

final report

Project code:	FLOT.124
Prepared by:	Brendan J Smith, Rainer Reuss, Colin J Waterford, David P Rees, Sarwar Muhammad, Daphne A Mahon and Yonglin Ren. CSIRO Entomology
Date published:	22 August 2019

PUBLISHED BY Meat and Livestock Australia Limited PO Box 1961 NORTH SYDNEY NSW 2059

Devitalisation of imported feed grain by fumigation

Meat & Livestock Australia acknowledges the matching funds provided by the Australian Government to support the research and development detailed in this publication.

This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA.

Abstract

The intensive livestock industries in Australia periodically suffer shortfalls in cost effective feedstuffs during drought. The current protocol for the importation of feed grain does not apply beyond capital cities. The feasibility of using the fumigant ethanedinitrile (EDN) for import quarantine treatment of commodities for distribution beyond capital cities was tested. The fumigant was successful in devitalising barley, maize, sorghum, wheat, all surrogate pathogens and the majority of testable weed seeds. The characteristics of the gas on the four commodities and the disparity in tolerance between weeds and the commodities to devitalise all target organisms. It was concluded that maize would be the most profitable commodity in terms of feed value and fumigant consumption for development of large-scale application of EDN for quarantine import purposes. This would potentially deliver benefits in opening market access up country to imported feed grain during periods of limited supply. This usage would be subject to registration of EDN and successful development and approval of an import protocol based on EDN satisfying Australian quarantine requirements.

Executive summary

The intensive livestock industries in Australia periodically suffer shortfalls in cost effective feedstuffs during drought. The current protocol for the importation of feed grain does not apply beyond capital cities. This work aims to provide proof of concept for a devitalisation protocol based on a fumigant gas ethanedinitrile (EDN) that has the potential to reduce the residual quarantine risks for the importation of feed grain to a level acceptable to Biosecurity Australia.

The experimental work reported here was undertaken over eight months, during which time approximately 250,000 weed and commodity seeds were fumigated and assessed, efficacy of treatment against surrogate pathogens was determined, and detailed studies of the sorption and interaction of EDN with target commodities and materials was undertaken.

The results have demonstrated the "in principle" feasibility of devitalising maize, barley, wheat and sorghum imported from the UK and USA along with many, but not all, exotic seeds associated with these products. In addition, the efficacy of EDN was demonstrated against a selection of surrogate pathogens chosen to represent the pathogens deemed to be quarantine risks associated with the four commodities imported from the UK and USA. The commodities were relatively easy to devitalise, but the pathogens and the weed seeds were more difficult to kill. While assessing the efficacy of EDN, headspace gas loss was measured and found to differ markedly between commodities. This has implications on the final cost of treatment for each commodity; seeds, which are admixed with a commodity with higher headspace gas losses. On this basis it was concluded that maize would be the most feasible commodity to treat with EDN, followed by wheat and then barley. Given the easy availability of the other commodities, and the variable feed value of sorghum, the management committee did not feel that work on sorghum beyond this project would be justified.

Another major thread of the project was concerned with the compatibility of EDN with materials commonly present in storage structures and other potential fumigation environments. Colour changes and permeability were identified as issues in some tarping material, but CanvaconTM was identified as a suitable material for use with EDN. EDN use was compatible with metals, but there was measurable sorption to concrete and brick, and very high sorption to freshly made concrete. While sorption to fresh concrete is an issue, sorption of EDN to aged concrete structures was significantly less, and this can be factored into fumigation protocols. Where basic compatibility parameters cannot be met, control measures such as barriers will be needed. Residues were ameliorated by aeration for all materials tested.

The potential industry benefit lies in opening market access to feed grain in periods of limited supply. This would have the potential to sustain grazing herd numbers, and provide economic relief to feedlot operations during times of drought. Further work on a larger scale is essential to demonstrate the practical application of an import protocol before industry benefits can be realised. In addition, EDN is not currently registered for use as a fumigant, although, at the time of writing registration is being pursued by a commercial partner of CSIRO Entomology. Nevertheless, the results presented here indicate that EDN fumigation as part of an import protocol has the potential to enable the importation of feed grain to Australian quarantine requirements.

The intensive livestock industry would be the main beneficiary of access to imported feed grain to supplement local shortfalls in supply. Graziers may also benefit from downward price pressure on supplemental feed during times of shortage. Both industries are cyclically dependent on feed grain to support livestock in times of drought conditions. During these times feed prices can increase markedly. Manufacturers and on-sellers of the EDN fumigant, and importing bulk handlers and storers would also stand to benefit from this technology. MLA, as the holders of the intellectual property of this project, may be able to realise benefit from this through the wider use of EDN in other markets that require devitalisation of traded commodities.

Table of contents

Ab	stract			2
Та	ble of	cont	ents	4
1	Bac	kgro	und	7
2	Pro	ject c	bjectives	7
3 fro			of incursion risks associated with imported barley, maize, wheat and sorghum and USA	8
	3.1	Exo	tic Pathogens	8
	3.2	Sele	ection of surrogate pathogens for study within Australia	9
	3.2.	1	Cephalosporium Stripe	9
	3.2.	2	Downy mildew 1	0
	3.2.	3	Smut fungi1	0
	3.2.	4	Collection and maintenance of fungal isolates 1	1
	3.3	Exo	tic weeds1	1
	3.4 unava		e)1	
4	Cor	npati	bility of materials with ethanedinitrile1	6
	4.1	Met	hods 1	6
	4.1.	1	Test materials 1	6
	4.1.	2	Sorption of EDN on test materials1	7
	4.1.	3	Discolouration of test materials in response to fumigation of EDN	7
	4.1.	4	Desorption of EDN from test material1	7
	4.1.	5	EDN residues on the test material after fumigation1	7
	4.1.	6	Permeation of EDN across plastic sheets1	7
	4.1.	7	Statistical Analysis 1	8
4	4.2	Res	ults and Discussion1	8
	4.2.	1	Sorption of EDN on test materials1	8
	4.2.	2	Discolouration of test materials in response to fumigation with EDN2	20
	4.2.	3	Desorption of EDN from test materials2	20
	4.2.	4	EDN residues on the test material after fumigation2	23
	4.2.	5	Permeation of EDN across plastic sheets2	24
	4.3	Con	clusions2	26
5	EDI	N fun	nigation of the surrogate pathogens2	26
4	5.1	Met	hods2	27
	5.1.	1	Evaluation of vital staining of smut spores	27

	5.	.1.2	Preparation of propagules	27
	5.	.1.3	Fumigation of surrogates	27
	5.	.1.4	Viability assessments	27
	5.	.1.5	Statistical analysis	28
	5.2	Res	sults and Discussion	28
	5.	.2.1	Vital staining of autoclaved and non-autoclaved smut spores	28
	5.	.2.2	Surrogate for Cephalosporium stripe	29
	5.	.2.3	Surrogate for smut fungi	30
	5.	.2.4	Surrogate for downy mildew	30
	5.3	Cor	nclusions	31
	5.	.3.1	Vital staining versus direct methods	31
	5.	.3.2	Devitalising the surrogates	31
6	Е	DN tol	erance of testable weeds	31
	6.1	Met	hods	32
	6.2	Res	sults and discussion	33
	6.	.2.1	Sorption	33
	6.	.2.2	Tolerance to EDN	34
	6.3	Cor	nclusions	38
7	D	evitalis	sation of commodities	39
	7.1	Met	hods	39
	7.	.1.1	Experimental design	39
	7.	.1.2	EDN fumigation	39
	7.	.1.3	Statistical analysis	40
	7.2	Res	sults and Discussion	41
	7.	.2.1	Impact of moisture content on EDN efficacy	41
		.2.2 noistur	Efficacy of EDN against commodities – variety responses at 14%	44
		.2.3	Head space loss (sorption) of EDN on the commodities tested	
	7.3		nclusion	
8	_		s of ethanedinitrile in treated grain	
-	8.1		hods	
	8.2		sults and discussion	
9			s a treatment schedule for EDN fumigation of commodities	
1			ess in achieving objectives	
1			t on Meat Industry – Now and In Five Years Time	
1			usions and recommendations	
1			graphy	

14	Appendix A	58
14.1	Pathogens of wheat and barley from the UK	58
14.2	References	73
15	Appendix B	77
15.1	Plant species recorded as weeds of wheat crops in the UK	77
15.2	References	
16	Appendix C	90
16.1	Germination test procedures used in this study are described here	90

1 Background

Recent years of drought have had a large impact on feed grain prices. Both graziers and feedlot operators have been forced to pay high prices for feed grain in efforts to sustain herds and production, and to maintain export contracts. Climate predictions indicate that such events may occur with greater frequency due to the atmosphere alteration associated with fossil fuel and other man-made emissions.

Previous attempts to import feed grain to alleviate high prices accompanying periods of local grain and feed shortage have been subjected to onerous protocols. One treatment adopted is hammer milling of imported feed grain to effectively devitalise the grain and any potential weeds, followed by steam treatment to remove pathogens. However, grain treated in this way is difficult to handle in feed lot operations. Grain has also been imported under quality specifications and then allowed only limited movement within metropolitan areas for feed manufacturing for chicken production. The only registered fumigant considered a candidate to effectively treat imported grain is methyl bromide, which is being phased out of use because it is a greenhouse gas. Moreover, studies by Cassells *et al.* (1995) showed that only partial devitalisation of maize and sorghum can be achieved with methyl bromide, and they concluded that CT products (concentration × time) in excess of 17,000 mg h L⁻¹ would be necessary to effectively treat the grain.

CSIRO has developed a new fumigant, ethanedinitrile (EDN), with the potential to treat imported grain. CSIRO was approached by GrainCo Ltd to provide a proof of concept for an "Emergency Import Permit" during the recent drought. This interest subsequently developed into the current investigation as defined by MLA project FLOT.124.

2 Project objectives

The objectives of FLOT 124 were originally part of a larger proposal formulated to develop an import protocol for feed grain. The objectives reported are designed to provide the initial evaluation of the EDN concept, enabling MLA to assess the merits of full commercialisation of EDN fumigation of grain. The objectives thus describe laboratory scale experiments and seek to address what were perceived to be the three major biosecurity issues associated with imported feed grain:

- to demonstrate the ability of EDN to devitalise the four target grain commodities (maize, wheat, barley and sorghum). This was important as devitalising the grain breaks the life cycle of any obligate pathogens (e.g. many viruses and pathogens).
- to devitalise contaminant weed seeds that might be potentially associated with imported grain; and
- to demonstrate a capability to devitalise pathogens that might be associated with imported grain.

Other aspects, such as compatibility of materials and the behavior of the gas, were also included to discount possible barriers to application, and to formulate a protocol for treatment at a larger scale. The numbering and order of the objectives has been altered from that of the original contract to better reflect the logical sequence of the work.

- Objective 1 Furnish details as required by AQIS for the development of a (pathogen) incursion risk list for the commodities proposed for importation.
- Objective 2 Selection of surrogate pathogens.
- Objective 3 Produce a complete list of weeds of quarantine concern from the UK and USA.
- Objective 4 Classify weeds into 'testable' (seed available) and 'not testable' (seed not available).

- Objective 5 Develop treatment schedule for discriminating, one off treatments of all testable weed species, and the four grains, wheat, barley, sorghum and maize, including relative humidity (RH) (water activity), dose exposure time, application technique, filling ratio.
- Objective 6 Assess compatibility of materials against ethanedinitrile.
- Objective 7 Refine techniques for study of spore survival of surrogate pathogens.
- Objective 8 Determine effective dosage for target surrogate pathogens to ethanedinitrile with RH equivalent 10-15% moisture content cereals.
- Objective 9 Assess one off exposure of testable weeds and the four grains, wheat, barley, sorghum, and maize at constant RH, filling ratio, temperature, dose, exposure time, application followed by germination testing.
- Objective 10 Develop treatment schedule that completely devitalises commodities according to International Seed Testing Association (ISTA) germination tests.
- Objective 11 Develop absolute maximum dose schedule that can be applied to commodities, weeds, insects, pathogens and materials.

Proof of concept – Ethanedinitrile has the potential to cause devitalisation of wheat, barley, sorghum and maize, and of associated weed seeds and pathogens, to a level acceptable by quarantine authorities using a dose and method of application likely to be commercially viable and at a cost no greater than \$10 per tonne of grain treated. CSIRO will establish the suitability of ethanedinitrile as a potential solution for devitalisation of grain in the proof of concept.

3 Review of incursion risks associated with imported barley, maize, wheat and sorghum from the UK and USA

In order to proceed with testing of weeds and pathogens a comprehensive list of incursion risks was needed. Biosecurity Australia is vested with the task of risk assessment of imported goods for the purposes of quarantine and is in the process of preparing risk assessments for a number of commodities. However, for the purpose of the seed devitalisation project, assessment information was available for only one commodity, maize from USA. In response to CSIRO's interest in this matter Biosecurity Australia requested information on weeds and pathogens associated with wheat and barley from the UK. The following is a compilation of this information and satisfies the requirements of Objectives 1 - 4.

3.1 Exotic Pathogens

An incursion risk assessment (IRA) had been completed for maize prior to commencement of the seed devitalisation work. This IRA documents the pathogen incursion risks for this product. The main pathogens of concern are listed in Table 3.1. However the maize IRA does not comprehensively cover pathogens of other crops. *Tilletia indica* (Karnal bunt of wheat) is mentioned specifically in relation to possible contamination of shared freight facilities. The maize IRA is available on the Australian Forestry Fisheries and Agriculture website at:

http://www.affa.gov.au/corporate_docs/publications/pdf/market_access/biosecurity/plant/final_ma_ize.pdf

In addition to this, CSIRO Entomology has at Biosecurity Australia's request compiled an additional list of pathogens of wheat and barley from the UK. This information was passed onto Biosecurity Australia in March 2003. This body of work is appended as Appendix A. Advice from Biosecurity

Australia as it currently stands is that the pathogens in Table 3.1 are considered of importance in imported feed grain.

Pathogen	Common name	Host
Cephalosporium Stripe		
Hymenula cerealis	Cephalosporium stripe	wheat
Downy mildew		
Peronosclerospora sorghi	Sorghum downy mildew	sorghum and maize
Smut fungi		
Tilletia controversa	Dwarf bunt	wheat and barley
Tilletia indica	Karnal bunt	wheat
<i>Ustilago nuda</i> f. sp. <i>tritici</i> current name <i>Ustilago tritici</i>	Loose smut	wheat
Ustilago zeae	Boil smut	maize
Sporisorium cruentum	Loose kernel smut	sorghum
Sporisorium sorghi	Covered smut	sorghum

Table 3.1 Pathogens considered incursion risks associated with importation of wheat, barley,sorghum and maize from UK and USA.

3.2 Selection of surrogate pathogens for study within Australia

Biosecurity Australia has advised CSIRO of several fungi that are considered potential risks on wheat, barley, maize and sorghum imported from the UK and USA (Table 3.2). These fungi, identified as part of Objective 1, may be harboured on or within the seed. However, the importation of fungal pathogens for research purposes is subject to quarantine regulation, and it is not practical to study these organisms within Australia. For this reason related organisms were chosen as surrogates for study based on the criteria of taxonomic affinity and morphological similarity. The chosen surrogates are listed in Table 3.2. The rationale behind the selection of surrogates is summarised below for each incursion risk.

3.2.1 Cephalosporium Stripe

Hymenula cerealis Deuteromycotina, (Tuberculariaceae), causes a vascular wilt in wheat and barley. The primary infection source is stubble on which significant inoculum survives for two years. The fungus has very limited saprophytic ability. Sporulation occurs in cool wet periods, and spores germinate to infect roots mainly through injury by insects, freezing or frost heaving (freeze/thaw). The vascular system is compromised, resulting in haying off. Some species escape damage, as they do not suffer from freeze damage or root wounding. Conidia are produced on sporodochia during the saprophytic phase on stubble. It is rarely seed-borne in wheat, but it is common in seed of winter barley (USA). The critical issue regarding testing for efficacy is the dormant mycelium within the seed.

A possible surrogate for cephalosporium stripe is *Fusarium graminearum*. Until recently, two subgroups were recognized. Group 1 was typically found to be associated with a crown rot of wheat, barley and oats, while Group 2 was associated with ear rot of corn and head scab of wheat, oats and barley. The Group 1 subgroup is now recognized as a separate species; *F. pseudograminearum*. *F. graminearum* is potentially a good substitute for *H. cerealis* as it shares affinity with respect to its ability to cause a seed-borne infection; both cause a vascular wilt, and both are sporodochia producing mitosporic fungi.

3.2.2 Downy mildew

Peronosclerospora sorghi (sorghum downy mildew) is considered a risk to both sorghum and maize production. Two tentative reports of *P. sorghi* into Northern Australia are probably *Peronosclerospora maydis* (Ramsey and Jones, 1988). *P. sorghi* belongs to the Oomycota, now considered taxonomically distinct from the fungal kingdom. Downy mildews produce resilient oospores, which can be present as a seed contaminant. In sorghum downy mildew, oospores form on leaves or glumes, either of which can cause contamination of seed (Bock et al., 1997; Rao et al., 1984). In other species the seed is infected directly (Bains and Jhooty, 1982). Downy mildews are obligate parasites, and the study of oospores is hampered because they cannot be readily generated in the laboratory. This is not a problem with the Pythiales, another group classified within the Oomycota. For this reason *Phytophthora citricola* has been chosen as a surrogate source of oospores. Other potential surrogates for this fungus include *Sclerophthora macrospora*, a downy mildew of wheat, or *Peronospora parasitica* (e.g. from Brassica). However, to date a source of material suitable for study has not been found. In addition, informal advice from Biosecurity Australia has indicated that these would not likely be considered a suitable substitute. *P. citricola* can be cultured and, as it is a homothallic species, readily forms oospores in culture and within colonized seed.

3.2.3 Smut fungi

Several smut fungi are considered incursion risks on imported grain (Table 3.2). The life cycle of a smut fungus in the plant culminates in the formation of a teliospore, typically bunted seed or smutted leaves or flowers or seed. The teliospores represent a significant contamination problem in imported seed. One of the main incursion risks is Karnal bunt (*Tilletia indica*). This disease has a high profile and can be expected to cause losses to production although it would probably cause greater damage in terms of lost market access. *T. tritici* (Common bunt) which is found in Australia has similar teliospore size and structure and has been chosen as a surrogate.

Incursion risk	Surrogate	Comments	
Cephalosporium stripe			
Cephalosporium gramineum	Fusarium graminearum head blight of wheat	Fusarium graminearum is also a mitosporic fungi with similar life cycle and is seed-borne.	
Downy mildew			
Peronosclerospora sorghi	<i>Phytophthora citricola</i> root rots various species	Readily cultured and produces resilient oospores.	
Smut			

Table 3.2 Fungal species identified by Biosecurity Australia as incursion risks in imported grain fromUK and USA alongside their surrogates chosen for this study.

Tilletia controversa	<i>Tilletia tritici</i> bunt of wheat, barley	Teliospores of Tilletia tritici are
Tilletia indica		structurally very similar to those of Karnal Bunt, a high profile
<i>Ustilago nuda</i> f. sp. <i>tritici</i>		incursion risk. Testing a
Ustilago zeae		surrogate for all smut fungi listed was considered too
Sporisorium cruentum		ambitious in the allotted time
Sporisorium sorghi		frame.

3.2.4 Collection and maintenance of fungal isolates.

Pathologist groups in WA, Qld, NSW, SA and Vic were contacted in order to source material. Five species of smut fungi were supplied by SARDI and *Phytophthora citricola* is currently represented in CSIRO Entomology's fungal collection. Samples of wheat bunt were supplied by CSIRO Plant Industry. Isolates of *Fusarium graminearum* have been supplied by NSW Agriculture

3.3 Exotic weeds

A list of weeds of quarantine concern in maize from the USA has been compiled by Biosecurity Australia as part of the Maize IRA. This list also essentially covers possible weeds of wheat from the USA. As wheat is grown in rotation with maize, the weeds associated with wheat must be considered possible contaminants of the crop and the supply chain. This list is contained within the Maize IRA at the Australian Forestry Fisheries and Agriculture website at:

http://www.affa.gov.au/content/publications.cfm?Category=Biosecurity%20Australia

However no publicly available list of potential weed species associated with UK wheat (and barley) was available, so a list of potential weeds associated with these commodities was compiled from literature sources. The completed list includes plant species recorded as weeds of wheat crops in the UK, including plant inhabitants of the field margins of wheat crops. The information was obtained from a search of the scientific literature from the early 1970s to date, and a search of the Internet, which was conducted during the week ending 10 January 2003. The assessment was made on the following criteria and methods.

- A weed of quarantine concern has been defined as 'A pest of potential economic importance to Australia and not yet present in Australia, or present but not widely distributed and being officially controlled' (AQIS Import Risk Analysis Process Handbook).
- Weeds listed as 'noxious' by any state or territory legislation are taken to be 'under official control' and may thus be of quarantine concern if present in imported grain.
- The status of listed plant species in Australia was first checked using PlantNET (<u>http://plantnet.rbgsyd.nsw.gov.au/</u>) and then the state floras of South Australia, Tasmania and Victoria.
- At this stage no attempt has been made to assess the difference in herbicide tolerance between strains of weed species that are found in both the UK and Australia.
- For species identified as 'of quarantine concern' no attempt has yet been made to determine whether they have been assessed for weediness and cleared for import by Biosecurity Australia using their 'weed risk assessment' process.
- This list specifically refers to weeds associated with wheat, but it would be expected that the weeds associated with other major cereal crops grown in the UK, in particular barley and oats, would be very similar.

Biosecurity Australia was furnished with the results of the study in the January 2003. This body of work is attached as Appendix B.

3.4 Classification of exotic weeds into 'testable' (seed available) and 'not testable' (seed unavailable)

As research on quarantine weeds is subject to both regulation and availability, not all quarantine weeds could be tested. Those for which both permit and seed have been obtained are listed in Table 3.3. Weed species for which surrogate species have been obtained either locally, or under AQIS permit, are listed in Table 3.4. Table 3.5 lists those species for which no source of seed or suitable surrogate was available. Should a successful protocol be developed for the devitalisation of grain these would be designated as nil tolerance for the purposes of importation. It is possible that some of the species tested via surrogate species in Table 3.4 may also be eventually categorised as nil tolerance following Biosecurity Australia's assessment of the suitability of the surrogates

Family	Genus	Species	Surrogate available ex Australian sources	Present in UK/US
Malvaceae	Abutilon	theophrasti		UK/US
Amaranthanceae	Amaranthus	chlorostachys	Amaranthus angeticus	UK/US
Amaranthanceae	Amaranthus	<i>palmeri</i> (herbicide resistant)	Amaranthus tricolour	UK/US
Amaranthanceae	Amaranthus	<i>retroflexus</i> (triazine resistant)		UK/US
Asteraceae	Ambrosia	artemisiifolia		UK/US
Asteraceae	Ambrosia	trifida		UK/US
Umbelliferae	Anthriscus	sylvestris	Anthriscus cerefolium	UK
Poaceae	Apera	spica-venti		UK
Asclepiadaceae	Asclepias	syriaca		UK/US
Brassicaceae	Brassica	juncea (syn japonica)	Brassica ocephala	UK/US
Poaceae	Bromus	tectorum		UK/US
Poaceae	Bromus	commutatus		UK
Poaceae	Cenchrus	incertus	Cenchrus ciliaris	UK/US
Poaceae	Cenchrus	longispinus		UK/US
Chenopodiaceae	Chenopodium	<i>album</i> (atrazine resistant)	Chenopodium quinoa	UK/US

Table 3.3 Species for which quarantine seeds have been obtained under AQIS permit. Those seed with unacceptably low germination are to be reclassified as non-testable (Table 3.5).

Asteraceae	Chrysanthemum	segetum	Chrysanthemum parthenium	UK
Asteraceae	Cirsium	arvense		UK/US
Asteraceae	Cirsium	vulgare		UK
Brassicaceae	Conringia	orientalis		UK/US
Convolvulaceae	Convolvulus	arvensis		UK/US
Poaceae	Cynodon	dactylon	Cynodon dactylon	UK
Solanaceae	Datura	stramonium		UK/US
Poaceae	Echinochloa	<i>crus-galli</i> (herbicide resistant)		UK/US
Lamiaceae	Galeopsis	tetrahit	Mentha spicata viridis	UK
Rubiaceae	Galium	aparine		UK
Umbelliferae	Heracleum	sphondylium	Coriandum sativum	UK
Convolvulaceae	Іротоеа	lacunosa	Ipomoea aquatica	UK/US
Convolvulaceae	Іротоеа	hederacea		UK/US
Convolvulaceae	Іротоеа	purpurea		UK/US
Convolvulaceae	Jacquemontia	tamnifolia		UK/US
Chenopodiaceae	Kochia (Bassia)	scoparia	Beta vulgaris crassa	UK/US
Asteraceae	Matricaria [Tripleurospermum]	perforata	Matricaria chamomilla	UK
Poaceae	Panicum	<i>capillare</i> (herbicide resistant)		UK/US
Poaceae	Panicum	dichotomiflorum		UK/US
Poaceae	Pennisetum (syn Setaria)	glaucum (syn lutescens (herbicide resistant)	Pennisetum clandesrinum; P. alopecuroides	UK
Роасеае	Phleum	pratense ssp. bertolonii		UK
Polygonaceae	Polygonum	aviculare		UK/US
Polygonaceae	Polygonum	lapathifolium		UK/US
Polygonaceae	Polygonum	pensylvanicum		UK/US

Family	Genus	Species	Surrogate available ex Australian sources	Present in UK/US
Brassicaceae	Raphanus	raphanistrum	Raphanus sativus	UK/US
Chenopodiaceae	Salsola	kali (kali subsp. ruthenica)		UK/US
Asteraceae	Senecio	jacobaea	Tanacetum vulgare	UK
Poaceae	Setaria	faberi		UK/US
Poaceae	Setaria	verticillata		UK
Poaceae	Sorghum	halepense		UK/US
Lamiaceae	Stachys	sylvatica		UK
Brassicaceae	Thlaspi	arvense	lberis amara	UK/US
Asteraceae	Xanthium	spinosum		UK/US
Asteraceae	Xanthium	strumarium		UK/US

Table 3.4 Species for which surrogate species have been obtained either locally or under AQIS permit. The suitability of these surrogates is ultimately to be determined by Biosecurity Australia. Those surrogates failing suitability, or with unacceptably low germination, are to be reclassified as non-testable (Table 3.5).

Family	Genus	Species	Additional substitutes from Australia	Substitute AQIS	Present in UK/US
Asteraceae	Acanthospermum	hispidum	Arctium lappa		UK/US
Fabaceae	Aeschynomene	virginica	Dolichos lab lab		UK/US
Amaranthanceae	Amaranthus	<i>hybridus</i> (herbicide resistant)	Amaranthus hypochondriacus	Table 3.3	UK/US
Amaranthanceae	Amaranthus	<i>rudis</i> (triazine resistant)		Table 3.3	UK/US
Amaranthanceae	Amaranthus	tamariscinus		Table 3.3	UK/US
Asteraceae	Ambrosia	grayi		Table 3.3	UK/US
Asteraceae	Bidens	aurea	Lactuca sativa	Bidens tripartita	UK/US
Polygonaceae	Brunnichia	ovata	Fagopyrum esculentum		UK/US
Cyperaceae	Cyperus	esculentus		Cyperus iria	UK/US
Cyperaceae	Cyperus	rotundus		Cyperus iria	UK/US

			Additional		.
Family	Genus	Species	substitutes from Australia	Substitute AQIS	Present in UK/US
Solanaceae	Datura	inoxia		Table 3.3	UK/US
Asteraceae	Erigeron	annuus	Echinacea purpurea	Erigeron canadensis	UK/US
Asteraceae	Eupatorium	capillifolium	Centaurea cyanus		UK/US
Euphorbiaceae	Euphorbia	platyphyllos	Euphorbia marginata	Euphorbia Iathyris	UK
Lamiaceae	Galeopsis	angustifolia	Hyssopus officinalis		UK
Lamiaceae	Glechoma	hederacea	Scutellaria baicalensis		UK
Convolvulaceae	Іротоеа	turbinata		Table 3.3	UK
Lamiaceae	Lamium	album		Lamium purpureum	UK
Poaceae	Lolium	<i>perenne</i> sbsp <i>multiflorum</i> (herbicide resistant)	Lolium perenne; Lolium rigidum	Lolium perenne	UK/US
Boraginaceae	Myosotis	avensis		Table 3.3	UK
Poaceae	Panicum	fasciculatum		Table 3.3	UK/US
Poaceae	Panicum	ramosum		Table 3.3	UK/US
Poaceae	Panicum	texanum		Table 3.3	UK/US
Poaceae	Paspalum	boscianum	Paspalum dilatatum	Paspalum fasciculatum	UK/US
Polygonaceae	Polygonum	bungeanum		Table 3.3	UK/US

Family	Genus	Species	Present in UK/US
Apocynaceae	Apocynum	cannabinum	UK/US
Brassicaceae	Berteroa	incana	UK/US
Euphorbiaceae	Chamaesyce (Euphorbia)	maculata (supina)	UK/US
Menispermaceae	Cocculus	carolinus	UK/US
Asclepiadaceae	Cyanachum (Ampelamus)	laeve	UK/US
Equisetaceae	Equisetum	arvense	UK/US
Роасеае	Eriochloa	villosa	UK/US
Asteraceae	Helianthus	annuus (herbicide resistant)	UK/US
Poaceae	Muhlenbergia	frondosa	UK/US
Solanaceae	Physalis	heterophylla	UK/US
Poaceae	Setaria	lutescens (herbicide resistant)	US
Cucurbitaceae	Sicyos	angulatus	UK/US

Table 3.5 Non-testable weed species (due to unavailability of seed). These seeds are to be categorised as nil tolerance for purposes of importation.

4 Compatibility of materials with ethanedinitrile

Before a fumigant can be used to disinfest or devitalise certain commodities its interactions with storage structures and plant must be documented. Materials commonly present in storage structures include metals, plastics (PVC pipes, tubing and sheets etc) and concretes (bricks, pavements and silos). The following experiments were devised to investigate;

- The EDN sorption and desorption pattern on different types of structural materials like metal sheets (copper, aluminum, stainless steel and galvanized steel), plastic (Canvacon[™], Canvacon 5000Q[™], Land Mark[™], PVC and tubing) and concrete (brick, concrete fresh and concrete silo) commonly present in a grain storage facility.
- 2. The extent of EDN permeation across plastic sheets such as Canvacon[™], Canvacon 5000Q[™] and Land Mark[™].
- 3. The level of possible retention of EDN residues on the above-mentioned contact materials.
- 4. Discolouration of test materials following sorption of EDN.

4.1 Methods

4.1.1 Test materials

Metal sheets were supplied by the workshop at CSIRO Entomology, Canberra. The plastic sheets (CanvaconTM, Canvacon5000QTM and Land MarkTM) were obtained from GRAINCO, Qld. The materials available onsite were PVC plastic, teflon tubing, bricks, fresh concrete and silo concrete.

4.1.2 Sorption of EDN on test materials

Metal and plastic sheets were cut into rectangular pieces (3.7cm x 7.5cm). Pieces were transferred to 260 mL cylindrical glass (10 cm x 6 cm dia.) jars and conditioned at 25°C and 70% relative humidity (RH) for 24 h. At the time of EDN application, the jars were closed airtight by screw-capping with plastic lids equipped with a half-hole rubber septum in the center to monitor its sorption with gas chromatography (GC). To eliminate any chance of fumigant leakage from the test jars, lids were further sealed with the application of a layer of masking tape around the lids. The pieces of concrete and brick were added as maximum of 1-2 in number. Test jars were filled up to 30%, 20% and 10% of filling ratio (V/V) for concrete, plastics and metal pieces, respectively. These filling ratios were selected to reflect the rough composition of materials in grain storage facilities.

EDN was generated in the laboratory and checked for its purity using a Gas-Density balance GC. It was applied, in duplicate, to the test material in jars at the rate of 100 mg L-1 using an airtight syringe. An equivalent volume of air was removed with the syringe prior to EDN application. The sorption of EDN was monitored for a minimum of two days by taking at least three readings during the initial four hours from headspace and then two readings per day over the next two days. All the test materials were subjected to EDN sorption in different batches for the sake of ease in subsequent monitoring. Concentration of EDN was determined using an external standard curve. The samples and standards were kept at 25°C when not being monitored.

4.1.3 Discolouration of test materials in response to fumigation of EDN

After monitoring of EDN sorption on test materials, treated and untreated samples were displayed on a laboratory bench in parallel to each other to be visually judged for any significant colour change by five independent staff members/visitors not related to the project and without any knowledge of the treatments. Their response was recorded as 'yes' or 'no' for significant change of colour.

4.1.4 Desorption of EDN from test material

After the completion of sorption studies the test materials were divided into two parts. The contents of the first part (equal in volume to that used in sorption) was immediately transferred to new glass jars in duplicate and closed airtight similar to sorption study. The headspace concentration of EDN was monitored and quantified similar to the sorption study. However, the second part of material was left open inside the fume hood for 4 d aeration and subsequent monitoring of EDN was carried out similar to the first part. Similarly, all the test materials were investigated for desorption of EDN after 0 and 4 d aeration periods. Data were collected by monitoring headspace concentration of EDN of the glass jars similar to sorption studies.

4.1.5 EDN residues on the test material after fumigation

At the completion of the desorption study, glass jars were opened and the test material was subjected to further investigation for the presence of EDN residues. Ten to twenty grams of test material was weighed accurately and added to new 260 mL glass jars containing 50 mL of Toluene. Glass jars were closed airtight. Residual concentration of EDN on the material was determined by preparing spiked standards in parallel to test samples containing material from the control treatments. Standard jars were spiked with EDN (of known purity) at two rates of 5 and 15 mg L-1. All the jars were prepared in duplicate. Sample and standard jars were gently shaken and incubated at 25°C for 6 h before monitoring of headspace EDN concentration. Residues of EDN were calculated on the basis of sample weight.

4.1.6 Permeation of EDN across plastic sheets

Plastic sheets such as CanvaconTM, Canvacon5000QTM and Land MarkTM were cut into circular pieces with diameter of 19 cm to fit inside the edges of two desiccator lids leaving about 10 mm space from the periphery. High-pressure vacuum grease was applied to the smooth peripheral edges of the lids intended to grasp the outer circular portion of the sheet. Excess grease was applied to the area of lids not holding the sheet but sandwiched between two lids to prevent any leakage of applied EDN. Joined edges of both desiccators were further reinforced by pulling masking tape over them. Both the lids were equipped with QuickfitTM inserts fitted with rubber septa to facilitate sampling of gas exchange across the sheet. The assembled apparatus with sampling ports open was placed in a conditioning room for 24 h prior to use. EDN was applied from one side of the setup at the rate of 100 mg L-1 based on that side of volume but monitored from both source and sink sides over two days. Apparatus was prepared in duplicate for each sheet and kept in the incubator (25°C) when not in use.

4.1.7 Statistical Analysis

All the data were subjected to analysis of variance (ANOVA).

4.2 Results and Discussion

4.2.1 Sorption of EDN on test materials

The test materials were fumigated with EDN at a relative humidity of 70% or higher. Normally, fumigation is carried out at a humidity of less than 70%. However, a worst case scenario was tested, as for many commodities (wheat, barley, paddy and maize) their moisture content of 13.5 to 14.5% (wet basis) is in equilibrium with RH of ~70% at 25°C (Roberts, 1972).

In general, application of EDN to the metals tested (Figure 4.1) had no effect on its sorption when compared to control. However, in contrast to metals, the presence of the plastic and concrete material led to a significant sorption of EDN, with concrete showing more affinity compared to plastics. Maximum sorption of EDN was detected in the case of fresh concrete (Figure 4.2) where EDN absorbed to less than detectable concentration within half an hour followed by silo concrete with comparable time of 18 h. Brick material was less efficient in sorption of EDN.

The sorption of EDN on different plastic materials varied significantly. The maximum rate of sorption was found in Land MarkTM type of material, reducing the headspace concentration to < 5% 18 h after initial application. This was significantly higher than other materials (Figure 6.3). The order of significant sorption among the plastic materials was Land MarkTM > tubing > Canvacon 5000QTM > CanvaconTM > PVC + Control. Land MarkTM resulted in almost complete sorption of applied EDN over 24 h in contrast to the PVC pieces which showed a non-significant level of sorption even after 40 h of application.

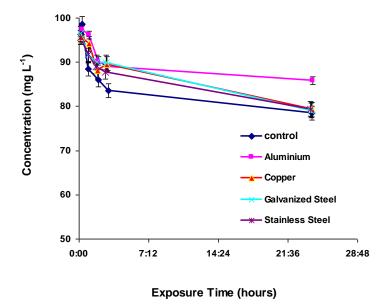


Figure 4.1: Ethanedinitrile (EDN) sorption on metals. Error bars depict standard error of the mean.

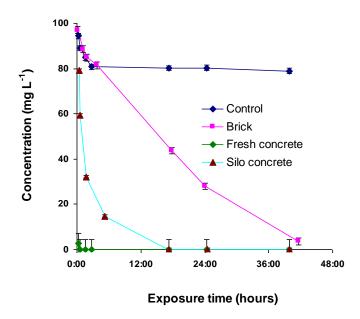


Figure 4.2 Ethanedinitrile (EDN) sorption on concretes. Error bars depict standard error of the mean.

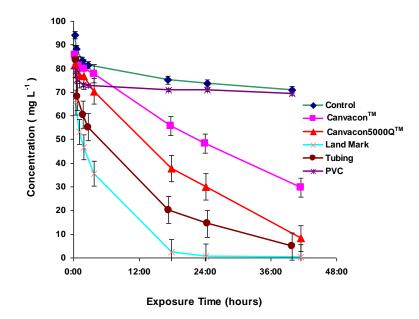
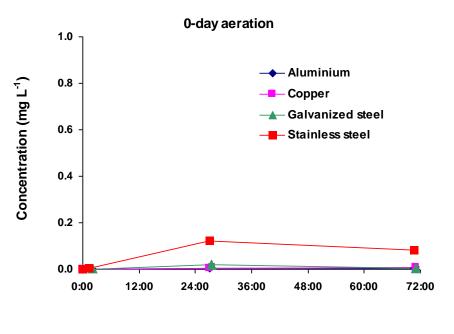
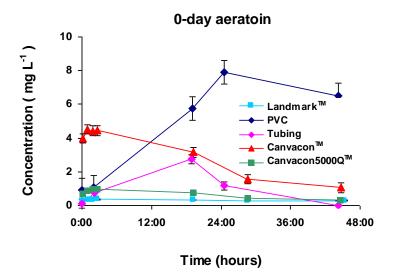


Figure 4.3 Ethanedinitrile (EDN) sorption on plastics. Error bars depict standard error of the mean.

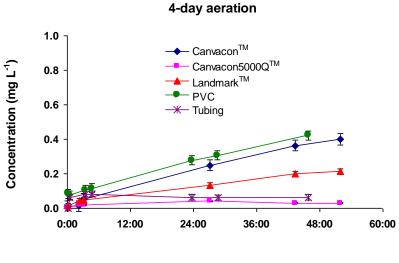

4.2.2 Discolouration of test materials in response to fumigation with EDN

Observation of discolouration of test materials showed no effect of EDN application on the metals and concretes. However, a marked change in colour was observed in some of the plastics tested. For example, the colour of Canvacon 5000QTM changed from sky blue to olivaceous grey and that of tubing from white to brownish green. A subtle change in colour also occurred in Land MarkTM sheet but was judged to be non-significant. It was also noticed that the discolouration, in response to EDN fumigation of plastics, further increased when some of the treated samples (CanvaconTM, Canvacon5000QTM and Land MarkTM) were retreated with an additional dose of 100 mg L-1.

4.2.3 Desorption of EDN from test materials


The extent of EDN desorption from treated materials was monitored immediately and after 4 d aeration following sorption assessment. Results related to desorption are shown in Figures 4.4 to 4.8. It was found that desorption of EDN was significantly higher (>10-fold) from the samples tested without post-sorption aeration compared to those with a 4 d aeration period. Significant variation in desorption of EDN was also found among different types of material within the same group. For instance, EDN desorption from PVC plastic (Figure 4.5) was markedly higher compared to other plastics at 24 h of monitoring. Maximum rate of desorption occurred in plastic material (Figure 4.5) followed by concrete (Figure 4.7) and then metals (Figure 4.4).

Aeration (4 d) of samples in all the test groups led to a significant decrease in desorption. EDN concentration was reduced to less than detectable limit of instrument in case of metals (data not presented) and to < 0.01 mg L-1 in brick (Figure 4.8) of applied concentration (100 mg L-1). EDN was also reduced to lower than detection limit in case of both fresh and silo concretes. Though desorption of EDN in response to 4 d aeration was also reduced significantly, an increased rate of desorption over the period of monitoring (50 h) was observed in PVC, CanvaconTM and Land MarkTM types (Figure 4.6). Interestingly, these types of materials showed less sorption compared to others.



Exposure time (hours)

Figure 4.4 Ethanedinitrile (EDN) desorption from metal surfaces. Error bars depict standard error of the mean.

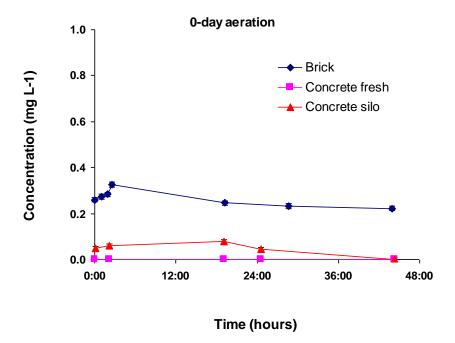
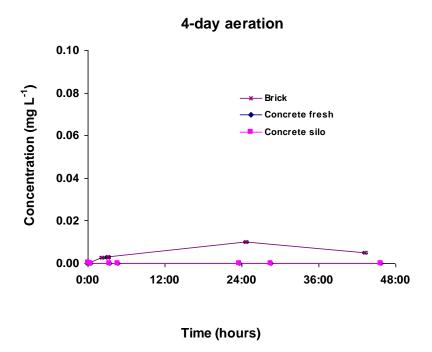


Figure 4.5 Ethanedinitrile (EDN) desorption from plastics. Error bars depict standard error of the mean.



Time (hours)

Figure 4.6 Ethanedinitrile (EDN) desorption from plastics. Error bars depict standard error of the mean.

Figure 4.7 Ethanedinitrile (EDN) desorption from concrete and brick. Error bars depict standard error of the mean.

Figure 4.8 Ethanedinitrile (EDN) desorption from concrete and brick. Error bars depict standard error of the mean.

4.2.4 EDN residues on the test material after fumigation

Analysis of the test materials, for the retention of EDN residues after fumigation, indicated a significant difference in their capacity to retain residues as shown in Table 4.1 and Table 4.2. Presence of both forms of concrete (fresh and silo) resulted in significant adsorption of EDN residues compared to brick and all other materials tested from the non-aerated batch. Aeration of samples for 4 d led to significant reduction in residues found on concrete (Table 4.2). Brick showed the least affinity for EDN residues. No residues were found on the metals tested. However, the plastic material tested showed a large range of EDN residues (Table 4.1). A 4-day aeration of plastic samples did not reduce residue concentration greatly when compared with concrete.

Table 4.1 Residues of Ethanedinitrile (EDN) detected on plastic materials after fumigation

Material	Residues after no aeration (µg kg ⁻¹)	Residues after 4 d aeration (µg kg⁻¹)	
Canvacon™	252.5	226.7	
Canvacon 5000Q [™]	132.0	130.9	
Land mark [™]	189.4	169.4	
PVC	215.2	190.9	
Tubing	234.2	183.7	
Standard error	20.9	11.2	

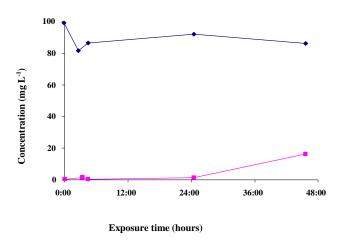
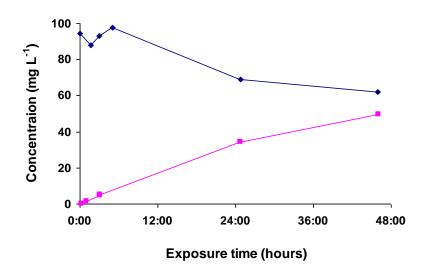

Material	Residues after no aeration (µg kg ⁻¹)	Residues after 4-day aeration (μg kg ⁻¹)
Brick	84.9	72.5
Concrete fresh	399.9	251.9
Concrete silo	361.8	234.2
Standard error	99.2	57.1

 Table 4.2 Residues of Ethanedinitrile (EDN) detected on concrete materials after fumigation


4.2.5 Permeation of EDN across plastic sheets

Results summarized in Figures 4.9 to 4.11 show permeability of EDN fumigation across test sheets of typical bunker covers sealed between two desiccator lids. Initial conditions were 100 mg L -1 on one side of the sheet and zero on the other. At equilibrium state, the concentration of EDN should reach approximately 50 mg L-1 in both halves of permeation chamber as it was applied at the rate of 100 mg L-1 based on volume of one side (1/2 volume of total) of chamber.

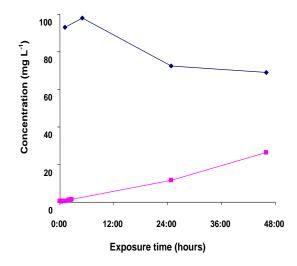

Canvacon 5000QTM sheet was found to be most permeable (Figure 4.10) where EDN concentration reached near equilibrium state after 24 h of application. CanvaconTM was the least permeable of the test sheets where concentration of EDN in the receiving half of the chamber reached less than 20% of the applied (100 mg L-1) EDN after 24 h of fumigation (Figure 4.9). However, Land MarkTM sheet showed an intermediate permeability to applied EDN (Figure 4.11).

Figure 4.9 Ethanedinitrile (EDN) permeation through Canvacon[™] sheet (◆) dosed side, (■) receiving side of the diffusion chamber.

Figure 4.10 Ethanedinitrile (EDN) permeation through Canvacon 5000Q[™] sheet (◆) dosed side, (■) receiving side of the diffusion chamber.

Figure 4.11 Ethanedinitrile (EDN) permeation through Land Mark[™] sheet (◆) dosed side, (■) receiving side of the diffusion chamber.

4.3 Conclusions

EDN did not react with metals at prevailing test conditions of temperature ($25^{\circ}C$) and relative humidity (70 ± 3 %), and residues were below detection limits. However, very strong sorption of EDN occurred on fresh concrete where added EDN was removed within half an hour of application. The level of desorption was also relatively high for fresh concrete. Sorption on aged silo concrete was not as high with brick showing the least sorption. Plastic materials showed a wide variation in sorption and desorption of EDN as well but were less absorbent than concrete. Once sorbed, the retention of EDN residues was higher on concrete than plastics.

Canvacon 5000Q[™] and Land Mark[™] sheets of plastic were more permeable to EDN compared to Canvacon[™], and sorption of EDN by plastic materials caused a significant colour change in Canvacon 5000QTM and tubing. Aeration of samples for 4 d was very effective in reducing residues in all the test materials.

Use of EDN fumigation for devitalisation of commodities would require compatibility of fumigation facilities to be established to ensure the most efficient and efficacious fumigation. Where basic compatibility parameters cannot be met, control measures such as barriers will need to be put in place prior to fumigation. Colour change in plastics sheets caused by EDN could be avoided by the selection of Canvacon[™] tarping, which would ameliorate this problem, as well as optimising fumigation, due to its relatively low permeability.

5 EDN fumigation of the surrogate pathogens

The purpose of this experiment was to prove the ability of EDN to completely devitalise the surrogate fungi *Fusarium graminearum, Tilletia tritici* and *Phytophthora citricola* which were identified earlier in this report as surrogates for quarantine incursion risks associated with barley, maize, sorghum and wheat from the UK and USA.

Mycological studies in areas such as epidemiology, ecology, fumigant and fungicide application, routinely assess the viability of fungal spores. This may be achieved by observation of germination frequency; however this may be hampered by spore dormancy. Oospores of Phytophthora citricola and teliospores of Tilletia tritici spores both possess dormancy, which can potentially hinder assessment of viability by germination methods. In addition germination studies are not as convenient or rapid as vital staining methods. The vital stain MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5diphenyl-2H-tetrazolium bromide) has been extensively employed for the study of oospore viability in; Phytophthora (Cohen 1984; El-Hamalawi and Erwin 1986; Bowers, Papavizas and Johnston 1990; Jiang and Erwin 1990; Pittis and Shattock 1994; Medina and Platt 1999), Aphanomyces, Pythium and Phytophthora (Sunderland and Cohen 1983), and Peronospora (van der Gaag 1994; van der Gaag and Frinking 1997), as well as several other groups of fungi. INT (2-(4-lodophenyl)-3-(4-nitrophenyl)-5phenyltetrazolium chloride) was used by Walley and Germida (1995) on vesicular-arbuscular mycorrhizae spores, Weiersbye-Witkowski and Straker (1997) in their study of spore viability of the powdery mildew (Sphaerotheca fuliginea) spores, and by Nelson and Olsen (1967) on Synchytrium endobioticum spores. Both Walley and Germida (1995) and Nelson and Olsen (1967) concluded that the INT was superior to MTT, and Walley and Germida (1995) found that only the viability estimated with INT was consistent with viability assessed by bioassay. The use of INT also has the advantage that the staining solution itself is colourless, and the variation in staining reactions is much less. While the use of these staining systems on oospores is routine, no studies have evaluated the use of INT or MTT. Therefore the reliability of INT and MTT as vital stains was evaluated on several smut fungi commonly found in Australia, by comparison of the staining reactions of autoclaved and nonautoclaved spores.

Following evaluation of the vital stain on smuts the three surrogate fungi were subjected to EDN fumigation to determine a devitalisation treatment. Assessment of propagules following fumigation

was undertaken by culture of propagules, spore germination assessments by microscopy and vital staining using INT and MTT.

5.1 Methods

5.1.1 Evaluation of vital staining of smut spores

Smut spores of five species were transferred to 1.5 mL Ependorf tubes. The species studied were *Tilletia tritici* (Bunt of wheat and barley), *Urocystis segetum* var. *segetum* (Covered smut of barley and oats), *Urocystis agropyri* (Flag smut of wheat), *Urocystis segetum* var. *avenae* (Loose smut of oats) and *Ustilago tritici* (Loose smut of barley). Half of the tubes of each isolate were autoclaved at 120°C for 20 min, while the other half were retained at room temperature as the control treatment. Spores were then stained with 300 μ L of either 0.24 mM MTT (Sigma Chemical Company, St Louis, Missouri, USA) or 0.24 mM INT (Sigma Chemical Company, St Louis, Missouri, USA) or 0.24 mM INT (Sigma Chemical Company, St Louis, Missouri, USA) in 10mM phosphate buffer, pH 6.0. The staining pH was as recommended by van der Gaag (1994). Viability was then assessed at 1, 2, 3, 5 and 6 days by microscopy based on the combined counts of pink, red and black stained teliospores (viable) and unstained teliospores (non-viable).

5.1.2 Preparation of propagules

The tolerance of the vegetative stage of two of the surrogate pathogens *P. citricola* and *F. graminearum* was assessed using colonized cloth as an inoculum source. Three field collections of *T. tritici* teliospores were used as an inoculum source for testing smut tolerance. Oospores of *P. citricola* (isolate 1320) were generated in clarified V8 juice broth supplemented with β-sitosterol and thiamine (Ribeiro 1978). The oospores were harvested and concentrated by centrifugation (Ribeiro 1978). Extraneous mycelial material was removed enzymatically by the helicase method (Ribeiro 1978). The oospore solution was then smeared onto microscope slides for later vital staining, or smeared onto the internal surface of 1.5 mL Ependorf tubes for later plating onto selective agar medium following the EDN treatment.

5.1.3 Fumigation of surrogates

The various propagules were then placed in open desiccators of measured volume, allowed to equilibrate to 69% relative humidity, sealed, and injected with a test amount of EDN through a gas septum port, having first withdrawn an equivalent volume of air. The EDN was sourced from gas bottles, collected in a Tedlar bag. Percent purity was analysed using a Gas Density Balance, Tracor 220 M (Tracor Inc., Austin, TX, USA), with a 1 m × 5 mm glass column packed with Porapak Q 100/120 mesh (Alltech Associates, Deerfield, IL, USA), run at 105°C with a carrier gas (N₂) flow of 150 mL min⁻¹ and using 1,1,1,2 tetrafluoroethane as a reference gas. The quantity of gas needed to achieve target concentrations was calculated after correcting for pressure and temperature.

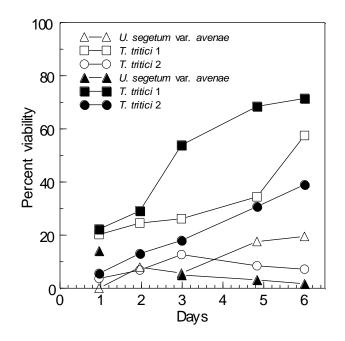
Desiccators were incubated over periods ranging from 1 to 5 d at 25°C. The headspace concentration of EDN within the desiccators was measured in selected experiments by gas chromatography (GC) using a flame ionisation detector (FID) equipped Shimadzu GC6AM (Shimadzu Seisakusho, Kyoto, Japan). The column used was a 1 m × 3 mm glass column packed with HaysSep Q (Alltech Associates, Deerfield, IL, USA) run at 80°C, with a carrier gas (N₂) flow of 40 mL min⁻¹.

5.1.4 Viability assessments

After treatment, the viability of the mycelium embedded on the colonised mesh cloth was assessed by plating onto potato dextrose agar. Teliospores, and the oospore slide smears were stained with 1% 2-(4-lodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazolium chloride (INT) in 0.1 M potassium phosphate buffer (pH 6.5). After a 5 d incubation at 25°C the staining responses of the spores were assessed by microscopy. The combined counts of pink, red and black stained teliospores as a proportion of the total indicated percent viability (unstained teliospores were non-viable). For germination assessments of teliospores, spores were suspended in sterile water, and then a 100 µL

aliquot placed on to the surface of 2% agar supplemented with streptomycin (100 mg L⁻¹) and ampicillin (100 mg L⁻¹). Following equilibration the oospore matrix smeared on the Ependorf tubes formed a paper-like crust. This was removed under aseptic conditions and plated onto a modified *Phytophthora* selective agar medium (Tsao and Guy, 1977; Jeffers and Martin, 1986) to assess viability. Four pieces of the matrix were plated per plate and between five and ten plates were plated per treatment. The medium (P₁₀VPH) consisted of 10 g potato dextrose agar, 12 g agar, 50 mg L⁻¹ hymexazole, pentachloronitrbenzene (PCNB) 100 mg L⁻¹, vancomycin 200 mg L⁻¹, pimaricin 30 mg L⁻¹. The agar base was first autoclaved then cooled to 60°C prior to the addition of the antibiotics mixed in 3 mL of acetone.

5.1.5 Statistical analysis


CT products (Concentration by Time) were calculated for the dose based on the headspace concentration measured over the duration of the experiment. These calculations were based on the least squares method. Percent viability was expressed by dividing the value for each treatment by the highest scored germination amongst the relevant control values. This had the effect of rescaling the values to remove differences in the background percent viability of the propagules tested. Proportional data was arcsine square root transformed prior to analysis by general linear model (GLM) after removing outliers and using Tukey's test to determine pairwise differences.

5.2 Results and Discussion

5.2.1 Vital staining of autoclaved and non-autoclaved smut spores

Only *Tilletia tritici* and *Urocystis segetum* var. *segetum* showed viable staining reaction using INT and MTT (Figure 5.1). Not only was the frequency of staining lower in *Urocystis segetum* var. *segetum*, it was more difficult to discern the staining reaction due to the small size of the spores. No germination was noted amongst the species which failed to show staining reactions, and while it is not possible to draw firm conclusions regarding the viability of these spores, it is probable that germinability was too low to be detected. In the case of *Urocystis agropyri* the dark pigmentation and elaborate spore structure would likely have precluded any visualization of staining reactions. Only teliospores of *Tilletia tritici* were considered suitable for routine vital staining with INT or MTT. This species possess teliospores that are similar in size and structure to *Tilletia indica* (Karnal Bunt), which is subject to considerable focus as a quarantine incursion risk in Australia.

Of the two staining systems INT gave the clearest staining reactions with fewer, more difficult to discern rose-coloured staining reactions. The spore viability also differed markedly between the two systems. In the case of MTT stained *Tilletia tritici*, the percentage of viable teliospores steadily increased over time whereas the INT staining system tended to fade towards the end of the experiment and one sample of *Tilletia tritici* declined in viability rather than increased over a three-day period. This was probably associated with the microbiological activity of contaminating organisms depleting the staining capacity of the staining solution. It appeared that the INT solution was more conducive to the growth of these organisms. Of the two systems INT gave the clearest staining results, and the proportion of viable spores assessed by this method was considered sufficient to evaluate the efficacy of fumigant if scored after a three to four day staining period.

Figure 5.1 Percentage viability non-autoclaved teliospores of *U. segetum* var. *segetum* and two isolates of *Tilletia tritici* as assessed by vital staining for 1-6 d with either INT (open symbols) or MTT (shaded symbols). Viability was adjusted from the staining response of autoclaved control spores.

5.2.2 Surrogate for Cephalosporium stripe

Treatment of the vegetative *F. graminearum* propagules over a 24 h period was highly effective (Table 5.1). Control at even lower CT products was found when the isolate was treated over a 48 h period. No further work was undertaken on this species as it was apparent that its susceptibility was much greater than the other surrogate organisms.

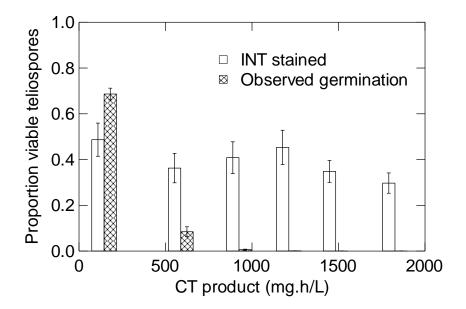

Isolate				
CT product (mg h L ⁻¹)	3251	3241	3402	
0	1.0	1.0	1.0	
120	0.3	0.6	0.0	
240	0.0	0.0	0.0	
480	0.0	0.0	0.0	
720	0.0	0.0	0.0	
960	0.0	0.0	0.0	
1200	0.0	0.0	0.0	

Table 5.1 Proportional viability of *Fusarium graminearum* isolates equilibrated to RH 69% and exposed to EDN over a 24 h period.

Note: Treatment over a 48 h period was even more effective, with no viability detected at 48 mg h L^{-1} and above.

5.2.3 Surrogate for smut fungi

Analysis of transformed smut teliospore germination was highly significant for the factors isolate and dose (GLM, P < 0.0005). In pairwise comparisons all doses and the control were significantly different with the exception of the control and a 144 mg h L⁻¹ treatment, and a 925 mg h L⁻¹ treatment and higher doses between 1210, 1480 and 1825 mg h L⁻¹. The same teliospores assessed by INT staining also showed significant effects (GLM, P < 0.0005) for the factors isolate and dose, however the residual viability was much higher and it was only in higher treatments (data not shown) that complete suppression of viability was observed using the INT staining method. The disparity between the viability assessments of the two methods is clearly visible in Figure 5.2.

Figure 5.2 Comparison between observed germination and viability assessed by INT staining of *T. tritici* teliospores. Error bars depict standard error of the mean. No viability was detected by observed germination at or above 1500 mg h L⁻¹.

5.2.4 Surrogate for downy mildew

Significant difficulties were encountered in testing the sorghum downy mildew surrogate *P. citricola*. The initial cultures of oospores failed to generate viable oospores. Once this barrier had been overcome a series of increasing test doses were applied to slide smears of oospore matrix. However, even a dose of 36000 mg h L⁻¹ failed to fully devitalise the oospores as assessed by INT staining. This was despite the oospore wall structure appearing significantly disrupted at half this value. In an attempt to resolve this, direct plating was adopted. However there was insufficient time to fully explore a range of doses so only limited results are presented in Table 5.2. These show effective control by a dose of 13800 mg h L⁻¹. However the actual value may be lower than this, as the test dose below this is half this value.

	CT product (mg h L ⁻¹)	Viable growth on P_{10} VPH medium
0		0.4±0.2
3300		0.08±0.08
6650		0.06±0.06
13800		0.0
19300		0.0
26500		0.0
40000		0.0

Table 5.2 Growth of *P. citricola* oospore matrix following EDN treatment. Error term is standard error of the mean.

5.3 Conclusions

5.3.1 Vital staining versus direct methods

The disparity between the vital staining and the direct germination methods is interesting as the vital staining is effective in some situations, as evidenced by the autoclaved vs non-autoclaved treatments tested above. However, for EDN fumigation the method does not appear to be reliable. One explanation could be that EDN devitalises the spores without inactivating the pathways responsible for the formation of NADPH and NADH from NADP and NAD. These molecules donate protons to cause the colour change in INT and MTT. For the moment this seems the most likely explanation, and further use of the vital stain for EDN treated spores would be dependent on obtaining a correlation, if at all possible, between actual spore viability and that estimated by INT or MTT.

5.3.2 Devitalising the surrogates

The CT products for the three surrogates varied considerably. The CT products for T. tritici teliospores were considerably higher than that for F. graminearum, although both these figures were in turn much lower than needed to kill the weed seeds (see next section). The effective dose for the devitalisation of P. citricola oospores is likely to lie between 6650 and 13800 mg h L-1. In the event that this project is pursued further, it is likely that a full analysis of the actual pathogen incursion risks would be required. Given that the surrogates are at best a guide, the values obtained here, although not optimal, are sufficient to undertake assessment of the concept, prior to a full evaluation of the actual incursion risks at a later date.

6 EDN tolerance of testable weeds

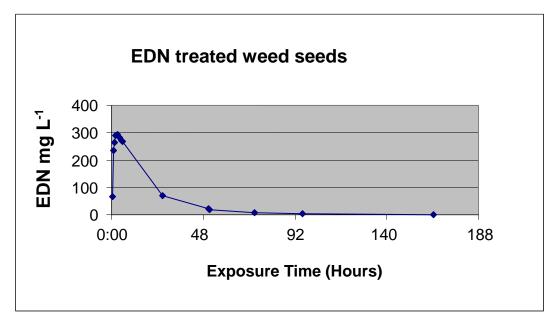
The task to demonstrate devitalisation of all potential weed seed presented a significant problem, due to the large numbers of weed species to be tested, considerable variation in germination protocols of the different weed species, and the fact that, in many cases, tests require a considerable time to complete. The project plan thus aimed to apply a single ethanedinitrile (EDN) dose, designed to identify the majority of weed species with lower tolerance. This would demonstrate the ability of EDN to devitalise most of the weed species and any future work could proceed more efficiently by only concentrating on the most tolerant weed species. Unpublished data collected by CSIRO Entomology on commodities and weed seeds equilibrated to RH 60 and 80% and fumigated for 5 d at 5% fill ratios was used to estimate a discriminating dose at fill ratio 5% and RH 70%. RH 70% was selected, as the EDN was deemed too effective at RH 80% to allow a reliable estimate of the discriminating dose, while at RH 60% the effectiveness of the chemical is such that excessive quantities would need to be applied. Using summarised data in Table 6.1 a discriminating dose was determined to be 500 mg/L at RH 60% and 75 mg/L at RH 80% for 5 d. Assuming a linear response between dose and RH, this would indicate a discriminating dose of approximately 300 mg/L at RH 70%.

Seed	ED_{100} dose (mg/L) at RH 60 %	ED ₁₀₀ dose (mg/L) at RH 80%
Wheat	250 - 350	< 50
Barley	350 - 500	
Maize	300 - 450	< 100
Sorghum	400 - 500	< 50
Cotton	500 - 750	75
Amaranthus	< 500	
Millet	< 50	
Fagopyrum	< 200	
Sesame	300 - 500	
Sunflower	350 - 750	
Foxglove	> 250	
Hyssop	< 100	
Linseed	200 - 500	

Table 6.1 Indicative range for 100% kill of weed seeds for various commodities and weeds at 5% fillratio and 5 days exposure to EDN.

6.1 Methods

The test seed was equilibrated at 70% RH and placed in steel micromesh containers so that the seed could not escape confinement. These containers were transferred to a gas tight pressure tested drum, giving a fill ratio of approximately 2.5%. The drum was then sealed and transferred from the quarantine facility to the Entomology laboratories for fumigation, as per the quarantine import conditions, where a revised dose of 261 mg L⁻¹ was applied, after a review of previous experimental work. EDN sourced from gas bottles was collected in a Tedlar bag and analysed to determine percent purity. This was undertaken using a Gas Density Balance, Tracor 220 M (Tracor Inc., Austin, TX, USA) with a 1 m × 5 mm glass column packed with Porapak Q 100/120 mesh (Alltech Associates: Deerfield, IL, USA) run at 105°C and a carrier gas (N₂) flow of 150 mL min⁻¹ using 1,1,1,2 tetrafluoroethane as a reference gas. The quantity of gas needed to achieve target concentrations was calculated after correcting for pressure and temperature. Based on these calculations a quantity of gas was pumped into the drum. Pressure balance was maintained by the collapse of an internal air bladder ported to the external atmosphere.


The drum was then incubated at 25°C for a period of 5 d. During this time headspace concentration was measured by gas chromatography (GC) using a flame ionisation detector (FID) equipped Shimadzu GC6AM (Shimadzu Seisakusho, Kyoto, Japan). The column used was a 1 m × 3 mm glass column packed with HaysSep Q (Alltech Associates, Deerfield, IL, USA) run at 80°C and with a carrier gas (N₂) flow of 40 mL min⁻¹.

At the completion of the fumigation the drum was first aired, and then re-sealed prior to transfer back to the quarantine facility where germination assessments of the treated seed were compared to those of control seed. Chemical or physical pre-treatments were applied to the seed as dictated by ISTA or published seed germination methods. Germinations were undertaken on wetted filter paper in 15 cm Petri dishes, or on rolled paper in plastic bags, and incubated under appropriate light and temperature conditions. In some cases, alternative seed pre-treatments and surface sterilisation techniques were employed to increase germination. The germinations were assessed according to ISTA rules, and the positive germination results reflect the combined numbers of germinated, germinated low vigour, and germinated abnormal seed. Non-quarantine commodities (wheat, barley, maize and sorghum) were tested separately from the quarantine weeds at a dose of 250 mg L⁻¹ using UK wheat as an internal check. A CT (Concentration × Time) product was calculated for the dose based on the headspace concentration measured over the duration of the experiment. The calculation was based on the least squares method. For logistic reasons, locally sourced test seed of the four commodities could not be included in the main dose, so a second dose was applied to these at 250 mg L⁻¹, with UK wheat as an internal check.

6.2 Results and discussion

6.2.1 Sorption

The main dose applied to the weed species was calculated to achieve an initial concentration of 261 mg L-1. Initial sorption measurements were low indicating that mixing of the EDN gas was slow (Figure 6.1). The CT product was calculated using a least squares method, after excluding measurements taken immediately following injection, and before the EDN had mixed. On this basis the dose was equivalent to a CT product of 2358 mg h L-1.

Figure 6.1 Sorption profile for the weed treated initially with EDN to 261 mg L^{-1} then incubated for 5 d (CT product calculated at 2358 mg h L^{-1}).

6.2.2 Tolerance to EDN

A total of 20.6% of the weed species survived the main discriminating dose at 261 mg L⁻¹, and these showed percentage germination ranging from between 0.3 to 100% germination expressed as a percentage of germination of the control treatment (Table 6.2). A further 41.3% of weed species showed no germination after treatment with the EDN (Table 6.2). However 36.5% of the species showed no germination either in the treated or control seed after following recommended germination procedures. These seed were deemed non-testable (Table 6.3). This is a significant increase in the numbers of weed species originally identified as non-testable, due to unavailability of seed (Table 6.4), from 11 to 34. The second discriminating dose (applied to commodities only) of 250 mg L⁻¹ for five days was sufficient to kill all of the commodities (Table 6.5). In summary the EDN dose devitalized all of the commodities and approximately 35% of the weed species of quarantine concern. Approximately 20% of the weed species require further testing to determine the lethal dose and a further 45% have been categorised as non-testable.

Many of the non-testable seed were classified as such due to the lack of germination observed in the untreated control seed. This may be due to dormancy, non-viability of the seed or lack of appropriate germination protocols. It was not possible to draw any conclusions from these seed in the EDN discriminating dose test. It was not possible within the timeframe of the project to ensure the germinability of all seeds prior to testing, and this factor is responsible for some of the increase in the number of species that have been re-classified as non-testable.

In many instances the germination tests were affected by fungal contamination. Utilising ISTA paper germination tests can present considerable difficulties when applied to seed with long germination times. Fungal contamination present on the seed from harvest or due to storage conditions can proliferate during the seed germination tests, compromising the viability of the seeds. It is thought that this is the reason many of the untreated seed failed to germinate. Without a germination frequency for the untreated seed it is not possible to separate lack of viability due to EDN from other factors in treated seed. It was also noted in our tests that there was a marked reduction in fungal contamination on many seed that had been treated with EDN, compared to the untreated control seed. On other seed it was apparent that the composition of contaminants had changed, with only a few or single species dominant in the treated seed. This would confirm the contamination was seed borne. Hypochlorite treatment did not overcome germination problems in all fungal affected seed.

Additional doses (Table 6.3) were applied at higher CT products (3000 - 57000 mg h L⁻¹) to the exotic seeds ranked from one to nine in EDN tolerance (Table 6.2). In the discrimination dose these seed had exhibited germination in the 28-100% range. With the exception of *Ipomoea lacunosa* none were completely controlled by any of these treatments, although dosage related responses were observed.

Rank	SAN	Germination	Family	Genus/Species	Common name
1	10150	100.0	Convolvulaceae	Jacquemontia tamnifolia	small flower morning glory, hairy clustervine
2	10147	99.2	Convolvulaceae	Ipomoea hederacea	ivyleaf morning glory
3	10146	97.6	Convolvulaceae	Convolvulus arvensis	field bindweed, morning glory, small bindweed

Table 6.2 Results of discriminating dose of 261 mg L⁻¹ for 5 days applied to quarantine weeds and UK wheat under quarantine. The SAN number has been allocated by CSIRO for each batch of seed acquired for testing.

Rank	SAN	Germination	Family	Genus/Species	Common name
4	10158	93.9	Malvaceae	Abutilon theophrasti	velvetleaf
5	10139	82.1	Brassicaceae	Brassica juncea	Indian mustard, brown mustard, leaf mustard
6	10148	70.5	Convolvulaceae	Ipomoea lacunosa	pitted morning glory
7	10122	64.3	Amaranthaceae	Amaranthus palmeri	careless weed
8	10141	34.5	Brassicaceae	Raphanus raphanistrum	wild radish, jointed charlock jointed radish, wild raddish
9	10121	28.6	Amaranthaceae	Amaranthus chlorostachys	slim amaranth, pigweed
10	10149	17.4	Convolvulaceae	lpomoea purpurea	tall morning-glory, common morning glory
11	10123	16.6	Amaranthaceae	Amaranthus retroflexus	redroot amaranth
12	10143	0.9	Chenopodiaceae	Chenpodium album	white goosefoot
13	10167	0.4	Poaceae	Panicum capillare	witchgrass, old witchgrass, ticklegrass, tumbleweed grass
14	10161	0.3	Poaceae	Bromus tectorum	cheatgrass, downy brome,
15	10138	0.3	Asteraceae	Xanthium strumarium	Noogoora burr, cocklebur, common cocklebur, rough cocklebur
16	10126	0.0	Apiaceae	Torilis arvensis	spreading hedge parsley, hedge parsley
17	10135	0.0	Asteraceae	Matricaria perforata	scentless chamomile, mayweed
18	10137	0.0	Asteraceae	Xanthium spinosum	spiny cocklebur, Bathurst burr,
19	10140	0.0	Brassicaceae	Conringia orientalis	hare's-ear mustard, klinkweed, rabbit ears
20	10144	0.0	Chenopodiaceae	Kochia scoparia	kochia, Mexican fireweed, summer cypress, Mexican burning bush
21	10151	0.0	Cyperaceae	Cyperus iria	sedge, Rice flatsedge

Rank	SAN	Germination	Family	Genus/Species	Common name
22	10156	0.0	Lamiaceae	Salvia verbenaca	salvia, vervain salvia, wild sage, wild clary
23	10164	0.0	Poaceae	Cynodon dactylon	Bermuda grass, common couch, couchgrass
24	10165	0.0	Poaceae	Echinochloa crus-galli f. frumentaceae	barnyard grass, Japanese millet
25	10166	0.0	Poaceae	Lolium perenne	perennial ryegrass
26	10172	0.0	Poaceae	Setaria faberi	giant foxtail, nodding foxtail, Chinese millet, Chinese foxtail, Japanese bristlegrass
27	10173	0.0	Poaceae	Setaria verticillata	bristly foxtail, rough bristle- grass, whorled pigeongrass, lovegrass, foxtail, rough bristlegrass
28	10177	0.0	Polygonaceae	Polygonum Iapathifolium	pale smartweed, curlytop knotweed
29	10128	0.0	Asteraceae	Ambrosia artemesifolia	common ragweed
30	10131	0.0	Asteraceae	Chrysanthemum segetum	corn marigold, corn chrysanthemum, corn daisy
31	10142	0.0	Brassicaceae	Thlaspi arvense	fanweed, field pennycress, pennycress, stinkweed
32	10145	0.0	Chenopodiaceae	Salsola kali	soft roly poly, prickly saltwort, Russian thistle, prickly glasswort
33	10155	0.0	Lamiaceae	Mentha arvensis	mint, corn mint, field mint
34	10159	0.0	Poaceae	Apera spica-venti	loose silky bent, silky bent grass, windgrass
35	10160	0.0	Poaceae	Bromus commutatus	meadow brome
36	10168	0.0	Poaceae	Panicum dichotomiflorum	fall panicgrass, western witchgrass
37	10170	0.0	Poaceae	Pennisetum glaucum	pearl millet
38	10171	0.0	Poaceae	Phleum pratense	Timothy grass, cat's tail grass
39	10174	0.0	Poaceae	Sorghum halepense	Johnson grass

Rank	SAN	Germination	Family	Genus/Species	Common name
40	10176	0.0	Polygonaceae	Polygonum aviculare	wireweed, prostrate knotweed
41	10178	0.0	Polygonaceae	Polygonum pensylvanicum	Pensylvania smartweed, Pink knotweed, pinkweed
42	10182	0.0	Graminae	Triticum aestivum	wheat GRADE: UKF

Table 6.3 Weeds deemed non-testable following failure of germination in controls. These seeds are to be categorised as nil-tolerance for purposes of importation in addition to those in Table 6.4, unless further testing overcomes germination inhibition. The SAN number has been allocated by CSIRO for each batch of seed acquired for testing.

N°.	SAN	Family	Genus/Species	Common name
1	10169	Poaceae	Paspalum fasciculatum	Mexican crowngrass
2	10124	Apiaceae	Anthriscus sylvestris	cow parsley, wild chervil
3	10125	Apiaceae	Heracleum sphondylium	Hogweed
4	10127	Asclepiadaceae /Apocynaceae	Asclepias syriaca	common milkweed
5	10129	Asteraceae	Ambrosia trifida	great ragweed
6	10130	Asteraceae	Bidens tripartita	trifid burr-marigold
7	10132	Asteraceae	Circium arvense	Canada thistle
8	10133	Asteraceae	Circium vulgare	Bull thistle
9	10134	Asteraceae	Erigeron canadensis	horseweed, horseweed fleabane
10	10136	Asteraceae	Senecio jacobea	tansy ragwort, ragwort
11	10145	Chenopodiaceae	Salsola kali	soft roly poly, prickly saltwort, Russian thistle, prickly glasswort
12	10152	Euphorbiaceae	Euphorbia lathyris	caper spurge
13	10153	Lamiaceae	Galeopsis tetrahit	Hemp-nettle, common hempnettle
14	10154	Lamiaceae	Lamium purpureum	purple deadnettle, red deadnettle
15	10157	Lamiaceae	Stachys sylvatica	wood woundwort, hedge woundwort
16	10162	Poaceae	Cenchrus longispinus	spiny burrgrass, innocent-weed, burrgrass
17	10163	Poaceae	Cenchrus incertus	coastal sandbur, mat sandbur, field sandbur, innocent weed

18	10175	Poaceae	Urochloa panicoides	liverseed grass, panic liverseed grass, urochloa grass
19	10179	Rubiacea	Galium aparine	cleavers, stickywilly
20	10180	Solanaceae	Datura stramonium	jimsonweed, Jamestown weed, thornapple, common thornapple
21	10181	Solanaceae	Solanum nigrum	common nightshade, black fruited nightshade, blackberry

Table 6.4 Non-testable weed species (due to unavailability of seed). These seeds are to be categorised as nil-tolerance for purposes of importation.

N⁰.	Family	Genus/Species
1	Apocynaceae	Apocynum cannabinum
2	Brassicaceae	Berteroa incana
3	Euphorbiaceae	Chamaesyce (Euphorbia) maculata (supina)
4	Menispermaceae	Cocculus carolinus
5	Asclepiadaceae	Cyanachum (Ampelamus) laeve
6	Equisetaceae	Equisetum arvense
7	Poaceae	Eriochloa villosa
8	Asteraceae	Helianthus annuus (herbicide resistant)
9	Poaceae	Muhlenbergia frondosa
10	Solanaceae	Physalis heterophylla
11	Cucurbitaceae	Sicyos angulatus

6.3 Conclusions

In terms of discriminating between the tolerant and non-tolerant weed species the Objective 9 has been met with success. Nevertheless 23 species of weeds have been deemed as non-testable. Although a good sample of weed tolerance was demonstrated amongst the successful tests, there is a chance that there may be more tolerant weeds amongst the group that was not successfully tested. It is likely that in several cases the barriers to germination will be overcome by testing a second seed source. In addition over half of the weeds deemed to be non-testable (Table 6.3) belong to the families Poaceae, Asteraceae and Lamiaceae, which were all completely devitalised in the testable weeds (Table 6.2). The full significance of these results will ultimately be dependant on a full risk analysis by Biosecurity Australia taking into account factors such as; risk of contamination at source/in transit and from structures and machinery, presence or absence of the quarantine risk at source, seed screening and other methods which can be used to reduce contamination levels, and the level of likely contamination and risk of establishment at the end point. After taking factors such as these into account it may become apparent that only some of the weed species in Tables 6.3 and

6.4 would require a high level of control. Further research could be targeted towards these specific risks.

The purpose of this objective was to provide a basis for additional testing to identify a definitive list of testable and controllable weeds and to define the dose at which control can be achieved. While this additional work falls outside the scope of this project, some progress has nevertheless been achieved. Those seed showing appreciable germination following the discriminating dose (ranked 1 -9) showed similar responses when tested at much higher doses. The highest level tested was sufficiently high to be considered impractical for large-scale application. On the basis of this it does not seem profitable to conduct further testing on these seed. However four species in the discrimination dose showed germination responses below 1%. It is very likely that further testing of these four species would be controlled by CT product values in the vicinity of 2400 mg h L-1 and further testing would be warranted. In the absence of further research a dose of 2400 mg h L-1 with an additional component for safety could be considered sufficient to devitalise the commodities in Table 6.2 with the exception of those numbered 1-15. In this respect treatment by EDN cannot be considered to be a completely effective against all known exotic weeds which might be associated with imported barley, maize, sorghum and wheat. For these tolerant species and those listed in Tables 6.3 and 6.4 stringent contamination control and tolerance specifications would need to be imposed to the satisfaction of Biosecurity Australia before a protocol for importation could be agreed upon within a risk assessment framework.

7 Devitalisation of commodities

One of the primary objectives of the project is to demonstrate the ability to devitalise the target commodities. This is important, as the commodities are an important link for exotic pathogens. Viruses in particular are not considered to be a viable target for fumigation; however by killing the host the life cycle of a virus may be interrupted. Similarly for obligate fungal pathogens, the absence of the host is an additional level of control over any direct fumigant action on the pathogen.

7.1 Methods

7.1.1 Experimental design

Information on the seed collection used for the study was placed in a database and the seed stored at 4°C prior to study (Table 7.1). Commodities were equilibrated to 14% moisture content prior to experimentation, and one variety of each commodity was also equilibrated to 15 and 16% moisture content. Available water (A_w) estimates were measured using an AquaLab CX-2 water activity meter (Decagon Devices, Inc., Washington, USA) and are tabulated in Table 7.1. Each accession was subjected to a range of doses. Due to the number of commodities, varieties and different moisture contents investigated, treatments were conducted sequentially over a 7-month period. For each batch there was a minimum of three replicates for each accession/dose combination and a control treatment that contained no EDN. In addition, a check flask containing 14% moisture wheat (SAN 10184) was routinely included. A fill ratio of 5% for each seed accession was calculated, and the treatment flasks were filled to this level on a weight basis.

7.1.2 EDN fumigation

Prior to treatment, EDN sourced from gas bottles was collected in a Tedlar bag and analysed to determine the percent purity. This was undertaken using a Gas Density Balance, Tracor 220 M (Tracor Inc., Austin, TX, USA) with a 1 m × 5 mm glass column packed with Porapak Q 100/120 mesh (Alltech Associates, Deerfield, IL, USA) run at 105°C and a carrier gas (N₂) flow of 150 mL min⁻¹ using 1,1,1,2 tetrafluoroethane as a reference gas. The quantity of gas needed to achieve target

concentrations was calculated after correcting for pressure and temperature. Based on these calculations air was withdrawn from each flask and replaced with an equivalent volume of EDN.

The flasks were then incubated at 25°C for a period of 5 d. Headspace concentrations were measured by gas chromatography (GC) using a flame ionisation detector (FID) equipped Shimadzu GC6AM (Shimadzu Seisakusho, Kyoto, Japan). The column used was a 1 m × 3 mm glass column packed with HaysSep Q (Alltech Associates, Deerfield, IL, USA) run at 80°C and with a carrier gas (N₂) flow of 40 mL min⁻¹. After treatment, the contents of the flasks were aired, and the seed removed for germination assessment.

Germination assessment was conducted according to International Seed Testing Association methods. Accordingly each of 400 seeds for each commodity dose combination was assessed as either normally germinated, low vigour, abnormal, fresh (normal in appearance but non-germinated), mouldy, hard (not imbibed), or empty. Germination test procedures are described in Appendix C.

7.1.3 Statistical analysis

Prior to analysis of the germination data set, a CT (Concentration by Time) product was calculated for each dose based on the headspace concentration measured over the duration of the experiment. The calculation was based on the least squares method. The CT product was matched to the germinations measurements for each flask. For each accession/dose/replicate combination, percentage viability of the seed was calculated by dividing the sum of the normally, low vigour and abnormal germinations by the total seed tested. For each treatment, the percent viability was rescaled by dividing by the highest control seed percent viability. These values were then arcsine square root transformed. The linearity of CT product and viability for each replicate was checked before performing regression analyses. Coefficients of regression were used to estimate the effective dose at which 50 and 95% of the seed was devitalised (ED₅₀ and ED₉₅ respectively) for each replicate in every treatment combination tested, using arcsine square root transformed percentage values.

Two analyses were undertaken on the transformed data. The subset of the data containing commodities at all three moistures was analysed based on a general linear model, with moisture content and commodity type as independent variables. This was to test the hypothesis that moisture content affected the efficacy of the fumigation of the four commodities. A second analysis using general linear model was undertaken on the seed tested at 14% moisture content using commodities type and variety as independent variables. Pair wise treatment comparisons were made using Tukey's test for both analyses.

The rate of headspace loss monitored for each flask (dose/commodity combination) was estimated by non-linear regression using the following model:

$C_t = C_o e^{(-k.t)}$

where C_t is the gas concentration (mg L⁻¹) at time t, C_0 is the gas concentration at t = 0 (mg L⁻¹), k is the extinction coefficient, and t = time (days).

The extinction coefficients for four of the commodities tested at three moisture contents were analysed by GLM and pairwise comparisons were made using Tukey's test.

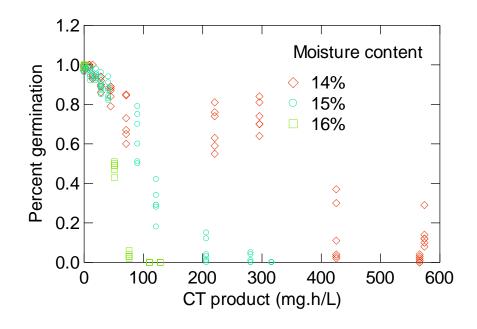
Table 7.1 Moisture content (MC) and available water (A_w) measurements for the commodities tested in this study. The SAN N°. refers to the accession number assigned to the seed lot by CSIRO Entomology.

SAN Nº.	Crop	Variety	Moisture Content	A _w	Mass @ 5% fill
10183	barley	Schooner	14	0.63	11.8
10189	barley	Gairdner	14	0.56	11.8

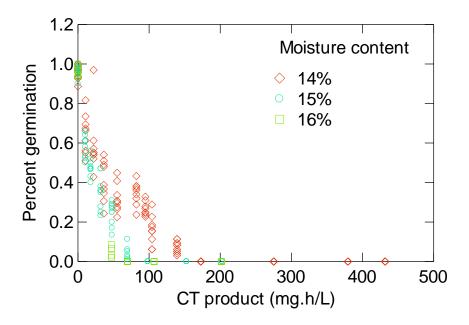
SAN Nº.	Сгор	Variety	Moisture Content	A _w	Mass @ 5% fill
10190	barley	Sloop	14	0.55	12.9
10077	maize	PAC-345	14	0.62	12.75
10078	maize	Pioneer 317	14	0.66	12.7
10195	maize	QX 8	14	0.62	12.8
10196	maize	QX 6	14	0.55	12.8
10117	sorghum	white sorghum	14	0.64	12.3
10187	sorghum	MR 43	14	0.63	13.1
10118	wheat	Rosella	14	0.62	12.5
10119	wheat	Diamond Bird	14	0.65	13.1
10184	wheat	Diamond Bird	14	0.67	12.8
10185	wheat	Hartog	14	0.69	13.3
10186	wheat	H 45	14	0.68	12.8
10192	wheat	Sunlin	14	0.67	13.2
10193	wheat	Ellison	14	0.67	12.2
10183	barley	Schooner	15	0.67	10.9
10078	maize	Pioneer 317	15	0.68	12.7
10117	sorghum	white sorghum	15	0.69	12.8
10186	wheat	H 45	15	0.73	13.5
10183	barley	Schooner	16	0.75	11.1
10078	maize	Pioneer 317	16	0.75	12.6
10117	sorghum	white sorghum	16	0.73	12.6
10186	wheat	H 45	16	0.74	12.6

7.2 Results and Discussion

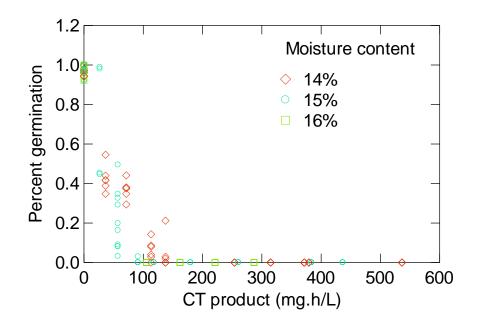
7.2.1 Impact of moisture content on EDN efficacy


Regression of transformed seed viability assessments against the calculated CT products for each dose generally gave significant regression coefficients for the 14 and 15% moisture contents (0.64>R²<0.97). At the 16% moisture content the doses tested were very effective, and for maize and

sorghum treatments seed was totally killed at the very lowest dose tested. The ED_{95} estimates are thus based on two point regressions (control and the lowest dose) in these cases. As these values would in any case result in an overestimate of the ED_{95} estimate, it was considered safe to include these results in the analysis.


Commodity type and moisture contents were both highly significant in analysis of the ED₉₅ values (GLM, P < 0.0005; Table 7.2). There was also a significant interaction between the two factors. In pair wise comparisons there was no significant difference in the ED₉₅ values of wheat and either maize or sorghum. Barley was significantly different to the three other commodities and sorghum significantly differed from maize. In responses averaged across moistures the most tolerant commodity was barley followed by maize, wheat and sorghum in that order. ED₉₅ values for each moisture commodity combination are presented with standard error of the mean values in Table 7.2. Raw germination data rescaled as a percentage of the highest control germination are presented in Figures 7.1 to 7.4.

Nº.	Сгор	МС	ED50	ED95
10183	barley (Schooner)	14	219±8	456.8±19.5
10078	maize (Pioneer 317)	14	60.6±2.1	120.2±4.5
10117	Sorghum (white)	14	31±0.7	108.6±2.9
10186	wheat (H 45)	14	57±1.8	133.2±1.1
10183	barley (Schooner)	15	94±2.6	167.6±5.1
10078	maize (Pioneer 317)	15	37±1	74±4
10117	Sorghum (white)	15	5±5.3	28.1±0.7
10186	wheat (H 45)	15	29±0.9	70.1±0.9
10183	barley (Schooner)	16	49±0.6	86.4±0.3
10078	maize (Pioneer 317)	16	48±0.6	88.7±0.2
10117	Sorghum (white)	16	4±0.4	10.2±0.1
10186	wheat (H 45)	16	27±0.7	54±0.5


 Table 7.2 ED₉₅ values for EDN treatments of four commodities at three moistures.

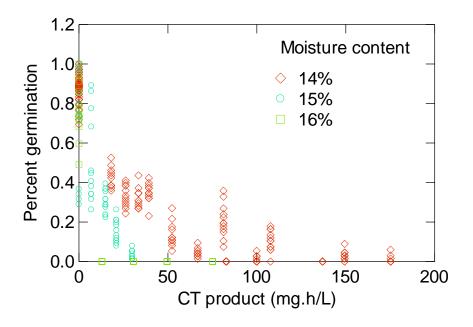
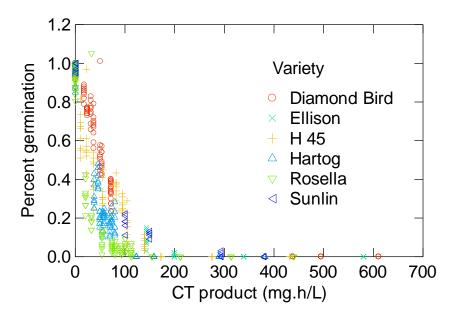

Figure 7.1 Response of barley (cv Schooner) to EDN and moisture. CT products calculated by least squares method from sorption measurements taken over the duration of the trials.

Figure 7.2 Response of wheat (cv H45) to EDN and moisture. CT products calculated by least squares method from sorption measurements taken over the duration of the trials.

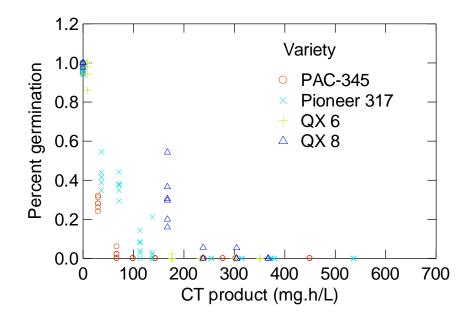
Figure 7.3 Response of maize (cv Pioneer 317) to EDN and moisture. CT products calculated by least squares method from sorption measurements taken over the duration of the trials.

Figure 7.4 Response of white sorghum to EDN and moisture. CT products calculated by least squares method from sorption measurements taken over the duration of the trials.

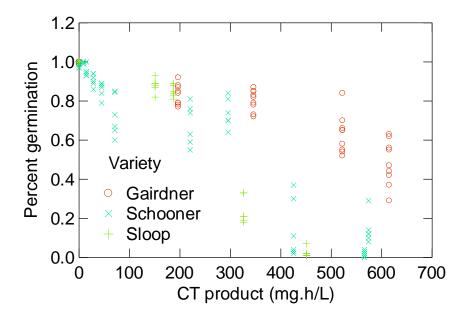
7.2.2 Efficacy of EDN against commodities – variety responses at 14% moisture

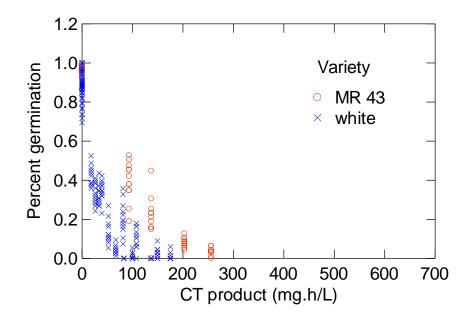

Regression of transformed seed viability assessments against the calculated CT products for each dose generally gave significant regression coefficients for the 14% moisture content commodities (0.67> R^2 <0.99). For three maize replicates tested the lowest applied dose resulted in complete

devitalisation of the test seed. Thus the ED₉₅ estimates for these replicates were based on a poor spread of points. As these values would in any case result in an overestimate of the ED₉₅estimate, it was considered safe to include these results in the analysis.


Commodity type was highly significant in the GLM analysis of ED₉₅ values of 14% moisture content commodities (GLM, P < 0.0005). Pairwise comparisons (Tukey, P < 0.0005) revealed a significant difference between barley and the three other commodities. But there were no significant differences between maize, wheat and sorghum in ED₉₅ estimates. Similarly, variety was highly significant (GLM, P < 0.0005; Table 7.3). Raw germination data rescaled as a percentage of the highest control germination are presented in Figures 7.5 to 7.8. Variability between the varietal responses is depicted in Figure 7.9.

Commodity	Mean ± SEM (mg h L ⁻¹)	Range (mg h L ⁻¹)
Barley	702±103	422-1207
Maize	144±18	53-298
sorghum	162±25	100-224
Wheat	127±11	83-263


Table 7.3 Statistics for ED_{95} values calculated for each commodity type at 14% moisture content. SEM is the standard error of the mean.


Figure 7.5 Percent germination of wheat varieties treated with EDN. CT products calculated by the least squares method from sorption measurements taken over the duration of the trials.

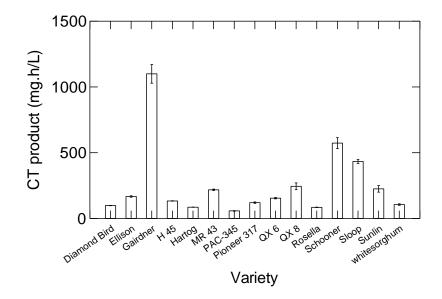

Figure 7.6 Percent germination of maize varieties treated with EDN. CT products calculated by the least squares method from sorption measurements taken over the duration of the trials.

Figure 7.7 Percent germination of barley treated with EDN. CT products calculated by the least squares method from sorption measurements taken over the duration of the trials.

Figure 7.8 Percent germination of sorghum treated with EDN. CT products calculated by the least squares method from sorption measurements taken over the duration of the trials.

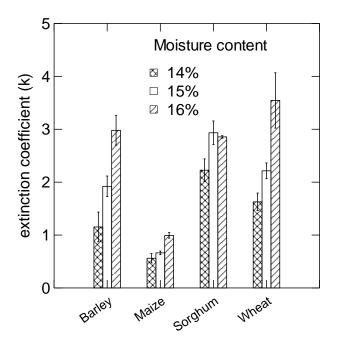


Figure 7.9 ED₉₅ values expressed as CT product, mg h L⁻¹ for each of the varieties of wheat, barley, maize and sorghum fumigated with ethanedinitrile (EDN) at 14% moisture content. Error bars depict standard error of the mean.

7.2.3 Head space loss (sorption) of EDN on the commodities tested

Analysis by GLM revealed a significant effect of commodity type and moisture content on the extinction coefficient (k) a term that describes the constant rate of headspace loss of EDN (P = 0.004, $P \le 0.0005$ respectively). There was also a significant interaction between moisture content and

commodity type. This is evident in the response of sorghum at 15% which breaks the consistent trend of increase in extinction coefficient with moisture content (Figure 7.10). In pairwise comparisons, all commodities were significantly different (Tukey, $0.005 \ge P \le 0.032$), with the exception of sorghum and wheat (Tukey, P = 0.068). At the critical value of 14% moisture, the commodities ranked maize, barley, wheat and sorghum in order of increasing rate of headspace loss. There was also a relationship between the extinction coefficient (k) and the initial concentration applied (C_o) with the extinction coefficient declining with increasing C_o (Table 7.4).

Figure 7.10 Extinction coefficients (k) for barley, maize, sorghum and wheat at three moisture contents. Error bars depict standard error of the mean.

Table 7.4 Extinction coefficients (k) for barley, maize, sorghum and wheat at different moisture contents and initial doses (C_0) .

Commodity	Variety	Initial dose	Extinction coefficients at Moisture content		
		(C _o)	14%	15%	16%
Wheat	H45	20	2.20	2.52	
Wheat	H45	40	2.12	2.83	
Wheat	H45	60	2.00	2.23	
Wheat	H45	80	1.83	2.01	
Wheat	H45	100	1.99		4.32
Wheat	H45	110	1.89		
Wheat	H45	120	2.01	2.46	
Wheat	H45	140	1.76		4.06

Commodity	Variety	Initial dose	Extinction coefficients at Moisture content		
		(C ₀)	14%	15%	16%
Wheat	H45	160	1.27	2.23	
Wheat	H45	180			3.44
Wheat	H45	200	1.03	1.80	
Wheat	H45	240	0.73	1.64	2.36
Wheat	H45	260	0.69		
Maize	Pioneer 317	20	0.69	0.80	
Maize	Pioneer 317	40	0.88	0.70	
Maize	Pioneer 317	60	0.67	0.67	
Maize	Pioneer 317	80	0.83	0.70	
Maize	Pioneer 317	100			1.12
Maize	Pioneer 317	120	0.46	0.71	
Maize	Pioneer 317	140	0.30		0.99
Maize	Pioneer 317	160	0.37	0.63	
Maize	Pioneer 317	180			0.92
Maize	Pioneer 317	200	0.30	0.51	
Maize	Pioneer 317	240		0.58	0.94
Barley	Schooner	20	2.45	2.52	
Barley	Schooner	40	2.15	2.35	
Barley	Schooner	60	1.74	2.53	
Barley	Schooner	80	1.37	2.38	
Barley	Schooner	100			3.14
Barley	Schooner	120	0.63	1.90	
Barley	Schooner	140			2.59
Barley	Schooner	160	0.64	1.76	
Barley	Schooner	180			2.62

Commodity	Variety	Initial dose	Extinction coefficients at Moisture content		
-	-	(C ₀)	14%	15%	16%
Barley	Schooner	200	0.50	1.31	
Barley	Schooner	240	0.40	1.18	3.57
Barley	Schooner	260	0.50	1.38	
Sorghum	white sorghum	20	1.87	3.76	
Sorghum	white sorghum	40	2.46	3.20	
Sorghum	white sorghum	60	2.03	3.62	
Sorghum	white sorghum	80	2.10	3.18	
Sorghum	white sorghum	100			2.89
Sorghum	white sorghum	120	1.75	2.48	
Sorghum	white sorghum	140			2.86
Sorghum	white sorghum	160	1.97	2.66	
Sorghum	white sorghum	180			2.80
Sorghum	white sorghum	200	1.90	2.37	
Sorghum	white sorghum	240	2.21	2.20	2.88
Sorghum	white sorghum	260	3.74		

7.3 Conclusion

Wheat, which comprised the bulk of varieties tested, had the least variability in response to EDN treatment (Figure 7.5). Barley was the most difficult to kill with only the variety Sloop showing complete mortality in the range tested. The variability of response across and within commodities was also a concern but in the light of the higher CTs needed to control exotic weeds, doses in excess of 2400 mg h L⁻¹, it is likely that all commodities would be devitalised. At these levels (see Section 6) barley, the most difficult commodity to devitalise, was completely controlled. The moisture content of the grain had a marked effect on devitalisation by EDN. This could have potential for large scale application where moisture level could be manipulated to increase the susceptibility of the grain. However this would have to be balanced against higher head space loss (sorption onto the grain) at high moisture and how this might affect other target species contaminating the grain bulk. How the moisture affects the efficacy of the fumigant is not understood, and further investigation may provide valuable insight into the optimal application and management of grain fumigation with EDN.

The different headspace losses (sorption) detected between the different commodities is an important result. The differential sorption between the commodities indicates that there will be significant differences in the cost of treating the different commodities. It is clear from the study on

weeds that the dose required to devitalise many of the weeds will be in excess of that required for the commodities. However, if the weed seed is present as a contaminant in a bulk of commodity with high headspace loss (large extinction coefficient), the exposure of the weed to the fumigant would be less than if it had been present in a commodity with lower rate of headspace loss. Therefore, to attain a given treatment (a CT product specification) EDN treatment of maize would likely be more economic than any of the other commodity treatments at 14% moisture content, then barley, wheat and sorghum respectively.

It is also worth noting that the germination estimates used in this experiment are conservative to the extent that they are based on the pooled data from the categories of normal, low vigour and abnormal germination. In practice, this will tend to overestimate the amount of fumigant needed for devitalisation as abnormal seeds are unlikely to develop into a viable plant. A crude recommendation for efficacy would be provided by a doubling of the ED₉₅ values presented here for a very high level of confidence.

8 Residues of ethanedinitrile in treated grain

The nature of residues remaining after treatment with EDN need to be considered as this forms an important part of data required for registration and residues may have an impact on the palatability of treated commodities. In this study, unchanged residues were assessed in barley, wheat and maize and changed residues were assessed in these species plus in oats as well.

8.1 Methods

Unchanged residues of EDN remaining after treatment at 70, 140, 210 and 280 mg L⁻¹ and aeration over four days were assessed using a micro-wave extraction method (Ren and Desmarchelier 1998). After treatment and airing, 5 g samples of the treated commodity were placed into 250 mL flasks. The flasks were sealed and headspace concentrations of EDN were measured after microwave extraction.

Changed residues were measured in samples of wheat, barley, oats and maize treated with EDN at 90% fill ratio at 200, 400 and 600 mg l. The samples were kept in a sealed container to prevent loss of volatile residues and were measured after four months. The converted residues were assessed by measuring the ammoniacal nitrogen (NH_4 -N), nitrate nitrogen (NO_3 -N) and nitro nitrogen (NO_2 -N) content of treated commodities using a Nitrogen Analyser and comparing these with the levels in untreated controls.

8.2 Results and discussion

Table 8.1 shows that sample levels after treatment with EDN did not have significantly higher levels of nitrate nitrogen (NO_3 -N) and nitro nitrogen (NO_2 -N) than the controls - a very positive result. The major residue generated by fumigation with EDN was ammoniacal nitrogen (NH_4 -N). The levels of ammoniacal nitrogen (NH_4 -N) were about two times higher than natural levels in barley, wheat and oats, and 4 times higher in maize. The increase in ammoniacal nitrogen (NH_4 -N) residue was only slightly correlated with dose.

Table 8.1. Changed nitrogen residues in barley, wheat, oats and maize treated with ethanedinitrile from 200-600 mg L^{-1} compared to control samples.

Commodity	EDN Dose mg/L	NH₄-N (mg/kg)	NO3-N+NO2-N (mg/kg)	NO ₂ -N (mg/kg)
Barley	200	42.20		0.05

	EDN Dose		NO ₃ -N+NO ₂ -N	
Commodity	mg/L	NH₄-N (mg/kg)	(mg/kg)	NO ₂ -N (mg/kg)
	400	55.35	0.12	0.02
	600	59.46	0.19	0.04
	600	60.74	0.02	0.03
	control	24.89	0.00	0.05
	control	25.57	0.04	0.06
Wheat	200	65.35	0.06	0.06
	200	66.95	0.09	0.03
	400	79.74	0.15	0.06
	400	83.74	0.21	0.08
	600	82.91	0.89	0.10
	600	84.30	0.71	0.11
	control	44.24	0.65	0.11
	control	45.56	0.63	0.07
Oats	200	41.03	1.59	0.07
	400	52.49	1.38	0.05
	600	62.79	1.07	0.08
	600	72.91	2.31	0.08
	control	26.98	1.84	0.07
	control	27.15	1.59	0.07
Maize	200	60.41	0.40	0.03
	400	65.73	0.42	0.05
	600	84.02	0.42	0.03
	600	79.69	0.42	0.03

	EDN Dose		NO ₃ -N+NO ₂ -N	
Commodity	mg/L	NH₄-N (mg/kg)	(mg/kg)	NO ₂ -N (mg/kg)
	control	18.75	0.40	0.03
	control	19.03	0.41	0.03

Results for unchanged residues shown in Table 8.2 indicate that unchanged residues decline to background levels after 8 days of aeration. For comparison, it should be noted that natural levels of EDN are 0.01 mg/kg in canola and 0.025 mg/kg in canola cake, values that are higher than in the treated commodities after 8 days of aeration.

Table 8.2 Decline over 8 days in unchanged residues microwave-extracted from 5g samples of barley, wheat and maize and estimated from headspace concentration in a sealed 250mL bottle. The commodities were exposed to EDN for 4 days at 5% fill ratio in sealed 305mL flasks.

Grain	EDN Dose (mg/L)	ED	N Residue Con	centration (mg	/kg)
(Moisture					
Content))		Day 0	Day 1	Day 4	Day 8
Barley	100	16.8	3.7	0.1	< 0.005
14.46%mc	100	16.9	3.8	0.1	< 0.005
	200	28.9	5.1	0.2	< 0.005
	200	30.9	5.9	0.2	< 0.005
Wheat	100	7.2	0.6	0.06	< 0.005
14.35%mc	100	6.7	0.7	0.05	< 0.005
	200	20.3	4.9	0.1	< 0.005
	200	21.9	4.6	0.1	< 0.005
Maize	100	11.0	1.7	0.1	< 0.005
13.6%mc	100	14.8	2.5	0.1	< 0.005
	200	33.2	6.9	0.3	< 0.005
	200	35.4	6.7	0.3	< 0.005

14.4%mc	100	17.4	3.3	0.1	< 0.005
	200	32.9	6.1	0.3	< 0.005
	200	31.4	5.9	0.3	< 0.005

Canola: the natural level of EDN is 0.010mg/kg and of its cake is 0.225mg/kg

These results are promising from the perspective of both the regulatory and the feed palatability issues. The data indicate that there is little of concern in changed nitrogen residues and given that addition of ammoniacal nitrogen to feedstock in the form of urea is common practice in the feedstock industry, the small elevation of ammoniacal nitrogen should not present a significant palatability problem.

9 Towards a treatment schedule for EDN fumigation of commodities

Objective 11 in the context of the original proposal was to formulate a recommendation that could be used to assess the prospects for further research to develop EDN as a grain fumigant. It was formulated on the basis that a single dose was to be applied to the commodity in a commercial scale application. Under these conditions there are flammability limits that must be considered, and only so much volume of gas can be placed between the grains. However, in the light of the sorption properties of the commodities and the amount of EDN needed to devitalise all target organisms, it has become clear that multiple or continuous dosing would be employed in any large scale EDN application. Under these conditions the 'absolute maximum dose schedule that can be applied' as is stated in Objective 11 is no longer relevant. In fact the amount of chemical that can be applied is limited only by economics and the time available under multiple dose application. For the purpose of planning further work an estimate of an effective devitalising treatment is more relevant.

The commodities were all controlled within the 300-1200 mg h L⁻¹ range. This is well below the dose of 2400 mg h L-1 used to screen the weed species. Many weed species were controlled at this dose. However, specifying a dose which can safely devitalise those species is hampered by the fact that the discriminating dose is only the first pass screen. Doubling the dose to 4800 mg h L⁻¹ provides a significant margin of safety in the absence of further work. This value would generally be sufficient to control the smut surrogate and the surrogate for cephalosporium stripe. The situation for the downy mildew surrogate is not simple, as the results can at best be considered preliminary and lack precision. The viable growth on agar media was narrowed to a value between 6700 and 13800 mg h L^{-1} . However, further work is needed to fully explore the responses between these values. Finally there is the problem of shielding of the various fungal propagules against the fumigation treatment. This was outside the scope of the FLOT 124 project but should be a priority for future work. Given these uncertainties it is not possible to accurately define a treatment schedule that can achieve complete devitalisation of all target organisms. For the purposes of further study, and in the absence of further research to refine the results collected to date, a CT product of 13800 mg h L⁻¹ would be a starting point. However significant cost savings could be made if further research identified a lower effective dose for the downy mildew surrogate. An estimate of the cost of treating maize for bulk prices of EDN ranging from USD\$3-20 per kg is based on a CT product of 13,800 mg hL⁻¹ and the sorption results of 90% fill ratio tests for maize. The CT was estimated from the measured levels within the flasks over 24 hours using the formula

Ct _{n,n+1} - (T_{n+1} - T_n) x
$$\square$$
 (C_n . C_{n+1}) (g h m⁻³) (1)

where

- T_n is the time the first reading was taken in hours
- T_{n+1} is the time the second reading was taken in hours
- C_n is the concentration reading at T_n in gm⁻³
- C_{n+1} is the concentration reading at T_{n+1} in g m⁻³
- Ct n,n+1 is the calculated Ct product between Tn and Tn+1 in g h/m³

Using this information and a stowage factor of 1.7, the average cost of gas was calculated as:

Cost/tonne @ USD\$3/kg	Cost/tonne @ USD\$10/kg	Cost/tonne @ USD\$20/kg
\$11.96	\$39.86	\$79.73

10 Success in achieving objectives

Objectives 1 to 4 were met on time without incident. They are summarised in the first section of the report and provide the foundation for the following experimental work. The incursion risks identified in these objectives and the choice of surrogate organisms for study were devised in consultation with Biosecurity Australia. However, in taking the results beyond the proof of concept there is no guarantee that the risk analysis by Biosecurity Australia would come to the same conclusion as has been reached here, or that new risks may have appeared in the risk assessment environment.Close consultation with Biosecurity Australia has tried to minimise this possibility.

The outcome of material compatibility with ethanedinitrile (EDN) was very favourable. Some issues were highlighted such as the sorption of fresh concrete and the gas permeability of some tarping materials. However these are considered manageable factors in any upscale of fumigation.

The most difficult aspect of the project was the pathogen work (Objectives 7 and 8). Development of a vital stain, previously untested on smuts, proved to be successful for the chosen surrogate based on the responses of autoclaved and non-autoclaved spores. In EDN fumigation tests the surrogates for smuts and cephalosporium stripe were susceptible to fumigation despite the fact that germination studies indicated that the vital staining technique underestimated the devitalisation of the smut spores. However, significant difficulties were encountered in testing the sorghum downy mildew surrogate. Widely used methods to stimulate production of oospore propagules initially failed to generate viable spores. In the short time frame of the project this was a significant setback, as the time to undertake this process is measured in months. When the spores were eventually generated, viability staining indicated that the spores were viable after very high levels of EDN treatment, despite the fact that wall structures appeared significantly disorganised. Limited post treatment growth assessments undertaken late in the project have shown that the oospores can be killed by EDN, but further work is needed. The results are sufficient to assess the merits of taking the project to the next stage and experience has been gained to focus any further work on surrogates, or the incursion risks themselves.

The discriminating dose (comprising Objectives 5 and 9) was very successful in terms of providing a workable ranking of tolerance to identify a subset of the weeds for further study. It also demonstrated complete devitalisation of the four commodities. The outputs for weed species testing have been impressive in view of the volume of testing undertaken and given that there was no time to develop and optimize germination protocols. In terms of the efficacy of the chemical it is apparent

from preliminary testing undertaken following the discriminating dose that a subsection of the weeds tested will not be controlled at feasible levels of EDN treatment. On the positive side the majority of the weed species in the non-testable category belonged to taxonomic families that showed consistent control in the discriminating dose.

Commodity testing was completed on a range of varieties of the four commodities at 14% moisture content and on a subset of the commodities at 15 and 16% moisture. This gave good estimates of variety variability and highlighted the effect of moisture content in increasing efficacy of the EDN fumigation. Intensive headspace sampling undertaken during the fumigations identified differences between the commodities that would translate into significant differences in economy of treatment. This was a very important outcome of the project, as the interaction of the gas with the commodity will be the dominant factor when the commodity treatment is scaled up in size. These issues have been highlighted to the management committee resulting in a shift in attention from wheat to maize as the most promising commodity for future study, and up scaling of EDN fumigation.

The 'proof of concept' and dose schedule (Objective 11) have been achieved within the limits of having only worked on surrogates not actual pathogens, on the basis that not all weed species are controllable by EDN treatment alone. The management committee had waived the \$10 per tonne commodity target for EDN treatment during the course of the project.

11 Impact on Meat Industry – Now and In Five Years Time

The impact of the research reported here lies in the future development of EDN fumigation for quarantine treatment of imported grain. If pursued and successful this would fall into a five-year horizon. Immediate benefits are not realisable due to the preliminary nature of this research, lack of an import protocol and the pending registration of the fumigant. If the quarantine treatment of bulk grain can be successfully commercialised then the impacts on the industry are likely to be significant. By opening market access to feed grain in periods of limited supply the feedlot industry could be assured of stabilised grain pricing during periods of drought and graziers may also benefit from downward price pressure on supplemental feed during times of shortage. While there are still significant risks and hurdles to the full development of EDN for quarantine treatment of imported grain the potential benefits to the meat and livestock industry are likely to be significant and far reaching.

12 Conclusions and recommendations

Recent drought conditions have greatly affected the profitability of the meat production industry. If unseasonal weather events become more frequent, the livestock industry will suffer greater exposure to high prices and shortfalls in feed grain. The cost effective fumigation of imported grain could provide relief from these events. At present EDN appears to be the only candidate fumigant that could potentially treat imported grain to a quarantine standard. The ability to devitalise the commodities and pathogens satisfies the main quarantine concerns. While full control of weed species was not achieved at feasible doses, these species might potentially be controlled for quarantine purposes by seed screening and other protocols. The work presented here is only preliminary and whether EDN treatment can be cost effective is yet to be determined. However in light of the potential benefits, it is concluded that the investment risk associated with the further development of EDN treatment for imported grain treatment is justified.

13 Bibliography

Bains, S.S. and Jhooty, J.S. 1982. Distribution, spread and perpetuation of Peronosclerospora philippinensis. Indian Phytopathology, 35, 566-570.

Bock, C.H., Jeger, M.J., Fitt, B.D.L. and Sherington, J. 1997. Effect of wind on the dispersal of oospores of Peronosclerospora sorghi from sorghum. Plant Pathology, 46, 439-449.

Bowers JH, Papavizas GC, Johnston SA, 1990. Effect of soil temperature and soil-water matrix potential on the survival of *Phytophthora capsici* in natural soil. Plant Disease 74, 771-777.

Cassells, J., Collins, P.J. and Banks, H.J. (1995) Devitalisation of maize and sorghum by methyl bromide and chloropicrin. Technical Report No. 61, CSIRO Entomology: Canberra, Australia.

Cohen SD, 1984. Detection of mycelium and oospores of *Phytophthora megasperma* forma specialis *glycinea* by vital stains in soils. Mycologia, 76, 34-39.

El-Hamalawi ZA, Erwin DC, 1986. Physical, enzymatic, and chemical factors affecting viability and germination of oospores of *Phytophthora megasperma* f. sp. *medicaginis*. Phytopathology, 76, 503-507.

Jeffers SN, Martin SB 1986. Comparison of two media selective for *Phytophthora* and *Pythium*. Plant Sisease 70, 1038-1043.

Jiang J, Erwin DC, 1990. Morphology, plasmolysis, and tetrazolium bromide stain as criteria for determining viability of *Phytophthora* oospores.

Medina MV, Platt HW, 1999. Viability of oospores of *Phytophthora infestans* under field conditions in north America. Canadian Journal of Plant Pathology 21, 137-143.

Nelson GA, Olsen OA, 1967. Staining reactions of resting sporangia of *Synchytrium endobioticum* with a tetrazolium compound. Phytopathology 57, 965-968.

Pittis JE, Shattock RC, 1994. Viability, germination and infection potential of oospores of *Phytophthora infestans*. Plant Pathology 43, 387-396.

Ramsey, M.D. and Jones, D.R. 1988. *Peronosclerospora maydis* found on maize, sweetcorn and plume sorghum in far north Queensland. Plant Pathology, 37, 581-587.

Ren, Yonglin and Desmarchelier, J.M. 1998. Release of fumigant residues from grain by microwave irradiation. Journal of AOQA International 18, 3, 673-678.

Rao, B.M., Sheety, H.S. and Safeeulla, K.M. 1984. Production of *Peronosclerospora sorghi* oospores in maize seeds and further studies on the seed-borne nature of the fungus. Indian Phytopathology, 37, 278-283.

Roberts, E.H. 1972. Viability of seeds. Chapman and Hall Ltd., London, p430-433.

Ribeiro OK, 1978 A source book for the genus *Phytophthora*. J Crammer, London UK.

Sunderland ED, Cohen SD, 1983. Evaluation of tetrazolium bromide as a vital stain for fungal oospores. Phytopathology 73, 1532-1535.

Tsao PH, Guy SO, 1977. Inhibition of *Mortierella* and *Pythium* in *Phytophthora* isolation medium using hymexazole. Phytopathology 67, 796-801

van der Gaag DJ 1994. The effect of pH on staining of oospores of *Peronospora viciae* with tetrazolium bromide. Mycologia 86 454-457.

Van der Gaag DJ, Frinking HD, 1997. Survival, germinability and infectivity of oospores of *Peronospora viciae* f. sp. *fabae*. Journal of Phytopathology 145, 153-157.

Walley FL, Germida JJ, 1995 Estimating the viability of vesicular-arbuscular mycorrhizae fungal spores using tetrazolium salts as vital stains. Mycologia 87, 273-279.

Weiersbye-Witkowski IM, Straker CJ, 1997. Protocol for assessing viability of *Sphaerotheca fuliginea* conidia by tetrazolium chloride (INT) reduction. South African Journal of Botany 63, 498-5

14 Appendix A

14.1 Pathogens of wheat and barley from the UK

В	Bacteria associated with wheat from UK								Recorded in								
Family	Genus	Species	Disease caused	Paper ref source	Vic	NSW ACT	SA	WA	Tas	QId	NT	AUS.	Potential risk for devitalised seed ?				
Rhizobiaceae	Agrobacterium	tumefaciens	vector for virus	Dale et al. 1988a,b	+	+	+	+	+	+	-	Y					
Enterobacteriaceae	Erwinia	rhapontici	crown rot (pink grain)	Roberts 1974; Sellwood & Lelliott 1978	+	+	+	+	+	+	+	Y					
Enterobacteriaceae	Erwinia	carotovora	bacterial root rot	Bergey et al. 1923; Anon 1999	+	+	-	+	+	+	+	Y					
Pseudomonadaceae	Pseudomonas	syringae pv coronafaciens	halo blight	Young et al. 1978; Anon 1999	+	+	+	+	+	+	+	Y					
Pseudomonadaceae	Pseudomonas	cichorii	lettuce varnish spot	Stapp 1928; Anon 1999	-	+	-	-	-	+	-	Y					
Pseudomonadaceae	Pseudomonas	fuscovaginae	sheath rot	Duveiller and Maraite 1990	-	-	-	-	-	-	-	N					
Microbacteriaceae	Rathayibacter	rathayi	gumming disease	Zgurskaya et al. 1993; Anon 1999	+	+	+	+	+	+	+	Y					
Xanthomonadaceae	Xanthomonas	translucens	leaf streak	Duveiller 1994b	-	+	-	-	-	-	-	Y					

Nematodes associated with UK wheat F						Recorded in								
Family	Genus	Species	Disease caused	Paper Reference	Notes	Vic	NSW ACT	SA	WA	Tas	Qld	NT	AUS.	Potential risk on devitalised seed
Hoplolaimidae	Helicotylenchus	dihystera	Common spiral nematode			-	+	-	-	-	+	-	Y	
Pratylenchidae	Pratylenchus	penetrans	Northern root lesions			+	+	+	+	+	+	+	Y	
Pratylenchidae	Pratylenchus	thornei	Root cortex damage			+	+	+	+	+	+	+	Y	
Rhabditidae	Phasmarhabditis	hermaphrodita	none	Wilson et al 1993	control of slugs in wheat	-	-	-	-	-	-	-	Ν	
Anguinidae	Anguina	tritici	seed gall	Southey,1972		+	+	+	+	+	+	+	Y	

Viral Pathogens of wheat from UK	K Recorded in												
Scientific name	Disease	Paper ref	Vic	NSW ACT	SA	WA	Tas	Qld	NT	AUS.	Potential risk for devitalised seed ?		
Barley mild mosaic bymovirus (BaMMV)	Chlorotic flecks	Boyle et al. 1988	-	-	-	-	-	-	-	Ν			
Barley stripe mosaic hordei virus (BSMV)	Brown stripes	Wolfe 1987	-	-	-	+	-	+	-	Y			
Barley yellow dwarf luteoviruses (BYDV)	purpling, reddening	Cameron et al. 1988; Starling & Richards 1990; Boyd et al. 1993; Davis et al. 1987	+	+	+	+	+	+	-	Y			
Phleum mottle virus (PhMV)	chlorotic mottle	Jenkyn et al. 1996	-	-	-	-	-	-	-	Ν			
Soil-borne wheat mosaic virus (SBWMV)	leaf mosaic	Rennie 1987	-	-	-	-	-	-	-	Ν			
Striate mosaic virus (WSMV)	Striate mosaic	Hide & Read 1991	-	-	-	-	-	-	-	Ν			
wheat streak mosaic virus (WSMV)	Streak/mottling	McGrath & Bale 1989	-	-	-	-	-	-	-	Ν			
wheat yellow mosaic virus (WYMV)	yellow mosaic	Peeters et al. 1990	-	-	-	-	-	-	-	Ν			

Fungi assoc	ciated with whe	eat from UK				Rec	orde	d in						
Phylum	Genus	Species	Disease caused	Paper ref	Notes	Vic	NSW ACT	SA	WA	Tas	Qld	NT	AUS.	Potential risk for devitalised seed
Mitosporic fungi	Alternaria	alternata	blackpoint of grain	Magan N, 1993; Ellis & Gooding 1996		+	+	+	+	+	+	+	Y	
Mitosporic fungi	Alternaria	triticina	leaf blight	AQIS list		+	+	+	+	+	+	+	Y	N/A
Ascomycota	Blumeria	graminis	powdery mildew	Anon 1999		+	+	+	+	+	+	+	Y	
Ascomycota	Botrytis	cinerea		Ushaet al. 1989		-	-	-	-	-	-	-	N	
Basidiomycota	Ceratobasidium	cereale	Sharp eyespot	Anon 1999		-	-	-	-	-	-	-	N	
Mitosporic fungi	Cladosporium	spp.	ear rot	Wainwright et al. 1992; Mantle & Swan 1995; Magan & Lacey 1986; Ajayi & Dewar 1983		-	-	-	-	-	-	-	N	
Ascomycota	Claviseps	purpurea	ergot	Shaw 1988; Shaw 1986		-	+	+	+	+	+	+	Y	
Ascomycota	Drechslera	spp.		Cameron et al. 1988		-	-	-	-	-	-	-	N	
Mitosporic fungi	Epicoccum	nigrum		Magan & Lacey 1986		-	-	-	-	-	-	-	N	
Ascomycota	Erysiphe	graminis	mildew	Hu et al. 1988; O'Dell et al. 1989; Kettlewell et al. 1990; Dover & East 1990; Dovgan 1990; Borodanenko &		-	-	-	-	-	-	-	N	

Fungi assoc	iated with whe	at from UK	Recorded in											
Phylum	Genus	Species	Disease caused	Paper ref	Notes	Vic	NSW ACT	SA	WA	Tas	Qld	NT	AUS.	Potential risk for devitalised seed
				Spirina 1989; Weltzien 199031										
Ascomycota	Eurotium	amstelodami	grain mould	Magan 1993		-	-	-	-	-	-	-	Ν	
Ascomycota	Fusarium	nivale		Cameron et al. 1988; Usha 1989; Parry 1990; Sharman et al. 1991		-	-	-	-	-	-	-	Ν	
Mitosporic fungi	Fusarium	culmorum	stem base rot	Bateman 1993; Pettitt et al. 1993; Parry et al. 1995; Pettitt et al. 1996		+	+	+	+	+	+	+	Y	
Ascomycota	Fusarium	avenaceum	root rot	WF68		-	-	-	-	-	-	-		
Ascomycota	Fusarium	sporotrichioides				+	+	+	+	+	+	+	Y	
Ascomycota	Gaeumannomyces	graminis	Take-all	WF9,16,39,54,5 5,94		+	+	+	+	+	+	+	Y	
Mitosporic fungi	Hymenula	cerealis	Cephalosporium stripe	AQIS list		-	-	-	-	-	-	-	N	seed-borne
Ascomycota	Leptosphaeria	nodorum		WF8		-	-	-	-	-	-	-	Ν	
Ascomycota	Microdochium	nivale		WF68,78,131	most common	-	-	-	-	-	-	-		
Ascomycota	Mycosphaerella	graminicola	leaf spot	WF75,80,220		+	+	+	+	+	+	+	Y	
Basidiomycota	Neovossia	indica	karnal bunt	WF186		-	-	-	-	-	-	-	Ν	

Fungi associa	ted with whea	t from UK	K Recorded in											
Phylum	Genus	Species	Disease caused	Paper ref	Notes	Vic	NSW ACT	SA	WA	Tas	Qld	NT	AUS.	Potential risk for devitalised seed
Mitosporic fungi	Penicillium	aurantiogriseum	Grain mould	WF85		-	-	-	-	-	-	-	N	
Plasmodiophoromycota	Polymixa	graminis	vector of streak mosaic	Anon 1999 , 1999		-		-	-	-	-	-	N	
Ascomycota	Pseudocercosporella	herpotrichoides	eyeSpot	WF7,10,27,30,3 5,44,48,146	found on decayin g stem and leaf	+	+	+	+	+	+	+	Y	
Basidiomycota	Puccinia	striiformis	Stripe rust	WF5,41,42,46,5 3,56,83,358		+	+	+	+	+	+	+	Y	
Basidiomycota	Puccinia	graminis		WF6,14,36,46,5 3		+	+	+	+	+	+	+	Y	
Basidiomycota	Puccinia	hordei	brown rust	WF17		+	+	+	+	+	+	+	Y	
Basidiomycota	Puccinia	recondita	brown rust	WF17,36,41,46, 273,297		+	+	+	+	+	+	+	Y	
Ascomycota	Pyrenophora	teres	net blotch	WF50		-	-	-	-	-	-	-	N	
Ascomycota	Pyrenophora	tritici-repentis	tan spot	WF178		+	+	+	+	+	+	+	Y	
Oomycota	Pythium	oligandrum.	root rot	WF61		+	+	+	+	+	+	+	Y	
Oomycota	Pythium	anguioides	root rot	WF68		-	-	-	-	-	-	-	N	
Basidiomycota	Rhizoctonia	cerealis	Sharp eyespot	WF10,279,382	less frequent	-	-	-	-	-	-	-	N	
Mitosporic fungi	Septoria	tritici	leaf blotch	WF32,45,49		-	-	-	-	-	-	-	N	
Mitosporic fungi	Septoria	nodorum	glume blotch	WF32,44		-	-	-	-	-	-	-	N	

Fungi associated with wheat from UK Recorded in														
Phylum	Genus	Species	Disease caused	Paper ref	Notes	Vic	NSW ACT	SA	WA	Tas	Qld	NT	AUS.	Potential risk for devitalised seed
	Tapesia	yallundae	eyespot	WF106,108,132		-	-	-	-	-	-	-	Ν	
Basidiomycota	Tilletia	tritici	Bunt of wheat	WF11,36,42	via soil	+	+	+	+	+	+	+	Y	
Basidiomycota	Tilletia	controversa	Dwarf bunt	AQIS list		+	+	+	+	+	+	+	Y	resting spores
Basidiomycota	Tilletia	caries	Bunt of wheat	WF69		-	-	-	-	-	-	-	Ν	
Basidiomycota	Tilletia	indica	kernal bunt	AQIS list		-	-	-	-	-	-	-	Ν	Yes
Basidiomycota	Typhula	incarnata	snow blight	Anon 1999		-	-	-	-	-	-	-	Ν	
Basidiomycota	Ustilago	nuda var.tritici	loose smut	WF12,36,47,130	infects seed embryo	-	-	-	-	-	-	-	Ν	Resting spores
Mitosporic fungi	Verticillium	lecanii		WF291		-	-	-	-	-	-	-	Ν	

Bacteria	a associated	with Barley f	rom UK	Recorded in												
Family	Genus	Species	Disease caused	References	Notes	Vic	NSW ACT	SA	WA	Tas	Qld	NT	AUS.	Potential risk for devitalised seed		
Pseudomonadaceae	Pseudomonas	<i>syringae</i> pv. <i>syringae</i>	leaf blight	Georgakopoulos & Sands 1992										Nil ?		
Pseudomonadaceae	Pseudomonas	syringae pv.striafaciens	stripe blight	Young & Triggs 1994												
Xanthomonadaceae	Xanthomonas	translucens pv. Translucens	Bacterial blight	Vauterin et al. 1995												
Nematod	es associate	d with Barley	/ from UK			F	Recor	ded i	n							
Family	Genus	Species	Disease caused	References	Notes	Vic	NSW ACT	SA	WA	Tas	Qld	NT	AUS.	Potential risk for devitalised seed		
Heteroderidae	Heterodera	avenae	Root stunting	Evans et al. 1993	Cerea Cyst nematod e											
Meloidogynidae	Meloidogyne	naasi	Root gall	Evans et al. 1993	Root Knot											
	Subanguina	radicicola	Root gall	Kort 1972												
Pratylenchidae	Pratylenchus	penetrans	Root lesion	1									Y			
Pratylenchidae	Pratylenchus	thornei	Root lesion										Y			

Viral pathogens of barley from UK	Recorded in												
Scientific name	Disease	References	Vic	NSW ACT	SA	WA	Tas	Qld	NT	AUS	Potential risk for devitalised seed ?		
Barley mild mosaic virus (BaMMV)	chlorotic flecks	Adams 1991	-	-	-	-	-	-	-	N			
Barley stripe mosaic hordei virus (BSMV)	brown stripe	Atabekov & Novikov 1989	-	-	-	+	-	+	-	Y			
Barley yellow dwarf viruses (BYDVs)	reddening, purpling, stunting	Starling & Richards 1990	+	+	+	+	+	+	-	Y			
Brome virus (BV)	Yellow/white spots/streaks	Lane 1989.	-	-	-	-	-	-	-	N			
Oat sterile dwarf virus (OSDV)	Dark green stunting	Boccardo & Milne 1980	-	-	-	-	-	-	-	Ν			
wheat streak mosaic virus (WSMV)	Streaking/mottling	Brakke 1971	-	-	-	-	-	-	-	Ν			

	Fungal pathogens of barley from UK									Recorded in										
Genus	Species (Teliomorph in bold)	anamorph/synonym or teliomorph not in common usage (Teliomorph in bold)	Disease caused	Paper ref	Vic	NSW ACT	SA	WA	Tas	Qld	NT	AUS.	Pres in UK	Potential risk for devitalised seed						
Ascochyta	horde		Ascochyta leaf spot	Anon 1999								NO	NO							
Cephalosporium	gramineum	Hymenula cerealis	Cephalosporium Stripe	Anon 1999; Anon 1986								NO	YES							
Claviceps	purpurpea	Sphacelia segetum	Ergot	Anon 1999	х	x		х	х	х		YES	YES							
Cochliobolus	sativus		Common Root Rot/ Spot Blotch	Anon 1999	х	x	х	x	x	х		YES	YES							
Colletotrichum	graminicola	Bipolaris sorokiniana, Helminthosporium sativum	Anthracnose	Anon 1999; Walker, McLeod 1971; Ramsey 1990a,b; Peel 1982	-	x				x		YES	YES							
Drechslera	wirreganensis			Wallwork et al. 1992			х					YES	NO							
Erysiphe	graminis f. sp. hordei	Blumeria graminis f. sp. Hordei, Oidium monilioides	Powdery Mildew	Anon 1999; Polley et al. 1993								YES	YES							
Fusarium	avenaceum	Gibberella avenacea	Scab or Head Blight	Anon 1999; Jenkinson & Parry 1994; Nik & Parbery 1977	x			x				YES	YES							
Fusarium	poae		Scab or Head Blight	Anon 1999; Jenkinson & Parry 1994; Ding et al. 1995; Nik & Parbery 1977								YES	YES							

	Fungal pathogens of barley from UK									Recorded in										
Genus	Species (Teliomorph in bold)	anamorph/synonym or teliomorph not in common usage (Teliomorph in bold)	Disease caused	Paper ref	Vic	NSW ACT	SA	WA	Tas	Qld	NT	AUS.	Pres in UK	Potential risk for devitalised seed						
Fusarium	sporotrichiodes		Scab or Head Blight	Anon 1999								NF	NF							
Fusarium	culmorum		Common Root Rot	Anon 1999; Jenkinson & Parry 1994	x	х		x	x			YES	YES							
Fusarium	graminearum	Gibberella zeae , Gibberella roseum f. sp. cerealis, Fusarium saubinettii	Crown Rot	Anon 1999; Jenkinson & Parry 1994	x	х	x			x	x	YES	YES							
Fusarium	nivale	Microdochium niviale, Gerlachia nivalis, Monographella nivalis , micronectriella nivalis, Calonectria nivalis, Griphosphaeria nivalis	Scab or Head Blight/Snow Mold	Anon 1999, Usha et al. 1989; Jennings & Turner 1996; Baldwin 1990								NO	NO							
Fusarium	pseudograminearum		Scab or Head Blight	Anon 1999								YES	YES							
Gaeumannomyces	graminis var tritici		Take-all	Anon 1999	х	x	х	х	х	х		YES	YES							
Leptosphaeria	herpotricoides		Leptosphaeria Leaf Spot	Anon 1999								NF	NF							
Leptosphaeria	nodorum			Anon 1999; Anon 1986	х	x	х	x	х	x		YES	YES							
Pseudocercospere lla	herpotrichiodes	Cercosporella herpotrichiodes, Tapesia yallundae	Eyespot	Anon 1999; Anon 1986	x	х	x		x			YES	YES							

	Fungal pathogens of barley from UK									Recorded in										
Genus	Species (Teliomorph in bold)	anamorph/synonym or teliomorph not in common usage (Teliomorph in bold)	Disease caused	Paper ref	Vic	NSW ACT	SA	WA	Tas	Qld	NT	AUS.	Pres in UK	Potential risk for devitalised seed						
Puccinia	<i>Graminis; graminis</i> f. sp. <i>tritici</i>		Stem Rust	Anon 1999; Park & Wellings 1992; McLean 1995	х	х	x	x	x	x		YES								
Puccinia	hordei	Puccinia anomala	Leaf Rust	Anon 1999; Polley et al 1993			x		x			YES	YES							
Puccinia	coronata		crown rust	Anon 1999; Rose & Scattini 1994	х	х	х	х		x		YES	NO							
Puccinia	striiformis f. sp. hordei	Puccinia glumarum	Stripe Rust	Anon 1999; Polley et al. 1993	х	х	x		x			YES	YES							
Puccinia	recondita		wheat brown rust	c11,13,29; Johnson et al. 1986	x	х	x	х	x	x		YES	YES							
Pyrenophora	graminea	Drechslera graminea, Helminthosporium gramineum	Barley Stripe	Anon 1999				x				YES	YES							
Pyrenophora	teres	Drechslera teres, Helminthosporium teres	Net Blotch	Anon 1999; Khan 1988; Polley et al. 1993; Khan 1989		х	x	x				YES	YES							
Pyrenophora	semeniperda	Drechslera verticillata	Leaf spot	Kahn 1988; Khan & Young 1989			x					YES	NO							
Pyrenophora	tritici-repentis	Pyrenophora trichostoma, Drechslera tritici-repentis, Helminthosporium tritici-repentis	Yellow Leaf Spot	Anon 1999; Cook & Yarham 1989	x	x		x		x	x	YES	YES							

	Fungal pathogens of barley from UK								Recorded in										
Genus	Species (Teliomorph in bold)	anamorph/synonym or teliomorph not in common usage (Teliomorph in bold)	Disease caused	Paper ref	Vic	NSW ACT	SA	WA	Tas	Qld	NT	AUS.	Pres in UK	Potential risk for devitalised seed					
Pythium	iwayamai		Snow Rot	Anon 1999								NO	NO						
Pythium	okanoganense		Snow Rot	Anon 1999								NO	NO						
Pythium	paddicum		Snow Rot	Anon 1999								NO	NO						
Pythium	arrhenomanes		<i>Pythium</i> Root Rot	Anon 1999; Waller 1979		x				х		YES	YES						
Pythium	graminicola		<i>Pythium</i> Root Rot	Anon 1999; Margarey 1986; Bratolovanu & Wallace 1986						x		YES	YES						
Pythium	tardicrescens		<i>Pythium</i> Root Rot	Anon 1999								NF	NF						
Rhizoctonia	cerealis	Ceratobasidium gramineum	Sharp Eyspot	Anon 1999								YES	YES						
Rhizoctonia	<i>solani</i> (AG 4 and AG 1)	Ceratobasidium cereale	Sharp Eyspot	Anon 1999; Balali et al. 1995; Masuhara et al. 1994								YES	YES						
Rhynchosporium	secalis	Marssonia secalis	Scald	Anon 1999; Anon 1986; Khan 1988; Polley et al. 1993; Wallwork 1995		x	x	x	x			YES	YES						
Sclerotinia	rolfsii	Athelina rolfsii, Corticum rolfsii										YES	NF						

	Fungal pathogens of barley from UK								Recorded in										
Genus	Species (Teliomorph in bold)	anamorph/synonym or teliomorph not in common usage (Teliomorph in bold)	Disease caused	Paper ref	Vic	NSW ACT	SA	WA	Tas	Qld	NT	AUS.	Pres in UK	Potential risk for devitalised seed					
Sclerotinia	borealis	Myriosclerotinia borealis	Snow Scald	Anon 1999								No	NF						
Sclerophthora	rayssiae	Sclerospora graminicola, Sclerospora macrospora	Downy mildew	Anon 1999		х	x	x		x		YES	YES						
Selenophoma	donacis	Septoria donacis, Phyllosticta stomaticola, Selenophoma donacis var. stomaticola	Halo Spot	Anon 1999; Khan 1978, 1979, 1988; Polley et al. 1993				x				YES							
Stagonospora	avenae f. sp. triticea	Septoria avenae f. sp. triticea, Phaeosphaeria avenaria f.sp. triticea, Leptosphaeria avenaria f. sp. Triticea	Septoria Leaf Blotch	Anon 1999								YES	Prob.						
Stagonospora	nodorum	Septoria nodorum, Phaeosphaeria nodorum , Leptosphaeria nodorum	Glume Blotch	Anon 1999; Baldwin 1990		х		x				YES	YES						
Septoria	passerinii		Septoria Leaf Blotch	Anon 1999; Shivas 1989				x				YES							
Tilletia	caries			c57								YES	YES						
Tilletia	controversa		Dwarf Bunt	Anon 1999		x	x	x				YES	NO						
Typhula	idahoensis		Snow Mold	Anon 1999								NO	NO						
Typhula	incarnata	Typhula itoana, Tyhpula graminum	Snow Mold	Anon 1999; Baldwin 1990								NO	YES						

	Fungal pathogens of barley from UK								Recorded in										
Genus	Species (Teliomorph in bold)	anamorph/synonym or teliomorph not in common usage (Teliomorph in bold)	Disease caused	Paper ref	Vic	NSW ACT	SA	WA	Tas	Qld	NT	AUS.	Pres in UK	Potential risk for devitalised seed					
Typhula	ishikariensis		Snow Mold	Anon 1999								NO	NO						
Urocystis	agropyri		Flag Smut	Murray & Brown 1987								YES							
Ustilago	hordei		Covered Smut	Anon 1999	х	х	х	х	х	х		YES	YES						
Ustilago	nigra		False loose Smut	Anon 1999	х		х	х	х	х		YES	NF						
Ustilago	nuda		Loose Smut	Anon 1999; Nielsen & Thomas 1982			х					YES	YES						
Ustilago	<i>nuda</i> f. sp. <i>tritici</i>		True Loose Smut	Anon 1999								?	YES						
Ustilago	segetum var. nuda			c2,8								YES	YES						
Ustilago	tritici		loose smut	c31								YES							
Verticillium	dahliae		Verticillium Wilt	Anon 1999								YES	YES						

14.2 References

Anon, 1986. Disease and pest problems of arable crops. *Report of Long Ashton Research Station, 1984.* pp 33-40. University of Bristol: Bristol, UK.

Anon, 1999. Crop Protection Compendium (CD Rom) CAB International: Wallingford, UK.

Adams MJ, 1991. The distribution of barley yellow mosaic virus (BaYMV) and barley mild mosaic virus (BaMMV) in UK winter barley samples. *Plant Pathology* 40: 53-58.

Atabekov JG, Novikov VK, 1989. Barley stripe mosaic virus. In *Description of plant viruses, no 344.* Commonwealth Mycological Institute and Association of Applied Biologist, Kew, England.

Balali GR, Neate SM, Scott ES, Whisson DL, Wicks TJ, 1995. Anastomosis group and pathogenicity of isolates of *Rhizoctonia solani* from potato crops in South Australia. *Plant Pathology* 44, 1050-1057.

Baldwin NA, 1990. Turfgrass Pests and Diseases Sports Turf Research Institute: Bingley UK.

Boccardo G, Milne RG, 1980. Oat sterile dwarf virus. In *Description of plant viruses, no 217*. Commonwealth Mycological Institute and Association of Applied Biologist, Kew, England.

Boyd LA, Smith PH, Brown JKM, 1993. Expression of defence-related genes in barley in response to mildew infection. *Annual report 1992, AFRC Institute of Plant Science Research, Cambridge Laboratory, John Innes Institute, UK*. pp 6-9.

Boyle F, Gilmour J, Lennard JH, Clifford BC, Jones ERL, 1988. Sensitivity of cereal brown rust fungi to triadimefon and propiconazole. *Brighton Crop Protection Conference. Pests and Diseases 1988. Vol.* 1. pp379-384.

Brakke M, 1971. Wheat streak mosaic virus. In *Description of plant viruses, no 48*. Commonwealth Mycological Institute and Association of Applied Biologist, Kew, England.

Bratoloveanu J, Wallace HR, 1986. The influence of *Pythium* spp. on the growth of barley seedlings. *Biennial Report of the Waite Agricultural Research Institute, 1984-85.* pp 143. *University of Adelaide, South Australia.*

Cameron DG, Gustafsson C, Jordow E, 1988. *Cereal seed treatment in Sweden*. Monograph - British Crop Protection Council . No. 39 , p135-142.

Cook RJ, Yarham DJ, 1989. Occurrence of tan spot of wheat caused by *Pyrenophora tritici-repentis* on wheat in England and Wales in 1987. *Plant Pathology* 38, 101-102.

Davis RP, Jacks MA, Thomas LA, Young LGA, Richardson MJ, 1987. Observations on the effects of not using organomercurial cereal seed treatment during continuous cereal cropping. *Crop Protection in Northern Britain 1987*. pp 91-96.

Dale P, Marks M, Brown M, Woolston C, Gunn H, Mullineaux P, Kemp J, Chen D, Gilmour M, Flavell R, 1988a. Agroinfection and the development of an Agrobacterium transformation system for wheat. In Miller TE, Koebner RMD, (Eds.), Proceedings of the seventh international wheat genetics symposium held at Cambridge, UK, 13-19 July 1988, p719-722.

Dale PJ, Marks MS, Woolston CJ, Gunn HV, Mullineaux PM, Lewis DM, Chen DF, 1988b. Agrobacteriurn delivers DNA to wheat. *Annual report, AFRC Institute of Plant Science Research and John Innes Institute, 1989.* pp 9-10.

Ding X-L, Luckett DJ, Carvey NL, Ding XL, 1995. A cost-based index of anther culture response in diverse wheat-breeding germplasm. *Australian Journal of Experimental Agriculture* 35, 395-401.

Duveiller E, 1994. A pictorial series of disease assessment keys for bacterial leaf streak of cereals. *Plant Disease* 78: 137-141.

Evans K; Trudgill DL and Webster JM (eds.) 1993. Compendium of Barley Diseases. 1. *Plant parasitic nematodes in Temperate Agriculture*. CAB International, Wallingford, UK.

Georgakopoulos DG, Sands DC, 1992. Epiphytic populations of *Pseudomonas syringae* on barley. *Canadian Journal of Microbiology* 38: 111-114.

Hide GA, Read PJ, 1991. Effects of rotation length, fungicide treatment of seed tubers and nematicide on diseases and the quality of potato tubers. *Annals of Applied Biology* 119: 77-87.

Jenkyn JF, Todd AD, Bainbridge A, Dyke GV, 1996. Effects of inoculum sources on the accuracy and precision of experiments testing different times of applying fungicides to control powdery mildew (*Erysiphe graminis* f.sp. *hordei*) on spring barley. *Journal of Agricultural Science* 126: 259-275.

Jenkinson P, Parry DW, 1994. Isolation of *Fusarium* species from common broad-leaved weeds and their pathogenicity to winter wheat. *Mycological Research* 98, 776-780.

Jennings P, Turner JA, 1996. Towards the prediction of *Fusarium* ear blight epidemics in the UK – the role of humidity in disease development. *Brighton Crop Protection Conference: Pests and Diseases – 1966. 18-21, November, 1996, UK.*

Johnson R, Taylor AJ, Smith GMB, 1986. Brown rusts of wheat (*Puccinia recondita*). Annual report of the *Plant Breeding Institute*, 1985. pp 89-91. Cambridge, UK.

Khan TN, 1979. Occurrence and significance of halo spot (*Selenophoma donacis*) on barley Western Australia. *Australasian Plant Pathology* 8, 13-14.

Khan TN, 1988. Effects of stubble-borne fungal inoculum on incidence of leaf diseases and yields of barley in Western Australia. *Australian Journal of Experimental Agriculture* 28, 529-532.

Khan TN, Young KJ, 1989. Effects of Fungicide seed dressings and fungicide-treated fertilizer on the severity of leaf disease and yield of barley in Western Australia. *Australian Journal of Experimental Agriculture* 29, 565-568.

Khan TN, 1989. Effect or spot-type net blotch (*Drechslera teres* (Sacc.) Shoem) infection on barley yield in short season environment of northern cereal belt of Western Australia. *Australian Journal of Agricultural Research* 40, 745-752.

Kort J, 1972. Compendium of Barley Diseases. 2. Nematodes diseases of cereals of temperate climates. In Webster JM (Ed.) *Economic Nematology*. Academic Press, London. pp97-126.

Lane L, 1989. Bromovirus group. In *Description of plant viruses, no 215*. Commonwealth Mycological Institute and Association of Applied Biologist, Kew, England.

McGrath PF, Bale JS, 1989. Cereal aphids and the infectivity index for barley yellow dwarf virus (BYDV) in northern England. *Annals of Applied Biology* 114 : 429-442.

McLean R, 1995. Register of Australian winter cereal cultivars. *Avena sativa* (oats) cv. Pallinup. *Australian Journal of Experimental Agriculture* 35, 426.

Margarey RC, 1986. Symptom and etiology of the root disease caused by *Pythium graminicola* and an unidentified oomycete, in relation to the poor root syndrome of sugarcane. *Proceedings of the 1986 Conference of the Australian Society of Sugar Cane Technologists*. Pp 161-165. Watson Ferguson Co.: Brisbane Australia.

Mathre DE, 1997. Compendium of Barley Diseases. APS Press: St Paul Minnesota.

Murray GM, Brown JF, 1987. The incidence and relative importance of wheat diseases in Australia. *Australasian Plant Pathology* 16, 34-37.

Musuhara G, Neate SM, Schisler DA, 1994. Characteristics if some *Rhizoctonia* spp. from South Australian plant nurseries. *Mycological Research* 98, 83-87.

Nielsen J, Thomas PL, 1982. Races of loose smut of wheat in South Australia. *Australasian Plant Pathology* 11, 53.

Nik WZ, Parbery DG, 1977. Studies of seed-borne fungi of tropical pasture legume species. *Australian Journal of Agricultural Research* 28, 821-841.

Park RF, Wellings CR, 1992. Pathogenic specialisation of wheat rusts in Australia and New Zealand in 1988 and 1989. *Australasian Plant Pathology* 21, 61-69.

Peel CH, 1982. A review of the biology of Poa anna L. – with special reference to sports turf. *Journal of the Sports Turf Research Institute* 58, 28-40.

Polley RW, Thomas MR, 1991. Surveys of diseases of winter barley in England and Wales, 1976-1988. *Annales of Applied Biology* 119, 1-20.

Polley RW, Thomas MR, Slough JE, Bradshaw NJ, 1993. Surveys of diseases of winter barley in England and Wales, 1981-1991. *Annales of Applied Biology* 123, 287-307.

Peeters JP, Albrecht JC, Galwey NW, Giles RJ, Jestin L, van Soest LJM, 1990. Variation over time and environments in resistance to *Erysiphe graminis hordei* in samples from a barley germplasm collection. *Euphytica* 46 : 43-50.

Rennie WJ, 1987. Incidence and control of loose smut in Scottish barley 1980-1985. *Crop Protection in Northern Britain 1987*. pp 85-90.

Roberts P, 1974. *Erwinia rhapontici* (Millard) Burkholder associated with pink grain of wheat. *Journal of Applied Bacteriology* 37: 353-358.

Rose JL, Scattini WJ, 1994. Registration of Australian winter cereal cultivars. *Avena sativa* (oats) cv. Amby. *Australian Journal of Experimental Agriculture* 34, 699.

Sellwood JE, Lelliott RA, 1978. Internal browning of hyacinth caused by *Erwinia rhapontici*. *Plant Pathology* 27: p120-124.

Starling W, Richards MC, 1990. Quality of organically grown wheat and barley. *Aspects of Applied Biology*. No. 25, pp 193-198.

Starling W, Richards MC, 1990. Quality of organically grown wheat and barley. *Aspects of Applied Biology*. No. 25, pp 193-198.

Southey JF, 1972. *Anguina tritici*. CIH description of plant parasitic nematodes Set 1, No. 13. St. Albans, UK: Commonwealth Institute of Helminthology.

Starling W, Richards MC, 1990. Quality of organically grown wheat and barley. *Aspects of Applied Biology*. No. 25, pp 193-198.

Usha D, Majumdar A, Agarwal PC, Ram N, Dev U, Nath R, 1989. Interception of *Fusarium niviale* in exotic wheat (*Triticum* species) germplasm. *Indian Journal of Agricultural Sciences* 59, 602-603.

Waller JM, 1979. Observations on Pythium root rot of wheat and barley. Plant Pathology 28, 17-24.

Wallwork H, 1995. Barley leaf blights in Australia and New Zealand: historical perspective and current situation. *Rachis* 14, 75-81.

Wallwork H, Lichon A, Sivanesan A, 1992. *Drechslera wirraganensis*- a new hyphomycete affecting barley in Australia. *Mycological Research* 96, 886-888.

Wilson MJ, Glen DM, George SK, 1993. The rhabditid nematode *Phasmarhabditis hermaphrodita* as a potential biological control agent for slugs. *Biocontrol Science and Technology* 3: 513-521.

Wilson MJ, Hughes LA, Hamacher GM, Barahona LD, Glen DM, 1996. Effects of soil incorporation on the efficacy of the rhabditid nematode, Phasmarhabditis hermaphrodita, as a biological control agent for slugs. *Annals of Applied Biology* 128: 117.

Young JM, Triggs CM, 1994. Evaluation of determinative tests for pathovars of *Pseudomonas syringae* van Hall 1902. *Journal of Applied Bacteriology* 77: 195-207.

Young JM, Triggs CM, 1994. Evaluation of determinative tests for pathovars of *Pseudomonas syringae* van Hall 1902. *Journal of Applied Bacteriology* 77: 195-207.

Vauterin L, Hoste B, Kersters K, Swings J, 1995. Reclassification of Xanthomonas. *International Journal of Systematic Bacteriology* 45: 472-479.

Wolfe MS, Slater SE, O'Dell M, Flavell RB, Simpson CG, Minchin PN, 1987. Powdery mildew of barley. *Annual Report of the Plant Breeding Institute 1986-1987*. p95-99.

Young JM, Triggs CM, 1994. Evaluation of determinative tests for pathovars of *Pseudomonas syringae* van Hall 1902. *Journal of Applied Bacteriology* 77: 195-207.

Zgurskava HI, Evtushenko LI, Akimov VN, Kalakoutskii LV, 1993. *Rathayibacter* gen. nov., including the species *Rathayibacter rathayi* comb. nov., *Rathayibacter tritici* comb. nov., *Rathayibacter iranicus* comb. nov., and six strains from annual grasses. *International Journal of Systematic Bacteriology* 43: 143-149.

15 Appendix B

15.1 Plant species recorded as weeds of wheat crops in the UK

Table 1 Plant species associated with wheat in UK but not considered of potential quarantine concern due to presence in Australia.

	Plant	Таха			UK references			Pre	eser	nce i	n Au	stral	lia		stat	antine us in tralia
Family	Genus	Species	English name#	A/P /B%%	Paper ref	Notes	Vic	NSW/ACT	SA	WA	TAS	Qld	NT	Present in Australia	Noxious weed in Australia	Potential plant of quarantine concern
Asteraceae	Arctium	lappa	greater burdock	В	-	field margins	х	х				х		YES	NO	NO
Asteraceae	Artemisia	vulgaris	mugwort	Ρ	P3	field margins	NO	NO	NO					Yes as garden herb	NO	NO
Asteraceae	Lapsana	communis	nipplewort	A	-	field margins	х	х	х		х			YES	NO	NO
Asteraceae	Matricaria [Chamomilla]	recutita	scented mayweed	A	c38,179,203,239,606			х	х					YES	NO	NO
Asteraceae	Senecio	vulgaris	grounsel	A	c239		х	Х	Х	Х	х	Х		YES	NO	NO
Asteraceae	Sonhcus	arvensis	field sow- thistle	Ρ		field margins	?	NO	х					YES	NO	NO
Asteraceae	Taraxacum	officinalis	dandelion	Ρ	P3	field margins	х	х	Х	х	х	Х		YES	NO	NO
Caryophyllaceae	Agrostemma	githago	corn cockle	A	c172			х	х		х			YES	NO	NO

	Plant	Таха			UK references			Pro	eser	nce i	n Au	stra	lia		stat	rantine tus in stralia
Family	Genus	Species	English name#	A/P /B%%	Paper ref	Notes	Vic	NSW/ACT	SA	WA	TAS	Qld	NT	Present in Australia	Noxious weed in Australia	Potential plant of quarantine concern
Caryophyllaceae	Cerastium	fontanum	common mouse-ear	Р	P2		х	X?		х	х	х		YES	NO	NO
Caryophyllaceae	Stellaria	media	common chickweed	A	c3,15,20,38,65,87,172,179,188,203,239,606,610,P2		х	х	х	х	х	х		YES	NO	NO
Chenopodiaceae	Chenopodium	album	fat hen	A	c87,203,P2		х	х	х	х	х	х	х	YES	NO	NO
Cruciferae	Brassica	napus	rape	А	c239,P2		х	х	х	х	Х	х		YES	NO	NO
Cruciferae	Capsella	bursa- pastoris	shepard's purse	A	c87		х	х	Х	х	х	х	x	YES	NO	NO
Cruciferae	Sinapis	arvensis	charlock, wild mustard	A	c31,38,203,P2		х	х	х	х	х	х	x	YES	NO	NO
Dioscoreaceae	Tamus	communis	black betony	Р	c504		NO	NO	NO					NO	NO	YES
Fumariaceae	Fumaria	officinalis	common fumitory	A	P2			х	Х			х		YES	NO	NO
Geraniaceae	Geranium	dissectum	cut-leaved crane's-bill	A		field margins	х	X?	Х		Х			YES	NO	NO
Lamiaceae	Lamium	purpureum	red dead- nettle	A	c15,52,85,188,239,610,P2		х	Х	Х		Х			YES	NO	NO
Leguminosae	Medicago	lupulina	black medick	A	P1		х	Х	Х	х	Х			YES	NO	NO

	Plant	Таха			UK references			Pro	eser	nce i	n Au	stra	lia		stat	antine sus in stralia
Family	Genus	Species	English name#	A/P /B%%	Paper ref	Notes	Vic	NSW/ACT	SA	WA	TAS	Qld	NT	Present in Australia	Noxious weed in Australia	Potential plant of quarantine concern
Leguminosae	Vicia	sativa	common vetch	A	P1			х	х	х				YES	NO	NO
Papaveraceae	Papaver	hybridum	rough poppy	A	c38		х	х	Х	х			х	YES	NO	NO
Papaveraceae	Papaver	rhoeas	Field poppy	A	c15,20,38,40,52,85,239,606,P2,P3			х						YES	NO	NO
Poaceae	Agrostis	gigantea	black bent	Р	c533,P3		х	х	х	х	Х	х		YES	NO	NO
Poaceae	Agrostis	stolonifera	creeping bent	Р	P3	field margin	х	х		х	Х	х		YES	NO	NO
Poaceae	Alopecurus	myosuroides	blackgrass	Ρ	c3,6,15,44,65,199,203,290,304,326,369,606,610, P1,P3		х	х	х	х				YES	NO	NO
Poaceae	Arrhenatherum	elatius subsp. bulbosum	onion couch, false oat grass	Ρ	c173		х	х			Х			YES	NO	NO
Poaceae	Arrhenatherum	elatius subsp. elatus	onion couch, false oat grass	Ρ	c173,612,P3		х	х	х		Х	х		YES	NO	NO
Poaceae	Avena	fatua	wild oat	А	c15,65,85,172,220,290,369,610,P1		х	х	х	х	Х	х	Х	YES	NO	NO
Poaceae	Avena	sterilis / ludoviciana	winter wild oat	A	c290,369,P1		х	х						YES	NO	NO

	Plant	Таха			UK references			Pro	eser	ice ii	n Au	stra	lia		stat	rantine tus in stralia
Family	Genus	Species	English name#	A/P /B%%	Paper ref	Notes	Vic	NSW/ACT	SA	WA	TAS	QId	NT	Present in Australia	Noxious weed in Australia	Potential plant of quarantine concern
Poaceae	Bromus	diandrus	great brome	A	c141		х	х	Х	х	х	х	х	YES	NO	NO
Poaceae	Bromus	hordeaceus [mollis]	soft brome	A	c89,P3		х	х	Х	х	х	х		YES	NO	NO
Poaceae	Bromus [Anisantha]	sterilis	barren brome	A	c12,40,44,65,172,199,311,369,708, P3			х		х	х	х		YES	NO	NO
Poaceae	Dactylis	glomeratus	cock's foot	Р	P3	field margins	х	х	х	х	х	х		YES	NO	NO
Poaceae	Elymus [Agropyron]	repens	common couch		c220,290,312,533,610,612,P3		?	NO	NO		х			YES	NO	NO
Poaceae	Festuca	rubra	red fescue	Р	P3	field margins	х	х			х			YES	NO	NO
Poaceae	Holcus	lanatus	yorkshire fog	Р	P3	field margins	х	х	х		х			YES	NO	NO
Poaceae	Lolium	multiflorum	Italian ryegrass	A/B	c326		х	х	х	х	х	х		YES	NO	NO
Poaceae	Lolium	perenne	ryegrass	Р	c566, P3		х	х	х	х	Х	х	х	YES	NO	NO
Poaceae	Phalaris	paradoxa			c331	?	х	х	Х	х		х		YES	NO	NO
Poaceae	Phleum	pratense	Timothy	Р	c612		х	х	х	х				YES	NO	NO
Poaceae	Poa	annua	Annual medow grass	A	c20,87,239,326		х	×	Х	х	х	Х		YES	NO	NO

	Plant	Таха			UK references			Pr	eser	nce i	n Au	stra	lia		stat	antine us in tralia
Family	Genus	Species	English name#	A/P /B%%	Paper ref	Notes	Vic	NSW/ACT	SA	WA	TAS	Qld	NT	Present in Australia	Noxious weed in Australia	Potential plant of quarantine concern
Poaceae	Poa	trivialis	Rough meadow grass	Ρ	c15,239,290,326,369,558,610,p3		х	x	NO					YES	NO	NO
Polygonaceae	Fallopia	convolvulus	black bindweed	A	c38,610		х	х		х		х		YES	NO	NO
Polygonaceae	Polygonum	aviculare	Knot-grass	A	c31,38,87,179,203,239,610,P1,P2		х	х		х	х			YES	NO	NO
Polygonaceae	Polygonum	lapathifolium	Pale persicaria	A	c239,P2		х	х	х		Х	х	х	YES	NO	NO
Polygonaceae	Polygonum	pericaria	Redshank	А	c239,P2		х							YES	NO	NO
Polygonaceae	Rumex	obtusifolius	broad- leaved dock	Ρ	P3	field margins, UK nox weed	х	x	х		х			YES	NO	NO
Ranunculaceae	Ranunculus	arvensis	com buttercup, corn crowfoot	A	P1		NO	х			Х			YES	NO	NO
Ranunculaceae	Ranunculus	repens	creeping buttercup	Ρ	P3	field margins	х	х	х	х		х		YES	NO	NO
Rosaceae	Aphanes	arvensis	parsley- piert	A	c606		х	х			Х			YES	NO	NO
Scrophulariaceae	Veronica	hederifolia	ivy-leaved speedwell	A	c15,38,52,65,85,239,P1		х	х	х		Х			YES	NO	NO

	Plant	Таха			UK references			Pre	esen	nce i	n Au	stra	lia		stat	antine us in tralia
Family	Genus	Species	English name#	A/P /B%%	Paper ref	Notes	Vic	NSW/ACT	SA	WA	TAS	QId	NT	Present in Australia	Noxious weed in Australia	Potential plant of quarantine concern
Scrophulariaceae	Veronica	persica	common field speedwell	A	c3,15,38,52,65,85,172,239,606,690		х	х	х	х	х	х		YES	NO	NO
Umbelliferae	Scandix	pecten- veneris	shepherd's needle	A	c38		х	х	х		х			YES	NO	NO
Urticaceae	Urtica	dioica	stinging nettle	Ρ		field margins	NO	х	NO					YES	NO	NO
Violaceae	Viola	arvensis	field violet	А	c15,52,85,188,203,290,606,610,P2		х	х			х			YES	NO	NO

English name as recorded in UK literature

%% Annual / biannual / perennial

Plant Taxa					UK references		Pre	esence in	Aus	stral	ia				Quarant status Australi	in
Family	Genus		English name#	A/P /B%%	Paper ref	Notes	Vic	NSW/ACT	SA	WA	TAS	Qld	NT	Present in Australia	Noxious weed in Australia	Potential plant of quarantine concern
Asteraceae	Chrysanthemum	Segetum	corn marigold	A	c528,P2			NO	NO		NO			NO	NO	YES
Asteraceae	Cirsium	Arvense	creeping thistle	Р	c210,P3	UK nox weed	х	х	х	х				YES	YES	YES
Asteraceae	Cirsium	Vulgare	spear thistle	В	P3	field margins, UK nox weed	х	X	х	х	x	х		YES	YES	YES
Asteraceae	Matricaria [Tripleurospermum]	perforata	scentless mayweed	A	c3,15, P1		NO	NO	NO					NO	NO	YES
Asteraceae	Senecio	jacobaea	common ragwort	B/P	P3	field margins, UK nox weed	х	х	х	х	x	х		YES	YES	YES
Boraginaceae	Myosotis	avensis	field forget- me-not	A/B	c15,52,610, P2,P3		?	NO	NO					NO	NO	YES
Convolvulaceae	Convolvulus	arvensis	bindweed	Р	c610,P3		х	х	х	х	х	х		YES	YES	YES
Cruciferae	Raphanus	raphanistrum	wild radish	A/B	c606		х	х	х	х	х	х	х	YES	YES	YES
Dioscoreaceae	Tamus	communis	black betony	Ρ	c504		NO	NO	NO					NO	NO	YES
Equisetaceae	Equisetum	arvense	field horsetail	Р	c406,532,P1			х						YES	YES	YES

Table 2 Plant species associated with wheat in UK considered a potential quarantine concern due to absence in Australia or under control as a noxious weed

Euphorbiaceae	Euphorbia	platyphyllos	broad- leaved spurge	A	c38,369			NO	NO					NO	NO	YES
Lamiaceae	Galeopsis	angustifolia	red hemp- neetle	A	c38		NO	NO	NO					NO	NO	YES
Lamiaceae	Galeopsis	tetrahit	common hemp nettle	A	c203,239,P2		NO	NO	NO					NO	NO	YES
Lamiaceae	Glechoma	hederacea	ground ivy	Ρ	Ρ3	field margins	NO	NO						NO	NO	YES
Lamiaceae	Lamium	album	white dead-nettle	Ρ	P3	field margins		NO	NO					NO	NO	YES
Lamiaceae	Stachys	sylvatica	hedge woundwort	Ρ	Ρ3	field margins	NO	NO	NO					NO	NO	YES
Poaceae	Apera	Spica-venti	silky bent	A	c499			NO	NO					NO	NO	YES
Poaceae	Bromus	commutatus	meadow brome	A	c12,44,65,199,311			NO	NO					NO	NO	YES
Poaceae	Phleum	pratense ssp. bertolonii	smaller catstail	Ρ	Ρ3	field margins		NO						NO	NO	YES
Rosaceae	Rubus	fruiticosus	bramble	Ρ	Ρ3	field margins	х	Х	х	х	х	х		YES	YES	YES
Rubiaceae	Galium	aparine	clevers	A	c3,4,15,20,40,52,65,85,172,239,290,606,610,G3		х	х	х		х	х	х	YES	YES	YES
Umbelliferae	Anthriscus	sylvestris	cow parsley	B/P	P3	field margins	NO	NO	NO		NO			NO	NO	YES
Umbelliferae	Heracleum	sphondylium	hogweed	B/P	Р3	field margins	NO	NO			NO			NO	NO	YES

Umbelliferae	Torilis	 hedge parsley	Р	Р3	field margins	NO	NO	NO			NO	NO	YES
					-								i i

English name as recorded in UK literature, %% Annual / biannual / perennial

15.2 References

C3 Whitehead R; Wright H.C. (1989) **The incidence of weeds in winter cereals in Great Britain**. Proceedings of the Brighton Crop Protection Conference, Weeds, 1989, Vol. 1, p107-112.

C4 Sansome G (1989) **Factors affecting the control of** *Galium aparine* (cleavers) in winter wheat in early and late spring. Proceedings of the Brighton Crop Protection Conference, Weeds. 1989: Vol. 1, p119-124

C6 Wilson BJ; Moss SR; Wright KJ (1989) **Long term studies of weed populations in winter wheat as affected by straw disposal, tillage and herbicide use.** Proceedings of the Brighton Crop Protection Conference, Weeds. 1989:Vol. 1, p131-136

C12 Feare CJ; Milsom TP; Wright B; Lane P (1989) **The effects of boundary strips on the flora of cereal fields**. Proceedings of the Brighton Crop Protection Conference, Weeds.1989: Vol. 3, p1069-1074

C15 Wilson BJ; Wright JK (1990) **Predicting the growth and competitive effects of annual weeds in wheat.** Weed Research (Oxford). 1990, 30:3, p201-211

C20 Courtney AD; Picton JR; Watson S (1990) **The effect of site factors on predicting weed competition in winter wheat (***Triticum aestivum***). Proceedings of an EWRS symposium, Helsinki, Finland. 1990, p219-229. Symposium on integrated weed management in cereals.**

C31 Unwin RJ; Browning HM; Smith A (1990) **Nitrogen uptake as a measure of weed competition in organic cereal crops.** Monograph - British Crop Protection Council. 1990:No. 45, p201-204

C38 Sotherton NW (1990) **The environmental benefits of conservation headlands in cereal fields.** Pesticide Outlook. 1990, 1:5, p14-18.

C39 Nawamaki T; Suzuki K; Watanabe S; Yamamoto S; Kakuta K; Morimoto K; Oya (1991) **NC-330 - a new herbicide for broad-leaved and grass weed control in wheat.** Proceedings of the Brighton Crop Protection Conference, Weeds. 1991:Vol. 1, p45-50.

C40 Lintell-Smith G; Watkinson AR; Firbank LG (1991) **The effects of reduced nitrogen and weed-weed competition on the populations of three common cereal weeds.** Proceedings of the Brighton Crop Protection Conference, Weeds. 1991:Vol. 1, p135-140

C44 Rule JS (1991) **The effect of straw disposal method on weed populations and the efficacy of herbicides on** *Alopecurus myosuroides, Bromus sterilis* and *Bromus commutatus* in winter wheat **crops.** Proceedings of the Brighton Crop Protection Conference, Weeds.1991:Vol. 2, p799-806

C52 Wilson BJ; Lawson HM (1992) **Seedbank persistence and seedling emergence of seven weed species in autumn-sown crops following a single year's seeding.** Annals of Applied Biology. 1992, 120:1, p105-116

C57 Woolston CRJ; Lee JB; Swinbourne FJ (1992) **Evaluation of thiazolidinone herbicides.** Tests of Agrochemicals and Cultivars. 1992:No. 13, p48-49.

C65 Marshall EJP; Greig-Smith P (ed.); Frampton G (ed.); Hardy A (ed.) (1992) **Weeds.** Pesticides, cereal farming and the environment: the Boxworth Project.1992, p25-36.

C71 Taylor WS (1993) **Control of volunteer linseed in winter cereals in the UK, 1991.** Aspects of Applied Biology. 1993:No. 35, p183-184

C72 Talbot MN (1993) **The occurrence of volunteers as weeds of arable crops in Great Britain.** Aspects of Applied Biology. 1993:No. 35, p231-235.

C85 Wright KJ (1993) **Weed seed production as affected by crop density and nitrogen application.** Brighton crop protection conference, weeds. Proceedings of an international conference, Brighton, UK, 22-25 November 1993. 1993:Vol. 1, p275-280 **C87** Lawson HM; Wright GM; Wilson BJ; Wright KJ (1993) **Seedbank persistence of five arable weed species in autumn-sown crops.** Brighton crop protection conference, weeds. Proceedings of an international conference, Brighton, UK, 22-25 November 1993. 1993:Vol. 1,p305-310

C89 Mortimer AM; Putwain PD; Howard CL (1993) **The abundance of broom grasses in arable agriculture - comparative population studies of four species.** Brighton crop protection conference, weeds. Proceedings of an international conference, Brighton, UK, 22-25 November 1993.. 1993:Vol. 2, p505-514

C141 Burghardt G; Froud-Williams RJ (1995) **Intra- and interspecific competition among** *Bromus* **species and winter wheat.** Brighton crop protection conference: weeds. Proceedings of an international conference, Brighton, UK, 20-23 November 1995. 1995:Vol. 1, p363-364

C172 McCloskey M; Firbank LG; Watkinson AR; Webb DJ (1996) **The dynamics of experimental arable weed communities under different management practices.** Journal of Vegetation Science. 1996, 75:6, p799-808

C173 Miller ACE; Brookes CP; Loxdale HD; Cussans GW (1996) **Using RAPD markers to identify genets of an arable grass weed**, *Arrhenatherum elatius* **ssp.** *bulbosum*. Annals of Applied Biology. 1996, 129:1, p71-82.

C176 Barralis G; Chadoeuf R; Lonchamp JP (1988) **Longevity of annual weed seeds in a cultivated soil.** Weed Research, UK. 1988, 28:6, p407-418

C179 Fisher NM; Davies DHK; Richards MC (1988) **Weed severity and crop losses in conservation** headlands in south-east Scotland. Aspects of Applied Biology. 1988:No. 18, p37-46

C188 Cheer AB; Elliott RA; Bolton BJG (1988) **A combinated formulation of methabenzthiazuron and isoxaben for weed control in winter cereals.** Aspects of Applied Biology. 1988:No. 18, p239-246

C199 Rule JS (1987) **The incidence and control of** *Bromus commutatus, B. sterilis* **and** *Alopecurus myosuroides* **under different straw management regimes on a heavy soil.** Proceedings 1987 British Crop Protection Conference, Weeds. 1987:No. 1, p107-112

C203 Boatman ND (1987) Selective grass weed control in cereal headlands to encourage game and wildlife. Proceedings 1987 British Crop Protection Conference, Weeds. 1987:Vol.1, p277-284

C210 Davies CJ; Orson JH (1987) **The control of** *Cirsium arvense* (creeping thistle) by sulfonyl urea herbicides and a comparison of methods of assessing efficacy. Proceedings 1987 British Crop Protection Conference, Weeds. 1987:Vol.2, p453-460

C220 Marshall EJP (1987) **Using decision thresholds for the control of grass and broad-leaved weeds at the Boxworth E.H.F.** Proceedings 1987 British Crop Protection Conference, Weeds. 1987:Vol.3, p1059-1066

C239 Drummond JM; Horsnail GB (1987) **FR1298 (isoproturon + diflufenican) - a new herbicide for use in winter cereals in northern Britain.** Proceedings, Crop Protection in Northern Britain 1987, Dundee University, 15-17 March 1987, p55-60. Association for Crop Protection in Northern Britain. Invergowie,

C290 Chancellor RJ; Froud-Williams RJ (1982-83, 1984) **Weeds of cereals in central southern England.** 10th Report AFRC Weed Research Organization 1982-83. 1984, p27-32. Weed Research Organization. Yarnton, UK

C304 Moss SR (1985) **The survival of** *Alopecurus myosuroides Huds.* **seeds in soil.** Weed Research, UK. 1985, 25:3, p201-211

C311 Jarvis RH (1982) **Brome grass control.** Annual Review, Boxworth Experimental Husbandry Farm 1982. 1982, p5-7

C312 Rule JS (1982) **Glyphosate for couch control: before or after harvest?** Annual Review, Boxworth Experimental Husbandry Farm 1982. 1982, p8-10

C326 Hollies JD (1982) **A survey of commercially grown high yielding wheat and barley crops from 1977 to 1981.** Proceedings British Crop Protection Conference -- Weeds. 1982, p609-618

C331 Martindale JF; Livingston DB (1982) **Chemical control of** *Phalaris paradoxa* in winter cereals. Proceedings British Crop Protection Conference -- Weeds. 1982, p671-675

C369 Froud-Williams RJ; Chancellor RJ (1982) **A survey of grass weeds in cereals in central southern England.** Weed Research. 1982, 22:3, p163-171

C406 Williams ED (1979) **Studies on the depth distribution and on the germination and growth of** *Equisetum arvense* **L. (field horsetail) from tubers.** Weed Research. 1979, 19:1, p25-32

C499 Silky bent - continental cousin of the meadow grasses. Source: Bayer Agrochem Courier. 1976:No.3, p16

C504 Proctor JM (1975) **Weed control, black bryony on arable land.** UK, Ministry of Agriculture, Fisheries and Food, Agricultural Development and Advisory Service: Experiments and development in the Eastern region 1975, p116.

C528 Allen MG; Luckhurst RJ; Jones RG (1974) **An evaluation of cyanazine mixtures with added adjuvants for the control of** *Chrysanthemum segetum* **and other weeds in cereals.** Proceedings 12th British Weed Control Conference. 1974, p209-216. British Crop Protection Council. London, UK

C532 Williams ED (1974) **Biology and control of perennial weeds:** *Equisetum arvense* (field horsetail). Rothamsted Experimental Station: Report for 1974. 1975, p40-41

C533 Williams ED (1974) **Biology and control of perennial weeds**: *Agropyron repens* and *Agrostis gigantea*. Rothamsted Experimental Station: Report for 1974. 1975, p41-42

C558 Budd EG (1974) **Biology and cultural control of (***Poa trivialis***) in cereal crops.** Proceedings 12th British Weed Control Conference. 1974, p99-106. British Crop Protection Council. London, UK

C566 Lovelidge B (1974) 'Rogue' grass defies paraquat. Arable Farming. 1974, 1:9, p9

C606 Wilson BJ; Cussans GW (1983) **The effect of weeds on yield and quality of winter cereals in the UK.** 10th International Congress of Plant Protection, Brighton, England, 20-25 November, 1983. Volume 3., p121

C610 Chancellor RJ; Froud-Williams RJ (1984) **A second survey of cereal weeds in central southern England.** Weed Research, UK. 1984, 24:1, p29-36

C612 Scragg EB; Kilgour DW (1984) **Perennial grass weeds in barley and wheat in N.E. Scotland.** Crop protection in northern Britain 1984 [chairman Cutler, J.R.]..undated, p38-43

C690 Champion GT; Froud-Williams RJ; Holland JM; Champion GT (ed.); Grundy AC (ed.); Jones NE (ed.); Marshall EJP (ed.); Froud-Williams RJ (ed.) (1998) **The effect of reduced rates of fluroxypyr on the seed size and germination of common field speedwell** *Veronica persica*. Aspects of Applied Biology. 1998:No. 51, p143-146

C708 Smith GL; Freckleton RP; Firbank LG; Watkinson AR; Lintell Smith G (1999) **The population** dynamics of *Anisantha sterilis* in winter wheat: comparative demography and the role of management. Journal of Applied Ecology. 1999, 36:4, p455-471

P1 Broadbalk weed control,

http://www.rothamsted.bbsrc.ac.uk/res/corporate/ltexperiments/tbwinterwheat.html 10 Jan 03

P2 Lutman, PJW, Cussans, GW, Wright, KJ, Wilson, B.J., Wright, G McN., and Lawson, H.M. (2002) The persistence of seeds of 16 weed species over six years in two arable fields. Weed Research, 42, 231-241.

P3 Thomas, S.R., Noordhuis, R., Holland, J.M. and Goulson, D. (2002) Botanical diversity of beetle banks Effects of age and comparasion with conventional arable field margins, Agriculture, Ecosystems and Environment, 93, 403-412.

16 Appendix C

16.1 Germination test procedures used in this study are described here.

Two basic tests were carried out: germination tests and phytotoxicity screens. The germination tests very closely adhered to the International Rules of Seed Testing (1999) by the International Seed Testing Association (ISTA). The phytotoxicity screen is a less restrictive version of the germination tests which allows more flexibility when establishing concentration and exposure times through a series of static phytotoxicity assays.

Germination Tests:

400 seeds were counted out at random from the seed lot. Replicates of 100 seeds, and sub-replicates of 50 or 25 seeds were used as necessary. Work was carried out on well-mixed and thoroughly cleaned pure seed samples, excluding foreign matter and damaged or abnormal seeds. Any high levels of abnormalities were reported. The amount of water added was varied to suit the germination substrate and the size and species of seed to be tested. In many cases, seeds were pre-treated as specified in ISTA and other germination protocols.

Seeds were germinated on top of one or more layers of paper placed in Petrie dishes enclosed in plastic bags placed onto trays and incubated in germination cabinets. Alternatively, seeds were germinated between two layers of paper by placing seeds in rolled towels. The rolled towels were kept sealed in plastic bags, usually 4 replicates (or sub-replicates) per bag. Rolls were placed in an upright position in a germination cabinet. Other methods used included germination on agar medium and in some cases in soil.

Seeds were incubated under the conditions given in germination protocol published in the literature or under protocols developed for this project. Seedlings and seeds were scored as Normal seedlings, Low Vigour seedlings, Abnormal seedlings, Ungerminated seeds, Hard seeds and Fresh seeds according to SGRL Germination testing procedures and to the International Rules of Seed Testing (1999) as follows:

- 1. *Normal seedlings* are developed seedlings which show no defects to essential structures and are of overall normal appearance.
- 2. *Low vigour seedlings* (Seedlings with slight defects) are intact seedlings that show limited damage to primary structures
- 3. *Abnormal seedlings* show at least one severe defect to a primary structure or to the appearance of the seedling as a whole.
- 4. *Fresh seeds* are seeds which have failed to germinate, which have imbibed water, are firm and free of visible fungal infection
- 5. *Mouldy seeds* are seeds which have failed to germinate and are visibly mouldy and/or exude liquid when gently squeezed
- 6. *Hard seeds* are seeds which have failed to germinate and have failed to imbibe at all
- 7. *Empty seeds* are seeds which have failed to germinate because they do not contain an embryo
- 8. *Intact seedlings* show well developed root systems, shoot axis, cotyledons and other primary structures appropriate to the species tested.
- 9. *Developed seedlings* are seedlings which have reached a stage where all essential structures can be accurately assessed.

The following treatments promoting germination were used:

- 1. Pre-chilling: replicates are set up and incubated at 5°C for 7 days unless a different prechill period was specified in the germination protocol
- 2. Pre-heating: replicates were stored at 30°C with free air circulation for 7 days, unless otherwise specified in the protocol, before they are set up for germination.
- 3. Light: Cool white lamps were used in the germination cabinet throughout the germination period unless otherwise specified in the protocol.
- 4. Potassium nitrate: 0.2% solution was used to saturate the germination substrate.
- 5. Gibberellic acid: A 0.05% GA₃ was used to saturate the germination substrate. Alternatively a stronger solution was prepared by dissolving 1.7799 g of Na₂HPO₄ and 1.3799 g of NaH₂PO₄ and 1 g of GA₃ in 1 L of milli-pure water.
- 6. Sulphuric acid: Seeds were soaked in concentrated H₂SO₄ until they became pitted before test.
- 7. Nitric acid: Seeds were soaked in 1N HNO₃ before test.
- 8. Soaking: Seeds were soaked for 24-48 h in milli-pure water
- 9. Mechanical scarification: Seeds were pierced, chipped, filed or sandpapered immediately above the tips of the cotyledon.
- 10. Pre-washing: Seeds were washed in running water at 25°C before test. Dry back at 25°C.
- 11. Removal: Outer structures of seed were removed before the test.

Fungal growth was a recurring problem to germination assessment of many seed samples. There are a number of treatments available, but these should only be used if essential to successful assessment. First and foremost attention was payed to adequate spacing of seed, optimum environment, and hygiene. In most other cases the use of sodium hypochloride, 0.5-5%, 2-10 minutes was sufficient to allow assessment. In some rare cases antibiotics were added to the germination medium during the germination period.

Tests were repeated where dormancy was suspected and no appropriate method to break dormancy had been applied, the test was unreliable because of microbial contamination, seedlings could not be evaluated correctly because the protocol used was inappropriate or where there were errors in test conditions or evaluation.

All results were calculated as the average of four 100 seed replicates. Sub-replicates were combined into 100 seed replicates. Germination results were expressed as a percentage by number of normal seedlings calculated to the nearest whole number. Abnormal seedlings, hard, fresh, mouldy and empty seeds were expressed in the same way.

Phytotoxicity Screen

The Phytotoxicity screen used the same procedures as the germination test, except that tests were carried out on less than 400 seeds where sufficient material was not available. The number of replicates was reduced accordingly. The assessment periods were shortened in cases where this was necessary to make a clear assessment. All results were calculated as the average of the number of seeds available for the test.