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Abstract 
 
With the rapid increase in the quantity of molecular genetics data being collected for livestock, 
analyses using sequential computers are becoming the rate limiting step.  Concurrently, the 
exponential increase in computer speed over the last decades has slowed, with recent 
improvements due to multi-core processing rather than clock speed alone.  This project successfully 
applied new and emerging computer technologies to capitalise on the investments in molecular 
genetics made by the Australian livestock industries, with the goal of allowing the efficient 
incorporation of molecular genetics data into industry genetic evaluations.  The focus was on 
parallelizing problems to run on processors with multiple cores, ranging from quad-core CPUs, 
graphics processors with hundreds of cores, and user configurable hardware devices with 
thousands of cores.  
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Executive Summary 

 
The quantity of data recorded on industry flocks and herds for genetics purposes has increased 
exponentially over the last decades and, with the advent of dense SNP data, this increase is not 
slowing.  There is a need to improve the speed both of routine analyses and of research analyses.   
It is noteworthy that in the days of interval mapping based on microsatellites, permutation testing 
was commonly accepted as the only method able to provide believable measures of significance.  
Now, permutation testing is less frequently mentioned, as with analyses taking hours per trait, the 
cost of tens of thousands of permutations is very high.  Thus, with increased data has come less 
rigour in the analyses, due to computational cost.   This project was focussed on reducing the 
limitations due to computational cost. 
 
While the quantity of data has increased, so to has the power of computers.  Increases in computer 
power have been exponential, but in recent years the increase has been due more to multiple cores 
per CPU than to increases in clock speed.  To exploit these increases then requires that 
computations be run in parallel, on multiple cores at once.  Recently, two other hardware platforms 
for parallel computing have become available to industry.  First, tools for implementing scientific 
computations on general purpose graphics processors (GPGPU) became freely available in the last 
two years, and these devices can be used as massively parallel  numeric processors.  Second, field 
programmable gate arrays (FPGA),which are user configurable computer chips, were until recently 
too small and too expensive for use in routine computations.  Now however, their size and price 
point is well within the reach of medium sized enterprises. 
 
The intent of this project was to investigate the potential of using emerging computer hardware 
devices, such as multi-core CPU, GPGPU and FPGA,  to accelerate the computations on genetics 
and genomics data for Australian livestock species.   
 
In this project, algorithms for the analysis of genetics/genomics data on all three of these multi-core 
hardware platforms were successfully implemented.  There are two areas in these results that are 
directly and immediately applicable.  First: applying available optimised routines for linear algebra to 
existing genetic evaluation systems.  A direct result of this project has been AGBU’s recognition of 
the need to investigate the development of BLUP optimised for multi-core processors.  Further, it is 
evident that components of software to estimate SNP effects using linear models can also be greatly 
improved for only a modest investment.  Second: the estimation of genetic merit from dense SNP 
data.  It is difficult to predict which models will ultimately be used for this purpose, and it is likely that 
different models will be used depending on population structure, costs of recording, position the 
genetics supply chain, and genetic parameters for the traits of importance.  The results from this 
project keep open the option to use analysis methods that would otherwise be considered too 
computationally expensive.  An example is the estimation of haplotype relationships under a 
coalescent model.  The software developed in the project for this purpose can be used on existing 
industry SNP datasets. 
 
The ultimate benefit from improving the speed of computations on genetics and genomics data 
arises from more accurate estimates of genetic merit, i.e. more accurate EBVs.  The path to this 
benefit is through the ability to fit models to the data that, although computationally demanding, 
better describe the underlying characteristics of the data.  The return on industry’s investment in 
genomics will be greater as the information contained in the data will be better integrated with EBVs 
derived from pedigree and phenotype data.  The beneficiaries of the increased accuracy in 
estimates of genetic merit will be the livestock breeder, and the producer who benefits from the 
superior genetics. 
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1 Background  

 
Over the last 5 years, the quantity of genomics data on Australian livestock populations has gone 
from the order of a few thousand microsatellites assayed on a few thousand individuals to tens of 
thousands of single nucleotide polymorphisms (SNP) assayed on tens of thousands of individuals.  
The impact of this increase on analysis is more than just a proportional increase in the time taken by 
the computations, as the density of the data allows far more complex questions to be asked of it.  
The statistical models and analysis methods appropriate for low density microsatellites fail to exploit 
the information contained in high density SNP data, and are of very limited utility in analysing data 
from the experimental designs favoured today.   A variety of methods for the prediction of genetic 
merit from dense SNP data have been proposed, and some have been implemented in some 
industries.  As data accumulate the methods most useful for industrial deployment will be identified 
and validated.  However, even with the quantity of SNP data already collected, some methods are 
computationally infeasible in a reasonable time using standard approaches to computing.  Data 
collection with current SNP platforms (~50K SNP) continues, and the next generation of SNP 
platforms (~300K SNP) are likely to be in use within a few years.  There is no reason to expect that 
the exponential increase the quantity of genomics data will not continue in the short to medium term.  
 
Advances in computer processing power have also been exponential, as described in the well 
known Moore’s Law.   Until recently, these advances were due to more transistors per CPU, running 
at higher speeds.  This path to faster computing is reaching its limits, and in recent years we have 
seen CPU improvements due largely to increasing the number of cores in a CPU (e.g. Intel Core 2 
Duo) rather than increasing the power of a single core CPU.  To exploit the multi-core properties of 
the processor requires that the computations being processed can run in parallel.  On an office 
desk-top computer this is often the case, multiple programs are running, with little interaction 
between them, and to benefit from multi-core processors requires few or no changes to the software.  
This is not always the case for scientific computations such as those required to process genomics 
data.  For some algorithms, computations on a single region of the genome might take several 
hours, and ideally would take into account the results from computations on other regions of the 
genome.  To apply multi-core processors to such problems requires far more intervention on the part 
of the designers of the software.   
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2 Project Objectives  

The objectives of this project were: 

 to determine whether multi-core processors could be applied to the processing of 
genetics/genomics data. 

 to establish which analysis problems could most benefit from a multi-core approach. 

 to determine whether the speed advantages in processing justified any additional 
development costs. 

 if feasible, to produce a prototype system for an industry relevant problem. 
 
 

 

3 Methods 

Three broad areas in processing genetics/genomics data were considered in this project: 
 
1. Allele transmission through pedigrees to estimate allelic probabilities.   For other than very small 

pedigrees or pedigrees with no inbreeding, exact computation of these probabilities is infeasible.  
The probabilities allow the estimation of the exact relationship between individuals at each 
location on the genome given the pedigree and the SNP data, which would allow better 
prediction of genetic merit. 

2. Estimation of the relationship between haplotypes using population genetics models such as the 
coalescent model.  These models do not require pedigree data, essentially the relationships 
between the base animals in the pedigree are estimated given the SNP data.  For other than 
very small datasets, simplified models are required to make these computationally feasible, such 
as those of Meuwissen and Goddard (2001, 2007).  An understanding of haplotype relationships 
would allow better prediction of genetic merit. 

3. Solving the BLUP equations.  This requires computations that are very similar to those required 
in many linear algebra applications, such as repeated matrix multiplication.  Faster BLUP 
computations would allow the fitting of more complex models, in particular models that 
incorporate the estimates obtained from 2. above.    

 
Three hardware classes were used: 
 
A. Field Programmable Gate Arrays (FPGA).  The initial focus of the project, FPGA consist of an 

array of user-configurable gates on a computer chip, allowing the design and implementation of 
a custom computer chip for a specific application, in our case, a genetics processor.  The design 
commonly consists of many very simple, specific purpose processors, that can run in parallel.  
For example, there might be one processor for each animal in the pedigree, or one processor for 
each SNP on the chromosome.  The circuit is loaded onto the chip at run time, so the FPGA can 
be re-used for multiple problems.  FPGA are available on PCI cards that fit in a standard desktop 
computer.  Our analyses were on a Virtex-5 SX-50 card, using the Xilinx ISE Foundation tools.   
The development tools cost around $3,000 and the PCI card around $1,500.       

B. General Purpose Graphics Processor Units (GPGPU).  These can contain up to 720 single-
precision floating point calculators on a single chip. They have been developed from technology 
for consumer graphics cards, and are inexpensive and fast.  The two main suppliers, Nvidia and 
AMD have Software Developer Kits allowing programmers to develop custom algorithms for the 
devices.   Our analyses were on a low-cost Nvidia 8600 GT card (currently around $100). The 
development tools are supplied at no charge by Nvidia. Larger cards aimed at consumer use are 
approximately $500 per GPGPU.  

C. Multi-core CPU.  CPUs such as the recently released Intel Corei7 processor are easily 



B.BSC.0045 - Computational analysis of genetics data using field programmable gate arrays 

 Page 8 of 14 

 

programmed and inexpensive. They have 4 processing cores per chip, each capable of running 
two independent algorithms, providing 8 virtual cores. Intel has produced Basic Linear Algebra 
sub-programs (BLAS) library algorithms, including highly optimised double precision matrix 
multiplication, for Intel multi-core CPU.  These are specifically designed for computations such 
as those in 3. above.  We have used a PC with an Intel Corei7 920 CPU. These have a premium 
of around $250 over current typical desktop CPU for approximately 2.5 times the performance. 

  

4 Results and Discussion  

 

4.1 Simulating allele transmission through pedigrees to estimate identity by descent 
probabilities. 
 
This is a computationally hard problem, where increasing the number of animals in the 
pedigree produces an exponential increase in the computing time required.  We successfully 
developed both software and hardware (FPGA) based approaches, building on the earlier work 
reported in Henshall and Little (2006).  Despite the invention of a novel implementation of the 
genotype elimination algorithm in FPGA, our final conclusion was that this was not a fruitful 
area of research and unlikely to lead to a major advantage to hardware based 
implementations.   However, an unexpected output from this research was an improved 
algorithm for computing exact genotype probabilities in small pedigrees using conventional 
CPU.  By traversing the space of possible solutions more efficiently the algorithm is faster, and 
therefore able to operate on larger datasets in a reasonable time.  A manuscript reporting this 
has been prepared which will be submitted to a peer reviewed journal.   

 
4.2 Estimation of the relationship between haplotypes based on population genetics 

models.    
 
Our first task was to obtain conventional sequential software to estimate haplotype 
relationships as in Zöllner and Pritchard (2005).   A review of available software failed to 
identify anything suitable for our needs and we chose to write our own.  This had the added 
advantage of greatly increasing our understanding of likelihood and inference under the 
coalescent model, which was of great benefit when applying hardware based approaches.   A 
fully operational version of the software was completed in early September  2008, comprising 
1600 lines of code (Fortran 95).  Since then this has been thoroughly tested and deficiencies 
highlighted.  The main deficiency is speed, performing inference on haplotypes under the 
coalescent model is well known to be computationally challenging and so this was not 
unexpected.  Despite this, we believe that the software is suitable for estimating haplotype 
relationships to exploit further the data obtained in the large SNP experimental populations for 
sheep and cattle.  We would like to evaluate the software on one of these datasets. 

 
 

 

4.2.1 Implementation on FPGA 

 
The complete haplotype relationship algorithm has many levels, with an inner loop called many 
times to evaluate the likelihood of sampled relationship trees.  It is the inner-most loop that was 
implemented on FPGA, called from the PC.  On the FPGA used in the study we successfully 
implemented the algorithm for four SNP haplotypes, using 16 bit floating point numbers (3 
significant digits), occupying approximately 70% of the FPGA. A similarly priced FPGA, the 
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Virtex5-FX70T, is predicted to be able to handle 32 bit floating point (7 significant digits) for 4-
SNP haplotypes, using the design implemented.  A PC uses 64 bit floating point (15 significant 
figures), but given the nature of stochastic algorithms such as this one, this accuracy may offer 
no advantage over 32 bits.   
 
The inner loop of the algorithm took 989ns on a single “Core 2” processor core running at 
2.67GHz.  On the FPGA this operation took just 10ns, running the FPGA at 100MHz.  That is a 
speed multiple improvement of 99 times.  The FPGA could, theoretically, be increased in speed 
to at least 200Mhz. Alternatively, multiple core CPUs could be utilised to also give an increase in 
speed.  It should be noted however, this is the result for this particular experiment. It does not 
automatically imply that every algorithm can be sped up by a similar amount by utilising FPGA 
instead of general purpose CPUs.  Further, development costs are higher for FPGA.  This will be 
discussed further below. 
 
  

4.2.2 Implementation on GPGPU 

 
Implementing the inner loop of the algorithm on a GPGPU proved to be relatively straight 
forward, much more so than designing a circuit for an FPGA.  Our naïve implementation of the 
inner-loop achieved a demonstrated 8 fold increase in speed over the fastest multi-core CPU 
available. This should increase to approximately 20 fold for the latest dual chip GPGPU boards. 
 
 

4.2.3 Optimum implementation 

 
Table 1 below compares the effort and cost of the technologies for implementing the inner-loop 
of the coalescent algorithm on the 3 hardware platforms considered.  Although FPGA are likely 
to have the performance edge per device, the considerable effort to configure (i.e. program) 
them negates their benefit, unless the problem being addressed is static, requiring many 
repeated runs with no reconfiguring of the FPGA required.    
 
Table 1.  Comparison of three hardware platforms for implementing the inner-most loop of the 
software to estimate the relationships between haplotypes under a coalescent model.  
 

Technology Additional 
software 
development 
cost after CPU 
implementation 

Hardware cost Approx. Speed 
Increase over 
single core of 
Intel Core2 

Approx. Speed 
Increase over 
quad-core Intel 
Corei7 

CPU $ 0 $ 2,000 1x 1x 

FPGA $ 100,000 $ 1,500 
(V5 SX50) 

100x 20x 

  $ 15,000    
(V5 FX200) 

400x* 80x* 

GPGPU $ 2,000 $ 100     
(Nvidia GT8600) 

5x 1x 

  $ 400      
(Nvidia GT9800) 

40x* 8x* 



B.BSC.0045 - Computational analysis of genetics data using field programmable gate arrays 

 Page 10 of 14 

 

  $ 900  
(Nvidia GTX 295) 

100x* 20x* 

* Expected speed increase 
 
 

4.2.4 Implementing the complete system 

 
In the comparison above, the assumption was that only the inner loop of the algorithm runs on 
the hardware device.  For FPGA this is almost a requirement, as it would take a huge effort to 
design a complete system on a chip.  However, there is no such limitation with GPGPU.  
Currently, only C based computer languages are available for GPGPU.  Our haplotype 
relationship estimation program was written in Fortran, so there was a cost in porting it to C for 
the GPGPU, but this will not be a cost once Fortran tools become available (Fortran95 compilers 
are due for release soon).   
 
In Table 2 the comparison between CPU and GPGPU for implementing the whole haplotype 
relationship estimation program is presented.  The complete program was not altered other than 
re-coding in C, and no optimisations were made to suit the GPGPU.  Nevertheless, the GPGPU 
was as fast as a single core of an Intel Core 2, and an increase of 4 times over the Intel Corei7 
multi-core CPU is likely with GTX 295 device with only a marginal increase in development 
costs.  This is before any effort is made to optimise the algorithm for greater performance on the 
GPGPU. Two of these devices could fit into a computer giving an 8x speed increase. 
 
Table 2.  Comparison of two hardware platforms for implementing the complete software for 
estimating the relationships between haplotypes under a coalescent model.  
 

Technology Additional 
Software cost 
after CPU 
implementation 

Hardware cost Approx. 
Speed 
Increase 
over single 
core of Intel 
Core2 

Approx. Speed 
Increase over 
quad-core Intel 
Corei7 

CPU $ 0 $ 2,000 1x 1x 

     

     

GPGPU $ 2,000 $ 100     
(Nvidia GT8600) 

1x 0.2x 

  $ 400      
(Nvidia GT9800) 

8x* 1.6x* 

  $ 900  
(Nvidia GTX 295) 

20x* 4x* 

* Expected speed increase 
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4.3 Solving the BLUP equations.   

 
The key bottleneck for accelerating BLUP is the speed of a matrix multiplication.  The required 
calculation is the repeated multiplication of a constant, double precision floating point matrix with 
size of around 40 x 40, by a dense matrix of 1.5 million x 40 double precision floating point 
numbers, producing a matrix of the same size. This requires 0.5 GB of memory.  Matrix 
multiplication is a very common operation in linear algebra computations and highly optimised 
code is available for most hardware platforms.   Consequently, it is not efficient to develop code 
for this operation from scratch. 
 

4.3.1 Implementation on FPGA 

Matrix multiplication code is not readily available, and as code development is much more 
expensive for FPGA than for other hardware platforms there is little point in pursuing this option. 
 

4.3.2 Implementation on GPGPU 

Software libraries for matrix multiplication are provided by the hardware companies.  Using these 
we were able to implement the matrix multiplication component of the BLUP solver in less than a 
day.  The speed improvement was of the same order as can be obtained using optimised code 
on a multi-core CPU, but there are additional overheads in transferring data to and from the 
GPGPU card. 
 

4.3.3 Implementation on multi-core CPU 

Implementing the matrix multiplication component of the BLUP solver using the Intel BLAS 
double precision matrix multiplication on a multi-core Intel based computer took only a few days 
of development time.  A relatively small engineering effort of around 1 man-month would be 
required for full integration into existing systems.   This should realise an 80 to 120 times speed 
increase for the 80% of the time currently devoted to matrix multiplication in the BLUP solver.  
Given that the remaining 20% will remain unchanged; this will deliver an overall increase of 
approximately five-fold. 
 
 

4.4 General Discussion 

 
A number of important developments in hardware design occurred during the course of this 
project.  When the project commenced multi-core CPU were rare other than in high end 
computers and no tools for exploiting the multiple cores were available.  GPGPU were available 
for scientific programming, but there were no tools so development was expensive, especially as 
there was no guarantee that code developed for today’s GPGPU would run on tomorrow’s  faster 
and more powerful GPGPU.  FPGA were small, but are becoming large enough for small 
problems.  Now, at the end of the project, multi-core CPU are standard on desktop computers, 
and tools to exploit the multiple cores are available in several languages (Fortran and C).  The 
GPGPU vendors are promoting GPGPU for scientific computing and have developed BLAS 
libraries (currently only C, but Fortran due soon).  FPGA are large enough for industrial scale 
problems, but development tools are nowhere near as developed as those for multi-core CPU 
and GPGPU.   Given these developments the following recommendations regarding choice of 
hardware can be made: 
 

 FPGA.  Massively fine grained parallelisation is possible and custom design can map 
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the algorithm to fully exploit the hardware.  However, development costs are very high, 
and there are considerable overheads in transfer of data between the FPGA and off-
card memory.  As such, to justify the development costs requires that the computations 
will be run many times with no changes to the algorithm.  That is, routine analyses 
rather than one-off analyses.  Further, the algorithm must map well to the FPGA, 
requiring many repetitions of a task with few changes to the data.  Sampling based 
algorithms can be very well suited to FPGA, and if the end use of the data analysis 
justifies the development cost then an FPGA implementation should be considered. 

 GPGPU.  The benefit of GPGPU over FPGA is in the lower cost of development, 
assuming that the off-the-shelf tools are used.  However, using these tools results in  
much less flexibility in mapping the algorithm to the hardware, so speed-ups are likely 
to be significantly less than in an optimal FPGA (or GPGPU) implementation.  
Sometimes the algorithm might be one that the tools can map well to the hardware, in 
which case a GPGPU implementation will be very fast.   

 Multi-core CPU.  These will have far fewer cores than the number processors possible 
in FPGA and GPGPU, but each core can perform more complex computations.  For 
problems requiring standard linear algebra operations, the highly optimised BLAS tools 
for multi-core CPU allow cheap, and very fast, implementations.   

 
In the short term, using the tools that are becoming available to fully exploit multi-core CPU is a 
cost effective way of obtaining a significant speedup in computations.  This is particularly the 
case when the computations required are widely used linear algebra subroutines.  For these the 
hardware companies are investing in producing very highly optimised code that runs an order of 
magnitude faster than code generated by a regular compiler.   Similar code for GPGPU exists, 
but it achieves its maximum speed for only a restricted set of problems that happen to hit the 
“sweet spot” of the GPGPU.  To fully exploit the power of the GPGPU would require that the 
algorithm for the analysis of genetics data be re-formulated to map to the GPGPU “sweet spot”, 
requiring an investment in software development.     

 
 

5 Success in Achieving Objectives  

The objectives of the project have been met.   We have demonstrated that all three of the hardware 
platforms tested can be applied to genetics/genomics data analysis tasks.  In some cases the 
benefit far outweighs the cost.  An example is implementing a BLUP solver that exploits multi-core 
CPU.  AGBU are beginning to plan for this.  We have also produced software for estimating 
haplotype relationships under a coalescent model and using these to estimate SNP effects.  We 
believe that the software in its current state is suitable for analysing at least selected regions in the 
whole genome selection experimental populations currently available.   Finally, our research into 
allele transmission in pedigrees to estimate allelic probabilities has resulted in a new method that 
can also be applied to existing datasets.  Two journal papers will be published based on the 
research outcomes of this project. 
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6 Impact on Meat and Livestock Industry  

The use of genomics by the Meat and Livestock Industry is accelerating, and it is over the next 5 
years that measurable impact should occur.  Leading to faster computations on genomic data, this 
research will allow better use of the data arising from the industry investment in genomics, producing 
breeding value estimates of greater accuracy in young animals.   
 
 
 

7 Conclusions and Recommendations  

In this project we successfully implemented algorithms for the analysis of genetics/genomics data on 
all three of the examined multi-core hardware platforms.  There are two areas in these results that 
are directly applicable.   
 
1. Utilising available optimised BLAS routines for existing genetic evaluation systems.  A direct 

result of this project has been AGBU’s recognition of the need to investigate the development of 
BLUP optimised for multi-core processors.   Further, it is evident that components of software to 
estimate SNP effects using linear models can also be greatly improved for only a modest 
investment.   

 
2. The estimation of genetic merit from dense SNP data.  It is difficult to predict which models will 

ultimately be used for this purpose, and it is likely that different models will be used depending 
on population structure, costs of recording, position the genetics supply chain, and genetic 
parameters for the traits of importance.  The results from this project keep open the option to use 
analysis methods that would otherwise be considered too computationally expensive.  An 
example is the estimation of haplotype relationships under a coalescent model.  The software 
developed in the project for this purpose can be used on existing industry SNP datasets, 
although further development would be required if it was to be for routine and repeated whole 
genome data.    

 
It is noteworthy that in the days of interval mapping based on microsatellites, permutation testing 
was commonly accepted as the only method able to provide believable measures of significance.  
Now, permutation testing is less frequently mentioned, as with analyses taking hours per trait, the 
cost of tens of thousands of permutations is very high.  With increased data has come less rigour in 
the analyses, due to computational cost.   This alone suggests that a continued investment in 
accelerating the computations is warranted. 
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