442000004023   | White   | 10.2 | 00  | 75.5 | 51   |
| S470170200000000         Dotper         72.0         74         76.1         00           s4700702003030011         Dorper         72.2         92         74.6         72           White             72         92         74.6         72           s4701142006060036         Dorper         72.0         97         73.4         102           White             114         102           s4701392006060057         Dorper         70.4         137         72.6         114           s2301002007070677         Suffolk         73.2         64         75.0         62           White              62           S2300262005050650         Suffolk         71.6         109         73.1         108           s2301132007070040         Suffolk         71.2         119         72.1         123           White              124         71.9         124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$4701792008080386  | Dorner  | 72 9 | 74  | 75 1 | 59   |
| s4700702003030011         Dorper         72.2         92         74.6         72           white         white                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34701732000000000   | White   | 12.5 | 74  | 75.1 |      |
| S4700702003030011         Dolper         72.2         32         74.0         72           white         Vertice                                                                                                                                                                                                   | \$4700702003030011  | Dorner  | 72.2 | 92  | 74.6 | 72   |
| s4701142006060036       Dorper       72.0       97       73.4       102         white               102         s4701392006060057       Dorper       70.4       137       72.6       114         s2301002007070677       Suffolk       73.2       64       75.0       62         White                s2300262005050650       Suffolk       71.6       109       73.1       108         White               s2301132007070040       Suffolk       71.2       119       72.1       123         White               s2300262007072446       Suffolk       70.9       124       71.9       124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34700702003030011   | White   | 12.2 | 52  | 74.0 | 12   |
| 3470114200000000       Dorper       72.0       37       73.4       102         white       0       0       0       137       72.6       114         s2301002007070677       Suffolk       73.2       64       75.0       62         White       0       0       0       102       0       0         s2300262005050650       Suffolk       71.6       109       73.1       108         White       0       0       0       0       0       0         s2301132007070040       Suffolk       71.2       119       72.1       123         White       0       0       0       0       0       0         s2300262007072446       Suffolk       70.9       124       71.9       124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$4701142006060036  | Dorner  | 72.0 | 97  | 73.4 | 102  |
| s4701392006060057       Dorper       70.4       137       72.6       114         s2301002007070677       Suffolk       73.2       64       75.0       62         White                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3470114200000000    | White   | 12.0 | 57  | 70.4 | 102  |
| School (1)         School                                                                                                     | \$4701392006060057  | Dorner  | 70.4 | 137 | 72.6 | 114  |
| s2301002007070677         Suffolk         73.2         64         75.0         62           White                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 TI 0 100200000000 | White   | 10.4 | 107 | 12.0 | 11-7 |
| Science Control Control         Science Contro         Science Control         Sci | s2301002007070677   | Suffolk | 73.2 | 64  | 75.0 | 62   |
| s2300262005050650         Suffolk         71.6         109         73.1         108           s2301132007070040         White                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | White   | 10.2 |     | 10.0 | 02   |
| Second construction         Suffork         F1.0         F0.1         F0.1         F0.1           s2301132007070040         Suffolk         71.2         119         72.1         123           White         White         Vhite         Vhite         Vhite         Vhite         Vhite           s2300262007072446         Suffolk         70.9         124         71.9         124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s2300262005050650   | Suffolk | 71.6 | 109 | 73.1 | 108  |
| s2301132007070040         Suffolk         71.2         119         72.1         123           White                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | White   | 1.0  | 100 | 70.1 | 100  |
| White         Vite         124         71.9         124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s2301132007070040   | Suffolk | 71.2 | 119 | 72.1 | 123  |
| s2300262007072446 Suffolk 70.9 124 71.9 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | White   |      |     | 1 1  | 120  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s2300262007072446   | Suffolk | 70.9 | 124 | 71.9 | 124  |

| s2301132008080205         Suffolk         70.9         125         71.9         128           White         White         70.8         127         71.7         133           s2303182008080262         Suffolk         70.8         127         71.7         133           White         White         129         71.6         136           S2304502007071456         Suffolk         70.7         129         71.6         136           White         White         133         71.5         138           s2300012008080022         Suffolk         70.6         133         71.5         138           White         135         71.5         139         139         141           White         138         71.2         141 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| White         White         70.8         127         71.7         133           S2303182008080262         Suffolk         70.8         127         71.7         133           White         White         129         71.6         136           S230012008080022         Suffolk         70.6         133         71.5         138           S2300012008080022         Suffolk         70.6         133         71.5         138           White         S2300152009090255         Suffolk         70.5         135         71.5         139           White         S2300022008080234         Suffolk         70.3         138         71.2         141                                                                             |
| s2303182008080262         Suffolk         70.8         127         71.7         133           White         White         129         71.6         136           S2304502007071456         Suffolk         70.7         129         71.6         136           White         White         133         71.5         138           S2300012008080022         Suffolk         70.6         133         71.5         138           White         Vhite         135         71.5         139           White         Vhite         138         71.2         141           White         Vhite         138         71.2         141                                                                                                        |
| White         White         129         71.6         136           s2304502007071456         Suffolk         70.7         129         71.6         136           White               136           s2300012008080022         Suffolk         70.6         133         71.5         138           White                 s2300152009090255         Suffolk         70.5         135         71.5         139           White                 s2300022008080234         Suffolk         70.3         138         71.2         141                                                                                                                                                                                                        |
| s2304502007071456         Suffolk         70.7         129         71.6         136           White         White         133         71.5         138           s2300012008080022         Suffolk         70.6         133         71.5         138           White         White         135         71.5         139           S23000152009090255         Suffolk         70.5         135         71.5         139           White         White         138         71.2         141           White         White         138         71.2         141                                                                                                                                                                          |
| White         White         133         71.5         138           s2300012008080022         Suffolk         70.6         133         71.5         138           White                133         71.5         138           s2300152009090255         Suffolk         70.5         135         71.5         139           white           White               s2300022008080234         Suffolk         70.3         138         71.2         141           White                                                                                                                                                                                                                                                                    |
| s2300012008080022         Suffolk         70.6         133         71.5         138           White                133         71.5         138           s2300152009090255         Suffolk         70.5         135         71.5         139           White               138         71.2         141           S2300022008080234         Suffolk         70.3         138         71.2         141                                                                                                                                                                                                                                                                                                                                |
| White         White         135         71.5         139           s2300152009090255         Suffolk         70.5         135         71.5         139           White         Vhite         Vhite         138         71.2         141           White         Vhite         Vhite         Vhite         141                                                                                                                                                                                                                                                                                                                                                                                                                         |
| s2300152009090255         Suffolk         70.5         135         71.5         139           s2300022008080234         White             138         71.2         141           White               141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| s2300022008080234         White         138         71.2         141           White         White         138         71.2         141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| s2300022008080234         Suffolk         70.3         138         71.2         141           White                141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| White                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| s2300912007070008 Suffolk 70.2 139 71.1 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| White                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| s2300992008080097 Suffolk 70.1 140 71.1 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| White                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| s2303242008085244 Suffolk 70.1 141 71.0 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| s2300262008083813 Suttolk 70.1 142 70.8 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| s2300152007070143 Suttolk 70.0 143 70.7 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| S2300432007070591 SUTTOIK 70.0 145 70.6 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| S2303242007075030 SUIIOIK 09.9 146 70.5 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| S2300022007070096 Sulloik 09.9 149 70.3 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2300432008080644 Suffelk 60.8 150 70.5 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| S2300432008060044         Sulloin         09.8         150         70.3         152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2300302008080116 Suffolk 60.8 152 70.5 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| White                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| s2300092007070279 Suffolk 69.8 153 69.7 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| White 03.0 100 03.7 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| s2300342007074914 Suffolk 69.3 156 69.6 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| White                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| s2300432008080136 Suffolk 69.2 157 69.1 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

**Table 11.** The BLUP estimates for the sires within sire breed and their ranking for theTopside cut.

| Sire Number       | Breed     | Tende | Rank   | Juicy | Rank  |
|-------------------|-----------|-------|--------|-------|-------|
|                   |           | r     | Tender | -     | Juicy |
| s0600032006060121 | Bond      | 48.8  | 110    | 49.7  | 65    |
|                   | Border    |       |        |       |       |
| s0237802008080157 | Leicester | 56.1  | 7      | 56.0  | 2     |
|                   | Border    |       |        |       |       |
| s0244112006060369 | Leicester | 54.4  | 16     | 53.2  | 10    |
|                   | Border    |       |        |       |       |
| s020041200707J039 | Leicester | 52.4  | 43     | 51.9  | 20    |
|                   | Border    |       |        |       |       |
| s0236912008088370 | Leicester | 51.3  | 57     | 51.5  | 30    |

|                   | Border       |      |     |      |     |
|-------------------|--------------|------|-----|------|-----|
| s0219292007070261 | Leicester    | 51.0 | 67  | 51.4 | 31  |
|                   | Border       |      | _   |      |     |
| s0246862007070179 | Leicester    | 50.9 | 68  | 51.1 | 36  |
|                   | Border       |      |     |      |     |
| s0247152008080085 | Leicester    | 50.8 | 69  | 50.7 | 44  |
|                   | Border       |      |     |      |     |
| s0236662006060976 | Leicester    | 50.3 | 84  | 50.3 | 48  |
|                   | Border       |      | _   |      |     |
| s0241662008080220 | Leicester    | 49.9 | 91  | 49.3 | 78  |
|                   | Border       |      |     |      |     |
| s0250022008085029 | Leicester    | 49.5 | 98  | 49.2 | 80  |
| s1500622006060070 | Coopworth    | 52.2 | 46  | 49.9 | 57  |
| s1500292008080181 | Coopworth    | 50.6 | 74  | 49.3 | 79  |
| s1500392006061009 | Coopworth    | 49.8 | 93  | 49.0 | 90  |
| s1500292007070244 | Coopworth    | 48.9 | 109 | 48.8 | 96  |
| s1500992007071449 | Coopworth    | 48.6 | 113 | 48.3 | 108 |
| s1500152003030196 | Coopworth    | 48.4 | 115 | 48.2 | 110 |
| s1500482007070769 | Coopworth    | 48.3 | 119 | 47.7 | 133 |
| s1500482008080808 | Coopworth    | 48.1 | 126 | 47.4 | 140 |
| s0319232001011072 | Corriedale   | 58.7 | 3   | 53.6 | 9   |
| s0300362005050134 | Corriedale   | 55.5 | 9   | 53.2 | 11  |
| s0323612006060209 | Corriedale   | 53.6 | 24  | 52.4 | 17  |
| s0318972008080282 | Corriedale   | 52.9 | 32  | 51.9 | 21  |
| s0324012007070002 | Corriedale   | 52.8 | 35  | 51.6 | 28  |
| s0315272003030360 | Corriedale   | 51.7 | 52  | 51.0 | 39  |
| s0300182004045220 | Corriedale   | 50.2 | 86  | 50.7 | 42  |
| s0314602006543022 | Corriedale   | 50.1 | 88  | 50.3 | 50  |
| s0318972006060386 | Corriedale   | 49.5 | 99  | 50.2 | 52  |
| s0322722008080072 | Corriedale   | 48.2 | 123 | 47.6 | 134 |
| s5100492007071700 | Dohne Merino | 54.8 | 12  | 51.6 | 27  |
| s5100072008084048 | Dohne Merino | 54.1 | 19  | 50.7 | 41  |
| s5101402006060368 | Dohne Merino | 53.9 | 21  | 49.9 | 60  |
| s5100072008083953 | Dohne Merino | 51.5 | 54  | 49.8 | 63  |
| s5100732007070006 | Dohne Merino | 50.5 | 78  | 49.1 | 86  |
| s5101462007070128 | Dohne Merino | 50.0 | 89  | 49.0 | 92  |
| s5100092007070376 | Dohne Merino | 49.1 | 106 | 48.5 | 103 |
| s5100292008088124 | Dohne Merino | 48.7 | 111 | 48.0 | 117 |
| s5100032007070949 | Dohne Merino | 48.3 | 120 | 47.9 | 121 |
| s5100302005050068 | Dohne Merino | 47.4 | 134 | 47.5 | 136 |
| s4000302007071209 | Dorper       | 52.7 | 38  | 54.1 | 6   |
| s4000302007070056 | Dorper       | 50.7 | 72  | 52.9 | 13  |
| s4000302007070617 | Dorper       | 49.7 | 96  | 51.8 | 24  |
| s5000872006060096 | Merino       | 56.6 | 5   | 52.3 | 18  |
| s5037892007LB0753 | Merino       | 55.8 | 8   | 51.9 | 22  |
| s5047432000000503 | Merino       | 55.4 | 10  | 51.3 | 33  |
| s5007882007071254 | Merino       | 54.3 | 18  | 51.2 | 34  |
| s5034252006060205 | Merino       | 53.7 | 22  | 51.2 | 35  |
| s5038632006OL3626 | Merino       | 53.3 | 28  | 51.0 | 37  |
| s5030972005051737 | Merino       | 53.2 | 30  | 51.0 | 38  |
| s5018852006TRIMP  |              |      |     |      |     |
| H                 | Merino       | 52.8 | 34  | 50.8 | 40  |
| s5015522006060480 | Merino       | 52.7 | 37  | 50.7 | 43  |

| s5044702006060022                         | Merino      | 52.6 | 39          | 50.2 | 54  |
|-------------------------------------------|-------------|------|-------------|------|-----|
| s5030542004040585                         | Merino      | 52.5 | 40          | 49.8 | 62  |
| s5030702008080121                         | Merino      | 52.4 | 42          | 49.7 | 64  |
| s5007882008081290                         | Merino      | 52.0 | 48          | 49.7 | 66  |
| s5049162007070719                         | Merino      | 52.0 | 49          | 49.6 | 68  |
| s50505020080G0856                         | Merino      | 51.9 | 51          | 49.6 | 69  |
| s5046152004040024                         | Merino      | 51.7 | 53          | 49.5 | 72  |
| s5017042007L68007                         | Merino      | 51.4 | 55          | 49.4 | 76  |
| s5035642007WHI393                         | Merino      | 51.2 | 60          | 49.3 | 77  |
| s5039822006060225                         | Merino      | 51.2 | 62          | 49.1 | 88  |
| s5000482007070260                         | Merino      | 51.2 | 64          | 49.0 | 91  |
| s5022512006066030                         | Merino      | 50.7 | 71          | 48.8 | 97  |
| s5023022006006580                         | Merino      | 50.7 | 73          | 48.4 | 105 |
| \$502302200000000000000000000000000000000 | Merino      | 50.6 | 73          | /8.2 | 112 |
| s5003182007070022                         | Merino      | 50.0 | <u> 0</u> 0 | 48.2 | 11/ |
| \$5038842008081081                        | Morino      | 10.0 | 100         | 40.2 | 114 |
| s5030042000001301                         | Morino      | 49.4 | 100         | 40.1 | 124 |
| s50394020070E1710                         | Morino      | 49.0 | 118         | 47.5 | 124 |
| \$5037892008080124                        | Morino      | 40.3 | 121         | 47.0 | 123 |
| \$5024232000023997                        | Morino      | 40.0 | 121         | 47.7 | 127 |
| s5044822007070401                         | Morino      | 40.2 | 122         | 47.5 | 130 |
| s50923420000C0373                         | Morino      | 47.3 | 120         | 47.3 | 1/2 |
| \$5049022005005345                        | Merino      | 47.3 | 100         | 47.2 | 143 |
| S501567200606101276                       | Merino      | 47.2 | 137         | 47.1 | 140 |
| \$5044702008080588                        | Marino      | 47.0 | 140         | 45.9 | 103 |
| \$5049162008080600                        |             | 44.9 | 104         | 45.4 | 170 |
| \$1622882007070644                        | Poll Dorset | 49.4 | 101         | 50.4 | 47  |
| \$1637212007070311                        | Poll Dorset | 47.9 | 129         | 48.4 | 104 |
| \$1611432006060203                        | Poll Dorset | 40.3 | 149         | 40.3 | 109 |
| \$1619722006061831                        | Poll Dorset | 45.9 | 153         | 47.8 | 127 |
| \$1600012008080010                        | Poll Dorset | 45.9 | 154         | 47.3 | 141 |
| \$1636772008081037                        | Poll Dorset | 45.5 | 150         | 47.1 | 144 |
| \$1640732007070364                        | Poll Dorset | 45.4 | 157         | 46.9 | 147 |
| \$1640002009090052                        | Poll Dorset | 45.4 | 158         | 46.8 | 148 |
| \$1618922006060050                        | Poll Dorset | 45.1 | 161         | 46.6 | 152 |
| \$1612352007072025                        | Poll Dorset | 45.1 | 162         | 46.2 | 158 |
| \$1627502008080481                        | Poll Dorset | 44.6 | 167         | 46.0 | 161 |
| s1612352008080608                         | Poll Dorset | 44.6 | 168         | 45.7 | 165 |
| s1629472008080219                         | Poll Dorset | 44.5 | 169         | 45.6 | 166 |
| s1611432007070025                         | Poll Dorset | 44.2 | 172         | 45.6 | 167 |
| s1603362008080541                         | Poll Dorset | 43.5 | 175         | 45.6 | 168 |
| s1622882008080077                         | Poll Dorset | 43.5 | 176         | 45.3 | 171 |
| s1619722009090133                         | Poll Dorset | 43.0 | 177         | 45.1 | 174 |
| s1618862008080157                         | Poll Dorset | 42.8 | 178         | 44.6 | 177 |
| s1611582007070190                         | Poll Dorset | 42.6 | 179         | 44.5 | 178 |
| s1614152007070440                         | Poll Dorset | 41.1 | 180         | 44.3 | 180 |
| s1601852007070369                         | Poll Dorset | 40.4 | 181         | 43.2 | 181 |
| s1623682007070468                         | Poll Dorset | 40.2 | 182         | 43.1 | 182 |
| s1600852008080021                         | Poll Dorset | 39.1 | 183         | 43.0 | 183 |
| s1636772007070839                         | Poll Dorset | 39.0 | 184         | 41.4 | 184 |
| s1635282007070182                         | Poll Dorset | 39.0 | 185         | 40.7 | 185 |
| s6013322004000WD                          |             |      |             |      |     |
| 2                                         | Poll Merino | 59.5 | 1           | 54.7 | 3   |
| s6010822007071257                         | Poll Merino | 59.4 | 2           | 53.9 | 7   |

| s6013562007000449 | Poll Merino  | 56.5 | 6   | 51.9 | 19  |
|-------------------|--------------|------|-----|------|-----|
| s6012442007070304 | Poll Merino  | 54.9 | 11  | 50.3 | 51  |
| s6008152006060120 | Poll Merino  | 53.0 | 31  | 50.2 | 53  |
| s6008152007070323 | Poll Merino  | 52.7 | 36  | 50.2 | 55  |
| s6010532003031078 | Poll Merino  | 52.5 | 41  | 50.0 | 56  |
| s6011272007070121 | Poll Merino  | 52.2 | 47  | 49.9 | 58  |
| s6012792007070470 | Poll Merino  | 51.3 | 58  | 49.9 | 59  |
| s6013162007070023 | Poll Merino  | 51.2 | 59  | 49.8 | 61  |
| s6091542006060306 | Poll Merino  | 51.2 | 63  | 49.4 | 73  |
| s6004082007070069 | Poll Merino  | 50.7 | 70  | 49.4 | 75  |
| s6010822008081288 | Poll Merino  | 50.6 | 75  | 49.1 | 85  |
| s6008802006060627 | Poll Merino  | 50.5 | 79  | 49.1 | 89  |
| s6012502004407812 | Poll Merino  | 50.5 | 80  | 48.9 | 94  |
| s6013072005050165 | Poll Merino  | 50.1 | 87  | 48.0 | 119 |
| s6010532007071190 | Poll Merino  | 49.8 | 94  | 47.9 | 122 |
| s6013652006060052 | Poll Merino  | 49.6 | 97  | 47.7 | 130 |
| s6005712006060904 | Poll Merino  | 49.2 | 105 | 47.0 | 146 |
| s6013362008RAS004 | Poll Merino  | 48.3 | 117 | 46.7 | 150 |
| s6005712006060058 | Poll Merino  | 47.7 | 131 | 46.5 | 154 |
| s6005532007070002 | Poll Merino  | 47.5 | 133 | 46.4 | 155 |
| s6012882006063091 | Poll Merino  | 47.1 | 139 | 46.1 | 159 |
| s6090542006066533 | Poll Merino  | 46.5 | 146 | 45.4 | 169 |
| s6001052007071080 | Poll Merino  | 46.3 | 148 | 45.2 | 173 |
| s6091542004040062 | Poll Merino  | 46.0 | 152 | 45.0 | 175 |
| s6011272008088254 | Poll Merino  | 44.4 | 170 | 44.4 | 179 |
| s4800402008080217 | Prime Samm   | 56.7 | 4   | 54.3 | 4   |
| s4800392007070062 | Prime Samm   | 54.6 | 14  | 53.6 | 8   |
| s4800552007070068 | Prime Samm   | 54.5 | 15  | 53.1 | 12  |
| s4801222005051010 | Prime Samm   | 54.0 | 20  | 52.8 | 15  |
| s4801222008080343 | Prime Samm   | 53.7 | 23  | 52.7 | 16  |
| s4800872006060421 | Prime Samm   | 53.6 | 25  | 51.8 | 25  |
| s4800302008080078 | Prime Samm   | 53.2 | 29  | 51.4 | 32  |
| s4801042008080549 | Prime Samm   | 52.8 | 33  | 50.5 | 45  |
| s4800302008080111 | Prime Samm   | 52.3 | 44  | 50.4 | 46  |
| s4800992006060191 | Prime Samm   | 49.0 | 107 | 50.3 | 49  |
| s1900282007071494 | Suffolk      | 53.4 | 27  | 51.5 | 29  |
| s1901112007077058 | Suffolk      | 52.2 | 45  | 49.6 | 67  |
| s1920452008080594 | Suffolk      | 50.4 | 82  | 49.5 | 70  |
| s1912012008080094 | Suffolk      | 50.3 | 83  | 49.5 | 71  |
| s1913622007070027 | Suffolk      | 49.8 | 92  | 49.1 | 87  |
| s1918502001010120 | Suffolk      | 49.3 | 103 | 48.7 | 98  |
| s1900602008080369 | Suffolk      | 48.7 | 112 | 48.5 | 101 |
| s1916612008080491 | Suffolk      | 48.1 | 124 | 48.5 | 102 |
| s1900602007070267 | Suffolk      | 48.0 | 127 | 47.8 | 128 |
| s1920452007070508 | Suffolk      | 46.7 | 143 | 47.8 | 129 |
| s1700802007071532 | Texel        | 48.4 | 116 | 49.2 | 82  |
| s1700622007070144 | Texel        | 47.1 | 138 | 48.8 | 95  |
| s1704202007070224 | Texel        | 46.9 | 142 | 48.2 | 111 |
| s1700812008080039 | Texel        | 46.3 | 147 | 48.2 | 115 |
| s1704062007070028 | Texel        | 45.6 | 155 | 47.3 | 142 |
| s1702232007070046 | Texel        | 45.1 | 160 | 46.8 | 149 |
| s1702232004040080 | Texel        | 44.0 | 173 | 45.3 | 172 |
| s4702062007077118 | White Dorper | 54.7 | 13  | 56.1 | 1   |

| s4700442008084825 | White Dorper  | 54.4 | 17  | 54.2 | 5   |
|-------------------|---------------|------|-----|------|-----|
| s4701392006060057 | White Dorper  | 53.5 | 26  | 52.8 | 14  |
| s4701142007071345 | White Dorper  | 51.9 | 50  | 51.8 | 23  |
| s4700702003030011 | White Dorper  | 51.2 | 61  | 51.7 | 26  |
| s4701792008080386 | White Dorper  | 51.1 | 65  | 49.2 | 81  |
| s4701142006060036 | White Dorper  | 47.6 | 132 | 49.1 | 84  |
| s2301002007070677 | White Suffolk | 51.4 | 56  | 49.4 | 74  |
| s2300262005050650 | White Suffolk | 51.0 | 66  | 49.2 | 83  |
| s2300992008080097 | White Suffolk | 50.6 | 76  | 48.9 | 93  |
| s2300012008080022 | White Suffolk | 50.4 | 81  | 48.6 | 99  |
| s2304502007071456 | White Suffolk | 50.2 | 85  | 48.6 | 100 |
| s2301132008080205 | White Suffolk | 49.8 | 95  | 48.3 | 106 |
| s2303182008080262 | White Suffolk | 49.3 | 102 | 48.3 | 107 |
| s2300302008080116 | White Suffolk | 49.2 | 104 | 48.2 | 113 |
| s2300262007072446 | White Suffolk | 48.5 | 114 | 48.0 | 118 |
| s2300152007070143 | White Suffolk | 48.1 | 125 | 48.0 | 120 |
| s2300262008083813 | White Suffolk | 47.7 | 130 | 47.9 | 123 |
| s2300912007070008 | White Suffolk | 47.2 | 136 | 47.8 | 126 |
| s2301132007070040 | White Suffolk | 46.9 | 141 | 47.7 | 132 |
| s2300152009090255 | White Suffolk | 46.6 | 144 | 47.6 | 135 |
| s2303242008085244 | White Suffolk | 46.5 | 145 | 47.5 | 138 |
| s2300432008080644 | White Suffolk | 46.0 | 150 | 46.7 | 151 |
| s2300092007070279 | White Suffolk | 46.0 | 151 | 46.5 | 153 |
| s2300342007074914 | White Suffolk | 45.3 | 159 | 46.3 | 156 |
| s2300432008080136 | White Suffolk | 44.9 | 163 | 46.3 | 157 |
| s2303242007075630 | White Suffolk | 44.6 | 165 | 46.0 | 160 |
| s2300022008080234 | White Suffolk | 44.6 | 166 | 45.9 | 162 |
| s2300432007070591 | White Suffolk | 44.2 | 171 | 45.8 | 164 |
| s2300022007070098 | White Suffolk | 43.8 | 174 | 44.9 | 176 |

| Sire Number       | Breed     | Flavour | Rank    | Overall | Rank    |
|-------------------|-----------|---------|---------|---------|---------|
|                   |           |         | Flavour | Liking  | Overall |
|                   |           |         |         | C       | Liking  |
| s0600032006060121 | Bond      | 60.7    | 2       | 58.3    | 8       |
|                   | Border    |         |         |         |         |
| s020041200707J039 | Leicester | 61.3    | 1       | 59.9    | 1       |
|                   | Border    |         |         |         |         |
| s0244112006060369 | Leicester | 59.7    | 8       | 57.9    | 13      |
|                   | Border    |         |         |         |         |
| s0246862007070179 | Leicester | 58.1    | 30      | 55.7    | 37      |
|                   | Border    |         |         |         |         |
| s0236662006060976 | Leicester | 57.7    | 42      | 55.2    | 48      |
|                   | Border    |         |         |         |         |
| s0219292007070261 | Leicester | 57.5    | 45      | 55.1    | 54      |
|                   | Border    |         |         |         |         |
| s0237802008080157 | Leicester | 57.5    | 46      | 54.9    | 59      |
|                   | Border    |         |         |         |         |
| s0241662008080220 | Leicester | 57.5    | 47      | 54.7    | 63      |
|                   | Border    |         |         |         |         |
| s0250022008085029 | Leicester | 57.1    | 67      | 54.6    | 64      |
|                   | Border    |         |         |         |         |
| s0236912008088370 | Leicester | 56.4    | 88      | 54.2    | 72      |

|                      | Border           |      |     |      |     |
|----------------------|------------------|------|-----|------|-----|
| s0247152008080085    | Leicester        | 56.0 | 103 | 54.0 | 77  |
| s1500292008080181    | Coopworth        | 58.4 | 24  | 55.9 | 32  |
| s1500392006061009    | Coopworth        | 57.8 | 38  | 54.4 | 68  |
| s1500622006060070    | Coopworth        | 57.2 | 55  | 54.0 | 78  |
| s1500292007070244    | Coopworth        | 57.1 | 58  | 53.4 | 90  |
| s1500232007070244    | Coopworth        | 57.1 | 60  | 53.4 | 92  |
| s1500992007071449    | Coopworth        | 56.6 | 80  | 53.4 | 92  |
| s1500132003030190    | Coopworth        | 56.3 | 05  | 52.0 | 101 |
| s1500482007070709    | Coopworth        | 50.5 | 90  | 52.9 | 101 |
| \$130048200808080808 | Coopworth        | 55.0 | 113 | 59.0 | 134 |
| s0319232001011072    | Corriedale       | 59.7 | 9   | 56.0 | 11  |
| \$0300362005050134   |                  | 59.2 | 14  | 57.8 | 14  |
| \$0314602006543022   |                  | 58.6 | 20  | 56.1 | 27  |
| s0318972008080282    | Corriedale       | 58.1 | 31  | 55.8 | 33  |
| s0323612006060209    | Corriedale       | 57.9 | 35  | 55.8 | 35  |
| s0324012007070002    | Corriedale       | 57.8 | 39  | 55.6 | 38  |
| s0318972006060386    | Corriedale       | 56.6 | 81  | 53.8 | 81  |
| s0300182004045220    | Corriedale       | 56.4 | 89  | 53.7 | 85  |
| s0322722008080072    | Corriedale       | 56.1 | 99  | 52.6 | 115 |
| s0315272003030360    | Corriedale       | 54.2 | 153 | 49.7 | 163 |
| s5100072008084048    | Dohne Merino     | 57.9 | 36  | 56.6 | 23  |
| s5101462007070128    | Dohne Merino     | 57.3 | 52  | 55.8 | 36  |
| s5100072008083953    | Dohne Merino     | 56.8 | 71  | 55.6 | 39  |
| s5101402006060368    | Dohne Merino     | 56.8 | 73  | 55.3 | 44  |
| s5100092007070376    | Dohne Merino     | 56.6 | 83  | 54.2 | 73  |
| s5100032007070949    | Dohne Merino     | 56.2 | 96  | 53.3 | 94  |
| s5100292008088124    | Dohne Merino     | 56.1 | 101 | 52.8 | 106 |
| s5100732007070006    | Dohne Merino     | 55.4 | 116 | 52.6 | 113 |
| s5100492007071700    | Dohne Merino     | 55.4 | 117 | 52.4 | 119 |
| s5100302005050068    | Dohne Merino     | 55.2 | 119 | 51.1 | 140 |
| s4000302007071209    | Dorper           | 59.3 | 12  | 58.3 | 7   |
| s4000302007070056    | Dorper           | 58.6 | 21  | 55.5 | 42  |
| s4000302007070617    | Dorper           | 57.9 | 34  | 54.8 | 60  |
| \$5000872006060096   | Merino           | 58.6 | 22  | 57.2 | 17  |
| \$5000072000000000   | Morino           | 58.3 | 22  | 56.3 | 24  |
| s5013322000000400    | Merino           | 58.2 | 20  | 56.3 | 24  |
| S5007882007071254    | Merino           | 57.0 | 29  | 56.1 | 20  |
| s5035042007W111595   | Merino           | 57.9 | 32  | 56.0 | 20  |
| \$5050542004040565   | Merino           | 57.0 | 37  | 50.0 | 31  |
| \$5003182007070022   | Marino           | 57.4 | 40  | 55.5 | 41  |
| \$5034252006060205   | Merino<br>Merino | 57.2 | 56  | 55.3 | 46  |
| \$5037892007LB0753   | Ivierino         | 57.2 | 57  | 55.2 | 49  |
| \$5047432000000503   | Merino           | 57.1 | 62  | 55.1 | 50  |
| s50188520061RIMP     |                  | /    |     | /    |     |
| H                    | Merino           | 57.1 | 63  | 55.1 | 53  |
| s5030702008080121    | Merino           | 57.1 | 64  | 55.1 | 56  |
| s5022512006066030    | Merino           | 57.1 | 66  | 55.0 | 57  |
| s5044702006060022    | Merino           | 56.8 | 70  | 54.7 | 62  |
| s5030972005051737    | Merino           | 56.7 | 77  | 54.6 | 65  |
| s5000482007070260    | Merino           | 56.7 | 78  | 54.1 | 74  |
| s5007882008081290    | Merino           | 56.7 | 79  | 54.0 | 76  |
| s5049162007070719    | Merino           | 56.5 | 85  | 54.0 | 79  |
| s5038632006OL3626    | Merino           | 56.5 | 86  | 53.7 | 87  |
| s5023022006006580    | Merino           | 56.3 | 90  | 53.5 | 89  |

| s5039462007OLY716   | Merino      | 56.3 | 91  | 53.4 | 91  |
|---------------------|-------------|------|-----|------|-----|
| s501587200606M276   | Merino      | 56.3 | 93  | 52.9 | 102 |
| s5017042007L68007   | Merino      | 56.2 | 98  | 52.8 | 107 |
| s5043622006LON449   | Merino      | 56.1 | 100 | 52.7 | 109 |
| s5046152004040024   | Merino      | 55.7 | 109 | 52.5 | 117 |
| s5039822006060225   | Merino      | 55.6 | 112 | 52.0 | 126 |
| s5038842008081981   | Merino      | 55.2 | 123 | 51.8 | 129 |
| s5049022005005345   | Merino      | 55.1 | 127 | 51.7 | 130 |
| s5037892008080124   | Merino      | 54.8 | 137 | 51.6 | 131 |
| s5044822007070461   | Merino      | 54.6 | 140 | 51.4 | 135 |
| s50923420060C0573   | Merino      | 54.5 | 142 | 51.1 | 139 |
| s50505020080G0856   | Merino      | 54.5 | 144 | 50.8 | 145 |
| \$5049162008080600  | Merino      | 54.4 | 150 | 49.8 | 160 |
| s5024252006023997   | Merino      | 54.3 | 152 | 49.6 | 165 |
| s5044702008080588   | Merino      | 53.5 | 163 | 47.8 | 177 |
| s1622882007070644   | Poll Dorset | 55.2 | 122 | 52.9 | 100 |
| s1619722006061831   | Poll Dorset | 55.0 | 129 | 52.7 | 111 |
| s1637212007070311   | Poll Dorset | 55.0 | 120 | 52.7 | 121 |
| s1640002009090052   | Poll Dorset | 54.6 | 141 | 52.2 | 122 |
| s1611432008080203   | Poll Dorset | 54.5 | 147 | 51.9 | 128 |
| s1627502008080481   | Poll Dorset | 53.8 | 160 | 51.4 | 136 |
| s1611432007070025   | Poll Dorset | 53.4 | 164 | 51.1 | 141 |
| s1622882008080077   | Poll Dorset | 53.3 | 167 | 50.6 | 149 |
| s1612352008080608   | Poll Dorset | 53.1 | 168 | 50.4 | 154 |
| s16189220060600050  | Poll Dorset | 53.0 | 169 | 50.0 | 157 |
| s1600012008080010   | Poll Dorset | 53.0 | 170 | 49.8 | 158 |
| s1640732007070364   | Poll Dorset | 52.9 | 170 | 49.7 | 164 |
| s161158200707050190 | Poll Dorset | 52.9 | 172 | 49.6 | 166 |
| s1629472008080219   | Poll Dorset | 52.8 | 173 | 49.6 | 167 |
| s1636772008081037   | Poll Dorset | 52.8 | 174 | 49.4 | 168 |
| s1603362008080541   | Poll Dorset | 52.8 | 175 | 49.2 | 172 |
| s1619722009090133   | Poll Dorset | 52.6 | 177 | 49.0 | 174 |
| s1614152007070440   | Poll Dorset | 52.5 | 178 | 47.7 | 178 |
| s1618862008080157   | Poll Dorset | 51.6 | 179 | 47.6 | 179 |
| s1612352007072025   | Poll Dorset | 51.1 | 180 | 46.7 | 180 |
| s1601852007070369   | Poll Dorset | 51.0 | 181 | 46.5 | 181 |
| s1623682007070468   | Poll Dorset | 50.8 | 182 | 46.2 | 182 |
| s1600852008080021   | Poll Dorset | 50.4 | 183 | 46.1 | 183 |
| s1636772007070839   | Poll Dorset | 50.2 | 184 | 45.2 | 184 |
| s1635282007070182   | Poll Dorset | 49.1 | 185 | 43.6 | 185 |
| s6008152006060120   | Poll Merino | 60.5 | 3   | 59.8 | 2   |
| s6012442007070304   | Poll Merino | 60.2 | 4   | 59.0 | 4   |
| s6013322004000WD    |             |      |     |      |     |
| 2                   | Poll Merino | 59.9 | 5   | 58.2 | 9   |
| s6010822007071257   | Poll Merino | 59.4 | 11  | 56.7 | 22  |
| s6005712006060058   | Poll Merino | 58.9 | 16  | 56.1 | 25  |
| s6010532007071190   | Poll Merino | 58.5 | 23  | 56.1 | 29  |
| s6011272007070121   | Poll Merino | 58.4 | 25  | 56.0 | 30  |
| s6013162007070023   | Poll Merino | 57.7 | 41  | 55.8 | 34  |
| s6004082007070069   | Poll Merino | 57.6 | 43  | 55.3 | 47  |
| s6013562007000449   | Poll Merino | 57.4 | 49  | 55.1 | 51  |
| s6010532003031078   | Poll Merino | 57.4 | 50  | 54.7 | 61  |
| s6001052007071080   | Poll Merino | 57.2 | 54  | 54.5 | 66  |

| s6090542006066533         | Poll Merino   | 57.1 | 61       | 54.3 | 70       |
|---------------------------|---------------|------|----------|------|----------|
| s6008802006060627         | Poll Merino   | 57.1 | 65       | 54.3 | 71       |
| s6091542006060306         | Poll Merino   | 56.9 | 69       | 54.1 | 75       |
| s6005712006060904         | Poll Merino   | 56.6 | 82       | 53.8 | 82       |
| s6008152007070323         | Poll Merino   | 56.3 | 92       | 53.7 | 86       |
| s6012792007070470         | Poll Merino   | 56.0 | 102      | 53.1 | 99       |
| s6012502004407812         | Poll Merino   | 55.5 | 115      | 52.9 | 103      |
| s6005532007070002         | Poll Merino   | 55.2 | 121      | 51.6 | 132      |
| s6013072005050165         | Poll Merino   | 55.1 | 128      | 51.5 | 133      |
| s6010822008081288         | Poll Merino   | 55.0 | 130      | 51.0 | 142      |
| s6013362008RAS004         | Poll Merino   | 54.9 | 134      | 50.7 | 147      |
| s6011272008088254         | Poll Merino   | 54.4 | 149      | 50.6 | 148      |
| s6091542004040062         | Poll Merino   | 54 1 | 157      | 49.8 | 159      |
| s6012882006063091         | Poll Merino   | 53.4 | 165      | 49.4 | 170      |
| s6013652006060052         | Poll Merino   | 52.6 | 176      | 49.0 | 175      |
| s4801222005051010         | Prime Samm    | 59.9 | 6        | 59.0 | 5        |
| s4800402008080217         | Prime Samm    | 59.2 | 13       | 58.1 | 10       |
| s4800302008080111         | Prime Samm    | 50.2 | 15       | 57.9 | 10       |
| s4800552007070068         | Prime Samm    | 58.0 | 17       | 57.0 | 15       |
| s4801222008080343         | Prime Samm    | 58.8 | 10       | 57.4 | 16       |
| s4800392007070062         | Prime Samm    | 58.3 | 26       | 57.2 | 18       |
| s4800392007070002         | Prime Samm    | 57.9 | 20       | 55.4 | 10       |
| s48003020080800078        | Prime Samm    | 57.6 | 33       | 55.4 | 43<br>52 |
| s4801042008080549         | Prime Samm    | 56.8 | 74       | 55.0 | 58       |
| s4800872006060421         | Prime Samm    | 56.7 | 74       | 54.2 | 50       |
| \$4800992008080191        |               | 50.7 | 70       | 54.5 | 09       |
| s1920432008080594         | Suffolk       | 50.5 | <u> </u> | 57.1 | 19       |
| \$1900282007071494        | Suffolk       | 57.2 | 52       | 55.1 |          |
| s19120120080800094        | Suffolk       | 57.5 |          | 52.0 | 07<br>80 |
| s1900602008080309         | Suffolk       | 56.7 | 73       | 52.0 | 00       |
| s1901112007077038         | Suffolk       | 56.2 | 01       | 52.0 | 00       |
| s1918502001010120         | Suffolk       | 56.0 | 94       | 53.2 | 90       |
| s1913622007070027         | Suffolk       | 56.0 | 104      | 52.7 | 112      |
| \$1920452007070508        | SullOik       | 55.9 | 100      | 52.1 | 124      |
| \$1900602007070267        | SullOik       | 54.9 | 132      | 52.1 | 125      |
| \$1916612008080491        | Suffork       | 54.5 | 145      | 50.9 | 144      |
| \$1704202007070224        | Texel         | 56.8 | 12       | 53.3 | 95       |
| \$1700802007071532        | Texel         | 55.6 | 110      | 52.4 | 118      |
| \$1700622007070144        |               | 55.1 | 126      | 52.3 | 120      |
| <u>\$1700812008080039</u> | Texel         | 54.8 | 136      | 50.7 | 146      |
| \$1702232004040080        | Texel         | 54.7 | 138      | 50.5 | 151      |
| s1702232007070046         | Texel         | 54.3 | 151      | 50.5 | 152      |
| s1704062007070028         |               | 54.1 | 155      | 49.7 | 162      |
| s4702062007077118         | White Dorper  | 59.7 | 7        | 59.2 | 3        |
| s4701142007071345         | White Dorper  | 59.6 | 10       | 58.8 | 6        |
| s4700442008084825         | White Dorper  | 58.8 | 18       | 57.0 | 20       |
| s4701792008080386         | White Dorper  | 57.7 | 40       | 57.0 | 21       |
| s4700702003030011         | White Dorper  | 57.1 | 59       | 55.3 | 45       |
| s4701142006060036         | White Dorper  | 56.0 | 105      | 53.6 | 88       |
| s4701392006060057         | White Dorper  | 55.2 | 124      | 53.3 | 93       |
| s2301002007070677         | White Suffolk | 57.0 | 68       | 55.5 | 40       |
| s2300262005050650         | White Suffolk | 56.6 | 84       | 53.7 | 84       |
| s2301132007070040         | White Suffolk | 56.2 | 97       | 53.1 | 98       |
| s2300262007072446         | White Suffolk | 56.0 | 106      | 52.8 | 104      |
# B.LSM.0033 - Towards the development of a next generation MSA lamb model – statistical support

| s2301132008080205 | White Suffolk | 55.9 | 107 | 52.8 | 105 |
|-------------------|---------------|------|-----|------|-----|
| s2303182008080262 | White Suffolk | 55.6 | 111 | 52.7 | 108 |
| s2304502007071456 | White Suffolk | 55.5 | 114 | 52.7 | 110 |
| s2300012008080022 | White Suffolk | 55.3 | 118 | 52.6 | 114 |
| s2300152009090255 | White Suffolk | 55.2 | 120 | 52.6 | 116 |
| s2300022008080234 | White Suffolk | 55.1 | 125 | 52.2 | 123 |
| s2300912007070008 | White Suffolk | 54.9 | 133 | 52.0 | 127 |
| s2300992008080097 | White Suffolk | 54.8 | 135 | 51.2 | 137 |
| s2303242008085244 | White Suffolk | 54.6 | 139 | 51.2 | 138 |
| s2300262008083813 | White Suffolk | 54.5 | 143 | 51.0 | 143 |
| s2300152007070143 | White Suffolk | 54.5 | 146 | 50.6 | 150 |
| s2300432007070591 | White Suffolk | 54.4 | 148 | 50.4 | 153 |
| s2303242007075630 | White Suffolk | 54.1 | 154 | 50.3 | 155 |
| s2300022007070098 | White Suffolk | 54.1 | 156 | 50.2 | 156 |
| s2300432008080644 | White Suffolk | 54.0 | 158 | 49.8 | 161 |
| s2300302008080116 | White Suffolk | 54.0 | 159 | 49.4 | 169 |
| s2300092007070279 | White Suffolk | 53.7 | 161 | 49.3 | 171 |
| s2300342007074914 | White Suffolk | 53.7 | 162 | 49.2 | 173 |
| s2300432008080136 | White Suffolk | 53.3 | 166 | 48.4 | 176 |

|         | Loin   | Loin  | Loin    | Loin    | Topside | Topside | Topside | Topside |
|---------|--------|-------|---------|---------|---------|---------|---------|---------|
|         | tender | juicy | flavour | overall | tender  | juicy   | flavour | overall |
|         |        |       |         | liking  |         |         |         | liking  |
| Loin    |        | 0.97  | 0.96    | 0.98    | 0.93    | 0.83    | 0.86    | 0.86    |
| tender  |        |       |         |         |         |         |         |         |
| Loin    |        |       | 0.97    | 0.99    | 0.88    | 0.77    | 0.81    | 0.82    |
| juicy   |        |       |         |         |         |         |         |         |
| Loin    |        |       |         | 0.98    | 0.87    | 0.74    | 0.78    | 0.79    |
| flavour |        |       |         |         |         |         |         |         |
| Loin    |        |       |         |         | 0.90    | 0.79    | 0.82    | 0.84    |
| overall |        |       |         |         |         |         |         |         |
| liking  |        |       |         |         |         |         |         |         |
| Topside |        |       |         |         |         | 0.93    | 0.94    | 0.95    |
| tender  |        |       |         |         |         |         |         |         |
| Topside |        |       |         |         |         |         | 0.95    | 0.96    |
| juicy   |        |       |         |         |         |         |         |         |
| Topside |        |       |         |         |         |         |         | 0.98    |
| Flavour |        |       |         |         |         |         |         |         |
| Topside |        |       |         |         |         |         |         |         |
| overall |        |       |         |         |         |         |         |         |
| liking  |        |       |         |         |         |         |         |         |

**Table 12.5.** The correlations between the sire ranks for the sensory variables for both the loin and the topside cuts.

**Table 13.5** The variance components for the logit analysis of star classifications 2 an3 verses star classifications 4 and 5 and for the logit analysis of star classification 4 verses star classification 5 for the loin and topside cuts. Estimates with IMF and SHEARF5 in the model are in brackets.

| Random Effect                                 | Lo                       | in Topside      |                          | side            |
|-----------------------------------------------|--------------------------|-----------------|--------------------------|-----------------|
|                                               | Stars 2,3 v<br>Stars 4,5 | Star 4 v Star 5 | Stars 2,3 v Stars<br>4,5 | Star 4 v Star 5 |
| Consumer within<br>Pick                       | 0.82 (0.88)              | 0.45            | 1.35 (0.63)              | 0.50            |
| Pick                                          | 0.04 (0.04)              | 0.02            | 0.02 (0.03)              | 0.0             |
|                                               |                          |                 |                          |                 |
| Sire with sire<br>breed within Kill<br>group: | 0.13 (0.06)              | 0.0             | 0.17 (0.16)              | 0.0             |
| Kill group                                    | 0.01 (0.07)              | 0.01            | 0.0 (0.03)               | 0.0             |
| Residual                                      |                          |                 |                          |                 |

**Table 14.5.** The Logit estimates for the year effect for star classifications 2 and 3 v star classification 4 and 5, and star classification 4 v star classification 5

#### Star 2 and 3 v star 4 and 5

| Year    | 2009                   |                           | 2010            |                |
|---------|------------------------|---------------------------|-----------------|----------------|
|         | Logit                  | Logit Probability in star |                 | Probability in |
|         | -                      | 4 or 5                    | -               | star 4 or 5    |
| Loin    | $0.82^{**} \pm 0.09$   | 69%                       | $0.48 \pm 0.08$ | 62%            |
| Topside | $-0.74^{***} \pm 0.06$ | 32%                       | -1.29 ± 0.06    | 22%            |

**Table 15.5.** The logits and standard errors for the sire breed for star classifications 2 and 3 v star classification 4 and 5, and star classification 4 v star classification 5

#### s

| Sire breed    | Star 2, 3 v Star 4,5 |      |              | Star 4 v Star 5 |                  |      |              |        |
|---------------|----------------------|------|--------------|-----------------|------------------|------|--------------|--------|
|               | Loin                 |      | Topside      | )               | Loin             |      | Topside      |        |
|               |                      | Prop |              | Prop            |                  | Prop |              |        |
|               |                      | in   |              | in              |                  | in   |              | Prop   |
|               |                      | Star |              | Star            |                  | Star |              | in     |
|               | Logit                | 4, 5 | Logit        | 4, 5            | Logit            | 5    | Logit        | Star 5 |
| Bond          | 1.10 ± 0.39          | 75   | -0.80 ± 0.39 | 31              | $-0.34 \pm 0.37$ | 42   | -1.21 ± 0.63 | 23     |
| Border        |                      |      |              |                 | -0.45 ±0.12      | 39   | -1.23 ± 0.22 | 23     |
| Leicester     | 0.68 ± 0.12          | 66   | -0.90 ± 0.13 | 29              |                  |      |              |        |
| Coopworth     | 0.57 ± 0.12          | 64   | -1.14 ± 0.14 | 24              | -0.50 ± 0.13     | 38   | -1.03 ± 0.23 | 26     |
| Corriedale    | 0.78 ± 0.12          | 69   | -0.89 ± 0.13 | 29              | -0.39 ± 0.12     | 40   | -1.36 ± 0.22 | 20     |
| Dohne Merino  | 0.79 ± 0.11          | 69   | -1.10 ± 0.12 | 25              | -0.42 ± 0.11     | 40   | -1.17 ± 0.20 | 24     |
| Dorper        | 0.57 ± 0.23          | 64   | -0.76 ± 0.25 | 32              | -0.45 ± 0.20     | 39   | -0.95 ± 0.34 | 28     |
| Merino        | 0.92 ± 0.10          | 72   | -1.20 ± 0.11 | 23              | -0.44 ± 0.10     | 39   | -1.58 ± 0.20 | 17     |
| Poll Dorset   | 0.10 ± 0.08          | 52   | -1.41 ± 0.09 | 20              | -0.63 ± 0.08     | 35   | -1.36 ± 0.16 | 20     |
| Poll Merino   | 0.66 ± 0.11          | 66   | -1.15 ± 0.11 | 24              | -0.37 ± 0.11     | 41   | -1.18 ± 0.19 | 24     |
| Prime Samm    | 0.98 ± 0.11          | 73   | -0.82 ± 0.11 | 31              | -0.12 ± 0.10     | 47   | -1.59 ± 0.20 | 17     |
| Suffolk       | 0.52 ± 0.12          | 63   | -1.09 ± 0.13 | 25              | -0.47 ± 0.12     | 38   | -1.36 ± 0.23 | 20     |
| Texel         | 0.16 ± 0.12          | 54   | -1.12 ± 0.14 | 25              | -0.63 ± 0.14     | 35   | -1.53 ± 0.24 | 18     |
| White Dorper  | 0.95 ± 0.17          | 72   | -0.75 ± 0.16 | 32              | $-0.30 \pm 0.14$ | 43   | -1.23 ± 0.23 | 23     |
| White Suffolk | $0.32 \pm 0.09$      | 58   | -1.06 ± 0.09 | 26              | $-0.64 \pm 0.09$ | 35   | -1.46 ± 0.16 | 19     |

**Table 16.5**. The significant (P < 0.05) sire breed comparisons for the Loin cut for star classifications 2 and 3 *verses* star classifications 4 and 5

| Sire Breed Comparison |   |              | Difference in<br>estimates | Significance |
|-----------------------|---|--------------|----------------------------|--------------|
| Poll Dorset           | V | Merino       | -0.65                      | 0.01         |
| Poll Dorset           | V | Prime Samm   | -0.67                      | 0.01         |
| Poll Dorset           | V | Dohne Merino | -0.58                      | 0.02         |
| Poll Dorset           | V | White Dorper | -0.80                      | 0.04         |
| Texel                 | V | Prime Samm   | -0.64                      | 0.05         |

**Table 17.5.** The sire BLUP estimates for the logit analysis of star classifications 2 and 3 *verses* star classifications 4 and 5 for the loin cut

| Sire               | Breed            | Logit stars 2,3 | Rank      | Probability           |
|--------------------|------------------|-----------------|-----------|-----------------------|
|                    |                  | v stars 4,5     | stars 2,3 | of being in           |
|                    |                  | ,               | v stars   | star 4,5 <sup>†</sup> |
|                    |                  |                 | 4,5       |                       |
| ss0600032006060121 | Bond             | 0.73            | 37        | 0.67                  |
| ss0237802008080157 | Border Leicester | 0.73            | 40        | 0.67                  |
| ss0236912008088370 | Border Leicester | 0.73            | 41        | 0.67                  |
| s020041200707J039  | Border Leicester | 0.68            | 65        | 0.66                  |
| ss0241662008080220 | Border Leicester | 0.66            | 73        | 0.66                  |
| ss0219292007070261 | Border Leicester | 0.65            | 75        | 0.66                  |
| ss0236662006060976 | Border Leicester | 0.63            | 87        | 0.65                  |
| ss0244112006060369 | Border Leicester | 0.62            | 98        | 0.65                  |
| ss0246862007070179 | Border Leicester | 0.57            | 123       | 0.64                  |
| ss0250022008085029 | Border Leicester | 0.54            | 131       | 0.63                  |
| ss0247152008080085 | Border Leicester | 0.54            | 133       | 0.63                  |
| ss1500622006060070 | Coopworth        | 0.72            | 46        | 0.67                  |
| ss1500292007070244 | Coopworth        | 0.70            | 54        | 0.67                  |
| ss1500992007071449 | Coopworth        | 0.67            | 70        | 0.66                  |
| ss1500292008080181 | Coopworth        | 0.63            | 90        | 0.65                  |
| ss1500482007070769 | Coopworth        | 0.62            | 92        | 0.65                  |
| ss1500392006061009 | Coopworth        | 0.61            | 105       | 0.65                  |
| ss1500482008080808 | Coopworth        | 0.53            | 135       | 0.63                  |
| ss1500152003030196 | Coopworth        | 0.50            | 154       | 0.62                  |
| ss0300362005050134 | Corriedale       | 0.82            | 9         | 0.69                  |
| ss0318972008080282 | Corriedale       | 0.78            | 17        | 0.69                  |
| ss0319232001011072 | Corriedale       | 0.74            | 33        | 0.68                  |
| ss0318972006060386 | Corriedale       | 0.72            | 45        | 0.67                  |
| ss0323612006060209 | Corriedale       | 0.67            | 71        | 0.66                  |
| ss0314602006543022 | Corriedale       | 0.66            | 72        | 0.66                  |
| ss0324012007070002 | Corriedale       | 0.59            | 116       | 0.64                  |
| ss0300182004045220 | Corriedale       | 0.57            | 124       | 0.64                  |
| ss0315272003030360 | Corriedale       | 0.50            | 155       | 0.62                  |
| ss0322722008080072 | Corriedale       | 0.44            | 175       | 0.61                  |
| ss5100092007070376 | Dohne Merino     | 0.81            | 10        | 0.69                  |
| ss5100492007071700 | Dohne Merino     | 0.75            | 31        | 0.68                  |
| ss5100072008084048 | Dohne Merino     | 0.70            | 52        | 0.67                  |
| ss5100732007070006 | Dohne Merino     | 0.70            | 55        | 0.67                  |
| ss5100032007070949 | Dohne Merino     | 0.67            | 68        | 0.66                  |
| ss5101402006060368 | Dohne Merino     | 0.67            | 69        | 0.66                  |
| ss5101462007070128 | Dohne Merino     | 0.65            | 77        | 0.66                  |
| ss5100072008083953 | Dohne Merino     | 0.61            | 104       | 0.65                  |
| ss5100302005050068 | Dohne Merino     | 0.56            | 128       | 0.64                  |
| ss5100292008088124 | Dohne Merino     | 0.53            | 136       | 0.63                  |
| ss4000302007070056 | Dorper           | 0.72            | 44        | 0.67                  |
| ss4000302007070617 | Dorper           | 0.71            | 51        | 0.67                  |
| ss4000302007071209 | Dorper           | 0.42            | 177       | 0.60                  |
| ss5034252006060205 | Merino           | 1.03            | 1         | 0.74                  |
| ss5007882008081290 | Merino           | 0.93            | 3         | 0.72                  |
| ss5037892008080124 | Merino           | 0.84            | 7         | 0.70                  |
| ss5049162007070719 | Merino           | 0.80            | 12        | 0.69                  |

| ss5044822007070461 | Merino      | 0.79 | 15  | 0.69 |
|--------------------|-------------|------|-----|------|
| ss5049022005005345 | Merino      | 0.78 | 18  | 0.69 |
| ss5007882007071254 | Merino      | 0.77 | 19  | 0.68 |
| ss5015522006060480 | Merino      | 0.77 | 20  | 0.68 |
| ss50923420060C0573 | Merino      | 0.76 | 26  | 0.68 |
| ss5023022006006580 | Merino      | 0.76 | 28  | 0.68 |
| ss5000482007070260 | Merino      | 0.75 | 32  | 0.68 |
| ss5044702006060022 | Merino      | 0.74 | 34  | 0.68 |
| ss5037892007LB0753 | Merino      | 0.73 | 38  | 0.67 |
| ss5038842008081981 | Merino      | 0.73 | 42  | 0.67 |
| ss5039462007OLY716 | Merino      | 0.71 | 48  | 0.67 |
| ss501587200606M276 | Merino      | 0.71 | 50  | 0.67 |
| ss5030702008080121 | Merino      | 0.70 | 58  | 0.67 |
| ss5043622006LON449 | Merino      | 0.69 | 60  | 0.67 |
| ss5022512006066030 | Merino      | 0.69 | 61  | 0.67 |
| ss5047432000000503 | Merino      | 0.68 | 64  | 0.66 |
| ss5046152004040024 | Merino      | 0.68 | 66  | 0.66 |
| ss5030542004040585 | Merino      | 0.67 | 67  | 0.66 |
| ss5038632006OL3626 | Merino      | 0.66 | 74  | 0.66 |
| ss50505020080G0856 | Merino      | 0.64 | 80  | 0.65 |
| ss5035642007WHI393 | Merino      | 0.63 | 89  | 0.65 |
| ss5018852006TRIMPH | Merino      | 0.62 | 91  | 0.65 |
| ss5039822006060225 | Merino      | 0.62 | 95  | 0.65 |
| ss5024252006023997 | Merino      | 0.62 | 96  | 0.65 |
| ss5044702008080588 | Merino      | 0.61 | 107 | 0.65 |
| ss5030972005051737 | Merino      | 0.60 | 110 | 0.65 |
| ss5017042007L68007 | Merino      | 0.53 | 137 | 0.63 |
| ss5003182007070022 | Merino      | 0.48 | 163 | 0.62 |
| ss5000872006060096 | Merino      | 0.48 | 164 | 0.62 |
| ss5049162008080600 | Merino      | 0.46 | 170 | 0.61 |
| ss1622882008080077 | Poll Dorset | 0.85 | 5   | 0.70 |
| ss1629472008080219 | Poll Dorset | 0.76 | 22  | 0.68 |
| ss1637212007070311 | Poll Dorset | 0.72 | 43  | 0.67 |
| ss1635282007070182 | Poll Dorset | 0.70 | 56  | 0.67 |
| ss1601852007070369 | Poll Dorset | 0.69 | 62  | 0.67 |
| ss1612352007072025 | Poll Dorset | 0.62 | 93  | 0.65 |
| ss1640732007070364 | Poll Dorset | 0.61 | 102 | 0.65 |
| ss1619722009090133 | Poll Dorset | 0.59 | 118 | 0.64 |
| ss1619722006061831 | Poll Dorset | 0.58 | 120 | 0.64 |
| ss1600012008080010 | Poll Dorset | 0.56 | 126 | 0.64 |
| ss1600852008080021 | Poll Dorset | 0.51 | 145 | 0.62 |
| ss1603362008080541 | Poll Dorset | 0.51 | 148 | 0.62 |
| ss1611432008080203 | Poll Dorset | 0.50 | 150 | 0.62 |
| ss1640002009090052 | Poll Dorset | 0.49 | 157 | 0.62 |
| ss1614152007070440 | Poll Dorset | 0.49 | 158 | 0.62 |
| ss1611582007070190 | Poll Dorset | 0.49 | 160 | 0.62 |
| ss1627502008080481 | Poll Dorset | 0.49 | 161 | 0.62 |
| ss1618922006060050 | Poll Dorset | 0.46 | 169 | 0.61 |
| ss1636772008081037 | Poll Dorset | 0.45 | 173 | 0.61 |
| ss1623682007070468 | Poll Dorset | 0.40 | 179 | 0.60 |
| ss1636772007070839 | Poll Dorset | 0.39 | 180 | 0.60 |
| ss1612352008080608 | Poll Dorset | 0.38 | 181 | 0.59 |
| ss1622882007070644 | Poll Dorset | 0.37 | 182 | 0.59 |
|                    |             |      |     | 2.00 |

| ss1611432007070025 | Poll Dorset | 0.34 | 184 | 0.58 |
|--------------------|-------------|------|-----|------|
| ss1618862008080157 | Poll Dorset | 0.27 | 185 | 0.57 |
| ss6010822007071257 | Poll Merino | 0.89 | 4   | 0.71 |
| ss6013322004000WD2 | Poll Merino | 0.83 | 8   | 0.70 |
| ss6091542004040062 | Poll Merino | 0.76 | 25  | 0.68 |
| ss6008152007070323 | Poll Merino | 0.76 | 27  | 0.68 |
| ss6005532007070002 | Poll Merino | 0.74 | 35  | 0.68 |
| ss6012442007070304 | Poll Merino | 0.73 | 36  | 0.67 |
| ss6013072005050165 | Poll Merino | 0.73 | 39  | 0.67 |
| ss6005712006060904 | Poll Merino | 0.72 | 47  | 0.67 |
| ss6012502004407812 | Poll Merino | 0.71 | 49  | 0.67 |
| ss6008802006060627 | Poll Merino | 0.65 | 76  | 0.66 |
| ss6008152006060120 | Poll Merino | 0.64 | 83  | 0.65 |
| ss6013562007000449 | Poll Merino | 0.63 | 85  | 0.65 |
| ss6013652006060052 | Poll Merino | 0.63 | 86  | 0.65 |
| ss6013162007070023 | Poll Merino | 0.62 | 94  | 0.65 |
| ss6012882006063091 | Poll Merino | 0.62 | 97  | 0.65 |
| ss6011272007070121 | Poll Merino | 0.62 | 100 | 0.65 |
| ss6010532007071190 | Poll Merino | 0.61 | 103 | 0.65 |
| ss6011272008088254 | Poll Merino | 0.60 | 111 | 0.65 |
| ss6001052007071080 | Poll Merino | 0.58 | 119 | 0.64 |
| ss6012792007070470 | Poll Merino | 0.57 | 121 | 0.64 |
| ss6091542006060306 | Poll Merino | 0.53 | 139 | 0.63 |
| ss6013362008RAS004 | Poll Merino | 0.51 | 146 | 0.62 |
| ss6005712006060058 | Poll Merino | 0.50 | 151 | 0.62 |
| ss6010532003031078 | Poll Merino | 0.49 | 159 | 0.62 |
| ss6090542006066533 | Poll Merino | 0.47 | 167 | 0.62 |
| ss6004082007070069 | Poll Merino | 0.44 | 174 | 0.61 |
| ss6010822008081288 | Poll Merino | 0.36 | 183 | 0.59 |
| ss4801222005051010 | Prime Samm  | 0.80 | 14  | 0.69 |
| ss4800302008080078 | Prime Samm  | 0.79 | 16  | 0.69 |
| ss4800402008080217 | Prime Samm  | 0.76 | 23  | 0.68 |
| ss4800872006060421 | Prime Samm  | 0.75 | 29  | 0.68 |
| ss4800552007070068 | Prime Samm  | 0.70 | 53  | 0.67 |
| ss4801222008080343 | Prime Samm  | 0.64 | 78  | 0.65 |
| ss4800392007070062 | Prime Samm  | 0.62 | 99  | 0.65 |
| ss4801042008080549 | Prime Samm  | 0.60 | 109 | 0.65 |
| ss4800992006060191 | Prime Samm  | 0.60 | 113 | 0.65 |
| ss4800302008080111 | Prime Samm  | 0.47 | 165 | 0.62 |
| ss1901112007077058 | Suffolk     | 0.76 | 24  | 0.68 |
| ss1900602008080369 | Suffolk     | 0.70 | 57  | 0.67 |
| ss1912012008080094 | Suffolk     | 0.64 | 81  | 0.65 |
| ss1918502001010120 | Suffolk     | 0.61 | 106 | 0.65 |
| ss1900602007070267 | Suffolk     | 0.59 | 114 | 0.64 |
| ss1916612008080491 | Suffolk     | 0.59 | 115 | 0.64 |
| ss1900282007071494 | Suffolk     | 0.59 | 117 | 0.64 |
| ss1920452008080594 | Suffolk     | 0.54 | 132 | 0.63 |
| ss1913622007070027 | Suffolk     | 0.51 | 149 | 0.62 |
| ss1920452007070508 | Suffolk     | 0.50 | 152 | 0.62 |
| ss1700622007070144 | Texel       | 0.64 | 82  | 0.65 |
| ss1704202007070224 | Texel       | 0.64 | 84  | 0.65 |
| ss1704062007070028 | Texel       | 0.52 | 143 | 0.63 |
| ss1702232007070046 | Texel       | 0.46 | 171 | 0.61 |

| ss1700802007071532 | Texel         | 0.45 | 172 | 0.61 |
|--------------------|---------------|------|-----|------|
| ss1702232004040080 | Texel         | 0.42 | 176 | 0.60 |
| ss1700812008080039 | Texel         | 0.42 | 178 | 0.60 |
| ss4701392006060057 | White Dorper  | 0.95 | 2   | 0.72 |
| ss4701142007071345 | White Dorper  | 0.81 | 11  | 0.69 |
| ss4702062007077118 | White Dorper  | 0.77 | 21  | 0.68 |
| ss4701792008080386 | White Dorper  | 0.75 | 30  | 0.68 |
| ss4700702003030011 | White Dorper  | 0.69 | 63  | 0.67 |
| ss4701142006060036 | White Dorper  | 0.50 | 153 | 0.62 |
| ss4700442008084825 | White Dorper  | 0.48 | 162 | 0.62 |
| ss2300342007074914 | White Suffolk | 0.84 | 6   | 0.70 |
| ss2300302008080116 | White Suffolk | 0.80 | 13  | 0.69 |
| ss2300022007070098 | White Suffolk | 0.69 | 59  | 0.67 |
| ss2300262005050650 | White Suffolk | 0.64 | 79  | 0.65 |
| ss2301002007070677 | White Suffolk | 0.63 | 88  | 0.65 |
| ss2300262007072446 | White Suffolk | 0.61 | 101 | 0.65 |
| ss2301132008080205 | White Suffolk | 0.60 | 108 | 0.65 |
| ss2300262008083813 | White Suffolk | 0.60 | 112 | 0.65 |
| ss2300092007070279 | White Suffolk | 0.57 | 122 | 0.64 |
| ss2303242008085244 | White Suffolk | 0.56 | 125 | 0.64 |
| ss2300012008080022 | White Suffolk | 0.56 | 127 | 0.64 |
| ss2300912007070008 | White Suffolk | 0.55 | 129 | 0.63 |
| ss2300992008080097 | White Suffolk | 0.54 | 130 | 0.63 |
| ss2300022008080234 | White Suffolk | 0.54 | 134 | 0.63 |
| ss2300152009090255 | White Suffolk | 0.53 | 138 | 0.63 |
| ss2301132007070040 | White Suffolk | 0.52 | 140 | 0.63 |
| ss2300152007070143 | White Suffolk | 0.52 | 141 | 0.63 |
| ss2300432007070591 | White Suffolk | 0.52 | 142 | 0.63 |
| ss2304502007071456 | White Suffolk | 0.52 | 144 | 0.63 |
| ss2303242007075630 | White Suffolk | 0.51 | 147 | 0.62 |
| ss2300432008080644 | White Suffolk | 0.50 | 156 | 0.62 |
| ss2303182008080262 | White Suffolk | 0.47 | 166 | 0.62 |
| ss2300432008080136 | White Suffolk | 0.46 | 168 | 0.61 |

<sup>†</sup> Corrected for sire breed effects

**Table 18.5.** The sire BLUP estimates for the logit analysis of star classifications 2 and 3 *verses* star classifications 4 and 5 for the topside cut

| Sire              | Breed | Logit stars | Rank 2,3 v | Probability             |
|-------------------|-------|-------------|------------|-------------------------|
|                   |       | 2,3 v stars | stars 4,5  | of being in             |
|                   |       | 4,5         |            | stars 4, 5 <sup>†</sup> |
| s0600032006060121 | Bond  | 0.31        | 64         | 0.58                    |

|                     | Border       |      |     |      |
|---------------------|--------------|------|-----|------|
| s0244112006060369   | Leicester    | 0.52 | 8   | 0.63 |
|                     | Border       | 0.01 |     | 0.00 |
| s020041200707J039   | Leicester    | 0.43 | 21  | 0.61 |
|                     | Border       | 0110 |     | 0101 |
| \$0237802008080157  | Leicester    | 0.42 | 22  | 0.60 |
| 0020100200000101    | Border       | 0.12 |     | 0.00 |
| \$0241662008080220  | Leicester    | 0.30 | 20  | 0.60 |
| 30241002000000220   | Border       | 0.00 | 23  | 0.00 |
| s0246862007070179   | Loicostor    | 0.35 | 15  | 0.59 |
| 30240002007070179   | Bordor       | 0.35 | +5  | 0.09 |
| s0250022008085029   | Loicostor    | 0.30 | 71  | 0.57 |
| 3023002200003023    | Bordor       | 0.00 | / 1 | 0.07 |
| c0210202007070261   | Loicostor    | 0.30 | 75  | 0.57 |
| 50219292007070201   | Bordor       | 0.30 | 75  | 0.57 |
| c0226012008088270   | Loicostor    | 0.24 | 105 | 0.56 |
| 50230912008088370   | Dordor       | 0.24 | 105 | 0.50 |
| 20247152008080085   | Doluei       | 0.22 | 110 | 0 55 |
| 50247152006060065   | Leicestei    | 0.22 | 113 | 0.55 |
| -02266620060600076  | Border       | 0.10 | 100 | 0.52 |
| SU236662006060976   | Leicester    | 0.13 | 163 | 0.53 |
| \$1500292007070244  | Coopworth    | 0.46 | 16  | 0.61 |
| s1500482008080808   | Coopworth    | 0.39 | 31  | 0.60 |
| s1500992007071449   | Coopworth    | 0.34 | 51  | 0.58 |
| s1500152003030196   | Coopworth    | 0.32 | 63  | 0.58 |
| s1500482007070769   | Coopworth    | 0.19 | 130 | 0.55 |
| s1500292008080181   | Coopworth    | 0.18 | 133 | 0.54 |
| s1500622006060070   | Coopworth    | 0.16 | 149 | 0.54 |
| s1500392006061009   | Coopworth    | 0.05 | 180 | 0.51 |
| s0315272003030360   | Corriedale   | 0.67 | 1   | 0.66 |
| s0300362005050134   | Corriedale   | 0.63 | 2   | 0.65 |
| s0323612006060209   | Corriedale   | 0.40 | 27  | 0.60 |
| s0318972008080282   | Corriedale   | 0.35 | 46  | 0.59 |
| s0319232001011072   | Corriedale   | 0.30 | 73  | 0.57 |
| s0314602006543022   | Corriedale   | 0.25 | 101 | 0.56 |
| s0300182004045220   | Corriedale   | 0.23 | 110 | 0.56 |
| s0324012007070002   | Corriedale   | 0.20 | 123 | 0.55 |
| s0318972006060386   | Corriedale   | 0.18 | 135 | 0.54 |
| s0322722008080072   | Corriedale   | 0.15 | 155 | 0.54 |
| s5100492007071700   | Dohne Merino | 0.38 | 33  | 0.59 |
| s5100072008084048   | Dohne Merino | 0.37 | 36  | 0.59 |
| s5100092007070376   | Dohne Merino | 0.35 | 47  | 0.59 |
| s5101402006060368   | Dohne Merino | 0.35 | 48  | 0.59 |
| s510072008083953    | Dohne Merino | 0.33 | 60  | 0.53 |
| s5100072000055555   | Dohne Merino | 0.32 | 108 | 0.50 |
| c5100202007070949   | Dohne Merino | 0.23 | 100 | 0.50 |
| s5100292006066124   | Donne Merino | 0.20 | 121 | 0.55 |
| 50100302000000000   |              | 0.20 | 120 | 0.50 |
| S5100732007070400   |              | 0.16 | 140 | 0.54 |
| 5510140200707074000 |              | 0.14 | 157 | 0.53 |
| \$4000302007071209  |              | 0.57 | 5   | 0.64 |
| \$4000302007070617  | Dorper       | 0.33 | 53  | 0.58 |
| s4000302007070056   | Dorper       | 0.32 | 56  | 0.58 |
| s5007882008081290   | Merino       | 0.62 | 3   | 0.65 |
| s5018852006TRIMPH   | Merino       | 0.57 | 4   | 0.64 |

| s501587200606M276   | Merino      | 0.50  | 10  | 0.62 |
|---------------------|-------------|-------|-----|------|
| s5015522006060480   | Merino      | 0.45  | 17  | 0.61 |
| s5037892008080124   | Merino      | 0.37  | 35  | 0.59 |
| s5038632006OL3626   | Merino      | 0.37  | 37  | 0.59 |
| s5039822006060225   | Merino      | 0.34  | 52  | 0.58 |
| s50923420060C0573   | Merino      | 0.32  | 61  | 0.58 |
| s5037892007LB0753   | Merino      | 0.31  | 65  | 0.58 |
| s5044702006060022   | Merino      | 0.30  | 72  | 0.57 |
| s5000872006060096   | Merino      | 0.29  | 82  | 0.57 |
| s5000482007070260   | Merino      | 0.26  | 94  | 0.56 |
| s5007882007071254   | Merino      | 0.26  | 96  | 0.56 |
| s5047432000000503   | Merino      | 0.26  | 97  | 0.56 |
| s5049162007070719   | Merino      | 0.25  | 100 | 0.56 |
| \$5038842008081981  | Merino      | 0.20  | 106 | 0.56 |
| \$5039462007OL V716 | Merino      | 0.23  | 100 | 0.56 |
| s5030702008080121   | Merino      | 0.23  | 117 | 0.50 |
| s5030702008000121   | Morino      | 0.22  | 122 | 0.55 |
| s5049022005005545   | Morino      | 0.20  | 122 | 0.55 |
| \$5024252006025997  | Merino      | 0.10  | 104 | 0.54 |
| \$5030542004040585  | Merino      | 0.17  | 137 | 0.54 |
| \$5043622006LOIN449 | Merino      | 0.17  | 139 | 0.54 |
| \$5049162008080600  | Merino      | 0.17  | 140 | 0.54 |
| \$5023022006006580  | Ivierino    | 0.16  | 145 | 0.54 |
| s5035642007WHI393   | Merino      | 0.15  | 153 | 0.54 |
| s5017042007L68007   | Merino      | 0.14  | 161 | 0.53 |
| s50505020080G0856   | Merino      | 0.12  | 165 | 0.53 |
| s5034252006060205   | Merino      | 0.11  | 167 | 0.53 |
| s5044702008080588   | Merino      | 0.10  | 169 | 0.52 |
| s5022512006066030   | Merino      | 0.09  | 172 | 0.52 |
| s5044822007070461   | Merino      | 0.08  | 174 | 0.52 |
| s5003182007070022   | Merino      | 0.06  | 177 | 0.51 |
| s5030972005051737   | Merino      | 0.05  | 179 | 0.51 |
| s5046152004040024   | Merino      | -0.04 | 185 | 0.49 |
| s1623682007070468   | Poll Dorset | 0.36  | 39  | 0.59 |
| s1622882008080077   | Poll Dorset | 0.35  | 44  | 0.59 |
| s1611432008080203   | Poll Dorset | 0.33  | 55  | 0.58 |
| s1635282007070182   | Poll Dorset | 0.31  | 67  | 0.58 |
| s1637212007070311   | Poll Dorset | 0.30  | 70  | 0.57 |
| s1619722009090133   | Poll Dorset | 0.30  | 74  | 0.57 |
| s1611582007070190   | Poll Dorset | 0.29  | 79  | 0.57 |
| s1640732007070364   | Poll Dorset | 0.29  | 83  | 0.57 |
| s1619722006061831   | Poll Dorset | 0.27  | 87  | 0.57 |
| s1618862008080157   | Poll Dorset | 0.26  | 95  | 0.56 |
| s1603362008080541   | Poll Dorset | 0.25  | 102 | 0.56 |
| s1601852007070369   | Poll Dorset | 0.24  | 103 | 0.56 |
| s1640002009090052   | Poll Dorset | 0.23  | 109 | 0.56 |
| s1611432007070025   | Poll Dorset | 0.23  | 111 | 0.56 |
| s1612352008080608   | Poll Dorset | 0.19  | 128 | 0.55 |
| s1600012008080010   | Poll Dorset | 0.19  | 129 | 0.55 |
| s1627502008080481   | Poll Dorset | 0.17  | 141 | 0.54 |
| s1614152007070440   | Poll Dorset | 0.16  | 144 | 0.54 |
| s1636772007070839   | Poll Dorset | 0.15  | 150 | 0.54 |
| s1629472008080219   | Poll Dorset | 0.15  | 154 | 0.54 |
| s1636772008081037   | Poll Dorset | 0.14  | 160 | 0.53 |

| s1622882007070644  | Poll Dorset | 0.12  | 166 | 0.53 |
|--------------------|-------------|-------|-----|------|
| s1612352007072025  | Poll Dorset | 0.11  | 168 | 0.53 |
| s1618922006060050  | Poll Dorset | 0.10  | 171 | 0.52 |
| s1600852008080021  | Poll Dorset | 0.08  | 175 | 0.52 |
| s6013072005050165  | Poll Merino | 0.52  | 6   | 0.63 |
| s6008152006060120  | Poll Merino | 0.52  | 7   | 0.63 |
| s6013322004000WD2  | Poll Merino | 0.49  | 11  | 0.62 |
| s6010532007071190  | Poll Merino | 0.47  | 14  | 0.62 |
| s6010822008081288  | Poll Merino | 0.39  | 28  | 0.60 |
| s6005532007070002  | Poll Merino | 0.35  | 50  | 0.59 |
| s6004082007070069  | Poll Merino | 0.30  | 69  | 0.57 |
| s6013162007070023  | Poll Merino | 0.29  | 76  | 0.57 |
| s6013362008RAS004  | Poll Merino | 0.29  | 80  | 0.57 |
| s6005712006060058  | Poll Merino | 0.28  | 85  | 0.57 |
| s6010532003031078  | Poll Merino | 0.20  | 90  | 0.57 |
| s6012442007070304  | Poll Merino | 0.27  | 91  | 0.57 |
| s6013562007000449  | Poll Merino | 0.26  | 97  | 0.56 |
| s6005712006060904  | Poll Merino | 0.20  | 98  | 0.56 |
| s6008152007070323  | Poll Merino | 0.20  | 104 | 0.50 |
| s6012882006063091  | Poll Merino | 0.24  | 116 | 0.50 |
| s601250200005091   | Poll Merino | 0.22  | 124 | 0.55 |
| s6011272008088254  | Poll Morino | 0.20  | 124 | 0.55 |
| s6001542006060204  | Poll Merino | 0.20  | 120 | 0.55 |
| s0091542000000500  | Poll Merino | 0.16  | 131 | 0.54 |
| \$0090342000000333 |             | 0.10  | 147 | 0.54 |
| \$6012792007070470 | Poll Merino | 0.16  | 140 | 0.54 |
| \$6011272007070121 | Poll Merino | 0.15  | 100 | 0.54 |
| \$6008802006060627 | Poll Merino | 0.12  | 104 | 0.53 |
| s60015052006060052 | Poll Merino | 0.09  | 175 | 0.52 |
| s6010822007071257  | Poll Merino | 0.07  | 192 | 0.52 |
| s60010822007071237 | Poll Merino | 0.03  | 19/ | 0.51 |
| \$4800402008080217 | Primo Samm  | -0.02 | 104 | 0.30 |
| s4800402008080217  | Prime Samm  | 0.40  | 15  | 0.02 |
| s4801222005051010  | Prime Samm  | 0.47  | 20  | 0.02 |
| \$4801222008080343 | Prime Samm  | 0.39  | 30  | 0.00 |
| \$4600672006060421 | Prime Samm  | 0.30  | 30  | 0.59 |
| \$4800332007070008 | Prime Samm  | 0.35  | 49  | 0.59 |
| \$4800302008080078 | Prime Samm  | 0.31  | 00  | 0.58 |
| \$4800392007070062 | Prime Samm  | 0.27  | 88  | 0.57 |
| \$4801042008080549 | Prime Samm  | 0.26  | 99  | 0.56 |
| \$4800992006060191 | Prime Samm  | 0.15  | 151 | 0.54 |
| \$4800302008080111 | Prime Samm  | 0.14  | 162 | 0.53 |
| \$1900602007070267 | Suffolk     | 0.43  | 19  | 0.61 |
| s1920452008080594  | Suffolk     | 0.36  | 40  | 0.59 |
| s1900602008080369  | Suffolk     | 0.36  | 42  | 0.59 |
| s1918502001010120  | Suffolk     | 0.35  | 43  | 0.59 |
| s1901112007077058  | Suffolk     | 0.32  | 58  | 0.58 |
| s1912012008080094  | Suffolk     | 0.29  | 81  | 0.57 |
| s1916612008080491  | Suttolk     | 0.28  | 86  | 0.57 |
| s1913622007070027  | Suttolk     | 0.18  | 136 | 0.54 |
| s1920452007070508  | Suffolk     | 0.06  | 178 | 0.51 |
| s1900282007071494  | Suffolk     | 0.05  | 181 | 0.51 |
| s1700802007071532  | Texel       | 0.40  | 24  | 0.60 |
| s1700622007070144  | Texel       | 0.40  | 25  | 0.60 |

| s1702232007070046 | Texel         | 0.29 | 77  | 0.57 |
|-------------------|---------------|------|-----|------|
| s1704202007070224 | Texel         | 0.22 | 115 | 0.55 |
| s1700812008080039 | Texel         | 0.19 | 127 | 0.55 |
| s1704062007070028 | Texel         | 0.14 | 159 | 0.53 |
| s1702232004040080 | Texel         | 0.10 | 170 | 0.52 |
| s4700442008084825 | White Dorper  | 0.50 | 9   | 0.62 |
| s4700702003030011 | White Dorper  | 0.49 | 12  | 0.62 |
| s4701142007071345 | White Dorper  | 0.43 | 20  | 0.61 |
| s4701792008080386 | White Dorper  | 0.38 | 32  | 0.59 |
| s4701392006060057 | White Dorper  | 0.29 | 84  | 0.57 |
| s4702062007077118 | White Dorper  | 0.26 | 92  | 0.56 |
| s4701142006060036 | White Dorper  | 0.00 | 183 | 0.50 |
| s2300152007070143 | White Suffolk | 0.43 | 18  | 0.61 |
| s2300022007070098 | White Suffolk | 0.41 | 23  | 0.60 |
| s2304502007071456 | White Suffolk | 0.40 | 26  | 0.60 |
| s2300302008080116 | White Suffolk | 0.37 | 34  | 0.59 |
| s2300262005050650 | White Suffolk | 0.36 | 41  | 0.59 |
| s2301132007070040 | White Suffolk | 0.33 | 54  | 0.58 |
| s2300342007074914 | White Suffolk | 0.32 | 57  | 0.58 |
| s2300432007070591 | White Suffolk | 0.32 | 59  | 0.58 |
| s2303242008085244 | White Suffolk | 0.32 | 62  | 0.58 |
| s2303182008080262 | White Suffolk | 0.30 | 68  | 0.57 |
| s2300092007070279 | White Suffolk | 0.29 | 78  | 0.57 |
| s2300262007072446 | White Suffolk | 0.27 | 89  | 0.57 |
| s2300152009090255 | White Suffolk | 0.23 | 112 | 0.56 |
| s2300992008080097 | White Suffolk | 0.22 | 114 | 0.55 |
| s2300022008080234 | White Suffolk | 0.21 | 118 | 0.55 |
| s2300262008083813 | White Suffolk | 0.21 | 119 | 0.55 |
| s2300012008080022 | White Suffolk | 0.21 | 120 | 0.55 |
| s2303242007075630 | White Suffolk | 0.18 | 132 | 0.54 |
| s2301002007070677 | White Suffolk | 0.17 | 138 | 0.54 |
| s2301132008080205 | White Suffolk | 0.17 | 142 | 0.54 |
| s2300912007070008 | White Suffolk | 0.16 | 143 | 0.54 |
| s2300432008080644 | White Suffolk | 0.15 | 152 | 0.54 |
| s2300432008080136 | White Suffolk | 0.14 | 158 | 0.53 |

<sup>†</sup> Corrected for sire breed effects

B.LSM.0033 - Towards the development of a next generation MSA lamb model – statistical support

**Table 19.5.** The number and percentages of samples correctly and incorrectly allocated to a star classification using the optimal discriminant functions for the loin and topside cuts

# Loin cut numbers correctly and incorrectly classified

| Star Rating | Estimate 2 | Estimate 3 | Estimate 4 | Estimate 5 |
|-------------|------------|------------|------------|------------|
| Actual 2    | 450        | 277        | 4          | 1          |
| Actual 3    | 233        | 2797       | 934        | 82         |
| Actual 4    | 6          | 760        | 2411       | 609        |
| Actual 5    | 2          | 34         | 847        | 1659       |

### Loin percentages correctly and incorrectly classified

| Star Rating | Estimate 2 | Estimate 3 | Estimate 4 | Estimate 5 |
|-------------|------------|------------|------------|------------|
| Actual 2    | 65         | 7          | 1          | -          |
| Actual 3    | 34         | 72         | 22         | 3          |
| Actual 4    | 1          | 20         | 57         | 26         |
| Actual 5    | -          | 1          | 20         | 71         |

#### Topside cut numbers correctly and incorrectly classified

| Star Rating | Estimate 2 | Estimate 3 | Estimate 4 | Estimate 5 |
|-------------|------------|------------|------------|------------|
| Actual 2    | 2629       | 834        | 4          | 0          |
| Actual 3    | 633        | 4460       | 398        | 1          |
| Actual 4    | 3          | 793        | 790        | 8          |
| Actual 5    | 2          | 44         | 394        | 51         |

#### Topside percentages correctly and incorrectly classified

| Star Rating | Estimate 2 | Estimate 3 | Estimate 4 | Estimate 5 |
|-------------|------------|------------|------------|------------|
| Actual 2    | 80         | 14         | -          | 0          |
| Actual 3    | 19         | 73         | 25         | 2          |
| Actual 4    | 1          | 12         | 50         | 13         |
| Actual 5    | -          | 1          | 25         | 85         |

**Table 20.5**. Multinomial logit estimates for calculating the probability of a meat sample with particular values of tenderness, juiciness, flavour and the residual on overall liking of being in one of the star classifications 2, 3, 4 or 5. The reference is star 2.

#### Loin

| Star rating | Intercept  | tender   | juicy    | flavour  | Overall liking<br>residual |
|-------------|------------|----------|----------|----------|----------------------------|
| 3           | -4.2989 ±  | 0.0310 ± | 0.0206 ± | 0.0783 ± | 0.1084 ±                   |
|             | 0.2082     | 0.0032   | 0.0035   | 0.0037   | 0.0065                     |
| 4           | -12.3748 ± | 0.0667 ± | 0.0395 ± | 0.1382 ± | 0.1918 ±                   |
|             | 0.2840     | 0.0039   | 0.0040   | 0.0044   | 0.0078                     |
| 5           | -25.8636 ± | 0.1155 ± | 0.0705 ± | 0.2123 ± | 0.2929 ±                   |
|             | 0.4605     | 0.0053   | 0.0048   | 0.0057   | 0.0101                     |

# Topside

| Star rating | Intercept  | tender   | juicy    | flavour  | Overall liking |
|-------------|------------|----------|----------|----------|----------------|
|             |            |          |          |          | residual       |
| 3           | -4.9882 ±  | 0.0475   | 0.0189 ± | 0.0609 ± | 0.0979 ±       |
|             | 0.1188     | ±0.0020  | 0.0021   | 0.0022   | 0.0038         |
| 4           | -13.8642 ± | 0.0941 ± | 0.0372 ± | 0.1108 ± | 0.1802 ±       |
|             | 0.2554     | 0.0032   | 0.0033   | 0.0037   | 0.0063         |
| 5           | -26.4121 ± | 0.1426 ± | 0.0573 ± | 0.1788 ± | 0.2612 ±       |
|             | 0.6852     | 0.0067   | 0.0060   | 0.0080   | 0.0131         |

**Table 21.5**. The variance components for the optimal discriminant functions for the loin and topside cuts with full data set and clipped data set clipped at absolute(residual) <= 5

|                                         | Loin          |              | Topside        |              |
|-----------------------------------------|---------------|--------------|----------------|--------------|
| Random Effect                           | Full data     | Clipped data | Full data      | Clipped data |
| Consumer within Pick                    | 1.05          | 1.64         | 64.33          | 37.15        |
| Pick                                    | 0.06          | 0.21         | 3.36           | 3.98         |
|                                         |               |              |                |              |
| Sire with sire breed within Kill group: | 0.11          | 0.11         | 9.68           | 5.39         |
|                                         |               |              |                |              |
| Kill group                              | oup 0.03 0.11 |              | ).11 3.70 3.50 |              |
|                                         |               |              |                |              |
| Residual                                | 1.49          | 0.34         | 106.53         | 11.78        |

**Table 22.5.** Sire BLUP estimates and the ranks for the value of the clipped discriminant functions for the loin and topside cuts

| Sire              | Breed     | Clipped     | Rank | Clipped      | Rank    |
|-------------------|-----------|-------------|------|--------------|---------|
|                   |           | Discriminan | Loin | Discriminant | Topside |
|                   |           | t Loin      |      | Topside      | -       |
| s0600032006060121 | Bond      | 6.35        | 98   | 3.72         | 159     |
|                   | Border    |             |      |              |         |
| s020041200707J039 | Leicester | 6.40        | 82   | 4.07         | 38      |
|                   | Border    |             |      |              |         |
| s0219292007070261 | Leicester | 6.38        | 86   | 4.07         | 39      |
| s0236662006060976 | Border    | 6.38        | 87   | 4.04         | 43      |

|                   | Leicester  |      |     |      |     |
|-------------------|------------|------|-----|------|-----|
|                   | Border     |      |     |      |     |
| s0236912008088370 | Leicester  | 6.38 | 88  | 4.01 | 51  |
|                   | Border     |      |     |      |     |
| s0237802008080157 | Leicester  | 6.37 | 92  | 4.00 | 53  |
|                   | Border     |      |     |      |     |
| s0241662008080220 | Leicester  | 6.37 | 93  | 3.98 | 60  |
|                   | Border     |      |     |      |     |
| s0244112006060369 | Leicester  | 6.36 | 94  | 3.96 | 66  |
|                   | Border     |      |     |      |     |
| s0246862007070179 | Leicester  | 6.36 | 95  | 3.94 | 71  |
|                   | Border     |      |     |      |     |
| s0247152008080085 | Leicester  | 6.33 | 104 | 3.91 | 91  |
|                   | Border     |      |     |      |     |
| s0250022008085029 | Leicester  | 6.30 | 113 | 3.88 | 107 |
| s1500152003030196 | Coopworth  | 6.24 | 127 | 4.05 | 42  |
| s1500292007070244 | Coopworth  | 6.22 | 129 | 4.00 | 55  |
| s1500292008080181 | Coopworth  | 6.22 | 130 | 3.98 | 57  |
| s1500392006061009 | Coopworth  | 6.21 | 132 | 3.98 | 59  |
| s1500482007070769 | Coopworth  | 6.20 | 133 | 3.98 | 61  |
| s1500482008080808 | Coopworth  | 6.19 | 134 | 3.95 | 69  |
|                   | Coopwort   |      |     |      |     |
| s1500992007071449 | h          | 6.19 | 135 | 3.91 | 89  |
|                   | Coopwort   |      |     |      |     |
| s1500992007071449 | h          | 6.18 | 137 | 3.88 | 114 |
| s0300182004045220 | Corriedale | 6.59 | 10  | 3.92 | 85  |
| s0300362005050134 | Corriedale | 6.59 | 13  | 3.88 | 105 |
| s0314602006543022 | Corriedale | 6.56 | 21  | 3.87 | 116 |
| s0315272003030360 | Corriedale | 6.54 | 33  | 3.86 | 118 |
| s0318972006060386 | Corriedale | 6.53 | 35  | 3.84 | 133 |
| s0318972008080282 | Corriedale | 6.52 | 45  | 3.79 | 144 |
| s0319232001011072 | Corriedale | 6.50 | 48  | 3.79 | 148 |
| s0322722008080072 | Corriedale | 6.48 | 58  | 3.77 | 153 |
| s0323612006060209 | Corriedale | 6.47 | 59  | 3.76 | 154 |
| s0324012007070002 | Corriedale | 6.41 | 78  | 3.73 | 158 |
|                   | Dohne      |      |     |      |     |
| s5100032007070949 | Merino     | 6.36 | 96  | 4.37 | 8   |
|                   | Dohne      |      |     |      |     |
| s5100072008083953 | Merino     | 6.34 | 101 | 4.35 | 11  |
|                   | Dohne      |      |     |      |     |
| s5100072008084048 | Merino     | 6.34 | 102 | 4.26 | 18  |
|                   | Dohne      |      |     |      |     |
| s5100092007070376 | Merino     | 6.34 | 103 | 4.25 | 20  |
|                   | Dohne      |      |     |      |     |
| s5100292008088124 | Merino     | 6.32 | 107 | 4.22 | 24  |
|                   | Dohne      |      |     |      |     |
| s5100302005050068 | Merino     | 6.31 | 110 | 4.20 | 26  |
|                   | Dohne      |      |     |      |     |
| s5100492007071700 | Merino     | 6.30 | 111 | 4.19 | 28  |
|                   | Dohne      |      |     |      |     |
| s5100732007070006 | Merino     | 6.27 | 120 | 4.15 | 29  |
|                   | Dohne      |      |     |      |     |
| s5101402006060368 | Merino     | 6.26 | 123 | 4.13 | 31  |

|                                           | Dohne  |      |            |      |     |
|-------------------------------------------|--------|------|------------|------|-----|
| s5101462007070128                         | Merino | 6.24 | 128        | 4.10 | 34  |
| s4000302007070056                         | Dorper | 6.58 | 16         | 4.34 | 12  |
| s4000302007070617                         | Dorper | 6.25 | 125        | 4.19 | 27  |
| s4000302007071209                         | Dorper | 6.18 | 136        | 4.02 | 49  |
| s5000482007070260                         | Merino | 6.65 | 1          | 3.96 | 67  |
| s5000872006060096                         | Merino | 6.63 | 2          | 3.95 | 70  |
| s5003182007070022                         | Merino | 6.63 | 3          | 3.94 | 73  |
| s5007882007071254                         | Merino | 6.63 | 4          | 3.94 | 74  |
| s5007882008081290                         | Merino | 6.60 | 7          | 3.92 | 83  |
| s5015522006060480                         | Merino | 6 59 | 8          | 3.91 | 92  |
| s501587200606M276                         | Merino | 6 59 | 9          | 3.90 | 99  |
| s5017042007L68007                         | Merino | 6.59 | 11         | 3 90 | 101 |
| \$5018852006TRIMPH                        | Merino | 6.57 | 17         | 3.88 | 106 |
| \$5022512006066030                        | Merino | 6.57 | 10         | 3.88 | 100 |
| s5022312000000000000000000000000000000000 | Morino | 6.56 | 20         | 3.87 | 105 |
| s502302200000000000000000000000000000000  | Morino | 6.56 | 20         | 3.86 | 110 |
| s5024232000023997                         | Merino | 6.56 | 22         | 3.86 | 122 |
| \$5030342004040303                        | Morino | 6.56 | 23         | 3.00 | 122 |
| c50300702006060121                        | Morino | 6.56 | 24         | 3.00 | 120 |
| s5030972005051737                         | Merino | 0.50 | 20         | 2.00 | 120 |
| S5034232000000203                         | Merino | 0.00 | 20         | 3.00 | 127 |
| \$5035642007WHI393                        | Marino | 0.00 | 29         | 3.00 | 129 |
| \$5037892007LB0753                        | Marino | 6.54 | <u>ः २</u> | 3.04 | 134 |
| \$5037892008080124                        | Merino | 0.54 | 32         | 3.82 | 130 |
| \$50386320060L3626                        | Merino | 0.53 | 37         | 3.82 | 137 |
| \$5038842008081981                        | Merino | 0.53 | 38         | 3.81 | 138 |
| \$50394620070L1716                        | Merino | 6.53 | 39         | 3.81 | 139 |
| \$5039822006060225                        | Merino | 6.53 | 40         | 3.80 | 141 |
| \$5043622006LOIN449                       | Merino | 6.52 | 41         | 3.80 | 142 |
| <u>\$5044702006060022</u>                 | Merino | 6.52 | 43         | 3.79 | 143 |
| \$5044702008080588                        | Merino | 6.52 | 44         | 3.79 | 145 |
| s5044822007070461                         | Merino | 6.50 | 49         | 3.79 | 146 |
| s5046152004040024                         | Merino | 6.49 | 52         | 3.79 | 147 |
| s5047432000000503                         | Merino | 6.49 | 54         | 3.78 | 149 |
| s5049022005005345                         | Merino | 6.49 | 55         | 3.78 | 151 |
| s5049162007070719                         | Merino | 6.48 | 56         | 3.75 | 155 |
| s5049162008080600                         | Merino | 6.46 | 63         | 3.74 | 156 |
| s50505020080G0856                         | Merino | 6.45 | 65         | 3.74 | 157 |
| s50923420060C0573                         | Merino | 6.45 | 67         | 3.67 | 160 |
|                                           | Poll   |      |            |      |     |
| s1600012008080010                         | Dorset | 5.96 | 161        | 3.54 | 161 |
|                                           | Poll   |      |            |      |     |
| s1600852008080021                         | Dorset | 5.94 | 162        | 3.48 | 162 |
|                                           | Poll   |      |            |      |     |
| s1601852007070369                         | Dorset | 5.91 | 163        | 3.47 | 163 |
|                                           | Poll   |      |            |      |     |
| s1603362008080541                         | Dorset | 5.90 | 164        | 3.46 | 164 |
|                                           | Poll   |      |            |      |     |
| s1611432007070025                         | Dorset | 5.88 | 165        | 3.45 | 165 |
|                                           | Poll   |      |            |      |     |
| s1611432008080203                         | Dorset | 5.88 | 166        | 3.45 | 166 |
|                                           | Poll   |      |            |      |     |
| s1611582007070190                         | Dorset | 5.86 | 167        | 3.44 | 167 |

|                    | -        |       | 1   |       |            |
|--------------------|----------|-------|-----|-------|------------|
| c1612252007072025  | Poll     | 5 96  | 169 | 2 / 2 | 169        |
| 31012332007072023  |          | 5.00  | 100 | 5.45  | 100        |
| -4040050000000000  | Poli     | 5.00  | 400 | 0.40  | 400        |
| \$1612352008080608 | Dorset   | 06.C  | 169 | 3.43  | 169        |
|                    | POIL     |       |     |       |            |
| s1614152007070440  | Dorset   | 5.85  | 170 | 3.41  | 170        |
|                    | Poll     |       |     |       |            |
| s1618862008080157  | Dorset   | 5.84  | 171 | 3.41  | 171        |
|                    | Poll     |       |     |       |            |
| s1618922006060050  | Dorset   | 5.84  | 172 | 3.41  | 172        |
|                    | Poll     |       |     |       |            |
| s1619722006061831  | Dorset   | 5.83  | 173 | 3.41  | 173        |
|                    | Poll     |       |     |       |            |
| s1619722009090133  | Dorset   | 5.83  | 174 | 3 40  | 174        |
| 01010122000000100  | Poll     | 0.00  |     | 0.10  |            |
| s1622882007070644  | Dorsot   | 5.83  | 175 | 3 30  | 175        |
| 31022002007070044  |          | 5.05  | 175 | 5.55  | 175        |
| -16000000000077    | Full     | 5.00  | 170 | 2.20  | 170        |
| \$1622882008080077 | Dorset   | 5.83  | 170 | 3.38  | 170        |
|                    | Poll     |       |     |       |            |
| s1623682007070468  | Dorset   | 5.83  | 177 | 3.38  | 177        |
|                    | Poll     |       |     |       |            |
| s1627502008080481  | Dorset   | 5.82  | 178 | 3.37  | 178        |
|                    | Poll     |       |     |       |            |
| s1629472008080219  | Dorset   | 5.82  | 179 | 3.37  | 179        |
|                    | Poll     |       |     |       |            |
| s1635282007070182  | Dorset   | 5.81  | 180 | 3.35  | 180        |
|                    | Poll     |       |     |       |            |
| s1636772007070839  | Dorset   | 5 80  | 181 | 3 34  | 181        |
| 31000112001010000  | Poll     | 0.00  | 101 | 0.04  | 101        |
| c1626772009091027  | Dorsot   | 5.80  | 100 | 2.24  | 192        |
| 51030772008081037  |          | 5.60  | 102 | 5.54  | 102        |
| -4007040007070244  | Poli     | F 70  | 400 | 0.00  | 400        |
| \$1637212007070311 | Dorset   | 5.78  | 183 | 3.33  | 183        |
|                    | Poll     |       |     |       |            |
| s1640002009090052  | Dorset   | 5.78  | 184 | 3.31  | 184        |
|                    | Poll     |       |     |       |            |
| s1640732007070364  | Dorset   | 5.74  | 185 | 3.29  | 185        |
|                    | Poll     |       |     |       |            |
| s6001052007071080  | Merino   | 6.53  | 34  | 4.12  | 32         |
|                    | Poll     |       |     |       |            |
| s6004082007070069  | Merino   | 6.52  | 42  | 4.05  | 41         |
|                    | Poll     |       |     |       |            |
| \$6005532007070002 | Merino   | 6 50  | 47  | 4 04  | 46         |
|                    | Poll     | 0.00  |     |       |            |
| \$6005712006060058 | Merino   | 6 4 9 | 51  | 1 02  | 50         |
| 30003712000000030  |          | 0.43  | 51  | 4.02  | 50         |
| a6005712006060004  | FUII     | 6 49  | 57  | 4.00  | <b>E</b> 4 |
| 50003712006060904  |          | 0.40  | 57  | 4.00  | 54         |
| -000045000000400   | Poll     | 0.47  | 00  | 0.00  | 50         |
| 50008152006060120  | ivierino | 0.47  | 60  | 3.98  | 58         |
|                    | Poll     |       |     |       |            |
| s6008152007070323  | Merino   | 6.46  | 61  | 3.97  | 62         |
|                    | Poll     |       |     |       |            |
| s6008802006060627  | Merino   | 6.46  | 62  | 3.94  | 76         |
|                    | Poll     |       |     |       |            |
| s6010532003031078  | Merino   | 6.45  | 66  | 3.94  | 77         |

| s6010532007071190                 | Poll<br>Merino | 6 4 4 | 68  | 3 94 | 79  |
|-----------------------------------|----------------|-------|-----|------|-----|
| 30010302001011130                 | Poll           | 0.44  | 00  | 0.04 | 75  |
| s6010822007071257                 | Merino         | 6.44  | 69  | 3.93 | 81  |
|                                   | Poll           |       |     |      |     |
| s6010822008081288                 | Merino         | 6.44  | 70  | 3.92 | 82  |
|                                   | Poll           |       |     |      |     |
| s6011272007070121                 | Merino         | 6.42  | 72  | 3.92 | 84  |
|                                   | Poll           |       |     |      |     |
| s6011272008088254                 | Merino         | 6.42  | 73  | 3.92 | 86  |
|                                   | Poll           |       |     |      |     |
| s6012442007070304                 | Merino         | 6.41  | 76  | 3.91 | 88  |
| -0010500001107010                 | Poll           | C 11  | 77  | 2.04 | 02  |
| \$6012502004407812                | Roll           | 0.41  | 11  | 3.91 | 93  |
| \$6012792007070470                | Merino         | 6.41  | 70  | 3 80 | 102 |
| 30012792007070470                 | Poll           | 0.41  | 19  | 5.09 | 102 |
| s6012882006063091                 | Merino         | 6 40  | 80  | 3 89 | 103 |
|                                   | Poll           | 0.10  | 00  | 0.00 | 100 |
| s6013072005050165                 | Merino         | 6.40  | 81  | 3.88 | 108 |
|                                   | Poll           |       |     |      |     |
| s6013162007070023                 | Merino         | 6.39  | 83  | 3.88 | 111 |
|                                   | Poll           |       |     |      |     |
| s6013322004000WD2                 | Merino         | 6.38  | 85  | 3.88 | 112 |
|                                   | Poll           |       |     |      |     |
| s6013362008RAS004                 | Merino         | 6.38  | 89  | 3.88 | 113 |
|                                   | Poll           |       |     |      |     |
| s6013562007000449                 | Merino         | 6.37  | 90  | 3.86 | 124 |
| -004205200000052                  | Poll           | 0.07  | 01  | 0.04 | 400 |
| \$6013652006060052                | Ivierino       | 6.37  | 91  | 3.84 | 130 |
| c6000542006066522                 | Poli<br>Morino | 6.25  | 07  | 2 90 | 140 |
| 30090342000000333                 | Poll           | 0.55  | 31  | 5.00 | 140 |
| \$6091542004040062                | Merino         | 6.34  | 100 | 3 78 | 150 |
|                                   | Poll           | 0.01  | 100 | 0.70 | 100 |
| s6091542006060306                 | Merino         | 6.33  | 105 | 3.77 | 152 |
|                                   | Prime          |       |     |      |     |
| s4800302008080078                 | Samm           | 6.63  | 5   | 4.40 | 6   |
|                                   | Prime          |       |     |      |     |
| s4800302008080111                 | Samm           | 6.61  | 6   | 4.39 | 7   |
|                                   | Prime          |       |     |      |     |
| s4800392007070062                 | Samm           | 6.59  | 12  | 4.36 | 9   |
|                                   | Prime          |       |     |      | 10  |
| s4800402008080217                 | Samm           | 6.59  | 14  | 4.35 | 10  |
| -4900550007070000                 | Prime          | 0.50  | 45  | 4.20 | 4.4 |
| 54600552007070068                 | Brimo          | 86.0  | 15  | 4.30 | 14  |
| \$4800872006060421                | Samm           | 6 57  | 18  | 4 28 | 16  |
| 5 100001 2000000 <del>1</del> 2 1 | Prime          | 0.07  | 10  | 7.20 | 10  |
| s4800992006060191                 | Samm           | 6.56  | 25  | 4.26 | 17  |
|                                   | Prime          | 0.00  |     |      |     |
| s4801042008080549                 | Samm           | 6.55  | 27  | 4.26 | 19  |
|                                   | Prime          |       |     |      |     |
| s4801222005051010                 | Samm           | 6.54  | 30  | 4.25 | 21  |

|                                         | Prime              |      |       |      |    |
|-----------------------------------------|--------------------|------|-------|------|----|
| s4801222008080343                       | Samm               | 6.53 | 36    | 4.24 | 22 |
| s1900282007071494                       | Suffolk            | 6.39 | 84    | 4.23 | 23 |
| s1900602007070267                       | Suffolk            | 6.32 | 106   | 4.22 | 25 |
| s1900602008080369                       | Suffolk            | 6.31 | 109   | 4.13 | 30 |
| s1901112007077058                       | Suffolk            | 6.30 | 112   | 4.10 | 33 |
| s1912012008080094                       | Suffolk            | 6.29 | 114   | 4.10 | 35 |
| s1913622007070027                       | Suffolk            | 6.29 | 115   | 4.09 | 36 |
| s1916612008080491                       | Suffolk            | 6.29 | 117   | 4.07 | 37 |
| s1918502001010120                       | Suffolk            | 6.25 | 124   | 4.04 | 44 |
| s1920452007070508                       | Suffolk            | 6.24 | 126   | 4.03 | 47 |
| s1920452008080594                       | Suffolk            | 6.21 | 131   | 4.00 | 56 |
| s1700622007070144                       | Texel              | 6.35 | 99    | 4.04 | 45 |
| s1700802007071532                       | Texel              | 6.31 | 108   | 4.00 | 52 |
| s1700812008080039                       | Texel              | 6.29 | 116   | 3.97 | 63 |
| s1702232004040080                       | Texel              | 6.29 | 118   | 3.96 | 68 |
| s1702232007070046                       | Texel              | 6.28 | 119   | 3.94 | 72 |
| s1704062007070028                       | Texel              | 6.26 | 121   | 3.94 | 75 |
| s1704202007070224                       | Texel              | 6.26 | 122   | 3.92 | 87 |
|                                         | White              | 0120 |       | 0.02 | 0. |
| s4700442008084825                       | Dorper             | 6.51 | 46    | 4.54 | 1  |
|                                         | White              |      |       |      |    |
| s4700702003030011                       | Dorper             | 6.50 | 50    | 4.50 | 2  |
|                                         | White              |      |       |      |    |
| s4701142006060036                       | Dorper             | 6.49 | 53    | 4.44 | 3  |
|                                         | White              |      |       |      | _  |
| s4701142007071345                       | Dorper             | 6.45 | 64    | 4.43 | 4  |
|                                         | White              |      |       |      |    |
| s4701392006060057                       | Dorper             | 6.43 | 71    | 4.42 | 5  |
|                                         | White              |      |       |      |    |
| s4701792008080386                       | Dorper             | 6.42 | 74    | 4.31 | 13 |
|                                         | White              |      |       |      |    |
| s4702062007077118                       | Dorper             | 6.42 | 75    | 4.29 | 15 |
|                                         | White              |      |       |      |    |
| s2300012008080022                       | Suffolk            | 6.16 | 138   | 4.06 | 40 |
|                                         | White              |      |       |      |    |
| s2300022007070098                       | Suffolk            | 6.13 | 139   | 4.03 | 48 |
|                                         | White              |      |       |      |    |
| s2300022008080234                       | Suffolk            | 6.11 | 140   | 3.96 | 64 |
|                                         | White              |      |       |      |    |
| s2300092007070279                       | Suffolk            | 6.10 | 141   | 3.96 | 65 |
|                                         | White              |      |       |      |    |
| s2300152007070143                       | Suffolk            | 6.10 | 142   | 3.94 | 78 |
|                                         | White              | 0.40 |       | 0.00 |    |
| s2300152009090255                       | Suffolk            | 6.10 | 143   | 3.93 | 80 |
| -00000000000000000000000000000000000000 | White              | 0.40 |       | 0.04 |    |
| 52300262005050650                       | SUITOIK            | 6.10 | 144   | 3.91 | 90 |
| 000000000000000000000000000000000000000 | vvnite<br>Suffalls | 6.40 | 4 4 5 | 2.00 | 04 |
| 52300262007072446                       |                    | 6.10 | 145   | 3.90 | 94 |
| 02200262000002042                       | Suffolk            | 6.00 | 146   | 2 00 | 05 |
| 52300202000003013                       |                    | 0.09 | 140   | 3.90 | 90 |
| 02200202000000116                       | Suffolk            | 6.00 | 117   | 2 00 | 06 |
| 5230030200000110                        | SUIIOIK            | 0.09 | 147   | 3.90 | 90 |

|                   | White   |      |     |      |     |
|-------------------|---------|------|-----|------|-----|
| s2300342007074914 | Suffolk | 6.08 | 148 | 3.90 | 97  |
|                   | White   |      |     |      |     |
| s2300432007070591 | Suffolk | 6.08 | 149 | 3.90 | 98  |
|                   | White   |      |     |      |     |
| s2300432008080136 | Suffolk | 6.07 | 150 | 3.90 | 100 |
|                   | White   |      |     |      |     |
| s2300432008080644 | Suffolk | 6.07 | 151 | 3.89 | 104 |
|                   | White   |      |     |      |     |
| s2300912007070008 | Suffolk | 6.06 | 152 | 3.88 | 110 |
|                   | White   |      |     |      |     |
| s2300992008080097 | Suffolk | 6.06 | 153 | 3.87 | 117 |
|                   | White   |      |     |      |     |
| s2301002007070677 | Suffolk | 6.06 | 154 | 3.86 | 120 |
|                   | White   |      |     |      |     |
| s2301132007070040 | Suffolk | 6.04 | 155 | 3.86 | 121 |
|                   | White   |      |     |      |     |
| s2301132008080205 | Suffolk | 6.04 | 156 | 3.86 | 123 |
|                   | White   |      |     |      |     |
| s2303182008080262 | Suffolk | 6.04 | 157 | 3.85 | 128 |
|                   | White   |      |     |      |     |
| s2303242007075630 | Suffolk | 6.03 | 158 | 3.84 | 131 |
|                   | White   |      |     |      |     |
| s2303242008085244 | Suffolk | 6.01 | 159 | 3.84 | 132 |
|                   | White   |      |     |      |     |
| s2304502007071456 | Suffolk | 6.00 | 160 | 3.82 | 136 |

**Table 23.5**. Probabilities of a sire producing progeny within each of the star eating classification classes for the loin cut

| Sire              | Breed            | Prob   | Prob star | Prob star | Prob   |
|-------------------|------------------|--------|-----------|-----------|--------|
|                   |                  | star 2 | 3         | 4         | star 5 |
| s0600032006060121 | Bond             | 0.04   | 0.31      | 0.37      | 0.28   |
| s020041200707J039 | Border Leicester | 0.05   | 0.34      | 0.35      | 0.25   |
| s0219292007070261 | Border Leicester | 0.06   | 0.35      | 0.34      | 0.25   |
| s0236662006060976 | Border Leicester | 0.05   | 0.37      | 0.34      | 0.24   |
| s0236912008088370 | Border Leicester | 0.05   | 0.37      | 0.33      | 0.25   |
| s0237802008080157 | Border Leicester | 0.05   | 0.35      | 0.34      | 0.25   |
| s0241662008080220 | Border Leicester | 0.07   | 0.36      | 0.33      | 0.25   |
| s0244112006060369 | Border Leicester | 0.05   | 0.34      | 0.34      | 0.27   |
| s0246862007070179 | Border Leicester | 0.05   | 0.36      | 0.34      | 0.25   |
| s0247152008080085 | Border Leicester | 0.06   | 0.36      | 0.34      | 0.23   |
| s0250022008085029 | Border Leicester | 0.06   | 0.37      | 0.33      | 0.24   |
| s020041200707J040 | Border Leicester | 0.04   | 0.34      | 0.36      | 0.26   |
| s1500152003030196 | Coopworth        | 0.07   | 0.36      | 0.34      | 0.23   |
| s1500292007070244 | Coopworth        | 0.07   | 0.36      | 0.35      | 0.23   |
| s1500292008080181 | Coopworth        | 0.07   | 0.34      | 0.35      | 0.24   |
| s1500392006061009 | Coopworth        | 0.07   | 0.35      | 0.35      | 0.24   |
| s1500482007070769 | Coopworth        | 0.08   | 0.35      | 0.35      | 0.23   |
| s1500482008080808 | Coopworth        | 0.08   | 0.36      | 0.34      | 0.22   |
| s1500992007071449 | Coopworth        | 0.06   | 0.35      | 0.35      | 0.24   |
| s1500992007071449 | Coopworth        | 0.07   | 0.36      | 0.34      | 0.22   |

| s0300182004045220  | Corriedale   | 0.05 | 0.33 | 0.35 | 0.27 |
|--------------------|--------------|------|------|------|------|
| s0300362005050134  | Corriedale   | 0.05 | 0.30 | 0.35 | 0.29 |
| s0314602006543022  | Corriedale   | 0.05 | 0.32 | 0.35 | 0.28 |
| s0315272003030360  | Corriedale   | 0.05 | 0.35 | 0.36 | 0.23 |
| s0318972006060386  | Corriedale   | 0.06 | 0.33 | 0.35 | 0.27 |
| s0318972008080282  | Corriedale   | 0.05 | 0.32 | 0.35 | 0.28 |
| s0319232001011072  | Corriedale   | 0.04 | 0.31 | 0.36 | 0.28 |
| s0322722008080072  | Corriedale   | 0.07 | 0.34 | 0.34 | 0.26 |
| s0323612006060209  | Corriedale   | 0.06 | 0.31 | 0.35 | 0.28 |
| s0324012007070002  | Corriedale   | 0.05 | 0.33 | 0.35 | 0.27 |
| s5100032007070949  | Dohne Merino | 0.05 | 0.35 | 0.36 | 0.23 |
| s5100072008083953  | Dohne Merino | 0.00 | 0.34 | 0.36 | 0.25 |
| \$5100072008084048 | Dohne Merino | 0.05 | 0.33 | 0.00 | 0.20 |
| s5100092007070376  | Dohne Merino | 0.05 | 0.00 | 0.00 | 0.27 |
| s5100292008088124  | Dohne Merino | 0.05 | 0.34 | 0.30 | 0.24 |
| c5100292000000124  | Dohne Merino | 0.05 | 0.34 | 0.37 | 0.24 |
| c5100402007071700  | Dohne Merino | 0.00 | 0.30 | 0.35 | 0.23 |
| s5100492007071700  | Dohne Merino | 0.05 | 0.35 | 0.35 | 0.24 |
| s5100732007070000  | Donne Merino | 0.06 | 0.33 | 0.33 | 0.24 |
| \$5101402006060366 | Donne Merino | 0.05 | 0.35 | 0.36 | 0.24 |
| \$5101462007070128 |              | 0.05 | 0.34 | 0.36 | 0.25 |
| \$4000302007070056 | Dorper       | 0.07 | 0.34 | 0.34 | 0.24 |
| \$4000302007070617 | Dorper       | 0.07 | 0.38 | 0.35 | 0.20 |
| \$4000302007071209 | Dorper       | 0.04 | 0.36 | 0.36 | 0.25 |
| \$5000482007070260 | Merino       | 0.05 | 0.33 | 0.36 | 0.26 |
| s5000872006060096  | Merino       | 0.04 | 0.30 | 0.38 | 0.29 |
| s5003182007070022  | Merino       | 0.04 | 0.32 | 0.38 | 0.25 |
| s5007882007071254  | Merino       | 0.05 | 0.30 | 0.37 | 0.28 |
| s5007882008081290  | Merino       | 0.04 | 0.33 | 0.37 | 0.25 |
| s5015522006060480  | Merino       | 0.04 | 0.31 | 0.37 | 0.27 |
| s501587200606M276  | Merino       | 0.05 | 0.33 | 0.35 | 0.27 |
| s5017042007L68007  | Merino       | 0.04 | 0.33 | 0.37 | 0.25 |
| s5018852006TRIMPH  | Merino       | 0.05 | 0.31 | 0.37 | 0.26 |
| s5022512006066030  | Merino       | 0.04 | 0.32 | 0.38 | 0.25 |
| s5023022006006580  | Merino       | 0.04 | 0.33 | 0.37 | 0.25 |
| s5024252006023997  | Merino       | 0.06 | 0.34 | 0.36 | 0.24 |
| s5030542004040585  | Merino       | 0.04 | 0.32 | 0.38 | 0.26 |
| s5030702008080121  | Merino       | 0.04 | 0.32 | 0.37 | 0.26 |
| s5030972005051737  | Merino       | 0.05 | 0.32 | 0.37 | 0.26 |
| s5034252006060205  | Merino       | 0.05 | 0.31 | 0.36 | 0.29 |
| s5035642007WHI393  | Merino       | 0.04 | 0.31 | 0.38 | 0.26 |
| s5037892007LB0753  | Merino       | 0.04 | 0.31 | 0.37 | 0.28 |
| s5037892008080124  | Merino       | 0.05 | 0.34 | 0.37 | 0.24 |
| s5038632006OL3626  | Merino       | 0.05 | 0.32 | 0.37 | 0.25 |
| s5038842008081981  | Merino       | 0.06 | 0.32 | 0.36 | 0.25 |
| s5039462007OLY716  | Merino       | 0.05 | 0.33 | 0.37 | 0.26 |
| s5039822006060225  | Merino       | 0.05 | 0.33 | 0.37 | 0.25 |
| s5043622006LON449  | Merino       | 0.04 | 0.33 | 0.38 | 0.25 |
| s5044702006060022  | Merino       | 0.05 | 0.32 | 0.37 | 0.26 |
| s5044702008080588  | Merino       | 0.07 | 0.32 | 0.37 | 0.24 |
| s5044822007070461  | Merino       | 0.06 | 0.33 | 0.37 | 0.23 |
| s5046152004040024  | Merino       | 0.05 | 0.32 | 0.37 | 0.26 |
| s5047432000000503  | Merino       | 0.05 | 0.29 | 0.38 | 0.29 |
| s5049022005005345  | Merino       | 0.04 | 0.36 | 0.37 | 0.23 |

| s5049162007070719  | Merino      | 0.05 | 0.32 | 0.37 | 0.26 |
|--------------------|-------------|------|------|------|------|
| s5049162008080600  | Merino      | 0.05 | 0.36 | 0.36 | 0.22 |
| s50505020080G0856  | Merino      | 0.07 | 0.31 | 0.36 | 0.27 |
| s50923420060C0573  | Merino      | 0.05 | 0.34 | 0.37 | 0.24 |
| s1600012008080010  | Poll Dorset | 0.09 | 0.40 | 0.32 | 0.19 |
| s1600852008080021  | Poll Dorset | 0.10 | 0.42 | 0.32 | 0.17 |
| s1601852007070369  | Poll Dorset | 0.10 | 0.42 | 0.31 | 0.17 |
| s1603362008080541  | Poll Dorset | 0.08 | 0.42 | 0.32 | 0.18 |
| s1611432007070025  | Poll Dorset | 0.08 | 0.42 | 0.32 | 0.18 |
| s1611432008080203  | Poll Dorset | 0.09 | 0.39 | 0.33 | 0.20 |
| s1611582007070190  | Poll Dorset | 0.10 | 0.41 | 0.31 | 0.19 |
| s1612352007072025  | Poll Dorset | 0.09 | 0.43 | 0.32 | 0.17 |
| s1612352008080608  | Poll Dorset | 0.00 | 0.39 | 0.32 | 0.19 |
| s1614152007070440  | Poll Dorset | 0.00 | 0.00 | 0.02 | 0.13 |
| s1618862008080157  | Poll Dorset | 0.03 | 0.42 | 0.31 | 0.17 |
| s1618922006060050  | Poll Dorset | 0.03 | 0.41 | 0.32 | 0.13 |
| s1619722006061831  | Poll Dorset | 0.03 | 0.41 | 0.32 | 0.13 |
| c1610722000001031  | Poll Dorset | 0.00 | 0.33 | 0.33 | 0.21 |
| s1622882007070644  | Poll Dorset | 0.10 | 0.39 | 0.32 | 0.19 |
| c1622882008080077  | Poll Dorset | 0.07 | 0.30 | 0.34 | 0.21 |
| c1622682008080077  | Poll Dorset | 0.09 | 0.40 | 0.32 | 0.19 |
| c1627502008080481  | Poll Dorset | 0.12 | 0.40 | 0.31 | 0.10 |
| s16204720080802401 | Poll Dorset | 0.00 | 0.42 | 0.32 | 0.10 |
| s1625292007070192  | Poll Dorset | 0.09 | 0.41 | 0.32 | 0.19 |
| \$1035282007070182 |             | 0.12 | 0.43 | 0.30 | 0.17 |
| \$1636772007070839 | Poll Dorset | 0.11 | 0.42 | 0.31 | 0.17 |
| \$1636772006061037 | Poll Dorset | 0.10 | 0.30 | 0.32 | 0.20 |
| s1637212007070311  | Poll Dorset | 0.09 | 0.36 | 0.32 | 0.23 |
| c1640722007070264  | Poll Dorset | 0.09 | 0.40 | 0.32 | 0.20 |
| c6001052007070304  | Poll Dorset | 0.09 | 0.39 | 0.32 | 0.20 |
| s6004082007071080  | Poll Merino | 0.04 | 0.37 | 0.30 | 0.25 |
| c6005532007070002  | Poll Merino | 0.05 | 0.34 | 0.30 | 0.25 |
| s6005332007070002  | Poll Merino | 0.05 | 0.33 | 0.35 | 0.25 |
| s6005712006060904  | Poll Merino | 0.05 | 0.34 | 0.35 | 0.25 |
| 26008152006060120  | Poll Merino | 0.03 | 0.34 | 0.35 | 0.20 |
| c6008152000000120  | Poll Merino | 0.04 | 0.31 | 0.30 | 0.20 |
| \$0008152007070525 |             | 0.05 | 0.34 | 0.35 | 0.27 |
| s00080200000027    |             | 0.04 | 0.34 | 0.30 | 0.20 |
| s0010532003031078  | Poll Merino | 0.04 | 0.33 | 0.37 | 0.20 |
| s0010332007071190  | Poll Merino | 0.05 | 0.33 | 0.30 | 0.27 |
| s0010822007071257  | Poll Merino | 0.04 | 0.32 | 0.30 | 0.20 |
| s0010822008081288  | Poll Merino | 0.05 | 0.34 | 0.37 | 0.20 |
| s0011272007070121  |             | 0.04 | 0.34 | 0.30 | 0.20 |
| \$60124200808254   |             | 0.00 | 0.30 | 0.35 | 0.24 |
| \$6012442007070304 |             | 0.04 | 0.32 | 0.36 | 0.28 |
| \$6012502004407812 |             | 0.04 | 0.36 | 0.36 | 0.24 |
| 50012/9200/0/04/0  |             | 0.04 | 0.35 | 0.30 | 0.25 |
| 50012882006063091  |             | 0.05 | 0.35 | 0.35 | 0.25 |
| 50013072005050105  |             | 0.05 | 0.35 | 0.35 | 0.25 |
| SOUT3T02007070023  |             | 0.05 | 0.33 | 0.36 | 0.26 |
| SOU13322004000WD2  |             | 0.04 | 0.32 | 0.35 | 0.29 |
| 50013302008KA5004  |             | 0.05 | 0.35 | 0.30 | 0.24 |
| 50013562007000449  |             | 0.04 | 0.34 | 0.36 | 0.25 |
| 50013652006060052  | Poli Merino | 0.06 | 0.35 | 0.35 | 0.25 |

| s6090542006066533  | Poll Merino   | 0.05 | 0.34 | 0.36 | 0.24 |
|--------------------|---------------|------|------|------|------|
| s6091542004040062  | Poll Merino   | 0.07 | 0.34 | 0.35 | 0.25 |
| s4800302008080078  | Prime Samm    | 0.04 | 0.30 | 0.36 | 0.30 |
| s4800302008080111  | Prime Samm    | 0.04 | 0.31 | 0.35 | 0.29 |
| s4800392007070062  | Prime Samm    | 0.05 | 0.30 | 0.35 | 0.30 |
| s4800402008080217  | Prime Samm    | 0.00 | 0.00 | 0.00 | 0.00 |
| s4800552007070068  | Prime Samm    | 0.04 | 0.30 | 0.00 | 0.31 |
| s4800872006060421  | Prime Samm    | 0.05 | 0.31 | 0.00 | 0.00 |
| s4800992006060191  | Prime Samm    | 0.00 | 0.32 | 0.34 | 0.23 |
| s4801042008080549  | Prime Samm    | 0.00 | 0.32 | 0.34 | 0.20 |
| s4801222005051010  | Prime Samm    | 0.03 | 0.31 | 0.35 | 0.23 |
| c4801222003031010  | Prime Samm    | 0.04 | 0.29 | 0.30 | 0.31 |
| c1000282007071404  | Suffolk       | 0.04 | 0.31 | 0.33 | 0.30 |
| s1900282007071494  | Sulloik       | 0.06 | 0.33 | 0.34 | 0.24 |
| \$1900602007070267 | Sulloik       | 0.06 | 0.36 | 0.34 | 0.22 |
| \$1900602008080369 | Sulloik       | 0.07 | 0.35 | 0.34 | 0.25 |
| \$1901112007077058 | Sulloik       | 0.06 | 0.36 | 0.35 | 0.23 |
| \$1912012008080094 |               | 0.06 | 0.37 | 0.34 | 0.23 |
| s1913622007070027  | Suffolk       | 0.07 | 0.36 | 0.35 | 0.23 |
| s1916612008080491  | Suffolk       | 0.07 | 0.37 | 0.34 | 0.21 |
| s1918502001010120  | Suffolk       | 0.06 | 0.36 | 0.34 | 0.23 |
| s1920452007070508  | Suttolk       | 0.07 | 0.37 | 0.34 | 0.22 |
| s1920452008080594  | Suffolk       | 0.06 | 0.36 | 0.35 | 0.23 |
| s1700622007070144  | Texel         | 0.06 | 0.34 | 0.35 | 0.25 |
| s1700802007071532  | Texel         | 0.06 | 0.34 | 0.35 | 0.25 |
| s1700812008080039  | Texel         | 0.05 | 0.36 | 0.35 | 0.24 |
| s1702232004040080  | Texel         | 0.07 | 0.35 | 0.34 | 0.24 |
| s1702232007070046  | Texel         | 0.07 | 0.36 | 0.35 | 0.23 |
| s1704062007070028  | Texel         | 0.07 | 0.35 | 0.34 | 0.23 |
| s1704202007070224  | Texel         | 0.05 | 0.35 | 0.35 | 0.24 |
| s4700442008084825  | White Dorper  | 0.05 | 0.32 | 0.37 | 0.26 |
| s4700702003030011  | White Dorper  | 0.05 | 0.34 | 0.37 | 0.24 |
| s4701142006060036  | White Dorper  | 0.06 | 0.36 | 0.36 | 0.22 |
| s4701142007071345  | White Dorper  | 0.05 | 0.34 | 0.35 | 0.26 |
| s4701392006060057  | White Dorper  | 0.07 | 0.34 | 0.34 | 0.25 |
| s4701792008080386  | White Dorper  | 0.07 | 0.31 | 0.37 | 0.24 |
| s4702062007077118  | White Dorper  | 0.05 | 0.31 | 0.37 | 0.28 |
| s2300012008080022  | White Suffolk | 0.07 | 0.39 | 0.34 | 0.21 |
| s2300022007070098  | White Suffolk | 0.08 | 0.38 | 0.33 | 0.21 |
| s2300022008080234  | White Suffolk | 0.07 | 0.38 | 0.34 | 0.21 |
| s2300092007070279  | White Suffolk | 0.07 | 0.39 | 0.34 | 0.20 |
| s2300152007070143  | White Suffolk | 0.08 | 0.37 | 0.35 | 0.20 |
| s2300152009090255  | White Suffolk | 0.06 | 0.39 | 0.35 | 0.19 |
| s2300262005050650  | White Suffolk | 0.06 | 0.36 | 0.35 | 0.23 |
| s2300262007072446  | White Suffolk | 0.07 | 0.38 | 0.34 | 0.21 |
| s2300262008083813  | White Suffolk | 0.08 | 0.38 | 0.34 | 0.21 |
| s2300302008080116  | White Suffolk | 0.08 | 0.38 | 0.33 | 0.21 |
| s2300342007074914  | White Suffolk | 0.08 | 0.38 | 0.33 | 0.22 |
| s2300432007070591  | White Suffolk | 0.07 | 0.40 | 0.34 | 0.20 |
| s2300432008080136  | White Suffolk | 0.08 | 0.39 | 0.34 | 0.19 |
| s2300432008080644  | White Suffolk | 0.07 | 0.39 | 0.34 | 0.20 |
| s2300912007070008  | White Suffolk | 0.07 | 0.39 | 0.34 | 0.21 |
| s2300992008080097  | White Suffolk | 0.07 | 0.37 | 0.34 | 0.22 |
| s2301002007070677  | White Suffolk | 0.05 | 0.36 | 0.35 | 0.23 |

| s2301132007070040 | White Suffolk | 0.07 | 0.38 | 0.34 | 0.21 |
|-------------------|---------------|------|------|------|------|
| s2301132008080205 | White Suffolk | 0.07 | 0.38 | 0.35 | 0.21 |
| s2303182008080262 | White Suffolk | 0.07 | 0.37 | 0.35 | 0.21 |
| s2303242007075630 | White Suffolk | 0.07 | 0.40 | 0.34 | 0.19 |
| s2303242008085244 | White Suffolk | 0.07 | 0.38 | 0.34 | 0.20 |
| s2304502007071456 | White Suffolk | 0.07 | 0.38 | 0.35 | 0.21 |

**Table 24.5**. Probabilities of a sire producing progeny within each of the star eating classification classes for the topside cut

| Sire              | Breed            | Prob star | Prob star 3 | Prob star | Prob star |
|-------------------|------------------|-----------|-------------|-----------|-----------|
|                   |                  | 2         |             | 4         | 5         |
| s0600032006060121 | Bond             | 0.25      | 0.49        | 0.18      | 0.06      |
| s020041200707J039 | Border Leicester | 0.25      | 0.5         | 0.17      | 0.06      |
| s0219292007070261 | Border Leicester | 0.30      | 0.49        | 0.16      | 0.06      |
| s0236662006060976 | Border Leicester | 0.29      | 0.50        | 0.16      | 0.05      |
| s0236912008088370 | Border Leicester | 0.29      | 0.49        | 0.17      | 0.06      |
| s0237802008080157 | Border Leicester | 0.29      | 0.48        | 0.17      | 0.06      |
| s0241662008080220 | Border Leicester | 0.29      | 0.49        | 0.17      | 0.06      |
| s0244112006060369 | Border Leicester | 0.25      | 0.48        | 0.20      | 0.07      |
| s0246862007070179 | Border Leicester | 0.30      | 0.49        | 0.16      | 0.06      |
| s0247152008080085 | Border Leicester | 0.28      | 0.50        | 0.16      | 0.05      |
| s0250022008085029 | Border Leicester | 0.27      | 0.50        | 0.17      | 0.05      |
| s020041200707J040 | Border Leicester | 0.30      | 0.50        | 0.15      | 0.05      |
| s1500152003030196 | Coopworth        | 0.35      | 0.48        | 0.15      | 0.05      |
| s1500292007070244 | Coopworth        | 0.33      | 0.48        | 0.15      | 0.05      |
| s1500292008080181 | Coopworth        | 0.30      | 0.50        | 0.15      | 0.05      |
| s1500392006061009 | Coopworth        | 0.27      | 0.51        | 0.15      | 0.05      |
| s1500482007070769 | Coopworth        | 0.31      | 0.50        | 0.15      | 0.05      |
| s1500482008080808 | Coopworth        | 0.28      | 0.49        | 0.17      | 0.06      |
| s1500992007071449 | Coopworth        | 0.29      | 0.50        | 0.14      | 0.05      |
| s1500992007071449 | Coopworth        | 0.32      | 0.49        | 0.15      | 0.05      |
| s0300182004045220 | Corriedale       | 0.31      | 0.48        | 0.17      | 0.05      |
| s0300362005050134 | Corriedale       | 0.25      | 0.48        | 0.21      | 0.06      |
| s0314602006543022 | Corriedale       | 0.27      | 0.50        | 0.17      | 0.05      |
| s0315272003030360 | Corriedale       | 0.30      | 0.49        | 0.17      | 0.05      |
| s0318972006060386 | Corriedale       | 0.30      | 0.50        | 0.16      | 0.05      |
| s0318972008080282 | Corriedale       | 0.26      | 0.50        | 0.18      | 0.05      |
| s0319232001011072 | Corriedale       | 0.25      | 0.50        | 0.17      | 0.05      |
| s0322722008080072 | Corriedale       | 0.32      | 0.47        | 0.16      | 0.05      |
| s0323612006060209 | Corriedale       | 0.23      | 0.50        | 0.19      | 0.06      |
| s0324012007070002 | Corriedale       | 0.35      | 0.48        | 0.15      | 0.05      |
| s5100032007070949 | Dohne Merino     | 0.31      | 0.51        | 0.14      | 0.05      |
| s5100072008083953 | Dohne Merino     | 0.23      | 0.53        | 0.17      | 0.05      |
| s5100072008084048 | Dohne Merino     | 0.25      | 0.51        | 0.17      | 0.06      |
| s5100092007070376 | Dohne Merino     | 0.30      | 0.51        | 0.15      | 0.05      |
| s5100292008088124 | Dohne Merino     | 0.31      | 0.51        | 0.15      | 0.05      |
| s5100302005050068 | Dohne Merino     | 0.28      | 0.52        | 0.15      | 0.05      |
| s5100492007071700 | Dohne Merino     | 0.28      | 0.50        | 0.16      | 0.05      |
| s5100732007070006 | Dohne Merino     | 0.31      | 0.51        | 0.14      | 0.05      |
| s5101402006060368 | Dohne Merino     | 0.27      | 0.51        | 0.17      | 0.05      |
| s5101462007070128 | Dohne Merino     | 0.32      | 0.50        | 0.14      | 0.05      |
| s4000302007070056 | Dorper           | 0.25      | 0.51        | 0.18      | 0.06      |
| s4000302007070617 | Dorper           | 0.28      | 0.52        | 0.15      | 0.05      |
| s4000302007071209 | Dorper           | 0.30      | 0.50        | 0.16      | 0.06      |
| s5000482007070260 | Merino           | 0.27      | 0.51        | 0.16      | 0.05      |
| s5000872006060096 | Merino           | 0.27      | 0.52        | 0.16      | 0.04      |
| s5003182007070022 | Merino           | 0.32      | 0.51        | 0.14      | 0.04      |
| s5007882007071254 | Merino           | 0.23      | 0.51        | 0.17      | 0.05      |
| s5007882008081290 | Merino           | 0.29      | 0.49        | 0.16      | 0.05      |

| s5015522006060480 | Merino      | 0.25 | 0.51 | 0.17 | 0.05 |
|-------------------|-------------|------|------|------|------|
| s501587200606M276 | Merino      | 0.30 | 0.49 | 0.16 | 0.05 |
| s5017042007L68007 | Merino      | 0.26 | 0.52 | 0.15 | 0.05 |
| s5018852006TRIMPH | Merino      | 0.28 | 0.49 | 0.17 | 0.05 |
| s5022512006066030 | Merino      | 0.30 | 0.52 | 0.13 | 0.04 |
| s5023022006006580 | Merino      | 0.30 | 0.49 | 0.15 | 0.05 |
| s5024252006023997 | Merino      | 0.34 | 0.49 | 0.14 | 0.04 |
| s5030542004040585 | Merino      | 0.33 | 0.48 | 0.15 | 0.05 |
| s5030702008080121 | Merino      | 0.28 | 0.51 | 0.15 | 0.05 |
| s5030972005051737 | Merino      | 0.30 | 0.52 | 0.13 | 0.04 |
| s5034252006060205 | Merino      | 0.27 | 0.50 | 0.16 | 0.05 |
| s5035642007WHI393 | Merino      | 0.25 | 0.52 | 0.16 | 0.05 |
| s5037892007LB0753 | Merino      | 0.25 | 0.51 | 0.16 | 0.06 |
| s5037892008080124 | Merino      | 0.31 | 0.50 | 0.15 | 0.04 |
| s5038632006OL3626 | Merino      | 0.24 | 0.52 | 0.15 | 0.04 |
| s5038842008081981 | Merino      | 0.35 | 0.48 | 0.14 | 0.05 |
| s50394620070LY716 | Merino      | 0.32 | 0.49 | 0.15 | 0.05 |
| s5039822006060225 | Merino      | 0.28 | 0.51 | 0.16 | 0.05 |
| s5043622006LON449 | Merino      | 0.25 | 0.51 | 0.16 | 0.05 |
| s5044702006060022 | Merino      | 0.29 | 0.51 | 0.15 | 0.04 |
| s5044702008080588 | Merino      | 0.29 | 0.51 | 0.15 | 0.05 |
| s5044822007070461 | Merino      | 0.30 | 0.50 | 0.15 | 0.04 |
| s5046152004040024 | Merino      | 0.31 | 0.50 | 0.14 | 0.04 |
| s5047432000000503 | Merino      | 0.33 | 0.48 | 0.15 | 0.05 |
| s5049022005005345 | Merino      | 0.37 | 0.48 | 0.13 | 0.04 |
| s5049162007070719 | Merino      | 0.30 | 0.50 | 0.15 | 0.05 |
| s5049162008080600 | Merino      | 0.30 | 0.50 | 0.15 | 0.05 |
| s50505020080G0856 | Merino      | 0.28 | 0.51 | 0.15 | 0.04 |
| s50923420060C0573 | Merino      | 0.29 | 0.51 | 0.16 | 0.05 |
| s1600012008080010 | Poll Dorset | 0.35 | 0.49 | 0.12 | 0.03 |
| s1600852008080021 | Poll Dorset | 0.44 | 0.46 | 0.10 | 0.03 |
| s1601852007070369 | Poll Dorset | 0.37 | 0.48 | 0.12 | 0.04 |
| s1603362008080541 | Poll Dorset | 0.41 | 0.46 | 0.12 | 0.04 |
| s1611432007070025 | Poll Dorset | 0.35 | 0.49 | 0.11 | 0.03 |
| s1611432008080203 | Poll Dorset | 0.35 | 0.49 | 0.12 | 0.04 |
| s1611582007070190 | Poll Dorset | 0.38 | 0.47 | 0.12 | 0.04 |
| s1612352007072025 | Poll Dorset | 0.35 | 0.50 | 0.11 | 0.03 |
| s1612352008080608 | Poll Dorset | 0.41 | 0.47 | 0.11 | 0.03 |
| s1614152007070440 | Poll Dorset | 0.36 | 0.49 | 0.12 | 0.03 |
| s1618862008080157 | Poll Dorset | 0.31 | 0.49 | 0.14 | 0.03 |
| s1618922006060050 | Poll Dorset | 0.37 | 0.49 | 0.11 | 0.03 |
| s1619722006061831 | Poll Dorset | 0.32 | 0.49 | 0.13 | 0.04 |
| s1619722009090133 | Poll Dorset | 0.32 | 0.50 | 0.13 | 0.04 |
| s1622882007070644 | Poll Dorset | 0.31 | 0.51 | 0.12 | 0.03 |
| s1622882008080077 | Poll Dorset | 0.32 | 0.49 | 0.14 | 0.04 |
| s1623682007070468 | Poll Dorset | 0.36 | 0.48 | 0.12 | 0.04 |
| s1627502008080481 | Poll Dorset | 0.38 | 0.47 | 0.12 | 0.03 |
| s1629472008080219 | Poll Dorset | 0.34 | 0.49 | 0.13 | 0.03 |
| s1635282007070182 | Poll Dorset | 0.38 | 0.47 | 0.13 | 0.04 |
| s1636772007070839 | Poll Dorset | 0.42 | 0.47 | 0.10 | 0.03 |
| s1636772008081037 | Poll Dorset | 0.40 | 0.47 | 0.12 | 0.03 |
| s1637212007070311 | Poll Dorset | 0.32 | 0.49 | 0.13 | 0.04 |
| s1640002009090052 | Poll Dorset | 0.40 | 0.48 | 0.10 | 0.03 |

| s1640732007070364 | Poll Dorset | 0.35 | 0.48 | 0.13 | 0.04 |
|-------------------|-------------|------|------|------|------|
| s6001052007071080 | Poll Merino | 0.35 | 0.49 | 0.14 | 0.05 |
| s6004082007070069 | Poll Merino | 0.27 | 0.51 | 0.16 | 0.05 |
| s6005532007070002 | Poll Merino | 0.28 | 0.51 | 0.16 | 0.05 |
| s6005712006060058 | Poll Merino | 0.29 | 0.50 | 0.16 | 0.06 |
| s6005712006060904 | Poll Merino | 0.29 | 0.50 | 0.16 | 0.05 |
| s6008152006060120 | Poll Merino | 0.28 | 0.50 | 0.16 | 0.05 |
| s6008152007070323 | Poll Merino | 0.34 | 0.49 | 0.14 | 0.05 |
| s6008802006060627 | Poll Merino | 0.27 | 0.51 | 0.15 | 0.05 |
| s6010532003031078 | Poll Merino | 0.31 | 0.49 | 0.15 | 0.05 |
| s6010532007071190 | Poll Merino | 0.23 | 0.51 | 0.18 | 0.06 |
| s6010822007071257 | Poll Merino | 0.22 | 0.54 | 0.15 | 0.05 |
| s6010822008081288 | Poll Merino | 0.23 | 0.50 | 0.17 | 0.07 |
| s6011272007070121 | Poll Merino | 0.28 | 0.51 | 0.14 | 0.05 |
| s6011272008088254 | Poll Merino | 0.36 | 0.48 | 0.14 | 0.05 |
| s6012442007070304 | Poll Merino | 0.25 | 0.51 | 0.17 | 0.05 |
| s6012502004407812 | Poll Merino | 0.32 | 0.50 | 0.14 | 0.05 |
| s6012792007070470 | Poll Merino | 0.30 | 0.49 | 0.16 | 0.05 |
| s6012882006063091 | Poll Merino | 0.27 | 0.50 | 0.16 | 0.05 |
| s6013072005050165 | Poll Merino | 0.29 | 0.49 | 0.16 | 0.05 |
| s6013162007070023 | Poll Merino | 0.25 | 0.51 | 0.17 | 0.05 |
| s6013322004000WD2 | Poll Merino | 0.28 | 0.48 | 0.17 | 0.06 |
| s6013362008RAS004 | Poll Merino | 0.34 | 0.49 | 0.14 | 0.05 |
| s6013562007000449 | Poll Merino | 0.23 | 0.51 | 0.17 | 0.05 |
| s6013652006060052 | Poll Merino | 0.29 | 0.53 | 0.12 | 0.05 |
| s6090542006066533 | Poll Merino | 0.34 | 0.89 | 0.12 | 0.05 |
| s6091542004040062 | Poll Merino | 0.35 | 0.10 | 0.15 | 0.05 |
| s4800302008080078 | Prime Samm  | 0.26 | 0.51 | 0.17 | 0.06 |
| s4800302008080111 | Prime Samm  | 0.28 | 0.51 | 0.16 | 0.05 |
| s4800392007070062 | Prime Samm  | 0.23 | 0.52 | 0.18 | 0.05 |
| s4800402008080217 | Prime Samm  | 0.23 | 0.52 | 0.18 | 0.06 |
| s4800552007070068 | Prime Samm  | 0.23 | 0.52 | 0.18 | 0.05 |
| s4800872006060421 | Prime Samm  | 0.26 | 0.50 | 0.18 | 0.06 |
| s4800992006060191 | Prime Samm  | 0.26 | 0.52 | 0.16 | 0.05 |
| s4801042008080549 | Prime Samm  | 0.27 | 0.51 | 0.17 | 0.05 |
| s4801222005051010 | Prime Samm  | 0.21 | 0.52 | 0.19 | 0.06 |
| s4801222008080343 | Prime Samm  | 0.24 | 0.51 | 0.19 | 0.06 |
| s1900282007071494 | Suffolk     | 0.30 | 0.51 | 0.14 | 0.05 |
| s1900602007070267 | Suffolk     | 0.30 | 0.51 | 0.14 | 0.05 |
| s1900602008080369 | Suffolk     | 0.25 | 0.52 | 0.16 | 0.05 |
| s1901112007077058 | Suffolk     | 0.24 | 0.52 | 0.17 | 0.05 |
| s1912012008080094 | Suffolk     | 0.28 | 0.52 | 0.15 | 0.05 |
| s1913622007070027 | Suffolk     | 0.32 | 0.50 | 0.14 | 0.05 |
| s1916612008080491 | Suffolk     | 0.30 | 0.50 | 0.15 | 0.05 |
| s1918502001010120 | Suffolk     | 0.32 | 0.50 | 0.14 | 0.05 |
| s1920452007070508 | Suffolk     | 0.32 | 0.51 | 0.14 | 0.05 |
| s1920452008080594 | Suffolk     | 0.28 | 0.52 | 0.15 | 0.05 |
| s1700622007070144 | Texel       | 0.32 | 0.49 | 0.15 | 0.05 |
| s1700802007071532 | Texel       | 0.29 | 0.50 | 0.16 | 0.05 |
| s1700812008080039 | Texel       | 0.30 | 0.50 | 0.15 | 0.05 |
| s1702232004040080 | Texel       | 0.29 | 0.50 | 0.15 | 0.05 |
| s1702232007070046 | Texel       | 0.28 | 0.51 | 0.16 | 0.05 |
| s1704062007070028 | Texel       | 0.33 | 0.49 | 0.15 | 0.05 |

| s1704202007070224 | Texel         | 0.28 | 0.51 | 0.15 | 0.05 |
|-------------------|---------------|------|------|------|------|
| s4700442008084825 | White Dorper  | 0.25 | 0.53 | 0.17 | 0.05 |
| s4700702003030011 | White Dorper  | 0.24 | 0.51 | 0.20 | 0.06 |
| s4701142006060036 | White Dorper  | 0.29 | 0.55 | 0.14 | 0.04 |
| s4701142007071345 | White Dorper  | 0.29 | 0.51 | 0.17 | 0.05 |
| s4701392006060057 | White Dorper  | 0.32 | 0.50 | 0.16 | 0.05 |
| s4701792008080386 | White Dorper  | 0.27 | 0.51 | 0.18 | 0.05 |
| s4702062007077118 | White Dorper  | 0.24 | 0.51 | 0.20 | 0.06 |
| s2300012008080022 | White Suffolk | 0.34 | 0.49 | 0.12 | 0.04 |
| s2300022007070098 | White Suffolk | 0.30 | 0.48 | 0.16 | 0.05 |
| s2300022008080234 | White Suffolk | 0.30 | 0.50 | 0.14 | 0.04 |
| s2300092007070279 | White Suffolk | 0.33 | 0.49 | 0.14 | 0.04 |
| s2300152007070143 | White Suffolk | 0.32 | 0.49 | 0.15 | 0.04 |
| s2300152009090255 | White Suffolk | 0.31 | 0.50 | 0.14 | 0.04 |
| s2300262005050650 | White Suffolk | 0.36 | 0.49 | 0.13 | 0.04 |
| s2300262007072446 | White Suffolk | 0.30 | 0.49 | 0.15 | 0.05 |
| s2300262008083813 | White Suffolk | 0.34 | 0.49 | 0.14 | 0.04 |
| s2300302008080116 | White Suffolk | 0.33 | 0.49 | 0.15 | 0.04 |
| s2300342007074914 | White Suffolk | 0.32 | 0.48 | 0.14 | 0.05 |
| s2300432007070591 | White Suffolk | 0.35 | 0.48 | 0.14 | 0.04 |
| s2300432008080136 | White Suffolk | 0.37 | 0.48 | 0.13 | 0.04 |
| s2300432008080644 | White Suffolk | 0.33 | 0.49 | 0.13 | 0.04 |
| s2300912007070008 | White Suffolk | 0.35 | 0.49 | 0.13 | 0.04 |
| s2300992008080097 | White Suffolk | 0.37 | 0.48 | 0.13 | 0.04 |
| s2301002007070677 | White Suffolk | 0.29 | 0.51 | 0.14 | 0.04 |
| s2301132007070040 | White Suffolk | 0.35 | 0.48 | 0.14 | 0.04 |
| s2301132008080205 | White Suffolk | 0.33 | 0.50 | 0.13 | 0.04 |
| s2303182008080262 | White Suffolk | 0.34 | 0.49 | 0.14 | 0.04 |
| s2303242007075630 | White Suffolk | 0.34 | 0.50 | 0.13 | 0.04 |
| s2303242008085244 | White Suffolk | 0.31 | 0.50 | 0.14 | 0.04 |
| s2304502007071456 | White Suffolk | 0.32 | 0.49 | 0.15 | 0.05 |

**Table 25.5**. Variance components for meat colour measurements for the Loin and Topside cuts

|            | CFL  | CFa  | CFb  |
|------------|------|------|------|
| Sire       | 4.03 | 1.61 | 1.39 |
| Kill group | 2.98 | 0.52 | 7.01 |
| Residual   | 2.16 | 0.59 | 0.69 |

**Table 26.5.** Least squares means for the sire breed for each of the meat colour measurements for the loin and Topside cuts.

| Sire Breed | CFL         | CFa         | CFb            |
|------------|-------------|-------------|----------------|
| Bond       | 37.5 ± 1.15 | 20.3 ± 0.68 | $5.2 \pm 0.94$ |

| Border Leicester | 36.4 ± 0.60 | 19.5 ± 0.31 | 4.7 ± 0.75 |
|------------------|-------------|-------------|------------|
| Coopworth        | 36.2 ± 0.59 | 19.5 ± 0.30 | 4.6 ± 0.74 |
| Corriedale       | 36.8 ± 0.60 | 19.6 ± 0.30 | 4.7 ± 0.74 |
| Dohne Merino     | 36.4 ± 0.58 | 19.7 ± 0.29 | 4.8 ± 0.74 |
| Dorper           | 37.6 ± 1.19 | 19.3 ± 0.69 | 5.8 ± 0.98 |
| Merino           | 36.8 ± 0.54 | 19.4 ± 0.26 | 4.9 ± 0.73 |
| Poll Dorset      | 36.9 ± 0.53 | 19.2 ± 0.25 | 4.8 ± 0.73 |
| Poll Merino      | 36.8 ± 0.56 | 19.8 ± 0.28 | 4.8 ± 0.74 |
| Prime Samm       | 38.1 ± 0.56 | 20.1 ± 0.27 | 5.4 ± 0.73 |
| Suffolk          | 37.1 ± 0.62 | 19.2 ± 0.32 | 4.8 ± 0.75 |
| Texel            | 37.9 ± 0.64 | 19.6 ± 0.34 | 5.2 ± 0.76 |
| White Dorper     | 36.8 ± 0.94 | 19.2 ± 0.51 | 5.0 ± 0.88 |
| White Suffolk    | 36.8 ± 0.53 | 19.3 ± 0.25 | 4.8 ± 0.73 |

**Table 27.5.** Sire breed comparisons for each of the meat colour measurements for the loin and Topside cuts.

## CFL

| Sire Breed Comparison |   |              | Difference in<br>estimates | Significance |
|-----------------------|---|--------------|----------------------------|--------------|
| Prime Samm            | V | Coopworth    | 1.95                       | 0.01         |
| Prime Samm            | V | Dohne Merino | 1.74                       | 0.01         |
|                       |   | Border       |                            |              |
| Prime Samm            | V | Leicester    | 1.76                       | 0.01         |

B.LSM.0033 - Towards the development of a next generation MSA lamb model – statistical support

| Prime Samm | V | White Suffolk | 1.38 | 0.01 |
|------------|---|---------------|------|------|
| Prime Samm | V | Poll Dorset   | 1.27 | 0.03 |
| Prime Samm | V | Merino        | 1.30 | 0.05 |

# CFa

| Sire Breed Comparison |   |             | Difference in<br>estimates | Significance |
|-----------------------|---|-------------|----------------------------|--------------|
| Prime Samm            | V | Poll Dorset | 0.90                       | 0.01         |
| White Suffolk         | V | Prime Samm  | -0.78                      | 0.04         |

# CFb

No significant sire breed effects

**Table 28.5.** Sire within breed BLUP values for the meat colour measurements for the loin and Topside cuts.

| Sire              | Breed               | CFL   | Rank<br>CFL | CFa   | Rank<br>CFa | CFb  | Rank<br>CFb |
|-------------------|---------------------|-------|-------------|-------|-------------|------|-------------|
| s0600032006060121 | Bond                | 37.74 | 49          | 20.39 | 29          | 6.15 | 59          |
| s0244112006060369 | Border<br>Leicester | 39.95 | 6           | 21.54 | 8           | 7.31 | 7           |
| s0236912008088370 | Border<br>Leicester | 38.12 | 35          | 21.38 | 9           | 6.68 | 18          |
| s0219292007070261 | Border<br>Leicester | 38.07 | 36          | 20.64 | 20          | 6.66 | 19          |
| s0246862007070179 | Border<br>Leicester | 36.88 | 106         | 19.95 | 56          | 6.35 | 40          |
| s0250022008085029 | Border<br>Leicester | 36.57 | 120         | 19.29 | 114         | 6.29 | 44          |
| s0236662006060976 | Border<br>Leicester | 36.52 | 122         | 19.29 | 115         | 5.60 | 117         |
| s0241662008080220 | Border<br>Leicester | 35.79 | 153         | 19.22 | 121         | 5.02 | 158         |
| s0247152008080085 | Border<br>Leicester | 35.68 | 158         | 19.06 | 134         | 4.99 | 162         |
| s0237802008080157 | Border<br>Leicester | 35.38 | 167         | 18.97 | 141         | 4.97 | 163         |
| s020041200707J039 | Border<br>Leicester | 35.34 | 168         | 18.1  | 177         | 4.58 | 173         |
| s1500152003030196 | Coopworth           | 38.05 | 38          | 20.34 | 32          | 6.34 | 42          |
| s1500392006061009 | Coopworth           | 37.27 | 77          | 20.33 | 34          | 5.90 | 79          |
| s1500482008080808 | Coopworth           | 37.23 | 83          | 20.17 | 40          | 5.81 | 89          |
| s1500992007071449 | Coopworth           | 36.66 | 119         | 19.61 | 82          | 5.70 | 105         |
| s1500992007071449 | Coopworth           | 36.14 | 139         | 19.51 | 91          | 5.68 | 106         |
| s1500482007070769 | Coopworth           | 35.90 | 148         | 19.50 | 93          | 5.40 | 130         |
| s1500292008080181 | Coopworth           | 35.47 | 163         | 19.48 | 97          | 5.38 | 133         |

| s1500202007070244  | Coopworth  | 35 15 | 165        | 10.21 | 12/              | 5 00         | 153                  |
|--------------------|------------|-------|------------|-------|------------------|--------------|----------------------|
| e0318972008080282  | Corriedale | 38.25 | 33         | 20.66 | 10               | 6.20         | 155                  |
| c0300182004045220  | Corriedale | 38.04 | 40         | 20.00 | 27               | 6.16         | <del>4</del> 5<br>56 |
| s0300182004043220  | Corriedale | 27.02 | 40         | 20.50 | <u> 21</u><br>50 | 6.16         | 50                   |
| s0322722008080072  | Corriedale | 27.92 | 40         | 19.92 | 59               | 6.14         | 61                   |
| \$0319232001011072 | Corriedale | 37.19 | 0/         | 19.00 | 67               | 0.14<br>5.70 | 01                   |
| \$0300362005050134 |            | 37.07 | 89         | 19.82 | 07               | 5.79         | 95                   |
| \$0314602006543022 |            | 36.97 | 98         | 19.41 | 105              | 5.38         | 134                  |
| \$0318972006060386 |            | 36.40 | 128        | 19.32 | 109              | 5.35         | 135                  |
| s0324012007070002  | Corriedale | 36.22 | 133        | 19.16 | 126              | 5.34         | 136                  |
| s0323612006060209  | Corriedale | 36.17 | 137        | 19.06 | 135              | 4.80         | 166                  |
| s0315272003030360  | Corriedale | 33.40 | 181        | 17.88 | 178              | 4.74         | 169                  |
|                    | Donne      |       |            |       | 10               |              | 10                   |
| s5100292008088124  | Merino     | 35.60 | 8          | 18.44 | 42               | 5.63         | 49                   |
|                    | Dohne      |       |            |       |                  |              |                      |
| s5100092007070376  | Merino     | 36.23 | 10         | 19.64 | 54               | 6.12         | 62                   |
|                    | Dohne      |       |            |       |                  |              |                      |
| s5101402006060368  | Merino     | 37.56 | 21         | 19.69 | 57               | 4.96         | 63                   |
|                    | Dohne      |       |            |       |                  |              |                      |
| s5100072008083953  | Merino     | 36.21 | 61         | 20.15 | 62               | 4.71         | 73                   |
|                    | Dohne      |       |            |       |                  |              |                      |
| s5100072008084048  | Merino     | 34.96 | 71         | 19.94 | 64               | 5.87         | 82                   |
|                    | Dohne      |       |            |       |                  |              |                      |
| s5100032007070949  | Merino     | 37.66 | 84         | 19.83 | 66               | 5.73         | 84                   |
|                    | Dohne      |       |            |       |                  |              |                      |
| s5101462007070128  | Merino     | 36.89 | 114        | 19.90 | 73               | 5.58         | 113                  |
|                    | Dohne      |       |            |       |                  |              |                      |
| s5100492007071700  | Merino     | 37.57 | 159        | 19.87 | 77               | 5.96         | 119                  |
|                    | Dohne      |       |            |       |                  |              |                      |
| s5100732007070006  | Merino     | 36.96 | 176        | 19.59 | 89               | 5.90         | 164                  |
|                    | Dohne      |       |            |       |                  |              |                      |
| s5100302005050068  | Merino     | 37.38 | 179        | 18.95 | 167              | 6.44         | 171                  |
| s4000302007070056  | Dorper     | 39.01 | 68         | 19.67 | 76               | 7.66         | 32                   |
| s4000302007071209  | Dorper     | 39.05 | 131        | 19.30 | 101              | 5.09         | 65                   |
| s4000302007070617  | Dorper     | 36.46 | 162        | 19.22 | 139              | 6.36         | 75                   |
| s5023022006006580  | Merino     | 36.41 | 3          | 18.55 | 2                | 5.66         | 5                    |
| s5043622006LON449  | Merino     | 35.54 | 4          | 19.41 | 5                | 4.79         | 6                    |
| s5034252006060205  | Merino     | 37.60 | 9          | 20.82 | 12               | 5.30         | 12                   |
| s5018852006TRIMPH  | Merino     | 33.94 | 12         | 19.64 | 13               | 5.83         | 16                   |
| s5044702006060022  | Merino     | 38.63 | 14         | 20.88 | 14               | 4.32         | 25                   |
| s5022512006066030  | Merino     | 36.03 | 15         | 18.90 | 15               | 6.14         | 26                   |
| s5044822007070461  | Merino     | 35.16 | 16         | 20.80 | 16               | 5.73         | 28                   |
| s5037892008080124  | Merino     | 36.98 | 23         | 18.75 | 17               | 6.76         | 35                   |
| s5015522006060480  | Merino     | 36.88 | 26         | 16.48 | 21               | 5.27         | 37                   |
| s5039462007OLY716  | Merino     | 35.01 | 29         | 18.54 | 26               | 6.39         | 38                   |
| s5000482007070260  | Merino     | 37.64 | 31         | 20.84 | 44               | 6.50         | 39                   |
| s5024252006023997  | Merino     | 38.50 | 39         | 19.15 | 46               | 5.58         | 48                   |
| s5035642007WHI393  | Merino     | 36.94 | 44         | 16.09 | 48               | 7.04         | 60                   |
| s5003182007070022  | Merino     | 38.94 | 57         | 18.33 | 52               | 6.02         | 68                   |
| s50923420060C0573  | Merino     | 39.52 | 66         | 20.52 | 53               | 4.36         | 69                   |
| s5047432000000503  | Merino     | 35.11 | 81         | 19.48 | 61               | 5.66         | 74                   |
| s5037892007I B0753 | Merino     | 36.21 | 88         | 22.10 | 68               | 6.36         | 83                   |
| \$5030542004040585 | Merino     | 38.31 | 90         | 19 97 | 74               | 5 29         | 86                   |
| s5007882008081290  | Merino     | 35.32 |            | 18.76 | 75               | 5.65         | 101                  |
|                    |            |       | <b>.</b> . |       |                  | 2.00         |                      |

| s5017042007L68007 | Merino      | 36.96 | 104 | 20.09 | 78  | 4.01 | 102 |
|-------------------|-------------|-------|-----|-------|-----|------|-----|
| s5044702008080588 | Merino      | 37.22 | 105 | 20.10 | 96  | 6.05 | 107 |
| s501587200606M276 | Merino      | 37.99 | 107 | 19.97 | 103 | 6.52 | 109 |
| s5049162007070719 | Merino      | 40.91 | 117 | 19.79 | 122 | 5.55 | 110 |
| s5030702008080121 | Merino      | 36.62 | 124 | 19.91 | 127 | 7.41 | 112 |
| s5007882007071254 | Merino      | 34.05 | 126 | 20.62 | 145 | 4.48 | 120 |
| s50505020080G0856 | Merino      | 36.86 | 132 | 20.01 | 149 | 6.28 | 121 |
| s5049162008080600 | Merino      | 38.81 | 135 | 19.67 | 155 | 5.95 | 127 |
| s5046152004040024 | Merino      | 37.04 | 144 | 18.12 | 162 | 5.67 | 141 |
| s5038842008081981 | Merino      | 38.88 | 146 | 18.38 | 163 | 6.38 | 142 |
| s5030972005051737 | Merino      | 37.67 | 149 | 21.01 | 169 | 7.59 | 167 |
| s5039822006060225 | Merino      | 37.04 | 152 | 18.95 | 171 | 5.86 | 176 |
| s5000872006060096 | Merino      | 38.75 | 170 | 22.56 | 173 | 5.48 | 177 |
| s5038632006OL3626 | Merino      | 39.22 | 175 | 20.33 | 181 | 7.06 | 178 |
| s5049022005005345 | Merino      | 39.02 | 180 | 20.07 | 182 | 6.49 | 181 |
| s1640732007070364 | Poll Dorset | 39.22 | 13  | 20.33 | 33  | 7.06 | 11  |
| s1637212007070311 | Poll Dorset | 39.02 | 17  | 20.07 | 47  | 6.49 | 29  |
| s1600852008080021 | Poll Dorset | 38.65 | 22  | 19.95 | 55  | 6.48 | 30  |
| s1611432007070025 | Poll Dorset | 38.39 | 28  | 19.92 | 60  | 6.41 | 34  |
| s1635282007070182 | Poll Dorset | 38.27 | 30  | 19.79 | 69  | 6.34 | 41  |
| s1618922006060050 | Poll Dorset | 38.21 | 34  | 19.61 | 80  | 6.28 | 47  |
| s1612352008080608 | Poll Dorset | 37.97 | 43  | 19.53 | 88  | 6.21 | 52  |
| s1622882007070644 | Poll Dorset | 37.40 | 70  | 19.50 | 94  | 6.17 | 55  |
| s1600012008080010 | Poll Dorset | 37.30 | 76  | 19.49 | 95  | 6.07 | 66  |
| s1618862008080157 | Poll Dorset | 37.25 | 80  | 19.32 | 108 | 5.93 | 76  |
| s1629472008080219 | Poll Dorset | 37.20 | 86  | 19.29 | 112 | 5.91 | 77  |
| s1601852007070369 | Poll Dorset | 37.06 | 91  | 19.29 | 113 | 5.81 | 91  |
| s1614152007070440 | Poll Dorset | 37.00 | 95  | 19.17 | 125 | 5.67 | 108 |
| s1619722009090133 | Poll Dorset | 36.83 | 111 | 19.10 | 130 | 5.60 | 116 |
| s1611432008080203 | Poll Dorset | 36.77 | 115 | 19.08 | 131 | 5.58 | 118 |
| s1612352007072025 | Poll Dorset | 36.76 | 116 | 19.07 | 133 | 5.51 | 124 |
| s1622882008080077 | Poll Dorset | 36.69 | 118 | 19.05 | 136 | 5.42 | 128 |
| s1636772007070839 | Poll Dorset | 36.50 | 123 | 19.05 | 137 | 5.41 | 129 |
| s1636772008081037 | Poll Dorset | 36.43 | 125 | 19.05 | 138 | 5.40 | 131 |
| s1627502008080481 | Poll Dorset | 36.21 | 136 | 18.99 | 140 | 5.39 | 132 |
| s1623682007070468 | Poll Dorset | 36.13 | 141 | 18.92 | 147 | 5.22 | 143 |
| s1619722006061831 | Poll Dorset | 35.85 | 150 | 18.87 | 150 | 5.17 | 148 |
| s1640002009090052 | Poll Dorset | 35.77 | 155 | 18.68 | 158 | 5.09 | 152 |
| s1611582007070190 | Poll Dorset | 35.73 | 157 | 18.47 | 166 | 5.04 | 157 |
| s1603362008080541 | Poll Dorset | 35.22 | 173 | 18.37 | 170 | 4.57 | 174 |
| s6090542006066533 | Poll Merino | 36.43 | 1   | 19.96 | 4   | 5.07 | 1   |
| s6012442007070304 | Poll Merino | 35.12 | 19  | 21.31 | 6   | 5.07 | 10  |
| s6013362008RAS004 | Poll Merino | 38.60 | 20  | 21.31 | 7   | 3.84 | 17  |
| s6005712006060904 | Poll Merino | 38.60 | 24  | 18.78 | 10  | 6.63 | 20  |
| s6008152006060120 | Poll Merino | 36.05 | 32  | 21.60 | 23  | 4.74 | 22  |
| s6001052007071080 | Poll Merino | 35.81 | 37  | 20.55 | 25  | 5.91 | 46  |
| s6011272007070121 | Poll Merino | 35.61 | 48  | 19.87 | 28  | 5.82 | 50  |
| s6013072005050165 | Poll Merino | 39.55 | 56  | 19.87 | 31  | 5.82 | 58  |
| s6010532003031078 | Poll Merino | 39.55 | 58  | 19.63 | 38  | 6.16 | 70  |
| s6013162007070023 | Poll Merino | 38.03 | 67  | 19.63 | 39  | 6.71 | 78  |
| s6013322004000WD2 | Poll Merino | 36.71 | 73  | 18.49 | 63  | 6.71 | 87  |
| s6010822008081288 | Poll Merino | 39.72 | 92  | 19.96 | 70  | 5.17 | 88  |
| s6005532007070002 | Poll Merino | 39.72 | 96  | 19.96 | 72  | 6.57 | 99  |

| s6004082007070069 | Poll Merino   | 36.00 | 101 | 20.35 | 79  | 5.50 | 100 |
|-------------------|---------------|-------|-----|-------|-----|------|-----|
| s6013652006060052 | Poll Merino   | 38.16 | 134 | 19.78 | 87  | 5.10 | 114 |
| s6010532007071190 | Poll Merino   | 38.16 | 140 | 19.78 | 92  | 5.62 | 125 |
| s6012882006063091 | Poll Merino   | 35.61 | 143 | 18.96 | 107 | 6.28 | 145 |
| s6008802006060627 | Poll Merino   | 35.61 | 145 | 19.51 | 111 | 5.73 | 155 |
| s6012502004407812 | Poll Merino   | 36.91 | 147 | 20.24 | 142 | 4.49 | 159 |
| s6012792007070470 | Poll Merino   | 40.02 | 154 | 22.10 | 154 | 5.74 | 160 |
| s6011272008088254 | Poll Merino   | 37.36 | 156 | 22.10 | 165 | 5.85 | 161 |
| s6091542006060306 | Poll Merino   | 35.52 | 164 | 20.19 | 174 | 5.85 | 168 |
| s6091542004040062 | Poll Merino   | 35.26 | 166 | 19.36 | 175 | 5.82 | 170 |
| s6013562007000449 | Poll Merino   | 40.93 | 169 | 20.38 | 176 | 8.04 | 175 |
| s6005712006060058 | Poll Merino   | 40.93 | 172 | 20.38 | 179 | 5.71 | 179 |
| s6008152007070323 | Poll Merino   | 38.67 | 182 | 23.66 | 180 | 7.63 | 182 |
| s4800552007070068 | Prime Samm    | 39.22 | 18  | 23.66 | 18  | 7.63 | 9   |
| s4800402008080217 | Prime Samm    | 36.18 | 25  | 20.70 | 22  | 6.88 | 13  |
| s4801222008080343 | Prime Samm    | 38.10 | 50  | 20.30 | 30  | 6.84 | 27  |
| s4800872006060421 | Prime Samm    | 37.23 | 64  | 20.26 | 35  | 6.39 | 36  |
| s4801222005051010 | Prime Samm    | 39.19 | 65  | 20.58 | 45  | 4.05 | 43  |
| s4800302008080078 | Prime Samm    | 37.54 | 85  | 18.85 | 84  | 6.06 | 67  |
| s4800302008080111 | Prime Samm    | 37.81 | 108 | 19.59 | 110 | 7.09 | 103 |
| s4801042008080549 | Prime Samm    | 38.76 | 127 | 20.09 | 116 | 6.30 | 140 |
| s4800392007070062 | Prime Samm    | 37.22 | 171 | 19.51 | 152 | 5.65 | 154 |
| s4800992006060191 | Prime Samm    | 39.69 | 174 | 18.40 | 156 | 6.00 | 180 |
| s1916612008080491 | Suffolk       | 39.69 | 11  | 18.40 | 51  | 6.00 | 24  |
| s1900602008080369 | Suffolk       | 37.97 | 51  | 18.16 | 58  | 5.78 | 51  |
| s1920452007070508 | Suffolk       | 37.72 | 62  | 19.23 | 90  | 5.17 | 71  |
| s1901112007077058 | Suffolk       | 35.97 | 69  | 19.99 | 100 | 5.04 | 96  |
| s1913622007070027 | Suffolk       | 37.48 | 82  | 19.93 | 102 | 6.53 | 111 |
| s1920452008080594 | Suffolk       | 37.40 | 94  | 18.57 | 120 | 5.61 | 115 |
| s1912012008080094 | Suffolk       | 35.80 | 142 | 18.57 | 161 | 5.70 | 146 |
| s1900282007071494 | Suffolk       | 35.80 | 151 | 19.18 | 168 | 4.80 | 156 |
| s1918502001010120 | Suffolk       | 37.86 | 178 | 21.01 | 172 | 4.80 | 165 |
| s1702232004040080 | Texel         | 37.86 | 47  | 21.01 | 11  | 6.63 | 21  |
| s1704202007070224 | Texel         | 37.73 | 52  | 20.16 | 41  | 6.48 | 31  |
| s1700802007071532 | Texel         | 37.64 | 54  | 20.01 | 49  | 6.18 | 54  |
| s1702232007070046 | Texel         | 37.50 | 63  | 19.78 | 71  | 5.90 | 81  |
| s1704062007070028 | Texel         | 36.96 | 100 | 19.26 | 117 | 5.76 | 98  |
| s1700812008080039 | Texel         | 36.82 | 113 | 18.96 | 144 | 5.32 | 138 |
| s1700622007070144 | Texel         | 35.09 | 177 | 18.62 | 160 | 5.12 | 151 |
| s4701142007071345 | White Dorper  | 37.43 | 7   | 19.25 | 1   | 6.09 | 4   |
| s4701142006060036 | White Dorper  | 36.36 | 41  | 19.42 | 37  | 5.19 | 15  |
| s4700702003030011 | White Dorper  | 37.78 | 42  | 19.41 | 98  | 6.55 | 23  |
| s4701392006060057 | White Dorper  | 36.89 | 46  | 19.14 | 104 | 5.94 | 53  |
| s4702062007077118 | White Dorper  | 37.28 | 60  | 19.03 | 118 | 5.81 | 72  |
| s4701792008080386 | White Dorper  | 37.24 | 78  | 19.56 | 128 | 5.80 | 90  |
| s4700442008084825 | White Dorper  | 38.75 | 129 | 20.12 | 129 | 5.52 | 144 |
| s2300262007072446 | White Suffolk | 37.61 | 2   | 18.91 | 3   | 5.22 | 2   |
| s2300302008080116 | White Suffolk | 37.89 | 5   | 18.81 | 24  | 5.14 | 3   |
| s2300012008080022 | White Suffolk | 37.89 | 27  | 18.81 | 36  | 5.49 | 8   |
| s2300342007074914 | White Suffolk | 36.82 | 53  | 18.50 | 43  | 5.49 | 14  |
| s2303242007075630 | White Suffolk | 36.51 | 55  | 19.07 | 50  | 5.79 | 33  |
| s2301002007070677 | White Suffolk | 36.22 | 59  | 19.23 | 81  | 5.79 | 64  |
| s2300022008080234 | White Suffolk | 36.22 | 72  | 19.40 | 83  | 6.85 | 80  |

| s2300992008080097 | White Suffolk | 36.82 | 74  | 19.44 | 85  | 6.85 | 85  |
|-------------------|---------------|-------|-----|-------|-----|------|-----|
| s2303182008080262 | White Suffolk | 35.79 | 75  | 19.44 | 86  | 5.32 | 92  |
| s2300152009090255 | White Suffolk | 35.79 | 79  | 19.46 | 99  | 5.84 | 93  |
| s2300432007070591 | White Suffolk | 35.52 | 93  | 18.68 | 106 | 5.53 | 94  |
| s2303242008085244 | White Suffolk | 37.60 | 99  | 20.56 | 119 | 5.53 | 97  |
| s2300432008080136 | White Suffolk | 37.31 | 102 | 18.85 | 123 | 5.71 | 104 |
| s2300432008080644 | White Suffolk | 36.31 | 103 | 18.96 | 132 | 5.16 | 122 |
| s2300912007070008 | White Suffolk | 37.20 | 109 | 19.56 | 143 | 5.17 | 123 |
| s2300152007070143 | White Suffolk | 37.20 | 110 | 19.99 | 146 | 7.83 | 126 |
| s2300262008083813 | White Suffolk | 37.41 | 112 | 19.99 | 148 | 4.70 | 137 |
| s2300022007070098 | White Suffolk | 37.41 | 121 | 20.30 | 151 | 5.80 | 139 |
| s2300092007070279 | White Suffolk | 37.95 | 130 | 22.29 | 153 | 5.77 | 147 |
| s2301132008080205 | White Suffolk | 35.97 | 138 | 22.29 | 157 | 7.13 | 149 |
| s2301132007070040 | White Suffolk | 35.34 | 160 | 18.10 | 159 | 7.13 | 150 |
| s2304502007071456 | White Suffolk | 35.34 | 161 | 18.10 | 164 | 4.99 | 172 |

**Table 29.5.** Correlations between the sire BLUP values for the optimal discriminant function and the BLUP values for the carcass measurements of the loin cut

|              | Topside | IMF  | CEMA | LLFAT | HGRFAT | SHEARF5 | LMY  |
|--------------|---------|------|------|-------|--------|---------|------|
| Optimal      | 0.48    | 0.24 | 0.14 | -0.11 | 0.09   | -0.31   | 0.07 |
| linear       |         |      |      |       |        |         |      |
| Discriminant |         |      |      |       |        |         |      |
| IMF          |         |      | 0.51 | 0.12  | 0.12   | -0.39   | 0.21 |
| CEMA         |         |      |      | -0.16 | 0.16   | -0.21   | 0.10 |
| LLFAT        |         |      |      |       | 0.08   | 0.19    | 0.02 |
| HGRFAT       |         |      |      |       |        | 0.11    | 0.51 |
| SHEARF5      |         |      |      |       |        |         | 0.07 |
| LMY          |         |      |      |       |        |         |      |

**Table 30.5.** Correlations between the sire BLUP values for the optimal discriminant function and the BLUP values for the carcass measurements of the Topside cut

|              | Loin | IMF  | CEMA  | LLFAT | HGRFAT | SHEARF5 | LMY   |
|--------------|------|------|-------|-------|--------|---------|-------|
| Optimal      | 0.48 | 0.29 | -0.11 | 0.13  | 0.13   | -0.43   | 0.26  |
| linear       |      |      |       |       |        |         |       |
| Discriminant |      |      |       |       |        |         |       |
| IMF          |      |      | -0.01 | 0.52  | 0.52   | -0.38   | 0.19  |
| CEMA         |      |      |       | 0.05  | 0.05   | 0.06    | -0.39 |
| LLFAT        |      |      |       |       | 1.0    | -0.21   | 0.17  |
| HGRFAT       |      |      |       |       |        | -0.21   | 0.17  |
| SHEARF5      |      |      |       |       |        |         | -0.12 |
| LMY          |      |      |       |       |        |         |       |

#### Milestone 6

The measurements that would be made on a carcass at or about slaughter that were available were considered to be the breed, sire, sex and killing group of the animal, and the carcass weight, intra- muscular fat, shear force, pH, eye muscle area and various fat measurements. The experimental unit was now the animal, not the consumer judgements that made up 10 observations of the eating quality variables for each animal. That is, the observational unit had to be some statistic of the 10 answers for each animal. This invites consideration of a suitable statistic of the 10 answers which should be used. The mean would be a natural choice for this statistic, however as noted in previous reports the frequency distribution of the consumer judgements exhibited peculiar properties, in particular a tendency to be skewed with a disproportionate frequency of extreme judgements from

some consumers. This resulted in a range of variation contributing to any summary statistic of the 10 answers.

Clipping the data by dropping observations with high residuals (greater than 5 units of overall liking residual) thus removing consumers who might be a different "population" improved estimates of the sire intra – class correlation, implying that genetic improvement should follow this strategy, although an optimal clipping strategy has not yet been defined.

Here results are presented for clipped and non - clipped data and using both the mean and the medium as the summary statistic of the 10 consumer answers. In all cases the analysis is weighted least squares where the weights are the variance estimates for each of the 10 consumer answers.

## Unclipped Data

Table 1.6 shows the least squares means and standard errors for the means of each of the 10 consumer answers weighted by the variances of each of these 10 consumer answers for un – clipped data for the model:

Overall liking  $\mu$  + year + cut + sire breed + sire within sire breed within killgroup + intramuscular fat + shear force + carcass weight + pH18 + error (1)

This model accounted for 61% of the variance in overall liking. The model:

 $Overall \ liking = \mu + year + cut + sire \ breed + intramuscular \ fat + shear \ force + carcass \ weight + pH \ 18 + error \tag{2}$ 

This accounted for 54% of the variance of overall liking. This model was also weighted for the variance of each set of 10 consumer evaluations of overall liking.

## Clipped Data

Table 2.6 gives the least squares means and standard errors for the clipped data. That is only using those observations that had an overall liking residual (Milestone report 5) with an absolute value of 5 units. This degree of clipping retained 921 observations or 41% of the observations in the unclipped data. Model (2) accounted for 73% of the variance of the clipped data.

## Variance Evaluations

Partitioning the variance of the 10 consumer answers for each consumer subset of overall liking according to the model (1) was carried out as a guide to how the differences between consumer evaluations might be affected by the independent variables. Inference testing cannot use the classical tests, but does give a guide that might be followed up in the future. There appeared to be no variation response due to year and sire breed, or the variance components of Kill group. The "intra – class" correlation for sire within sire breed within Kill group was 10% - a suggestion that some sires might produce progeny with meat eating quality subject to extra variation. The topside cut is notably more variable than the loin cut, as might be expected. It also seems that as intra – muscular fat increases the consumer evaluation of the overall liking becomes more variable.

# Quantile Regression

A useful tool for developing a model to improve sheep meat eating quality is Quantile Regression, which defines the functional relationships between the response and independent variables for the quantiles of the response. The quantile regression coefficients for the 0.25<sup>th</sup>, 0.5<sup>th</sup> and 0.75<sup>th</sup> guantiles are given in Table 4.6. Note the 0.5<sup>th</sup> guantile is equivalent to Median regression. Table 4 shows that the eating quality of animals in the lower (25% quantile) can be improved by concentrating on the Shear force attribute, while there are no apparent gains to be made from marginal increases in e.g. the intra - muscular fat. However, at the upper (75% quantile) marginal increases in eating quality would come from decreasing lean meat yield (negative regression coefficient), improving Shear force and a decrease in carcass weight. At the median overall liking score marginal eating quality is improved by improving intra – muscular fat. A comparison with the regression coefficients in Table 1.6 indicate that differences in intra – muscular fat on eating quality are global, i.e. due to large steps, rather than local, i.e. marginal increases, except at the median value of overall liking. Interestingly, the negative association between eating quality and lean meat yield appears less important at the lower quantiles where there may be sufficient variance to improve both attributes.

A more comprehensive quantile regression analysis would be useful in formulating industry strategy for improving sheep meat eating quality, but is outside the current remit.

# Derivation of the Probability Distribution of Eating Quality Defined by the Score and the Measured Carcass Variables.

The purpose of this analysis is to derive a result for the probability that a piece of sheep meat with given attributes will be evaluated as having a particular eating quality score or star rating.

The logit analysis gives the expected multinomial probabilities conditional on the value of the linear relationships between tenderness, juiciness, flavour and the residual on overall liking presented in Table 5.6 for the loin cut. The conditional probability can be defined by taking into account the variances and covariance's of the sensory variables in Table 5.6.

The conditional probability distribution for the eating quality score given the measurements of the carcass variables intra – muscular fat and shear force is then:

 $P[EQ|IMF; SHEARF5] = P[EQ|dis] \times P[dis|IMF; SHEARF5]$ 

Where P[EQ|dis] = Multinomial distribution

P[dis|IMF; SHEARF5] = beta distribution

This formulation can be applied to derive a conditional multinomial probability distribution for the consumer evaluated eating quality score given expected values for intra – muscular fat and shear force. A beta distribution provided a suitable fit for the frequency distribution of the logit discriminant functions given in Table 5.6.
The conditional distribution for the eating quality score given values measured for intra – muscular fat and shear force can be formed by simulation:

- 1. Given values for intra muscular fat and shear force use the regression coefficients in Table 6.6 to calculate an expected value for the logit discriminant function.
- 2. Draw a random sample from a beta distribution associated with each logit discriminant function shown in Tale 6.6.
- 3. Add the random beta variable to the expected value of the logit discriminant function.
- 4. Calculate the probability, which is that the logit discriminant value will fall into each of the 4 eating quality classes.
- 5. Form a frequency distribution for the conditional frequency that a sample with the given intra muscular fat and shear force values would be classed into each of the 4 eating quality classifications by performing steps 2 to 4 many times.

An example for an expected BLUP estimate for intra – muscular value of 3.5 and an expected BLUP estimate for shear force 5 of 43.4 is shown in Figure 2.6. There is considerable overlap in the probabilities that sheep meat from a sire with such BLUP estimates for eating quality scores of 3 and 4. This demonstrates the degree of associated uncertainty in allocating eating scores.

## Application of Regression Trees to Partition of Sheep Meat Eating Quality

The consumer evaluated eating quality score or star rating did not provide a clear partition of the eating quality grades based on sensory variables and other carcass attributes. This made the allocation of eating quality grade less well defined than might be the case. Regression trees were applied to seek a better partition. Figure 1.6 shows the results of a regression tree applied to discriminate the (average of 10 samples) eating quality score based on tenderness, juiciness, flavour and overall liking. The discrimination is all based on overall liking. The histograms of the Regression Tree partitioning are also shown in Figure 1.6. There does appear to be a pattern in terms of increasing, constant and decreasing frequencies across the spans of the 4 classes, although it is not apparent that this helps very much. In terms of the optimum discrimination of forming distinct eating quality classes' examination of Figure 1 suggests that perhaps more meat from lower 3 star should be placed in 2 stars, the upper part of 3 stars should be moved to 4 stars, and the upper part of 4 stars should be moved to 5 stars.

Generally Regression Trees failed to formulate a suitably discrete partitioning of consumer evaluated eating quality score based upon any measured sensory or carcass variables. This can be seen from the histograms in Figure 1.6. It was likely that the between consumer variation noted in earlier reports induced enough variability to render this exercise redundant.

## Discussion

The results reported in Milestone 5 showed that if the data was clipped by removing observations with large overall liking residuals workable sire intra – class correlations could be found. The clipping reduces the influence of consumers having different reference points for judging sensory variables and eating quality. Clipping improved the fit of the model fitted to average data effects substantially (73% of the variance for clipped; 54% of the variance

for unclipped). However, clipping of data that already had individual consumer data 'averaged out' is problematic. Since only low deviations were retained (<= 5 units) for the analysis with clipped data it is to be expected that model fit in this case would be high. This issue needs further theoretical consideration.

When matching the measurements made on a carcass to the 10 separate consumer evaluations associated with each (single) carcass measurements it was necessary to deal with the considerable differences in variability of each set of 10 answers. This was done with weighted regression, using the 10 answers variances for each carcass measurement as the weights. An alternative approach using the median for each of the sensory variables and the eating quality score presented no improvement over weighted regression. The variation in the 10 answers variances in overall liking was not related to any independent variables with the possible exception of intra – muscular fat. Here higher variance in the 10 answers for overall liking was related to higher intra – muscular fat. This observation may merit further attention, especially as quantile regression indicated the eating quality response to intra – muscular fat may not be proportional.

An attempt to derive an eating quality classification with clearer boundaries was unsuccessful. The results indicate that deeper consideration is necessary, perhaps with attention to nonlinear effects such as thresholds in the consumer responses to the relationship of the sensory variables to eating quality.

| Variable   |                  | Weighted Least Squares Mean an Standard Error for<br>Overall Liking |  |  |
|------------|------------------|---------------------------------------------------------------------|--|--|
|            |                  |                                                                     |  |  |
|            | 2010             | 60.7 ± 0.33                                                         |  |  |
|            |                  |                                                                     |  |  |
| Cut        | Loin             | 71.2 ± 0.33                                                         |  |  |
|            | Topside          | 52.8 ± 0.33                                                         |  |  |
|            |                  |                                                                     |  |  |
| Sire breed | Bond             | 63.9 ± 1.01                                                         |  |  |
|            | Border Leicester | 62.7 ± 1.25                                                         |  |  |
|            | Coopworth        | 61.1 ± 1.24                                                         |  |  |
|            | Corriedale       | 63.2 ± 1.23                                                         |  |  |
|            | Dohne Merino     | 63.6 ± 1.26                                                         |  |  |
|            | Dorper           | 60.8 ± 1.19                                                         |  |  |
|            | Merino           | 62.1 ± 1.29                                                         |  |  |
|            | Poll Dorset      | 58.9 ± 1.21                                                         |  |  |
|            | Poll Merino      | 62.0 ± 1.29                                                         |  |  |
|            | Prime Samm       | 63.2 ± 1.28                                                         |  |  |
|            | Suffolk          | 62.4 ± 1.30                                                         |  |  |
|            | Texel            | 60.1 ± 1.30                                                         |  |  |
|            | White Dorper     | 63.6 ± 1.29                                                         |  |  |
|            | White Suffolk    | 60.5 ± 1.22                                                         |  |  |
|            |                  |                                                                     |  |  |

**Table1.6.** Weighted least squares means and standard errors for overall liking average (un – clipped) of 10 consumer answers for each of the independent variables. Weights are the variances of each of the 10 consumer evaluations per carcass of overall liking

| Covariable | IMF            | $0.44 \pm 0.01^{**}$   |
|------------|----------------|------------------------|
|            | Shear Force 5  | $-0.17 \pm 0.001^{**}$ |
|            | Hot Carcass wt | $0.06 \pm 0.002^{**}$  |
|            | pH 18          | $0.86 \pm 0.03^{**}$   |

**Table 2.6.** Weighted least squares means and standard errors for overall liking average (clipped) of 10 consumer answers for each of the independent variables. Weights are the variances of each of the 10 consumer evaluations per carcass of overall liking

| Variable   |                  | Weighted Least Squares Mean an Standard Error for<br>Overall Liking |  |  |
|------------|------------------|---------------------------------------------------------------------|--|--|
| Year       | 2009             | 63.8 ± 0.22                                                         |  |  |
|            | 2010             | 60.8 ± 0.20                                                         |  |  |
|            |                  |                                                                     |  |  |
| Cut        | Loin             | 71.5 ± 0.21                                                         |  |  |
|            | Topside          | 53.1 ± 0.20                                                         |  |  |
|            |                  |                                                                     |  |  |
| Sire breed | Bond             | $60.4 \pm 1.98$                                                     |  |  |
|            | Border Leicester | $62.8 \pm 0.39$                                                     |  |  |
|            | Coopworth        | 62.0 ± 0.41                                                         |  |  |
|            | Corriedale       | 63.0 ± 0.44                                                         |  |  |
|            | Dohne Merino     | 64.2 ± 0.38                                                         |  |  |
|            | Dorper           | 62.9 ± 0.78                                                         |  |  |
|            | Merino           | 62.6 ± 0.37                                                         |  |  |
|            | Poll Dorset      | 58.2 ± 0.24                                                         |  |  |
|            | Poll Merino      | 62.1 ± 0.34                                                         |  |  |
|            | Prime Samm       | 64.3 ± 0.37                                                         |  |  |
|            | Suffolk          | 62.7 ± 0.41                                                         |  |  |
|            | Texel            | 60.6 ± 0.41                                                         |  |  |
|            | White Dorper     | 65.9 ± 0.50                                                         |  |  |
|            | White Suffolk    | 60.3 ± 0.26                                                         |  |  |
|            |                  |                                                                     |  |  |
| Covariable | IMF              | $0.58 \pm 0.11^{**}$                                                |  |  |
|            | Shear Force 5    | -0.21 ± 0.01**                                                      |  |  |
|            | Hot Carcass wt   | NS                                                                  |  |  |
|            | pH 18            | $1.89 \pm 0.44^{**}$                                                |  |  |

<sup>\*\*</sup> P < 0.01

**Table 3.6.** Least squares means and standard errors for overall liking median (un – clipped) of 10 consumer answers for each of the independent variables

| Variable   |                  | Weighted Least Squares Mean an Standard Error for<br>Overall Liking |  |  |
|------------|------------------|---------------------------------------------------------------------|--|--|
|            |                  |                                                                     |  |  |
|            | 2010             | 63.5 ± 2.11                                                         |  |  |
|            |                  |                                                                     |  |  |
| Cut        | Loin             | 76.1 ± 2.10                                                         |  |  |
|            | Topside          | 54.0 ± 2.10                                                         |  |  |
|            |                  |                                                                     |  |  |
| Sire breed | Bond             | 65.8 ± 4.79                                                         |  |  |
|            | Border Leicester | 65.2 ± 7.49                                                         |  |  |
|            | Coopworth        | 64.1 ± 7.12                                                         |  |  |
|            | Corriedale       | 66.5 ± 7.29                                                         |  |  |
|            | Dohne Merino     | 66.3 ± 7.69                                                         |  |  |
|            | Dorper           | 66.6 ± 4.83                                                         |  |  |
|            | Merino           | 65.3 ± 9.16                                                         |  |  |
|            | Poll Dorset      | 60.4 ± 10.23                                                        |  |  |
|            | Poll Merino      | 64.3 ± 8.99                                                         |  |  |
|            | Prime Samm       | 66.2 ± 7.99                                                         |  |  |
|            | Suffolk          | 65.4 ± 7.66                                                         |  |  |
|            | Texel            | 62.2 ± 7.02                                                         |  |  |
|            | White Dorper     | 69.5 ± 6.91                                                         |  |  |
|            | White Suffolk    | 63.1 ± 9.86                                                         |  |  |
|            |                  |                                                                     |  |  |
| Covariable | IMF              | 0.73 ± 0.28                                                         |  |  |
|            | Shear Force 5    | $-0.23 \pm 0.03^{**}$                                               |  |  |
|            | Hot Carcass wt   | 0.16 ± 0.08                                                         |  |  |
|            | pH 18            | 2.35 ± 1.05                                                         |  |  |

**Table 4.6.** Quantile regression coefficients and standard errors for overall liking onmeasured carcass variables. The 50% quantile regression is equivalent to medianregression

| Variable       | 25% Quantile           | 50% Quantile          | 75% Quantile           |
|----------------|------------------------|-----------------------|------------------------|
| IMF            | $0.52 \pm 0.38$        | $0.69 \pm 0.31^{*}$   | 0.34 ± 0.31            |
| Shear Force 5  | $-0.18 \pm 0.05^{***}$ | $-0.12 \pm 0.04^{**}$ | $-0.13 \pm 0.04^{***}$ |
| Hot Carcass wt | -0.27 ± 0.19           | $-0.40 \pm 0.16^{**}$ | $-0.30 \pm 0.15^{*}$   |
| pH 18          | 2.47 ± 1.52            | 1.83 ± 1.26           | 1.66 ± 1.28            |
| LMY            | -0.21 ± 0.18           | -0.34 ± 0.16          | $-0.31 \pm 0.15^{*}$   |
|                |                        |                       |                        |
|                |                        |                       |                        |
|                |                        |                       |                        |

**Table 5.6**. Multinomial logit estimates for calculating the probability of a meat sample with particular values of tenderness, juiciness, flavour and the residual on overall liking of being in one of the star classifications 2, 3, 4 or 5. The reference is star 2. The cut is the Loin.

| Star rating | Intercept  | tender   | juicy    | flavour  | Overall liking<br>residual |
|-------------|------------|----------|----------|----------|----------------------------|
| 3           | -4.2989 ±  | 0.0310 ± | 0.0206 ± | 0.0783 ± | 0.1084 ±                   |
|             | 0.2082     | 0.0032   | 0.0035   | 0.0037   | 0.0065                     |
| 4           | -12.3748 ± | 0.0667 ± | 0.0395 ± | 0.1382 ± | 0.1918 ±                   |
|             | 0.2840     | 0.0039   | 0.0040   | 0.0044   | 0.0078                     |
| 5           | -25.8636 ± | 0.1155 ± | 0.0705 ± | 0.2123 ± | 0.2929 ±                   |
|             | 0.4605     | 0.0053   | 0.0048   | 0.0057   | 0.0101                     |

**Table 6.6**. Estimates for Regression coefficients for the BLUP values of IMF and SHEARF5 on the BLUP Estimates of the Logit Discriminants for the Loin, Given in Table 2.

| EQ star | Intercept | IMF   | SHEARF5 | Alpha for<br>beta<br>distribution | Beta for beta distribution |
|---------|-----------|-------|---------|-----------------------------------|----------------------------|
| 3       | 4.94      | 0.107 | -0.016  | 0.68                              | 0.57                       |
| 4       | 5.03      | 0.206 | -0.030  | 3.21                              | 2.69                       |
| 5       | 2.49      | 0.341 | -0.050  | 3.21                              | 2.69                       |

## Conclusion

The prototype model developed in this project shows how sire BLUP estimates obtained for any measured carcass variables that significantly affect sheep meat eating quality can be applied to calculate a frequency distribution for each of the sheep meat eating quality scores. In this manner different frequency distributions for sires with different BLUP estimates can be calculated and compared for the proportional increases (decreases) in the frequencies of the expected eating quality performance of their progeny.