

final report

Project code: B.FLT.0397

Prepared by: HM Golder#, MB de Ondarza*, P Cusack‡§, C Sniffen† and IJ Lean# #Strategic Bovine Services Pty Ltd (Scibus), *Paradox Nutrition, LLC, ‡Australian Livestock Production Services, §Charles Sturt University, †Fencrest, LLC

Date published: 1 March 2017

PUBLISHED BY Meat and Livestock Australia Limited PO Box 1961 NORTH SYDNEY NSW 2059

Meta-analysis of protein requirements of feedlot cattle

Meat & Livestock Australia acknowledges the matching funds provided by the Australian Government to support the research and development detailed in this publication.

This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA.

Executive summary

This study provides a quantitative evaluation of dietary and other factors that influence the production outputs critical to the profitability and environmental sustainability of cattle production in feedlots. There is a particular focus on the effects of dietary protein and nitrogen intake, evaluated using different methods, on the production performance and on the retention and loss of these dietary components. Initial searches identified more than 20,000 studies. After screening for suitability, studies were extracted into a large database of 77 studies using NDS software (RUM&N Sas, Italy) containing Cornell Net Protein and Carbohydrate Systems (CNCPS 6.55) protein estimation methods, crude protein (CP), estimates of rumen degradable and undegradable protein (RDP and RUP), and metabolisable protein (MP) derived from NRC (2000) level 1. Papers containing detail of nitrogen retention and loss provided a set of 20 studies.

There were three data sets established that addressed: production responses using classical metaanalytical methods; lean muscle yield (LMY) using mixed models regression and; nitrogen retention and loss using classical meta-analytical methods. The data sets contained mutual studies, but the study content differed markedly between the production responses and the nitrogen balance studies and the latter included Latin square studies, whereas the other two data sets did not.

The National Research Council (NRC) (2000) estimates of MP, metabolisable energy (ME, NEm, NEg), and total digestible nutrients (TDN) were provided in NDS and the physically effective neutral detergent fibre (peNDF) from the NDS feedbank was used to calculate the metabolisable protein NRC (2000) estimates. Comparisons between predictions of outcomes derived using dietary CP or NRC (2000) level 1 or CNCPS 6.55 estimated MP and MP amino acids for outcomes were made. These comparisons indicated that the CNCPS 6.55 estimates of MP were generally superior to use of CP to predict outcomes and both of these were superior to estimates of MP based on NRC (2000) level 1 methods. Amino acid models performed consistently well, with the exception of gain to feed, and this raises the potential for amino acid-based models for the prediction of feedlot performance. However, there was strong collinearity between amino acids, suggesting that the particular amino acids identified as being significant may not be definitive. Many models had significant unexplained variance even after evaluation of other explanatory variables including differences in initial bodyweight and differences in dietary inputs such as fibre and ether extract on model fit using metaregression methods. Interestingly, ether extract entered a large number of models independent of its inclusion in metabolisable energy suggesting that fats may play a role in increasing the efficiency of beef feedlot production as signalling agents.

The LMY models were all very similar in regards to model fit and indicated that the protein and nitrogen estimates were useful in explaining LMY. The LMY models provided the opportunity to evaluate the effect of other factors influencing growth including, sex, breed, hormonal implants, rumen modifiers, and duration of the feeding period. Similarly, the hormonal implant, Synovex H provided a substantial 10 kg advantage in studies in which it was used, while other implants did not always provide significant benefits, despite the point directions being quite large (eg 5 kg). Results from the different models were quite consistent and found that heifers gained approximately 8 kg, cows 3 kg less and bulls 5 kg more than steers. Treatment effects, per se, were only significant for the CP model, indicating that the effects of dietary nitrogen and protein interventions were well

explained by the outcome variables used in the other models, and those models had better statistical fit.

Multivariable models were developed to predict production outcomes and to predict nitrogen retention and loss. The results indicate that feeding additional protein and nitrogen increased retention of nitrogen and that urea and 'other' interventions increased the retention of nitrogen in the body. Only approximately 16% of dietary nitrogen was retained in the body. Nitrogen loss in urine increased with dietary nitrogen and protein intake and faecal loss increased quadratically with increased nitrogen intake. Concentrations of nitrogen in serum and plasma increased linearly with nitrogen intake. Results indicate the potential to increase the efficiency of nitrogen use.

There are indications that optimal dietary protein and nitrogen intake strategies exist as indicated by quadratic terms for protein and nitrogen measures in many of the models developed.

Few studies were present where average daily gain (ADG) exceeded 2.0 kg per day and diets seldom exceeded 13% CP, with many interventions being based solely on non-protein nitrogen. Further, the grain base was substantially corn and corn by-products. These limitations indicate the potential to explore other strategies to increase growth of cattle in feedlots using cereal grains, fats, amino acids, and differing amounts of protein.

Table of contents

1	Bac	kgrou	und	.6
2	Proj	ect c	bjectives	.6
3	Met	hod	ology	.7
	3.1	Liter	ature search	7
	3.2	Inclu	ision and exclusion criteria	7
	3.3	Data	extraction	7
	3.4	Stati	stical analysis	.9
4	Res	ults		13
	4.1	Desc	riptive statistics	13
	4.2	Univ	ariable analyses	13
	4.3	Initia	al investigations of responses of production variables to treatment	13
	4.4	Mult	tivariable high level models	14
	4.5	Mult	tivariable protein fraction models	23
	4.6	RDP	and RUP models	27
	4.7	Mult	tivariable amino acid models	31
	4.8	Mult	tivariable energy source models	36
	4.9	Pred	lictions of lean muscle yield	39
	4.10	Nitro	ogen balance studies	49
	4.10	.1	Retained body nitrogen	50
	4.10	.2	Urinary nitrogen loss	51
	4.10	.3	Faecal nitrogen loss	53
	4.10	.4	Serum and plasma urea nitrogen concentrations	55
	4.11	Pred	lictions of nitrogen outputs from nitrogen intake	55
5	Disc	ussio	on	55
	5.1	Eval	uation of models to predict production responses	56
	5.1.1 aver		Univariable and multivariable evaluation of final body weight, hot carcass weight an laily gain	
	5.1.2	2	Univariable and multivariable evaluation of dry matter intake and gain: feed	57
	5.1.3	3	Univariable and multivariable evaluation of longissimus muscle area and fat thickne 58	SS
	5.1.4	1	Lean muscle yield models	58

		A comparison of the results achieved using CNCPS 6.55, crude protein, metabolisable nestimated using NRC (2000) level 1, protein fractions, and measures of rumen degraded	ł
	•	degraded dietary protein from NRC (2000)	
	5.3	Models evaluating responses to nitrogen and nitrogen balance	.62
6	Con	clusions/recommendations	63
7	Кеу	messages	64
8	Bibl	iography	65
9	Арр	endix	68
	9.1	List of scientific references contained in the data bases	.68
	9.2	Figures	.74
	9.3	Tables	.78

1 Background

Substantial numbers of cattle worldwide are finished in feedlot systems. Many studies have individually examined responses to protein or nitrogen additions to the diet. Feeding systems have been developed based on aggregated data. There is a need for a comprehensive examination of the production and nitrogen balance responses to protein interventions in feedlot cattle. In particular, the merit of newer methods of evaluating production responses to protein and nitrogen intervention should be evaluated.

The genesis of modern systems of nutritional evaluation emerged with the development of the Wende system of nutritional analysis and became more quantitative with the emergence of direct and indirect calorimetry. The establishment of nationally supported feed standards including those developed by National Research Council (NRC) in the USA, Agricultural Research Council in the UK and Institut National de la Recherch Agronomique (France) advanced the field. These efforts were complemented by more mechanistic models including those of Baldwin (1995) and the Cornell Net Carbohydrate and Protein System (CNCPS) (Fox et al., 1992). The delivery of more effective models of nutritional response will provide better animal well-being, improve the efficiency of production and reduce environmental waste. Evaluating the effectiveness of models is an important part of the process of improving models.

We hypothesized that the newer systems of evaluation of nitrogen, protein, and amino acids such as CNCPS would provide models that explained more of the variance in production responses than the older models including CP, and NRC (2000). Sources of variation in response to protein or nitrogen were also evaluated using meta-regression and mixed models analysis. Factors that were hypothesized to influence production responses and lean muscle yield (LMY) included: gender, breed, hormonal implants, protein intervention, rumen modifiers, carbohydrate, and lipid components of the diet. Further, we examined the efficiency of retention of nitrogen in the body, losses of nitrogen in faeces and urine and factors that influenced retention or loss of nitrogen.

2 Project objectives

- 1. Conduct a meta-analysis of peer-reviewed published literature to determine:
 - a. Optimal levels of dietary protein relevant to the Australian feedlot industry taking into account the effects of Australian carcass endpoints, typical initial body weights, and mature size (gender, implants, breed) on protein requirements if possible.
 - b. Effects of protein level and degradability (as expressed as crude protein, RDP/RUP, metabolisable protein, estimated metabolisable amino acid balance or estimated metabolisable amino acid balance over estimated metabolisable energy intake) on carcass gain, retained body nitrogen and nitrogen loss to the environment of feedlot cattle
 - c. Effects of protein level and degradability on dry-matter intake and efficiency of hot carcass weight gain of feedlot cattle.

 The adequacy of published protein systems and the protein deficit/surplus they predict (i.e. CP vs. NRC vs. CNCPS 6.55) to explain nitrogen loss from feedlot cattle. These evaluations will be limited by the number of papers reporting the relevant data for conducting estimations.

3 Methodology

3.1 Literature search

A comprehensive literature search of English language literature published before and including 2016 was conducted to identify feedlot studies involving treatments with variable nitrogen-based interventions including non-protein nitrogen (NPN), amino acid and protein meals. Literature searches were performed in PubMed (http://www.ncbi.nlm.nih.gov/pubmed; accessed 20 May 2016), Science Direct (http://www.sciencedirect.com/; accessed 5 May 2016), Google Scholar (http://scholar.google.com/; accessed 6 May 2016), and ISI Web of Knowledge (http://wokinfo.com/; accessed 10 May 2016) using the following search or appropriate variation for the specific search engine: (Beef feedlot OR Beef OR Beef cattle) AND (protein OR urea OR nonprotein nitrogen OR amino acid) AND (weight gain OR carcass gain OR nitrogen retention OR nitrogen loss OR manure OR urea). Exact search terms for each data base are provided in Appendix Table 1. One minor source http://www.livestocklibrary.com.au/handle/1234/5258 was also searched to obtain articles including those more obscure Australian publications.

3.2 Inclusion and exclusion criteria

Studies were included in the meta-analysis if they met the following criteria: they resulted in full manuscripts from peer reviewed English-language journals, they included

the use of a protein or nitrogen supplement against a control, they described a randomisation process, they included replication of treatments, they fed a feedlot diet, they had comprehensive diet definition with specification of individual dietary ingredients and forage analyses, they had detailed cattle responses including weight gain, carcass gain, nitrogen retention or nitrogen loss, they included sufficient data to determine the effect size (ES), they included a measure of effect amenable to ES analysis for continuous data (e.g., standardised mean difference [SMD]), and they included a measure of variance (SE or SD) for each effect estimate or treatment and control comparisons. Study designs were assessed as past studies conducted by our group have identified problems with Latin Square design studies in particular.

3.3 Data extraction

The following experimental details were extracted for each study that met the inclusion criteria: author, year, location, journal, trial design, treatment number, treatment description, breed, gender, number of head per treatment and control, number of head per pen of treatment and control, initial body weight, days on feed, implant strategies, grain processing techniques, grain sources, and other potential response modifiers including ionophores and antibiotics. Information on periods of compensatory growth was not available. Production outcome variables extracted included: hot carcass weight (HCW), final body weight (FBW), longissimus muscle area (LMA), fat

thickness (FT), quality grade, average daily gain (ADG), dry matter intake (DMI), gain to feed (G:F), and feed to gain (F:G). Nitrogen outcome variables extracted included: retained body nitrogen (RBN), urinary nitrogen loss (UNL) and faecal nitrogen loss (FNL) and serum and plasma nitrogen (SUN). Dietary parameters were also extracted. The difference between treatment and control was calculated for the following variables: initial body weight, FBW, HCW, G:F, F:G, DMI, ADG, RBN, UNL, FNL, and SUN. Quality grade was not able to be assessed due to the difference in grading systems reported. There were not enough studies that reported F:G to assess. Diet nutrient profiles were obtained by entering diet and feed analysis data from each experiment into an advanced nutrition model (CNCPS 6.55 with NDS platform, RUM&N Sas, Italy) to determine nutrient parameters including crude protein (CP), rumen degradable protein (RDP), rumen undegradable protein (RUP), and individual metabolisable amino acids predicted to be supplied (Van Amburgh et al., 2015). In the cases where nutrient analyses for diet ingredients were not reported, CNCPS 6.55 feed dictionary analyses were used. Results from these were compared to NRC (2000) estimates of metabolisable protein (MP) and to CP.

Dietary values for metabolisable energy (ME), total degradable nutrients (TDN), net energy for maintenance (NE_m) and net energy for gain (NE_g) were generated using NDS to provide the NRC (2000) values for beef cattle. The effective neutral detergent fibre (eNDF) for NRC (2000) was estimated from the physically effective NDF (peNDF) from the NDS feedbank for diets, in order to estimate efficiency of microbial crude protein production utilising NRC (2000) equations as follows. Microbial MP supplied was estimated assuming a conversion of 64% of microbial CP, and MP from dietary RUP was estimated assuming a digestibility of 80% of the dietary RUP supplied (NRC, 2000). Metabolisable protein supplied from the diet was the sum of microbial MP supplied and MP from dietary RUP supplied. The NRC (1996) level 1 predictions for microbial CP were 0.13 x TDN intake x eNDF adjustment factor, which reduced the microbial CP prediction when diets contained less than 20% predicted NDF.

These estimations of MP produced based on NRC (2000) were used to predict outcomes in metaregression models.

Nitrogen retention, nitrogen loss, and blood nitrogen were obtained from the data and analysed. These estimates are compared to those derived from NDS.

Scibus and Meat and Livestock Australia agreed to evaluate LMY according to recently developed and validated methods used in Australia. Consequently, the following estimates of LMY were made according to methods developed at Murdoch University (Jose et al., pers comm) and the following equations were used. The R-Squared for the regression was 0.71 and root mean square error (RMSE) = 2.79. For steers, bulls and mixed groups the steer equation was used and for heifers, the heifer equation was applied.

For Steers

Predicted LMY = 62.1109 + (Leftside HCW x -0.09244) + (LMA x 0.1645) + (RibFat x -0.4936)

For Heifers

Predicted LMY = 59.3974 + (Leftside HCW x -0.09244) + (LMA x 0.1645) + (RibFat x -0.4936)

3.4 Statistical analysis

The key variables of interest were protein yield in carcass, as represented by FBW, HCW, retained nitrogen and LMY. This study was primarily designed to evaluate dietary factors, including the effects of estimated MP (EMP) amino acids flux (g) or expressed as a proportion of EMP amino acids flux [g divided by estimated ME (Mcal)], on protein yield. The latter is expressed as:

EMP amino acid (g) Estimated ME intake (Mcal)

Data were extracted from the studies and entered into three final data formats. One data base was evaluated to determine whether the explanatory variables examined predicted 7 outcome variables, specifically FBW, HCW, ADG, DMI, G:F, LMA, and FT using a classical meta-analytical evaluation of responses of the experimental group to the interventions used in the studies, as represented by the differences in dietary inputs provided by the treatment and control groups.

The second data base was similar and examined nitrogen retention studies and the variables: RBN, UNL, FNL, and SUN using classical meta-analytical methods.

A third data base was structured to provide each trial as a single line entry and to examine factors influencing LMY using mixed effects regression analysis. This data base was suited, therefore, to examine the effects of breed, sex, hormonal implants, and dietary feed additives as well as the influence of diet. Factors that were examined included the type of intervention (urea, soyabean meal, ruminally protected protein meal, distillers grains, cottonseed meal, corn gluten feeds or meals, canola meal, fish meal, commercial blends, and other interventions), initial BW of the controls and BW difference between treated and control cattle at the start of the study (kg), duration of the study, breed of cattle, sex of cattle, use of hormonal interventions (including pretreatment, at treatment onset and re-implantations and timing of treatments), feed additives (monensin, tylosin, lasalocid) and differences between treated and control cattle in their intake of estimated ME (Mcal/d), estimated MP (g), CP (g), soluble protein (g), Protein A_2 fraction, Protein B_1 (g), Protein B_2 (g), RDP at 1x maintenance, RUP at 1x maintenance, acid detergent fibre (ADF; g), acid detergent lignin (ADLG), NDF (g), peNDF (g), NDF from forage (g), sugar (g), starch (g), soluble fibre (g), rumen available fatty acid load (RUFAL; g), ether extract (g), ammonia (g), EMP (estimated MP) Met (g), EMP Lys (g), EMP Arg (g), EMP Thr (g), EMP Leu (g), EMP Ile (g), EMP Val (g), EMP His (g), EMP Phe (g), EMP Trp (g).

All EMP amino acids were separately evaluated and expressed as amino acid mass per estimated MCal ME (g/MCal). An estimate of the non-essential amino acid mass available as MP was derived by subtracting the sum of the amino acids listed above in g from the estimated MP g and the difference between treated and control cattle was evaluated. Further, differences in intake (g per d) of fermentable carbohydrate fractions for NDF, sugar, starch, and soluble fibre between treatment and control cattle were evaluated. The effects of study design (Latin square and Youdan square vs. randomised trials that were not cross-over designs) and grain type were also evaluated. There was sufficient diversity of cattle breeds to test for this effect and the following breed groups were used (1. British crossbred, Angus, or British breeds, 2. British Continental cross, 3. *Bos indicus* cross, and 4. Not identified).

Initial data exploration included production of basic statistics to examine the data for errors and to assess the means and measures of dispersion. Normality of the data was examined for continuous variables which were then centred to allow better interpretation of the coefficients produced in models. Correlations among variables were explored and linear and quadratic relationships were examined using panel plots (Stata Version 14.1, StataCorp College Station, Texas, USA). The quadratic effects of MP amino acids were also tested. During this process, it was noted that there was marked collinearity among most estimates of MP amino acids (r >0.9). Unfortunately, some of the statistical models later developed showed strong evidence of the influence of collinearity in these variables and some models based on MP amino acids were not reported due to the instability of models.

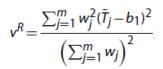
Stata (Stata Version 14.1) was used to analyze differences in the production variables (FBW, HCW, ADG, DMI, G:F, LMA, and FT) and nitrogen balance variables (RBN, UNL, FNL, and SUN) by standardised mean difference (SMD) which is also called effect size (ES) analysis. The difference between treatment and control group means was standardised using the standard deviations of control and treatment groups. The SMD estimates were pooled using the DerSimonian and Laird (1986) random effects models. If the paper reported separate estimates of measure of variance (SE or SD) for each group, these were recorded as such. Many studies reported a common SE or SD and these estimates were used for both control and treatment groups. A random effects weighted mean difference (WMD) between treated and control is provided, with the weighting reflecting the inverse of the variance of the studies included according to no-standard method (Stata Version 14.1).

Random effects models were used for each outcome variable to estimate the effect size, 95% confidence intervals (CI), and statistical significance of SMD. It is recognised that there is a clustering effect that results from multiple comparisons to a single control group, but it is assumed that the variance inflation effect is minor unless there are very large numbers of repeated comparisons. In these data sets that contained a very large number of studies, this effect should be negligible.

Forest plots were produced for all outcome variables using the estimated SMD using random effects models (DerSimonian and Laird, 1986: IntHout et al., 2014). Effects of protein or nitrogen-based interventions on RBN, FNL, and UNL are displayed. Production variables contained too much data to provide legible forest plots. Points to the left of the vertical line in the forest plot represent a reduction in the outcome, whereas points to the right of the line indicate an increase in the outcome variable. Each square represents the mean ES for that study. The upper and lower limit of the line connected to the square represents the upper and lower 95% CI for the ES. The grey vertical line represents the mean difference of zero or no effect and studies that do not include the grey vertical line in the CI are significant.

The weighting of a study is estimated by the inverse of the variance of the ES. Box sizes are proportional to the inverse variance of the estimates (Lean et al., 2009). The size of the square box reflects the relative weighting of the study to the overall ES estimate with larger squares representing greater weight. Boxes draw attention to the studies with the greatest weight.

Assessment of heterogeneity. Variations among the trial level SMD were assessed using a χ^2 (*Q*) test of heterogeneity (Egger and Smith, 2001). Heterogeneity in studies reflects underlying differences in clinical diversity of the herds and interventions used, differences in study design and analytical methods, and statistical variation around responses (Lean et al., 2009). Identifying the presence and


sources of the heterogeneity improves understanding of the responses to the interventions used. We used an α level of 0.10 because of the relatively poor power of the χ^2 test to detect heterogeneity among small numbers of trials (Egger and Smith 2001). Heterogeneity of results among the trials was quantified using the l^2 statistic (Higgins and Thompson, 2002), who developed this measure of the impact of heterogeneity on a meta-analysis, from mathematical criteria, that are independent of the number of studies and the treatment effect measure. The l^2 statistic is a transformation of the square root of the χ^2 heterogeneity statistic divided by its degrees of freedom and describes the proportion of total variation in study estimates that is due to heterogeneity (Higgins et al., 2003). Negative values of l^2 were assigned a value of 0, consequently the value l^2 lies between 0 and 1 (Higgins et al., 2003). An l^2 value greater than 0.5 indicates substantial heterogeneity. The τ^2 value was also produced, which is an estimate of the between-study variance in a random effects meta-analysis (Higgins and Green, 2011). The square root of this number (i.e., τ^2) is the estimated SD of underlying effects across studies (Higgins and Green, 2011).

Meta-regression. Meta-regression analyses were used to explore the source of heterogeneity of response, using the individual SMD for each trial as the outcome and the associated SE as the measure of variance. Meta-regression was used to test whether there is evidence of different effects in different subgroups of trials or with different covariables (Knapp and Hartung 2003). In order to include more than one covariable in the model, we used the methods of Knapp and Hartung (2003). This method was extended to the case of more than one covariable in the meta-regression, and the use of the smoothed within-trial variance estimates to improve hypothesis testing with regard to the significance levels. A backward stepping regression was performed using all variables identified on univariable analysis. The permutation test approach for assessing the statistical significance of meta-regression methods suggested by Higgins and Thompson (2004), and programmed by Harbord and Higgins (2008) and Harbord and Steichen (2004), was used in our analyses to reduce the risk of type I error.

We recognize that there is a clustering effect that results from multiple comparisons e.g. to a single control group or even trials within study. The results of the Knapp-Hartung test, which do not account for the hierarchical structure of the effects of trial are provided for comparison to robust regression models derived using the same starting variables that account for the nested effect of trials within study (Hedges et al., 2010) and programmed as *robumeta* (StataCorp LP.) and applied by Tanner-Smith and Tipton (2014). Those with a strong interest in statistical methods should consult Hedges et al. (2010) for detail on the theory and testing of the assumptions in regards to robust regression methods. Briefly, in this test the mean effect size from a series of studies is described as follows (Hedges et al., 2010). In this case, the regression model has only an intercept b1 and the weighted mean has the form:

$$b_1 = \frac{\sum_{j=1}^{m} \sum_{i=1}^{k_j} w_{ij} T_{ij}}{\sum_{j=1}^{m} \sum_{i=1}^{k_j} w_{ij}}$$

If all the estimates in the same study are given identical weights, the robust variance estimate (vR) reduces to:

Ŧj

where is the unweighted mean of the estimates in the jth cluster, b1 is the estimate of the weighted mean, and w_j is the total weight given to estimates in the jth cluster. This is a kind of \bar{T}_j

weighted variance which reduces to $(m-1)/m^2$ times the variance, when the weights within study are identical and (since the correlation coefficient = 1 in this case), robust regression standard error equals 1/m times the variance of estimated when the weights are equal.

Study design, whether studies were Latin square, Youdan square or randomised designs (factorial or completely randomised without cross-over designs) was tested for significance univariably, but there were no final multivariable models that were significant that included study design.

Publication bias. Presence of publication bias was investigated using funnel plots for all outcome variables but only one example is provided (Appendix Fig. 1). Funnel plots are a simple scatter plot of the intervention effect estimates from individual studies (horizontal axis) plotted against study precision (vertical axis; Light and Pillemer, 1984; Sterne and Harbord, 2004). The name 'funnel plot' arises because precision of the estimated intervention effect increases as the size and precision of a study increases (Sterne and Harbord, 2004). Effect estimates from small studies will scatter more widely at the bottom of the graph and the spread narrows for larger studies (Sterne and Harbord, 2004). In the absence of bias the plot should approximately resemble a symmetrical (inverted) funnel. If there is bias, for example because smaller studies without statistically significant effects remain unpublished, this will lead to an asymmetrical appearance of the funnel plot and a gap will be evident in a bottom corner of the graph. In this situation, the effect calculated in a meta-analysis will tend to overestimate the intervention effect (Sterne and Harbord, 2004). The more pronounced the asymmetry, the more likely it is that the bias will be substantial.

Further exploration of the factors that influenced LMY was conducted using variables that had a *P*<0.2 on univariable analysis. Mixed models analysis was conducted using Stata (Version 14.1) and the mixed methods. Study was included in the model as a random effect to account for variation not described by other factors considered in the model. The intercept, linear, and quadratic terms were tested as fixed effects. The models were not weighted according to the inverse of the study variance because LMY was a synthetic variable, therefore did not have an individual trial estimate of error. The study sizes were relatively consistent with the exception of studies conducted in Calan gates (American Calan Company, New Hampshire) and a decision was made that these did not constitute typical feedlot conditions. Therefore, a weighting based on trial alone would be reasonable. A backward stepping modelling approach was used with the removal of the least significant term at each step and evidence of confounding was evaluated by examination of change in the regression coefficients. The model fit was assessed by evaluating the Akaike's information criteria (AIC) and

comparing this to previous models. Residuals from the random effects model were examined for heteroscedasticity by examination of plots of residuals against fitted values and normality assumptions were tested by evaluating quantiles of the standardised residuals against quantiles of the normal distribution. Assumptions of the normality of distribution of random effects derived from the mixed procedure were tested using graphical assessment of the normality distribution of the best unbiased linear predictors for study.

4 Results

4.1 Descriptive statistics

Table 1 provides the descriptive statistics for the outcome variables studied. Appendix Table 2 provides descriptive statistics for the explanatory continuous variables. Non-continuous explanatory variables examined included: sex, breed, rumen modifiers, protein treatment intervention, grain type, and hormonal implants used before and during the trials. The number and percentage of each category within these non-continuous variables is provided in Appendix Table 3.

Table 1. Descriptive statistics of outcome variables for both production and nitrogen balance including number of observations (No.), mean, standard deviation (SD), minimum, median and maximum.

Variable	No.	Mean	SD	Minimum	Median	Maximum
ADG, kg/d	283	1.51	0.32	0.20	1.59	2.15
Final BW, kg	246	538.1	94.5	232.0	567.0	690.0
HCW, kg	235	355.1	36.4	269.4	360.0	550.3
G:F, kg/kg	218	0.16	0.02	0.04	0.17	0.23
DMI, kg/d	289	9.40	1.59	4.50	9.54	12.66
LM area, cm ²	231	84.1	8.5	32.0	84.9	101.8
Fat thickness, cm	236	2.87	3.86	0.61	1.29	15.50
Nitrogen intake, g/d	82	169.0	68.6	61.2	150.0	353.0
Retained body N, g/d	59	40.2	18.9	8.5	37.9	87.0
Faecal N loss, g/d	63	48.89	15.67	29.20	45.20	101.9
Urinary N, g/d	48	85.45	49.69	16.70	63.3	201.0

4.2 Univariable analyses

The univariable analyses for the production outcomes ADG, FBW, HCW, G:F, DMI, LMA, and FT are provided in Appendix Tables 4-10.

4.3 Initial investigations of responses of production variables to treatment

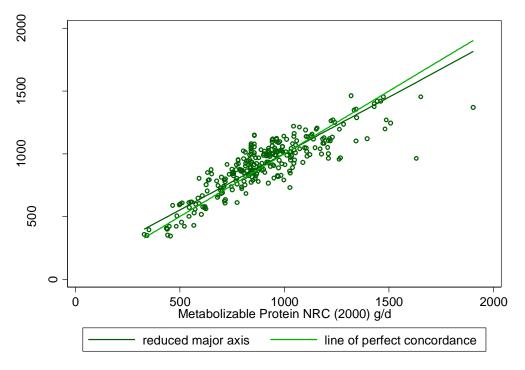
All production outcome variables investigated, with the exception of LMA, had significant differences in response to treatment (Table 2) and there were significant responses to individual treatments (Table 3), however, there was considerable heterogeneity in response (Appendix Table 11).

Table 2. Effect size estimates of the effect of nitrogen and protein interventions on production outcomes. The estimates are based on Knapp-Hartung methods and provide the effect size, standard error of the effect size (ES), t-value, *P*-value and 95% CI. The second estimate is provided from the robust regression analysis that accounts for the nested effect of trial within study from Hedges et al., 2010).

Variable	ES	SE	t-value	P-value		95%	CI
ADG	0.374	0.080	4.670	0.001	0.216	-	0.532
Robust estimate	0.376	0.108	-	0.001	0.160	-	0.593
Final BW	0.260	0.072	3.590	0.001	0.117	-	0.403
Robust estimate	0.270	0.098	-	0.008	0.072	-	0.468
HCW	0.213	0.060	3.520	0.001	0.093	-	0.332
Robust estimate	0.255	0.086	-	0.005	0.083	-	0.427
G:F	0.319	0.085	3.750	0.001	0.151	-	0.487
Robust estimate	0.304	0.104	-	0.006	0.094	-	0.514
DMI	0.169	0.063	2.680	0.008	0.045	-	0.292
Robust estimate	0.188	0.096	-	0.055	0.043	-	0.380
LM area	-0.074	0.052	-1.420	0.157	-0.178	-	0.029
Robust estimate	-0.015	0.083	-	0.858	-0.181	-	0152
Fat thickness	0.313	0.062	5.020	0.001	0.190	-	0.437
Robust estimate	0.324	0.073	-	0.001	0.177	-	0.470

Table 3. Weighted mean differences and 95% CI between the treatment and control studies in outcomes with the weighting reflecting the inverse of the variance of the studies included according to no-standard method (Stata Version 14).

Variable	Weighted mean difference		95% CI	
ADG, kg/d	0.058	0.039	-	0.077
Final BW, kg	5.547	3.259	-	7.835
HCW, kg	3.252	1.811	-	4.692
G:F, kg/kg	0.004	0.002	-	0.006
DMI, kg/d	0.140	0.071	-	0.208
LM area, cm ²	-0.151	-0.594	-	0.293
Fat thickness, cm	0.077	0.049	-	0.106


4.4 Multivariable high level models

The models in Table 4 are multivariable meta-regression models using the Knapp-Hartung methods for estimates of the co-efficients, estimates of model fit (R^2) and heterogeneity (I^2) and variance (τ^2) and using permutation methods (Higgins and Thompson 2004; Harbord and Higgins 2008; Harbord and Steichen 2004) for estimates of *P*-values. These were developed for the different production outcome variables using pre-trial BW differences or the pre-trial control BW and duration of trial as co-variables and differences in energy or estimated MP balance (CNCPS 6.55) between the treatments and controls. These can be compared with models developed on the basis of CP differences (Table 5) or differences in MP estimates based on NRC (2000) level 1 models (Table 6).

The linear regression between the two methods of estimating MP [i.e. CNCPS 6.55 and NRC (2000)] had a strong association ($R^2 = 0.80$; P < 0.001) and Lin's concordance 0.86 with an z transformed 95% confidence interval of (0.827 to 0.887) (Fig. 1) and a positive intercept of 112 g and slope 0.9.

However, the models developed using the difference in MP (NRC 2000) intake between treatment and control cattle were poorly fitting (low R² values; Table 6) compared to those developed based on differences in MP (CNCPS 6.55) in Table 4 or CP (Table 5). Only two models, those for FBW and HCW provided a numerically R² using CP rather than MP (CNCPS 6.55). The MP (CNCPS 6.55) in Table 4 explained a considerable amount of the variation (R²) in the differences in response between the treated and control groups with the exception of G:F and LMA.

It should be noted that for the meta-regression models for differences in production performance between treated and controls, factors such as breed, sex, rumen modification, and hormonal treatments did not enter the models as these were equally applied to the treated and control groups. These effects were tested in some models including FBW and HCW.

Fig. 1. Concordance between Estimated metabolisable protein (MP) as derived using NRC (2000) vs. Cornell (CNCPS) 6.55 derived estimates.

Table 4. Outcomes evaluated using multivariable meta-regression models based on differences between treated and control groups for MP estimated in NDS using CNCPS 6.55. Knapp-Hartung methods were used to derive estimates of the co-efficients, estimates of model fit (R^2) and heterogeneity (I^2) and variance (τ^2). The permutation methods of Higgins and Thompson (2004), Harbord and Higgins (2008), and Harbord and Steichen (2004) were used for estimates of *P*-values. The robust regression model that accounts for the nested effect of trial within study was used to determine the robust model results (Hedges et a., (2010).

Variable	No.	Coefficient	SE	95%	CI	Adjusted R ²	l ²	τ^2	Adjusted <i>P</i> -value
ADG, kg/d									
Initial BW (Control only), kg	208	-0.005	0.001	-0.007 -	-0.003	68.8	36.8	0.174	<0.001
ME, Mcal		0.255	0.038	0.181 -	0.330				<0.001
MP, g/d		0.002	0.001	0.001 -	0.003				<0.001
MP ² , g/d		<0.001	<0.001	<0.001 -	< 0.001				<0.001
Ether extract, g		0.002	0.001	0.001 -	0.003				
ADG, kg/d (Robust model)									
ME, Mcal	208	0.237	0.088	0.028 -	0.446				0.032
MP, g/d		0.003	0.001	0.001 -	0.019				<0.001
MP ² , g/d		<0.001	<0.001	<0.001 -	<0.001				<0.001
Final BW, kg									
Initial BW (Control only), kg	165	-0.005	0.001	-0.007 -	-0.003	91.5	17.9	0.024	<0.001
Initial BW, kg		0.036	0.013	0.011 -	0.061				0.015
ME, Mcal		0.170	0.033	0.105 -	0.235				<0.001
MP, g/d		0.003	<0.001	0.002 -	0.003				<0.001
Final BW, kg (Robust model)									
MP, g/d		0.003	<0.001	0.001 -	0.005		0	0	0.005

HCW, kg

Initial BW, kg	172	-0.003	0.001	-0.005	-	-0.001	86.4	10.5	0.019	0.022
ME, Mcal		0.155	0.031	0.093	-	0.217				<0.001
MP, g/d		0.002	<0.001	0.002	-	0.003				<0.001
MP ² , g/d		<0.001	<0.001	<0.001	-	<0.001				<0.001
HCW, kg (Robust model)										
ME, Mcal		0.108	0.004	0.013	-	0.202		0	0	0.031
MP, g/d		0.003	<0.001	0.002	-	0.005				0.001
MP ² , g/d		<0.001	<0.001	<0.001	-	<0.001				0.006
G:F, kg/kg										
MP, g/d	157	0.001	0.001	< 0.001		0.003	25.1	64.8	0.39	0.010
MP ² , g/d		<0.001	<0.001	<0.001		<0.001				0.027
Ether extract, g		0.002	0.001	0.001	-	0.003				0.002
G:F, kg/kg (Robust model)										
MP, g/d	157	0.001	0.001	-0.002	-	0.003		0	0	0.092
MP^2 , g/d	157	< 0.001	<0.001	< 0.001		<0.001		0	0	0.001
Ether extract, g		0.001	0.001	0.001		0.003				0.001
		0.000	0.001	01001		01000				0.02.
DMI, kg/d										
ME, Mcal	212	0.264	0.031	0.202	-	0.326	66.5	19.9	0.066	<0.001
MP, g/d		0.003	<0.001	0.002	-	0.004				<0.001
MP ² , g/d		<0.001	<0.001	<0.001	-	<0.001				<0.001
DMI, kg/d (robust model)	212	0.004	<0.001	0.002	_	0.005		0	0	<0.001
MP, g/d	212		<0.001					0	0	
MP ² , g/d		<-0.001	<0.001	<0.001	-	<0.001				0.018
LM area cm ²										
ME, Mcal	169	0.072	0.033	0.008	-	0.137	NA	17.2	0	0.049
MP, g/d		0.001	<0.001	< 0.001	-	0.002				0.005

MP ² , g/d		<0.001	<0.001	<0.001	- <0.001				0.006
LM area cm ² (Robust model)	No valid model								
Fat thickness									
MP, g/d	173	0.002	0.001	0.001	- 0.003	66.9	27.0	0.035	<0.001
MP ² , g/d		<0.001	<0.001	<0.001	- <0.001				0.001
Ether extract, g		0.001	0.001	<0.001	- 0.002				0.031
Fat thickness (Robust model)	No valid model								

Table 5. Outcomes evaluated using multivariable meta-regression models based on differences between intake of CP for treated and control groups. Knapp-Hartung methods were used to derive estimates of the co-efficients, estimates of model fit (R^2) and heterogeneity (I^2) and variance (τ^2). The permutation methods of Higgins and Thompson (2004), Harbord and Higgins (2008), and Harbord and Steichen (2004) were used for estimates of *P*-values. *Adjusted Pvalues. The robust regression model that accounts for the nested effect of trial within study was used to determine the robust model results (Hedges et al., 2010).

Variable	No.	Coefficient	SE	95% CI	Adjusted R ²	ľ	τ^2	P-value
ADG, kg/d								
Initial BW (Control only), kg	208	-0.004	0.001	-0.0060.002	65.5	36.6	0.193	0.006
ME, Mcal		0.257	0.038	0.182 - 0.332				<0.001
CP, g		0.002	<0.001	0.002 - 0.003				<0.001
CP ² , g		<0.001	<0.001	<0.001 - <0.001				<0.001
Ether extract, g		0.003	0.001	0.002 - 0.004				<0.001
ADG, kg/d (Robust model)								
ME, Mcal	208	0.267	0.098	0.035 - 0.498				0.03
CP, g		0.003	<0.001	0.002 - 0.004				<0.001
CP ² , g		<0.001	<0.001	<0.001 - <0.001				<0.001
Final BW, kg								
Initial BW, kg	165	-0.004	0.001	-0.0060.002	99.4	13.7	0.002	0.002*
ME, Mcal		0.198	0.031	0.136 - 0.260				<0.001*
CP, g		0.002	<0.001	0.002 - 0.003				<0.001*
CP ² , g		<0.001	<0.001	<0.001 - <0.001				<0.001*
Final BW, kg (Robust model)								
Final BW, kg								
CP, g		0.003	<0.001	0.002 - 0.004		0	0	0.004
CP ² , g		<0.001	<0.001	<0.001 - <0.001				<0.001

HCW, kg									
ME, Mcal	172	0.159	0.032	0.096 -	0.221	98.7	10.0	0.002	<0.001
CP, g		0.002	<0.001	0.001 -	0.003				<0.001
CP ² , g		<0.001	<0.001	<0.001 -	<0.001				<0.001
Ether extract, g		0.001	<0.001	<0.001 -	0.002				0.018
HCW, kg (Robust model)									
ME, Mcal	172	0.142	0.045	0.037 -	0.248		0	0	0.015
CP, g		0.002	<0.001	0.002 -	0.003				0.002
CP ² , g		<0.001	<0.001	<0.001 -	<0.001				0.004
DMI, kg/d									
ME, Mcal	212	0.287	0.033	0.221 -	0.352	51.5	30.6	0.096	<0.001
CP, g		0.002	<0.001	0.001 -	0.002				<0.001
CP ² , g		<0.001	<0.001	<0.001 -	<0.001				0.007
DMI, kg/d (Robust model)									
ME, Mcal	212	0.306	0.125	0.005 -	0.608		0	0	0.048
CP, g		0.001	<0.001	<0.001 -	0.002				0.004
G:F, kg/kg									
CP, g	157	0.002	0.001	0.001 -	0.003	23.8	65.4	0.403	0.004
CP ² , g		<-0.001	<0.001	<0.001 -	0.001				0.001
Ether extract, g		0.003	0.001	0.001 -	0.004				<0.001
G:F kg/kg (Robust model)									
CP, g	157	0.002	0.001	<0.001 -	0.003		0	0	0.050
CP ² , g		<-0.001	<0.001	<0.001 -	0.001				0.053
Ether extract, g		0.002	0.001	0.001 -	0.004				0.036

LM area cm²

CP, g CP ² , g	157	0.006 <-0.001	0.003 <0.001	<-0.001 - 0.001 <0.001 - 0.001	-	21.8	0	0.058 0.028
LM area cm ² (Robust model)	No valid model							
Fat thickness, cm								
СР, g	173	0.086	0.036	0.014 - 0.157	44.0	29.5	0.059	0.030
CP ² , g		0.001	<0.001	<0.001 - 0.001				0.005
Ether extract, g		0.001	0.001	<0.001 - 0.002				0.030
Fat thickness, cm (Robust model)								
CP, g	173	0.001	0.001	<0.001 - 0.001		0	0	0.053
CP ² , g		0.001	0.001	<0.001 - 0.002				0.043

Table 6. Outcomes evaluated using multivariable meta-regression models based on differences for MP differences between treated and control groups estimated from NRC (2000) level 1. Knapp-Hartung methods were used to derive estimates of the co-efficients, estimates of model fit (R^2) and heterogeneity (I^2) and variance (τ^2). The permutation methods of Higgins and Thompson (2004), Harbord and Higgins (2008), and Harbord and Steichen (2004) were used for estimates of *P*-values. The robust regression model that accounts for the nested effect of trial within study was used to determine the robust model results (Hedges et al., 2010).

Variable	No.	Coefficient	SE	95% CI	Adjusted R ²	I ²	τ^{2}	Adjusted <i>P</i> -value
ADG, kg/d	No valid mo	odel						
Final BW, kg								
Initial BW (Control only), kg	163	-0.005	0.001	-0.0080.002	91.3	26.5	0.022	0.001
Initial BW, kg		0.035	0.013	0.008 - 0.062				0.039
ME, Mcal		0.194	0.036	0.123 - 0.265				<0.001
MP NRC, g/d		0.001	0.000	0.000 - 0.001				0.004
Final BW, kg (Robust model)	No valid mo	odel						
HCW, kg	No valid mo	odel						
G:F, kg/kg	No valid mo	odel						
DMI, kg/d								
Initial BW (Control only), kg	209	-0.003	0.001	-0.005 - <0.001	47.6	34.2	0.102	0.048
ME, Mcal		0.300	0.035	0.232 - 0.369				<0.001
MP NRC, g/d		0.001	<0.001	<0.001 - 0.001				0.020
DMI, kg/d (Robust model)	No valid mo	odel						
LM area cm ²	No valid mo	odel						
Fat thickness, cm	No valid mo	odel						

4.5 Multivariable protein fraction models

The models in Table 7 are multivariable models for evaluating the different production outcomes using trial duration, pre-trial BW differences or the pre-trial control BW as co-variables and differences in energy, ether extract and estimated protein fractions in the rumen between the treatments and controls. In general, these models explained slightly less of the variation in outcomes than explained by estimated MP (CNCPS 6.55; Table 4) or CP (Table 5). However, G:F and DMI differences were exceptions to that (Table 7).

Table 7. Outcomes evaluated using multivariable meta-regression models based on differences between treated and control groups for ruminal protein fractions¹ estimated in NDS using CNCPS 6.55. Knapp-Hartung methods were used to derive estimates of the co-efficients, estimates of model fit (R^2) and heterogeneity (I^2) and variance (τ^2). The permutation methods of Higgins and Thompson (2004), Harbord and Higgins (2008), and Harbord and Steichen (2004) were used for estimates of *P*-values. The robust regression model that accounts for the nested effect of trial within study was used to determine the robust model results (Hedges et al., 2010).

Variable	No.	Coefficient	SE	95% CI	Adjusted R ²	l ²	τ^{2}	Adjusted <i>P</i> - value
ADG, kg/d								
Initial BW (Control only), kg	207	-0.005	0.001	-0.0070.002	65.6	38.1	0.192	<0.001
ME, Mcal		0.282	0.039	0.205 - 0.359				<0.001
Soluble intake protein, g		0.001	<0.001	<0.001 - 0.001				0.725
Soluble intake protein ² , g		<0.001	<0.001	<0.001 - <0.001				<0.001
Ether extract, g		0.002	0.001	0.001 - 0.003				<0.001
ADG, kg/d (Robust model)	207							
ME, Mcal		0.266	0.092	0.046 - 0.486		0	0	0.025
Soluble intake protein, g		<0.001	<0.001	<0.001 - 0.002				0.640
Soluble intake protein ² , g		<0.001	<0.001	<0.001 - <0.001				0.006
Final BW, kg								
Initial BW (Control only), kg	165	-0.005	0.001	-0.0080.003	87.9	24.5	0.034	<0.001
ME, Mcal		0.223	0.034	0.156 - 0.290				<0.001
Protein B ₁ , g		0.002	<0.001	0.001 - 0.002				<0.001
Final BW, kg (Robust model)								
ME, Mcal		0.208	0.089	-0.009 - 0.427				0.006
Protein B ₁ , g		0.002	<0.001	<0.001 - 0.003				0.011
HCW, kg								
Initial BW (Control only), kg	172	-0.003	0.001	-0.0060.001	48	21.5	0.074	0.051

ME, Mcal		0.213	0.034	0.145	-	0.280				< 0.001
Protein B ₁ , g		0.002	<0.001	0.001	-	0.002				< 0.001
Protein A ₂ , g		-0.002	0.001	-0.003	-	<0.001				0.131
Protein A_2^2 , g		<0.001	<0.001	< 0.001	-	<0.001				0.007
HCW, kg (Robust model)										
ME, Mcal		0.151	0.048	0.038	-	0.263				0.015
Protein B ₁ , g		0.001	<0.001	0.001	-	0.002				0.048
G:F, kg/kg										
Soluble intake protein, g	157	0.001	<0.001	<0.001	-	0.002	73.4	41.7	0.138	0.054
Soluble intake protein ² , g	157	< 0.001	<0.001	<0.001	-	<0.002	73.4	41.7	0.156	0.001
Protein A ₂ , g		-0.001	0.001	-0.001	-	-0.001				< 0.001
Ether extract, g		0.003	0.001	0.004	-	0.002				0.001
		0.002	0.001	0.001		0.005				0.001
G:F, kg/kg (Robust model)										
Soluble intake protein, g	157	0.001	<0.001	< 0.001	-	0.002		0	0	0.161
Soluble intake protein ² , g		<0.001	<0.001	< 0.001	-	<0.001				0.029
Protein A ₂ , g		-0.002	0.001	-0.004	-	-0.002				0.018
Ether extract, g		0.002	0.001	0.001	-	0.003				0.021
DMI, kg/d										
ME, Mcal	212	0.310	0.029	0.253	-	0.368	100	0	0	< 0.001
Protein A ₂ , g		0.003	<0.001	0.003	-	0.004				<0.001
DMI, kg/d (Robust model)										
Protein A_2 , g		0.003	<0.001	0.002	-	0.004		0	0	<0.001
2/0								-	-	
LM area cm ²										
ME, Mcal	169	0.096	0.033	0.030	-	0.161	NA	18.1	0	0.004

Protein A ₂ , g		0.001	<0.001	<0.001	-	0.002				0.004
LM area cm ² (Robust model) ME, Mcal	169	0.102	0.004	-0.003	_	0.206		0	0	0.055
Protein A ₂ , g		0.002	<0.001	0.001	-	0.003				0.006
Fat thickness, cm										
Protein B ₁ , g	173	0.001	<0.001	0.001	-	0.002	41.3	29.3	0.062	<0.001
ME, Mcal		0.105	0.036	0.034	-	0.176				0.004
Fat thickness, cm (Robust model)										
Protein B ₁ , g	173	0.001	<0.001	0.001	-	0.002		0	0	0.03

¹Composition and digestion of protein fractions from CNCPS 6.55 is as follows:

A = Ammonia, NO₃, amino acids, and peptides, ruminal and intestinal digestion rate is instantaneous (10,000) and 100%, respectively

B₁ = Globulins and some albumins, ruminal and intestinal digestion rate is 200-300 %/h and 100%, respectively

B₂ = Most albumins and glutelins, ruminal and intestinal digestion rate is 5-15%/h and 100%, respectively

B₃ = Prolamins, extension proteins, and denatured proteins, ruminal and intestinal digestion rate is 0.1-1.5%/h and 80%, respectively

C = Maillard products N bound to lignin, ruminal and intestinal digestion rate are both 0%

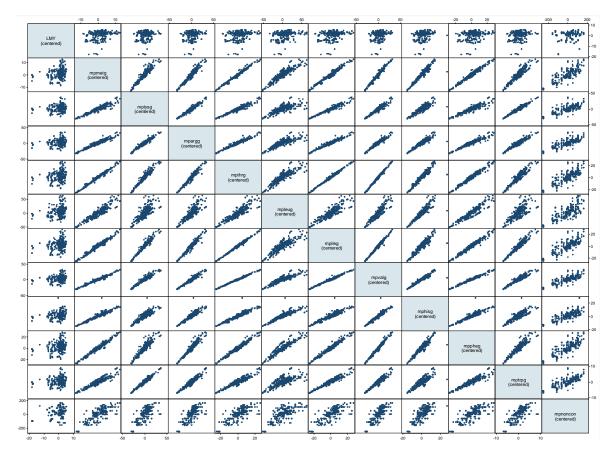
4.6 RDP and RUP models

The models in Table 8 are multivariable models for outcomes using trial duration, pre-trial BW differences or the pre-trial control BW as co-variables and differences in RDP and RUP, ether extract between the treatments and controls. In general, the RUP x1 maintenance models explained less of the variation in outcomes than explained by estimated MP (CNCPS 6.55; Table 4) or CP (Table 5), except for DMI (Table 8). RDP x3 maintenance models explained more variation than the MP (CNCPS 6.55) model for Final BW and HCW (Table 8).

Table 8. Outcomes evaluated using multivariable meta-regression models based on differences between treated and control groups in estimated RDP x3 maintenance and RUP x1 maintenance estimated in NDS using CNCPS 6.55. Knapp-Hartung methods were used to derive estimates of the co-efficients, estimates of model fit (R^2) and heterogeneity (I^2) and variance (τ^2). The permutation methods of Higgins and Thompson (2004), Harbord and Higgins (2008), and Harbord and Steichen (2004) were used for estimates of *P*-values. The robust regression model that accounts for the nested effect of trial within study was used to determine the robust model results (Hedges et al., 2010).

Variable	No. Coeffici		SE	95% CI		Adjusted R ²	l ²	τ^{2}	Adjusted P value
ADG, kg/d									
Initial BW (Control only), kg	207	-0.005	0.001	-0.008 -	-0.003	62.6	39.5	0.211	<0.001
ME, Mcal		0.265	0.038	0.189 -	0.341				<0.001
RDP x3 maintenance, g		0.002	<0.001	0.001 -	0.002				0.001
RDP x3 maintenance ² , g		<0.001	<0.001	<0.001 -	<0.001				<0.001
Ether extract, g		0.003	<0.001	0.002 -	0.004				<0.001
ADG, kg/d (Robust model)									
Initial BW (Control only), kg	207	-0.006	0.002	-0.011 -	-0.001		0	0	0.020
ME, Mcal		0.255	0.010	0.018 -	0.491				0.038
RDP x3 maintenance, g		0.002	<0.001	<0.001 -	0.004				0.012
RDP x3 maintenance ² , g		<0.001	<0.001	<-0.001 -	<-0.001				0.022
Ether extract, g		0.003	<0.001	0.002 -	0.004				<0.001
Initial BW (Control only), kg	207	-0.004	0.001	-0.007 -	-0.002	49.2	45.2	0.287	0.005
ME, Mcal		0.276	0.043	0.191 -	0.360				<0.001
RUP x1 maintenance, g		0.002	0.001	0.001 -	0.003				0.024
RUP x1 maintenance ² , g		0.000	0.000	0.000 -	0.000				0.062
Ether extract, g		0.002	0.001	0.001 -	0.003				0.003

ADG, kg/d (Robust model) No valid model for RUP 1x


Final BW, kg

Initial BW (Control only), kg	165	-0.005	0.001	-0.007 -	-0.003	91.9	20.7	0.023	<0.001
ME, Mcal		0.187	0.033	0.122 -	0.251				<0.001
RDP x3 maintenance, g		0.002	<0.001	0.001 -	0.003				<0.001
RDP x3 maintenance ² , g		<0.001	<0.001	<0.001 -	<0.001				0.010
Ether extract, g		0.001	<0.001	0.001 -	0.002				0.006
Final BW, kg (Robust model)	165								
RDP x3 maintenance, g		0.002	<0.001	<0.001 -	0.003		0	0	0.016
HCW, kg									
Initial BW (Control only), kg	171	-0.003	0.001	-0.005 -	-0.001	94.5	14.7	0.008	0.011
ME, Mcal		0.168	0.032	0.105 -	0.231				<0.001
RDP x3 maintenance, g		0.001	<0.001	0.001 -	0.002				<0.001
RDP x3 maintenance ² , g		<0.001	<0.001	<0.001 -	<0.001				<0.001
Ether extract, g		0.002	<0.001	0.001 -	0.002				<0.001
HCW, kg (Robust model)									
	171	0.000	0.004	0.004	0.000		0	0	0.016
RDP x3 maintenance, g		0.002	<0.001	<0.001 -	0.003		0	0	0.016
ME, Mcal	171	0.171	0.035	0.102 -	0.240	69.9	21.6	0.044	<0.001
RUP x1 maintenance, g	1/1	0.002	<0.000	0.001 -	0.240	09.9	21.0	0.044	<0.001
RUP x1 maintenance ² , g		<0.002	<0.001	<0.001 -	< 0.001				0.001
Nor XI maintenance , g		10.001	0.001	(0.001	<0.001				0.004
HCW, kg (Robust model)	171								
RUP x1 maintenance, g		0.003	<0.001	0.001 -	0.004		0	0	0.005
RUP x1 maintenance ² , g		<-0.001	<0.001	<0.001 -	< 0.001				0.005
G:F, kg/kg	No valid model								
DMI, kg/d									
ME, Mcal	211	0.276	0.033	0.212 -	0.341	48.2	32.0	0.101	<0.001

RDP x3 maintenance, g		0.001	<0.001	0.001 -	-	0.002				<0.001
Ether extract, g		0.001	<0.001	<0.001 -	-	0.002				0.037
DMI, kg/d (Robust model)										
ME, Mcal	211	0.284	0.110	0.020 -	-	0.548		0	0	0.038
RDP x3 maintenance, g		0.002	<0.001	0.001 -	-	0.003				0.001
Ether extract, g		0.001	<0.001	-<0.001 -	-	0.002				0.057
ME, Mcal	211	0.274	0.034	0.206 -	-	0.342	55.7	30.0	0.086	<0.001
RUP x1 maintenance, g		0.002	<0.001	0.001 -	-	0.003				<0.001
RUP x1 maintenance ² , g		<0.001	<0.001	<0.001 -	-	<0.001				0.001
DMI, kg/d (Robust model)	211									
RUP x1 maintenance, g		0.002	<0.001	<0.001 -	-	0.004		0	0	<=0.021
RUP x1 maintenance ² , g		<0.001	<0.001	<-0.001 -	-	<-0.001				0.013
LM area cm ²	No valid model									
Fat thickness										
ME, Mcal	172	0.107	0.037	0.034 -	-	0.179	44.6	30.6	0.059	0.004
RUP x1 maintenance, g		0.001	<0.001	0.001 -	-	0.002				<0.001
Fat thickness (Robust model)										
RUP x1 maintenance, g		0.001	<0.001	0.001 -	-	0.002				0.036

4.7 Multivariable amino acid models

The models in Table 9 are multivariable models for evaluating the different production outcomes using trial duration, pre-trial BW differences or the pre-trial control BW as co-variables and differences in energy and estimated MP amino acids (g/d) between the treatments and controls. Multivariable models (other than quadratic models) were not developed for the differences in amino acid intake expressed as a function of ME intake as there were very few examples of these being more significant than the g of MP amino acid estimates. While these models often explained more of the variation in outcomes than differences in treatments and controls in estimated MP intake (Table 4) or CP (Table 5) in the diet, the models were often unstable due to collinearity among amino acids (Fig. 2). We consider that these models should be interpreted with caution.

Fig. 2. Matrix plot of lean muscle yield (kg) centred against metabolisable protein (MP) amino acid intakes (g/d) centred showing the very marked collinearity among the amino acids.

Table 9. Outcomes evaluated using multivariable meta-regression models based on differences between treated and control groups in estimated MP amino acid availability estimated in NDS using CNCPS 6.55. Knapp-Hartung methods were used to derive estimates of the co-efficients, estimates of model fit (R^2) and heterogeneity (I^2) and variance (τ^2). The permutation methods of Higgins and Thompson (2004), Harbord and Higgins (2008), and Harbord and Steichen (2004) were used for estimates of *P*-values. The robust regression model that accounts for the nested effect of trial within study was used to determine the robust model results (Hedges et al., 2010).

Variable	No.	Coefficient	SE	95% CI	Adjusted R ²	l ²	τ^{2}	Adjusted <i>P</i> - value
ADG, kg/d								
ME, Mcal	208	0.264	0.038	0.190 - 0.338	83.7	26.7	0.091	<0.001
MP Thr, g		-0.091	0.033	-0.1560.026				0.070
MP Thr ² , g		-0.008	0.002	-0.0110.005				<0.001
MP Leu, g		-0.065	0.011	-0.0880.043				<0.001
MP Leu ² , g		-0.001	<0.001	-0.002 - 0.000				0.003
MP Phe, g		0.182	0.038	0.107 - 0.257				<0.001
MP non-essential AA, g		0.008	0.002	0.003 - 0.013				0.007
MP non-essential AA ² , g		<0.001	<0.001	<0.001 - <0.001				<0.001
Ether extract, g		0.002	0.001	0.001 - 0.003				0.002
ADG, kg/d (Robust model)	No valid mod	lel						
Final BW, kg								
Initial BW (Control only), kg	165	-0.004	0.001	-0.0060.001	100	2.1	0	0.019
ME, Mcal		0.175	0.031	0.113 - 0.236				<0.001
MP Leu, g		-0.046	0.010	-0.0650.026				<0.001
MP Leu ² , g		-0.001	<0.001	-0.0020.001				<0.001
MP Val, g		-0.115	0.040	-0.1940.036				0.053
MP Val ² , g		-0.014	0.004	-0.0210.006				0.003
MP Phe, g		0.230	0.038	0.154 - 0.305				<0.001
MP Phe ² , g		0.012	0.005	0.004 - 0.021				0.060
MP non-essential AA, g		0.004	0.002	-0.001 - 0.009				0.523

MP non-essential AA ² , g		<0.001	<0.001	<0.001	-	<0.001				0.002
Final BW, kg (Robust model)										
MP Leu, g	165	-0.047	0.017	-0.083	-	-0.011				0.014
MP Leu ² , g		-0.002	<0.001	-0.002	-	-0.001				0.003
MP Val, g		-0.030	0.063	-0.102	-	0.161				0.643
MP Val ² , g		-0.016	0.004	-0.027	-	-0.005				0.007
MP Phe, g		0.140	0.079	-0.029	-	0.309				0.098
MP Phe ² , g		0.017	0.005	0.005	-	0.028				0.007
MP non-essential AA, g		0.040	0.050	-0.141	-	0.060				0.410
MP non-essential AA ² , g		<0.001	<0.001	<0.001	-	<0.001				0.046
HCW, kg										
Initial BW (Control only), kg	172	-0.005	0.001	-0.007	-	-0.002	100	1.2	0	< 0.001
ME, Mcal		0.174	0.030	0.116	-	0.233				< 0.001
MP Met, g		-0.174	0.042	-0.257	-	-0.091				< 0.001
MP Met ² , g		-0.010	0.002	-0.013	-	-0.006				< 0.001
MP Phe, g		0.120	0.021	0.080	-	0.161				<0.001
HCW, kg (Robust model)										
Initial BW (Control only), kg	172	-0.005	0.002	-0.010	-	-0.001		0	0	0.037
ME, Mcal		0.140	0.053	0.012	-	0.267				0.036
MP Met, g		-0.147	0.065	-0.293	-	-0.002				0.048
MP Met ² , g		-0.011	0.003	-0.013	-	-0.004				0.013
MP Phe, g		0.111	0.005	0.041	-	0.180				0.005
G:F, kg/kg										
MP Met, g	157	-0.030	0.055	-0.139	-	0.078	44.4	53.4	0.289	0.940
MP Met ² , g		-0.017	0.004	-0.024	-	-0.010				< 0.001
MP Lys, g		-0.121	0.030	-0.181	-	-0.061				< 0.001
MP Trp, g		0.762	0.169	0.429	-	1.095				< 0.001

G:F, kg/kg (Robust model)								
MP Met, g	157	-0.047	0.006	-0.174 - 0.082	44.4	53.4	0.289	0.455
MP Met ² , g		-0.017	0.003	-0.0260.00	8			0.005
MP Lys, g		-0.101	0.040	-0.1850.01	6			0.022
MP Trp, g		0.689	0.193	0.267 - 1.112	L			0.004
DMI, kg/d								
ME, Mcal	212	0.289	0.030	0.229 - 0.348	3 100	0	0	<0.001
MP Leu, g		-0.053	0.010	-0.0720.03	4			<0.001
MP Leu ² , g		-0.001	0.000	-0.001 - 0.000)			0.001
MP Val, g		0.149	0.048	0.054 - 0.243	3			0.009
MP Val ² , g		-0.004	0.001	-0.0070.00	1			0.010
MP Trp, g		-0.401	0.098	-0.5940.20	9			<0.001
MP non-essential AA, g		0.008	0.002	0.004 - 0.013	3			0.001
MP non-essential AA ² , g		<0.001	<0.001	<0.001 - <0.00)1			0.009
DMI, kg/d (Robust model)								
MP Leu, g	212	-0.037	0.014	-0.0680.00	7	0	0	0.021
MP Leu ² , g		-0.002	<0.001	-0.0020.00	1			0.007
MP Val, g		0.200	0.061	0.073 - 0.327	7			0.004
MP Trp, g		-0.406	0.115	-0.6580.15	4			0.005
MP non-essential AA, g		0.003	0.003	-0.004 - 0.010)			0.434
MP non-essential AA ² , g		<0.001	<0.001	<0.001 - <0.00	01			0.038
LM area cm ²	No valid mode	I						
Fat thickness, cm								
MP Leu, g	173	-0.009	0.016	-0.040 - 0.022	2 78.6	22.1	0.023	0.970
MP Leu ² , g		-0.001	<0.001	-0.002 - <0.00)1			0.002
MP Phe, g		0.122	0.058	0.007 - 0.23	7			0.131

MP Phe ² , g MP Trp, g MP Trp ² , g		0.008 -0.191 -0.057	0.003 0.126 0.018	0.002 -0.440 -0.093	- - -	0.014 0.059 -0.022			0.004 0.445 0.001
Fat thickness, cm (Robust model)									
MP Leu, g	173	0.002	0.015	-0.034	-	0.038	0	0	0.908
MP Leu ² , g		-0.002	0.001	-0.002	-	<-0.001			0.031
MP Phe, g		0.007	0.055	-0.053	-	0.197			0.224
MP Phe ² , g		0.008	0.004	<-0.001	-	0.017			0.052
MP Trp, g		-0.059	0.123	-0.325	-	0.208			0.641
MP Trp ² , g		-0.065	0.024	-0.121	-	-0.009			0.029

4.8 Multivariable energy source models

The models in Table 10 are multivariable models for evaluating the different production outcomes using pre-trial BW differences or the pre-trial control BW as co-variables and differences in estimated MP (g/d) between the treatments and controls. In these models, difference in ME intake was not used, rather differences in energy source intake including carbohydrate fractions and ether extract were used to describe energy intake. These models provide insights into diet structure that are potentially important in understanding diet responses, particularly in regard to fibre components. Energy source models in general described the least amount of variation in production outcomes, with the exception of DMI and there were no valid models for some outcomes.

Table 10. Outcomes evaluated using multivariable meta-regression models based on differences between treated and control groups in estimated MP and components of the diet contributing to energy intake estimated in NDS using CNCPS 6.55. Knapp-Hartung methods were used to derive estimates of the coefficients, estimates of model fit (R^2) and heterogeneity (I^2) and variance (τ^2). The permutation methods of Higgins and Thompson (2004), Harbord and Higgins (2008), and Harbord and Steichen (2004) were used for estimates of *P*-values. The robust regression model that accounts for the nested effect of trial within study was used to determine the robust model results (Hedges et al., 2010).

Variable	No.	Coefficient	SE	9	5% CI	Adjusted R ²	l ²	τ^2	Adjusted <i>P</i> -value
ADG, kg/d									
Initial BW (Control only), kg	209	-0.004	0.001	-0.007	0.0	01 36.8	49.5	0.350	0.010
Initial BW, kg		0.050	0.017	0.017	- 0.08	34			0.009
Amylase NDFom, g		-0.001	<0.001	-0.002	0.0	01			<0.001
Physically effective NDF, g		0.003	0.001	0.002	- 0.00)5			<0.001
Ether extract, g		0.005	0.001	0.004	- 0.00)7			<0.001
ADG, kg/d (Robust model)	209								
Physically effective NDF, g		0.012	<0.001	0.001	- 0.02	24	0	0	0.039
Ether extract, g		0.003	<0.001	0.001	- 0.00)4			0.003
Final BW, kg	No valid mod	lel							
HCW, kg									
Initial BW, kg	172	0.061	0.017	0.027	- 0.09	95 47.8	25.4	0.074	0.001
Physically effective NDF, g		0.001	<0.001	< 0.001	- 0.00)2			<0.001
Acid detergent lignin, g		-0.003	0.001	-0.006	0.0	01			0.021
Simple sugars, g		0.002	0.001	< 0.001	- 0.00)3			0.028
Ether extract, g		0.002	0.001	0.001	- 0.00)3			<0.001
HCW, kg (Robust model)									
Initial BW, kg	172	0.067	0.021	0.021	- 0.11	.3	0	0	0.009

Physically effective NDF, g		0.001	<0.001	<0.001	-	0.002				0.030
Ether extract, g		0.001	0.001	<0.001	-	0.003				<0.001
G:F, kg/kg	No valid model									
DMI, kg/d										
Initial BW, kg	212	0.047	0.013	0.022	-	0.072	69.0	22.4	0.061	0.001
MP, g/d		0.003	0.001	0.002	-	0.004				<0.001
MP ² , g/d		<0.001	<0.001	< 0.001	-	<0.001				0.049
Amylase NDFom, g		0.001	<0.001	< 0.001	-	0.001				<0.001
Acid detergent lignin, g		-0.008	0.002	-0.011	-	-0.004				<0.001
Simple sugars, g		0.002	0.001	0.001	-	0.004				0.003
Soluble fibre, g		-0.001	<0.001	-0.001	-	<0.001				0.016
Ether extract, g		0.001	0.001	<0.001	-	0.003				0.028
DMI, kg/d (Robust model)										
Simple sugars, g		0.003	0.001	0.001	-	0.005		0	0	0.003
LM area cm ²	No valid model									
Fat thickness, cm	No valid model									

4.9 Predictions of lean muscle yield

There were 230 observations used in the LMY dataset. LMY had a mean±SD of 90.48±4.07 kg and a minimum, median, and maximum of 72.25, 91.76, and 95.91 kg, respectively. There were several approaches used to predict LMY. These approaches differed from the classical meta-analytical approaches because LMY was predicted for each diet and final models included the random effect of study in the unweighted models. The effect of trial nested within study explained 1.1% of the variance and was consequently excluded from the models. The lack of use of a weight for study reflected the fact that LMY is a synthetic variable and consequent lack of estimates of variance. Further, study sizes were of relatively similar size. This provided the advantage of allowing an evaluation of the effects of breed, sex, feeding interventions, diet base (grains and protein interventions), and hormonal implant strategies on LMY. The classical meta-analytical methods of evaluation are effectively balanced for these effects and it is unusual for these effects to come in to the models under those conditions.

The following are the univariable models that predict LMY (Table 11).

Variable	No.	Coefficient	SE	95%	% CI	Adjusted R ²	F-value	P-value
Pre-study hormonal implant	231	-1.105	0.822	-2.725	- 0.515	0.4	1.81	0.180
Length of hormonal implant, d	231	1.577	0.756	0.089	- 3.066	1.4	4.36	0.038
Implant no. 2	231	0.220	0.098	0.027	- 0.412	1.7	5.05	0.026
Monensin dose, mg/kg DM	231	0.123	0.018	0.088	- 0.158	17.1	48.31	<0.001
Tylosin dose, mg/kg DM	231	0.150	0.051	0.049	- 0.250	3.2	8.63	0.004
Lasalocid dose, mg/kg DM	231	-0.288	0.084	-0.453	0.123	4.5	11.83	0.001
Treatment length (d)	231	0.033	0.008	0.018	- 0.049	7.0	18.26	<0.001
Initial BW, kg	231	0.015	0.006	0.003	- 0.026	2.4	6.56	0.011
ME, Mcal	231	0.417	0.072	0.274	- 0.560	12.3	33.13	<0.001
MP, g/d	231	0.005	0.001	0.002	- 0.008	4.7	12.44	0.001
CP, g	231	0.003	0.001	0.001	- 0.005	4.1	10.82	0.001
Soluble intake protein, g	231	-0.001	0.002	-0.005	- 0.003	-0.2	0.46	0.497
Ammonia, g	231	0.002	0.002	-0.002	- 0.006	0.2	1.42	0.234
Protein A ₂ , g	231	-0.004	0.002	-0.009	- 0.000	1.4	4.23	0.041
Protein B ₁ , g	231	0.005	0.001	0.003	- 0.008	5.4	14.05	<0.001
Protein B ₂ , g	231	0.007	0.003	0.001	- 0.013	1.6	4.61	0.033
RDP x3 maintenance, g	230	0.006	0.002	0.003	- 0.009	5.3	13.89	<0.001
RUP x1 maintenance, g	230	0.004	0.001	0.001	- 0.007	2.7	6.43	0.012
MP Met, g	231	0.251	0.065	0.122	- 0.380	5.6	14.69	<0.001
MP Lys, g	231	0.073	0.026	0.022	- 0.123	2.9	7.96	0.005
MP Arg, g	231	0.088	0.026	0.036	- 0.140	4.2	11.13	0.001
MP Thr, g	231	0.119	0.033	0.055	- 0.184	5.1	13.28	<0.001
MP Leu, g	231	0.063	0.015	0.034	- 0.092	7.0	18.26	<0.001
MP lle, g	231	0.118	0.032	0.055	- 0.181	5.2	13.63	<0.001
MP Val, g	231	0.095	0.027	0.041	- 0.148	4.6	12.02	0.001
MP His, g	231	0.185	0.052	0.083	- 0.288	4.8	12.69	<0.001

Table 11. Univariable analyses for lean muscle yield (kg). Includes number of comparisons used (No.), coefficient, standard error (SE), 95% CI, estimates of model fit (R²), *F*-value, and *P*-value.

MP Pre, g 231 0.112 0.030 0.053 - 0.170 5.4 14.13 <0001										
MP Non-essential AA, g 231 0.009 0.003 - 0.014 4.4 1.062 0.001 MP/ME Met, g/Mcal 231 -0.906 1.996 -4.840 - 3.027 -0.4 0.21 0.650 MP/ME Kar, g/Mcal 231 -1.151 0.743 -2.614 - 0.313 0.66 2.40 0.278 MP/ME Kar, g/Mcal 231 -0.715 0.969 -2.624 - 1.195 -0.2 0.54 0.462 MP/ME Leu, g/Mcal 231 -0.612 0.971 -2.424 - 1.195 -0.2 0.54 0.462 MP/ME Leu, g/Mcal 231 -0.612 0.974 -2.178 - 0.33 0.40 0.529 MP/ME Ya, g/Mcal 231 -0.612 0.974 -2.178 - 0.33 0.40 0.62 0.640 MP/ME Ya, g/Mcal 231 -0.612 0.74 -0.155 - 4.93 0.3 2.4 0.623 MP/ME Tr, g/Mcal <td< td=""><td>MP Phe, g</td><td>231</td><td>0.112</td><td>0.030</td><td>0.053</td><td>-</td><td>0.170</td><td>5.4</td><td>14.13</td><td><0.001</td></td<>	MP Phe, g	231	0.112	0.030	0.053	-	0.170	5.4	14.13	<0.001
MP/ME Met, g/Mcal2310.9061.9964.840-3.0270.440.210.650MP/ME Arg, g/Mcal231-1.1510.743-2.614-0.3130.62.400.123MP/ME Arg, g/Mcal2310.9000.777-2.432-0.6310.21.340.248MP/ME Thr, g/Mcal231-0.7150.969-2.624-1.195-0.20.540.507MP/ME Lig, g/Mcal231-0.6120.971-2.525-1.300-0.30.400.529MP/ME Val, g/Mcal231-0.6120.971-2.525-1.300-0.30.400.529MP/ME His, g/Mcal231-0.6120.971-2.525-1.300-0.30.400.529MP/ME His, g/Mcal231-0.6120.974-2.178-0.953-0.20.590.442MP/ME Phe, g/Mcal231-0.6120.971-2.622-4.933-0.30.240.623MP/ME Phe, g/Mcal231-0.0490.074-0.195-0.097-0.20.440.508MP/ME Non-essential AA, g/Mcal231-0.0010.001-0.0038.52.2.37<0.001	MP Trp, g	231	0.366	0.110	0.149	-	0.583	4.2	11.06	0.001
MP/ME Lys, g/Mcal231-1.1510.743-2.614-0.3130.62.400.123MP/ME Arg, g/Mcal231-0.0000.777-2.432-0.6310.21.340.248MP/ME Thr, g/Mcal231-0.7150.969-2.624-1.195-0.20.540.662MP/ME Thr, g/Mcal231-0.6120.971-2.525-1.30-0.30.400.529MP/ME Isi, g/Mcal231-0.6120.794-2.178-0.953-0.20.590.442MP/ME Val, g/Mcal231-0.6120.794-2.178-0.953-0.20.590.442MP/ME Ne, g/Mcal231-0.6120.794-2.178-0.953-0.20.590.442MP/ME Ne, g/Mcal231-0.6120.794-2.178-0.953-0.20.590.442MP/ME Ne, g/Mcal231-0.6120.794-2.178-0.953-0.20.590.442MP/ME Ne, g/Mcal231-1.6463.339-8.255-4.933-0.30.240.623MP/ME Non-essential AA, g/Mcal231-0.0010.001-0.003-0.0010.31.670.197Amylase NDF organic matter basis, g231-0.0010.001-0.0038.321.90<0.001	MP Non-essential AA, g	231	0.009	0.003	0.003	-	0.014	4.4	10.62	0.001
MP/ME Are, MP/ME Thr, g/Mcal231-0.9000.777-2.432-0.6310.21.340.248MP/ME Thr, g/Mcal231-0.7150.969-2.624-1.195-0.20.540.462MP/ME Leu, g/Mcal2310.2970.447-0.584-1.178-0.20.440.507MP/ME Lei, g/Mcal231-0.6120.971-2.525-1.300-0.30.4000.529MP/ME Lig, g/Mcal231-0.6120.794-2.178-0.953-0.20.590.442MP/ME His, g/Mcal231-0.6120.794-2.178-0.953-0.20.590.442MP/ME Thr, g/Mcal231-0.6120.794-2.178-0.930.220.640MP/ME Thr, g/Mcal231-0.6191.474-3.596-2.214-0.30.220.643MP/ME Thr, g/Mcal231-0.6190.921-2.622-1.566-0.40.070.788MP/ME Thr, g/Mcal231-0.0490.071-0.023-0.097-0.20.6470.633MP/ME Tor, g/Mcal231-0.0010.001-0.0070.0038.522.37-0.097Anty ase NDF organic matter basis, g231-0.0040.001-0.0070.0038.321.90-0.001Anty ase NDF organic matter basis, g2310.0030.0020.0038.321.90	MP/ME Met, g/Mcal	231	-0.906	1.996	-4.840	-	3.027	-0.4	0.21	0.650
MP/ME Thr. g/Mcal231-0.7150.969-2.624-1.195-0.20.540.462MP/ME Leu, g/Mcal2310.2970.447-0.584-1.178-0.20.440.507MP/ME Val, g/Mcal231-0.6120.971-2.525-1.300-0.30.400.529MP/ME Val, g/Mcal231-0.6120.794-2.178-0.953-0.20.590.442MP/ME His, g/Mcal231-0.6911.474-3.596-2.214-0.30.220.640MP/ME Phe, g/Mcal231-0.2480.921-2.062-1.566-0.40.070.788MP/ME Non-essential AA, g/Mcal231-0.0490.074-0.195-0.097-0.20.440.508ADF, g231-0.0010.001-0.003-0.0010.31.670.197Amylase NDF organic matter basis, g231-0.0010.001-0.0020.0038.522.37-0.001Arwylase NDF, g231-0.0010.001-0.0060.0038.321.90-0.001Arwylase NDF, g2310.0030.002-0.001-0.0010.311.670.37Arwylase NDF, g2310.0030.002-0.001-0.0038.321.90-0.001Arwylase NDF, g2310.0030.002-0.0061.13.580.060Simple sug	MP/ME Lys, g/Mcal	231	-1.151	0.743	-2.614	-	0.313	0.6	2.40	0.123
MP/ME Leu, g/Mcal2310.2970.447-0.584-1.178-0.20.440.507MP/ME lle, g/Mcal231-0.6120.971-2.525-1.300-0.30.400.529MP/ME Val, g/Mcal231-0.6120.794-2.178-0.9530.220.690.442MP/ME His, g/Mcal231-0.6911.474-3.596-2.214-0.30.220.601MP/ME Phe, g/Mcal231-0.2480.921-2.062-1.566-0.40.070.788MP/ME Trp, g/Mcal231-1.6463.339-8.225-4.933-0.30.240.623MP/ME Trp, g/Mcal231-0.0490.074-0.195-0.097-0.20.440.508MP/ME Trp, g/Mcal231-0.010.001-0.003-0.0010.331.670.197Amylase NDF organic matter basis, g231-0.0010.001-0.002-<0.001	MP/ME Arg, g/Mcal	231	-0.900	0.777	-2.432	-	0.631	0.2	1.34	0.248
MP/ME lie, g/Mcal231-0.6120.971-2.525-1.300-0.30.400.529MP/ME Val, g/Mcal231-0.6120.794-2.178-0.953-0.20.590.442MP/ME His, g/Mcal231-0.6911.474-3.596-2.214-0.30.220.640MP/ME Trp, g/Mcal231-0.2480.921-2.062-1.566-0.40.070.788MP/ME Trp, g/Mcal231-1.6463.339-8.225-4.933-0.30.240.623MP/ME Non-essential AA, g/Mcal231-0.0490.074-0.195-0.097-0.20.440.508MP/ME Non-essential AA, g/Mcal231-0.0010.001-0.002-0.0010.882.770.971Am/ase NDF organic matter basis, g231-0.0050.001-0.0070.0038.522.37<0.001	MP/ME Thr, g/Mcal	231	-0.715	0.969	-2.624	-	1.195	-0.2	0.54	0.462
MP/ME Val, g/Mcal231-0.6120.794-2.178-0.953-0.20.590.442MP/ME His, g/Mcal231-0.6911.474-3.596-2.214-0.30.220.640MP/ME Phe, g/Mcal231-0.2480.921-2.062-1.566-0.40.070.788MP/ME Trp, g/Mcal231-0.2480.921-2.062-4.933-0.30.240.623MP/ME Non-essential AA, g/Mcal231-0.0490.074-0.195-0.097-0.20.4440.508ADF, g231-0.0010.001-0.003-0.0010.331.670.197Amylase NDF organic matter basis, g231-0.0050.001-0.0020.0038.522.37<0.001	MP/ME Leu, g/Mcal	231	0.297	0.447	-0.584	-	1.178	-0.2	0.44	0.507
MP/ME His, g/Mcal231-0.6911.474-3.596-2.214-0.30.220.640MP/ME Phe, g/Mcal231-0.2480.921-2.062-1.566-0.40.070.788MP/ME Trp, g/Mcal231-1.6463.339-8.225-4.933-0.30.240.623MP/ME Non-essential AA, g/Mcal231-0.0490.074-0.195-0.097-0.20.440.508ADF, g231-0.0010.001-0.003-0.0010.31.670.197Amylase NDF organic matter basis, g231-0.0010.001-0.002-<0.001	MP/ME lle, g/Mcal	231	-0.612	0.971	-2.525	-	1.300	-0.3	0.40	0.529
MP/ME Phe, g/Mcal231-0.2480.921-2.062-1.566-0.40.070.788MP/ME Trp, g/Mcal231-1.6463.339-8.225-4.933-0.30.240.623MP/ME Non-essential AA, g/Mcal231-0.0490.074-0.195-0.097-0.20.440.508ADF, g231-0.0010.001-0.003-0.0010.31.670.197Amylase NDF organic matter basis, g231-0.010.001-0.0070.0038.522.37<0.001	MP/ME Val, g/Mcal	231	-0.612	0.794	-2.178	-	0.953	-0.2	0.59	0.442
MP/ME Trp, g/Mcal231-1.6463.339-8.225-4.933-0.330.240.623MP/ME Non-essential AA, g/Mcal231-0.0490.074-0.155-0.097-0.20.4440.508ADF, g231-0.0010.001-0.003-0.0010.331.670.197Amylase NDF organic matter basis, g231-0.0010.001-0.002-<0.0010.882.770.097Forage NDF, g231-0.0050.001-0.0070.0038.5522.37<0.001Physically effective NDF, g231-0.0040.001-0.0060.0038.321.90<0.001Simple sugars, g2310.0030.004-0.004-0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001<	MP/ME His, g/Mcal	231	-0.691	1.474	-3.596	-	2.214	-0.3	0.22	0.640
MP/ME Non-essential AA, g/Mcal231-0.0490.074-0.195-0.097-0.20.440.508ADF, g231-0.0010.001-0.003-0.0010.31.670.197Amylase NDF organic matter basis, g231-0.0010.001-0.002-<0.001	MP/ME Phe, g/Mcal	231	-0.248	0.921	-2.062	-	1.566	-0.4	0.07	0.788
ADF, g231-0.0010.001-0.003-0.0010.31.670.197Amylase NDF organic matter basis, g231-0.0010.001-0.002-<0.001	MP/ME Trp, g/Mcal	231	-1.646	3.339	-8.225	-	4.933	-0.3	0.24	0.623
Amylase NDF organic matter basis, g231-0.0010.001-0.002-<0.0010.82.770.097Forage NDF, g231-0.0050.001-0.0070.0038.522.37<0.001	MP/ME Non-essential AA, g/Mcal	231	-0.049	0.074	-0.195	-	0.097	-0.2	0.44	0.508
For ge NDF, g231-0.0050.001-0.0070.0038.522.37<0.001Physically effective NDF, g231-0.0040.001-0.0060.0038.321.90<0.001	ADF, g	231	-0.001	0.001	-0.003	-	0.001	0.3	1.67	0.197
Physically effective NDF, g231-0.0040.001-0.0060.0038.321.90<0.001Acid detergent lignin, g2310.0030.004-0.004-0.011<0.001	Amylase NDF organic matter basis, g	231	-0.001	0.001	-0.002	-	<0.001	0.8	2.77	0.097
Acid detergent lignin, g2310.0030.004-0.004-0.011<0.0010.910.340Simple sugars, g2310.0030.002<0.001	Forage NDF, g	231	-0.005	0.001	-0.007	-	-0.003	8.5	22.37	<0.001
Simple sugars, g2310.0030.002<0.001-0.0061.13.580.060Starch, g2310.001<0.001	Physically effective NDF, g	231	-0.004	0.001	-0.006	-	-0.003	8.3	21.90	<0.001
Starch, g2310.001<0.001<0.001-0.0012.36.290.013Soluble fibre, g2310.0040.0010.002-0.0065.614.74<0.001	Acid detergent lignin, g	231	0.003	0.004	-0.004	-	0.011	<0.001	0.91	0.340
Soluble fibre, g2310.0040.0010.002-0.0065.614.74<0.001Fermentable simple sugars, g2310.0040.002<0.001	Simple sugars, g	231	0.003	0.002	< 0.001	-	0.006	1.1	3.58	0.060
Fermentable simple sugars, g2310.0040.002<0.001-0.0081.23.840.051Fermentable starch, g2310.0010.000<0.001	Starch, g	231	0.001	<0.001	< 0.001	-	0.001	2.3	6.29	0.013
Fermentable starch, g2310.0010.000<0.001-0.0024.110.780.001Fermentable soluble fibre, g2310.0050.0010.003-0.0076.316.54<0.001	Soluble fibre, g	231	0.004	0.001	0.002	-	0.006	5.6	14.74	<0.001
Fermentable soluble fibre, g2310.0050.0010.003-0.0076.316.54<0.001Fermentable NDF, g231-0.4720.089-0.6470.29810.628.31<0.001	Fermentable simple sugars, g	231	0.004	0.002	< 0.001	-	0.008	1.2	3.84	0.051
Fermentable NDF, g 231 -0.472 0.089 -0.647 - -0.298 10.6 28.31 <0.001 Rumen unsaturated fatty acid load, g 231 0.015 0.002 0.010 - 0.019 14.3 39.24 <0.001	Fermentable starch, g	231	0.001	0.000	< 0.001	-	0.002	4.1	10.78	0.001
Rumen unsaturated fatty acid load, g 231 0.015 0.002 0.010 - 0.019 14.3 39.24 <0.001	Fermentable soluble fibre, g	231	0.005	0.001	0.003	-	0.007	6.3	16.54	<0.001
	Fermentable NDF, g	231	-0.472	0.089	-0.647	-	-0.298	10.6	28.31	<0.001
Ether extract, g 231 0.009 0.001 0.006 - 0.012 13.5 36.76 <0.001	Rumen unsaturated fatty acid load, g	231	0.015	0.002	0.010	-	0.019	14.3	39.24	<0.001
	Ether extract, g	231	0.009	0.001	0.006	-	0.012	13.5	36.76	<0.001

Mixed models provided models with good fit for the data with sex, implant strategy, treatment duration and initial BW of the controls entering most models (Tables 12 - 17). We found that heifers gained approximately 8 kg, cows 3 kg less and bulls 5 kg more than steers. Treatment effects, *per se*, were only significant for the CP model. Similarly, the hormonal implant, Synovex H provided a substantial 10 kg advantage in studies in which it was used, while other implants did not always provide significant benefits, despite the point directions being quite large (eg 5 kg). The rumen modifiers monensin and tylosin entered a number of the models; lasalocid had too few observations to enter. Interestingly, while the effects of monensin were positive for LMY, the effect of tylosin was negative.

Table 18 provides the AIC and BIC estimates for the models in Tables 12-17, showing best fit for the protein fraction, amino acid, energy components, and MP CNCPS models.

Table 12. Random effects mixed model predicting lean muscle yield (kg) based on trial. Predictive variables include sex, implant strategy, treatment type, monensin (mg/kg DM), BW and estimated ME or MP availability as predicted by CNCPS 6.55.

Lean muscle yield, kg	Coefficient	SE	Z-score	9	5% C	.1	P-value
Sex (reference steers)							
Heifers	-7.721	3.649	-2.120	-14.873	-	-0.570	0.034
Bulls	5.085	2.885	1.760	-0.570	-	10.739	0.078
Mixed	-2.355	0.634	-3.720	-3.597	-	-1.113	<0.001
Cows	-3.070	3.193	-0.960	-9.328	-	3.188	0.336
Implant (reference no implant)							
Revalor-S	1.149	1.328	0.870	-1.454	-	3.753	0.387
SynovexS	-0.286	1.511	-0.190	-3.246	-	2.675	0.850
SynovexH	10.027	4.593	2.180	1.025	-	19.029	0.029
Component ES	-2.099	1.682	-1.250	-5.396	-	1.199	0.212
Revalor-H	5.301	3.017	1.760	-0.613	-	11.214	0.079
Ralgro	-1.026	1.589	-0.650	-4.141	-	2.089	0.519
Compudose	5.600	2.949	1.900	-0.180	-	11.381	0.058
Revalor-IS	0.760	2.073	0.370	-3.304	-	4.823	0.714
SynovexC	1.516	2.976	0.510	-4.316	-	7.348	0.610
Revalor-XS	0.059	3.014	0.020	-5.849	-	5.967	0.984
Monensin dose, mg/kg DM	0.105	0.036	2.960	0.036	-	0.175	0.003
Treatment duration, d	0.069	0.014	5.090	0.042	-	0.096	< 0.001
Initial BW, kg	0.034	0.010	3.330	0.014	-	0.054	0.001
Estimated ME intake, Mcal/d	0.154	0.035	4.420	0.086	-	0.223	< 0.001
Estimated MP intake, g/d	0.001	<0.001	3.240	< 0.001	-	0.002	0.001
Constant	-3.603	1.099	-3.280	-5.758	-	-1.449	0.001
Random-effects parameters	Estimate	SE		9	5% C)	
Study number							
Var (constant)	7.053	1.295		4.921	-	10.108	
Var (residual)	0.255	0.028		0.206	-	0.315	

Lean muscle yield, kg	Coefficient	SE	Z-score	9	5% (P-value
Sex (reference steers)							
Heifers	-8.332	3.480	-2.390	-15.153	-	-1.511	0.017
Bulls	4.466	2.754	1.620	-0.932	-	9.863	0.105
Mixed	0.437	1.243	0.350	-1.999	-	2.872	0.725
Cows	-3.309	3.055	-1.080	-9.296	-	2.679	0.279
Implant (reference no implant)							
Revalor-S	1.024	1.266	0.810	-1.458	-	3.505	0.419
SynovexS	-1.881	1.602	-1.170	-5.021	-	1.260	0.241
SynovexH	10.094	4.396	2.300	1.478	-	18.709	0.022
Component ES	-3.114	1.668	-1.870	-6.384	-	0.155	0.062
Revalor-H	5.360	2.881	1.860	-0.287	-	11.007	0.063
Ralgro	-1.502	1.527	-0.980	-4.494	-	1.490	0.325
Compudose	5.160	2.831	1.820	-0.388	-	10.708	0.068
Revalor-IS	0.136	1.993	0.070	-3.769	-	4.041	0.946
SynovexC	0.906	2.849	0.320	-4.678	-	6.491	0.750
Revalor-XS	-0.315	2.874	-0.110	-5.949	-	5.318	0.913
Protein intervention (reference c	ontrol for the stud	y)					
Urea	-0.264	0.184	-1.440	-0.624	-	0.096	0.151
Soyabean meal	0.140	0.245	0.570	-0.341	-	0.621	0.568
Distillers grain	-0.068	0.156	-0.440	-0.374	-	0.238	0.663
Other	-0.051	0.149	-0.340	-0.344	-	0.241	0.731
Cottonseed meal	-0.101	0.294	-0.340	-0.678	-	0.476	0.733
Grains	0.126	0.306	0.410	-0.474	-	0.727	0.680
Corn gluten feed	0.443	0.204	2.180	0.044	-	0.842	0.029
Canola meal	-0.121	0.340	-0.360	-0.786	-	0.545	0.722
Fish meal	0.443	0.612	0.720	-0.756	-	1.643	0.469
Commerical blend	-0.262	0.413	-0.630	-1.071	-	0.547	0.526
Monensin dose, mg/kg DM	0.161	0.045	3.610	0.074	_	0.249	<0.001
Tylosin dose, mg/kg DM	-0.192	0.043	-2.010	-0.379	_	-0.005	0.001
Treatment duration, d	0.132	0.090	5.320	0.044	-	0.095	<0.043
Initial BW, kg	0.029	0.013	2.980	0.044	-	0.095	0.001
CP, g	0.025	<0.010	2.380	< 0.010	_	0.049	0.003
ME, Mcal	0.195	0.038	5.150	0.121	-	0.269	< 0.023
Constant	-12.214	2.210	-5.530	-16.547	-	-7.882	<0.001
Random-effects parameters		Estimate	SD	Q	5% (
Study number		20001000		5	2,01		
Var(constant)		6.368	1.173	4.439	-	9.136	
Var(residual)		0.250	0.027	0.202		0.310	

Table 13. Random effects mixed model predicting lean muscle yield (kg) based on trial. Predictive variables include sex, implant strategy, treatment type, monensin (mg/kg DM), initial BW and CP.

Table 14. Random effects mixed model predicting lean muscle yield (kg) based on trial. Predictive variables include sex, implant strategy, treatment type, monensin (mg/kg DM), initial BW and protein fractions as predicted by CNCPS 6.55.

Lean muscle yield, kg	Coefficient	SE	Z-score		959	% CI	P-value
Sex (reference steers)							
Heifers	-7.981	3.530	-2.260	-14.898	-	-1.063	0.024
Bulls	4.289	2.795	1.530	-1.188	-	9.767	0.125
Mixed	0.428	1.254	0.340	-2.030	-	2.886	0.733
Cows	-3.414	3.092	-1.100	-9.474	-	2.647	0.270
Implant (reference no implant)						
Revalor-S	1.062	1.286	0.830	-1.458	-	3.581	0.409
SynovexS	-1.828	1.627	-1.120	-5.017	-	1.361	0.261
SynovexH	9.550	4.448	2.150	0.831	-	18.268	0.032
Component ES	-3.128	1.694	-1.850	-6.448	-	0.192	0.065
Revalor-H	5.174	2.924	1.770	-0.556	-	10.904	0.077
Ralgro	-1.596	1.549	-1.030	-4.632	-	1.440	0.303
Compudose	4.919	2.866	1.720	-0.698	-	10.535	0.086
Revalor-IS	0.311	2.018	0.150	-3.645	-	4.266	0.878
SynovexC	0.920	2.894	0.320	-4.753	-	6.593	0.751
Revalor-XS	-0.124	2.916	-0.040	-5.839	-	5.591	0.966
Monensin dose, mg/kg DM	0.161	0.045	3.540	0.072	-	0.250	<0.001
Tylosin dose, mg/kg DM	-0.191	0.097	-1.970	-0.381	-	<0.001	0.049
Treatment duration, d	0.069	0.013	5.200	0.043	-	0.095	< 0.001
Initial BW, kg	0.030	0.010	2.980	0.010	-	0.050	0.003
Protein A ₂ , g	0.002	0.001	3.790	0.001	-	0.003	<0.001
ME, Mcal	0.196	0.036	5.470	0.126	-	0.266	< 0.001
Constant	-12.066	2.237	-5.390	-16.450	-	-7.683	<0.001
Random-effects parameters							
Study number		Estimate	SD		959	% CI	
Var(constant)		6.588	1.207	4.600	-	9.433	
Var(residual)		0.249	0.027	0.201	-	0.308	

Table 15. Random effects mixed model predicting lean muscle yield (kg) based on trial. Predictive variables include sex, implant strategy, treatment type, monensin (mg/d), initial BW and RUP as predicted by NRC (2000) level 1.

Lean muscle yield, kg	Coefficient	SE	Z-score	9	5% CI		P-value
Sex (reference steers)							
Heifers	-7.854	3.507	-2.240	-14.728	-	-0.980	0.025
Bulls	4.752	2.777	1.710	-0.690	-	10.195	0.087
Mixed	0.106	1.242	0.090	-2.327	-	2.540	0.932
Cows	-3.752	3.072	-1.220	-9.773	-	2.269	0.222
Implant (reference no implant)							
Revalor-S	1.090	1.277	0.850	-1.413	-	3.594	0.393
SynovexS	-1.763	1.616	-1.090	-4.931	-	1.405	0.275
SynovexH	9.340	4.424	2.110	0.669	-	18.010	0.035
Component ES	-2.993	1.682	-1.780	-6.289	-	0.303	0.075
Revalor-H	4.910	2.904	1.690	-0.781	-	10.601	0.091
Ralgro	-1.426	1.538	-0.930	-4.439	-	1.588	0.354
Compudose	5.103	2.844	1.790	-0.472	-	10.678	0.073
Revalor-IS	0.311	2.011	0.150	-3.630	-	4.253	0.877
SynovexC	0.915	2.875	0.320	-4.721	-	6.550	0.750
Revalor-XS	-0.028	2.901	-0.010	-5.713	-	5.657	0.992
Monensin dose, mg/kg DM	0.168	0.045	3.720	0.079	-	0.256	<0.001
Tylosin dose, mg/kg DM	-0.207	0.096	-2.150	-0.396	-	-0.018	0.032
Treatment duration, d	0.065	0.013	4.990	0.040	-	0.091	< 0.001
Initial BW, kg	0.028	0.010	2.830	0.009	-	0.048	0.005
RDP x1 maintenance, g	0.002	0.001	3.190	0.001	-	0.003	0.001
RUP x1 maintenance ² , g	<0.001	<0.001	-2.070	< 0.001	-	< 0.001	0.038
ME, Mcal	0.162	0.038	4.200	0.086	-	0.237	<0.001
Constant	-11.632	2.222	-5.230	-15.988	-	-7.277	<0.001
Random-effects parameters							
Study number		Estimate	SD	9	5% CI		
Var(constant)		6.494	1.191	4.533	-	9.303	
Var(residual)		0.255	0.028	0.206	-	0.316	

Table 16. Random effects mixed model predicting lean muscle yield (kg) based on trial. Predictive variables include sex, implant strategy, treatment type, monensin (mg/kg DM), initial body weight and estimated metabolisable energy and estimated MP amino acid intake (g/d) as predicted by CNCPS 6.55.

Lean muscle yield, kg	Coefficient	SE	Z-score	95%	6 CI		P-value
Sex (reference steers)							
Heifers	-8.496	3.634	-2.340	-15.619	-	-1.373	0.019
Bulls	5.389	2.866	1.880	-0.228	-	11.007	0.060
Mixed	-1.705	0.685	-2.490	-3.048	-	-0.361	0.013
Cows	-2.889	3.170	-0.910	-9.102	-	3.323	0.362
Implant (reference no implant)							
Revalor-S	1.161	1.319	0.880	-1.424	-	3.746	0.379
SynovexS	-0.463	1.502	-0.310	-3.407	-	2.480	0.758
SynovexH	10.881	4.573	2.380	1.918	-	19.844	0.017
Component ES	-2.448	1.675	-1.460	-5.731	-	0.836	0.144
Revalor-H	5.902	3.004	1.960	0.015	-	11.790	0.049
Ralgro	-1.198	1.580	-0.760	-4.294	-	1.898	0.448
Compudose	5.610	2.933	1.910	-0.139	-	11.358	0.056
Revalor-IS	0.854	2.057	0.420	-3.178	-	4.887	0.678
SynovexC	1.587	2.953	0.540	-4.201	-	7.374	0.591
Revalor-XS	-0.254	2.996	-0.080	-6.125	-	5.618	0.932
Monensin dose, mg/kg DM	0.108	0.035	3.050	0.039	-	0.177	0.002
Treatment duration, d	0.073	0.014	5.380	0.046	-	0.100	<0.001
Initial BW, kg	0.035	0.010	3.480	0.015	-	0.055	0.001
ME intake, Mcal/d	0.159	0.036	4.450	0.089	-	0.229	<0.001
MP Thr intake, g/d	0.135	0.051	2.660	0.036	-	0.235	0.008
MP Leu intake, g/d	-0.078	0.025	-3.050	-0.127	-	-0.028	0.002
MP Phe intake, g/d	0.205	0.072	2.830	0.063	-	0.346	0.005
MP Trp intake, g/d	-0.654	0.229	-2.860	-1.102	-	-0.206	0.004
Constant	-3.653	1.092	-3.350	-5.793	-	-1.512	0.001
Random-effects parameters	Estimate	SE		95%	6 CI		
Study number							
Var (constant)	6.949	1.277		4.847	-	9.962	
Var (residual)	0.245	0.027		0.198	-	0.304	

Lean muscle yield, kg	Coefficient	SE	Z-score	95%	6 CI		P-value
Sex (reference steers)							
Heifers	-8.717	3.634	-2.400	-15.840	-	-1.595	0.016
Bulls	4.838	2.871	1.690	-0.789	-	10.465	0.092
Mixed	0.162	1.277	0.130	-2.341	-	2.665	0.899
Cows	-3.322	3.178	-1.050	-9.550	-	2.906	0.296
Implant (reference no implant)	1						
Revalor-S	1.109	1.320	0.840	-1.478	-	3.696	0.401
SynovexS	-1.597	1.669	-0.960	-4.868	-	1.674	0.339
SynovexH	10.500	4.582	2.290	1.519	-	19.480	0.022
Component ES	-3.340	1.743	-1.920	-6.756	-	0.077	0.055
Revalor-H	5.623	3.011	1.870	-0.278	-	11.524	0.062
Ralgro	-1.325	1.590	-0.830	-4.443	-	1.792	0.405
Compudose	4.756	2.947	1.610	-1.020	-	10.531	0.107
Revalor-IS	0.170	2.072	0.080	-3.892	-	4.232	0.935
SynovexC	1.090	2.972	0.370	-4.735	-	6.915	0.714
Revalor-XS	-0.276	2.995	-0.090	-6.146	-	5.594	0.927
Monensin dose, mg/kg DM	0.164	0.047	3.510	0.072	-	0.255	<0.001
Tylosin dose, mg/kg DM	-0.196	0.100	-1.970	-0.391	-	-0.001	0.049
Treatment duration, d	0.069	0.014	5.060	0.042	-	0.095	<0.001
Initial BW, kg	0.029	0.010	2.800	0.009	-	0.049	0.005
NDF, g	0.001	<0.001	3.030	< 0.001	-	0.001	0.002
Starch, g	0.001	<0.001	5.020	< 0.001	-	0.001	<0.001
Soluble intake fibre, g	0.001	< 0.001	3.900	0.001	-	0.002	<0.001
MP CNCPS, g/d	0.001	< 0.001	2.450	< 0.001	-	0.002	0.014
Constant	-12.064	2.295	-5.260	-16.563	-	-7.565	<0.001
Random-effects parameters							
Study number		Estimate	SD	95%	6 CI		
Var(constant)		6.958	1.279	4.853	-	9.975	
Var(residual)		0.242	0.026	0.196	-	0.300	

Table 17. Random effects mixed model predicting lean muscle yield (kg) based on trial. Predictive variables include sex, implant strategy, monensin (mg/kg DM), initial BW and intake of energy sources (carbohydrates and fats) and estimated MP availability as predicted by CNCPS 6.55.

Model	No.	Log likelihood (model)	df	AIC	BIC
MP CNCPS 6.55	230	-308.8	22	661.7	737.3
СР	230	-304.2	33	674.5	787.9
Protein fractions	230	-304.9	23	655.8	734.8
RDP x3 maintenance	230	-306.6	32	677.2	787.2
RUP x1 maintenance	230	-306.6	24	661.2	743.7
Amino acid	230	-305.2	25	660.4	748.1
Energy components	230	-304.1	25	658.3	744.2

Table 18. Comparison of model fits for models in Tables 12-17 based on Akaike's information criterion (AIC) and Bayesian information criterion (BIC).

4.10 Nitrogen balance studies

The data used for estimating the effects of feedlot diets on RBN, UNL, FNL, and SUN concentrations were different to those used for production variables. However, similar statistical methods were used.

Appendix Tables 12 – 15 provide the univariable statistics for continuous variables in regard to nitrogen retention and loss examined using classical meta-analysis methods. Other explanatory variables examined but not included in Appendix Tables 12 – 15 were sex, breed, rumen modifiers, protein treatment intervention, grain type, and hormonal implants used before and during the trials. One rumen modifier monensin, produced significant effects on responses and this is reflected in multivariable models.

Table 1 provides the descriptive statistics on the nitrogen variables. Table 19 shows that the weighted mean difference for the different nitrogen variables approaches a balance with intake of nitrogen being accounted for by RBN, FNL and UNL.

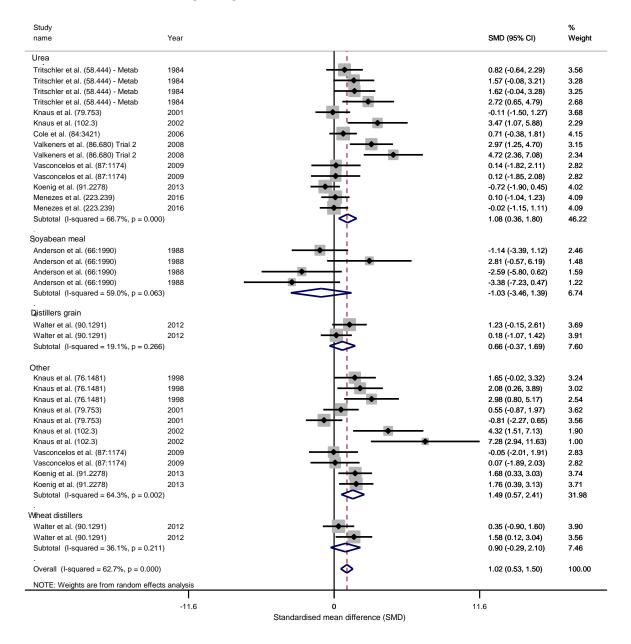

For each of the production nitrogen balance variables there were significant effects of the different protein in interventions (Appendix Table 16).

Table 19. Weighted mean differences and 95% CI between the treatment and control studies in nitrogen (N) balance outcomes with the weighting reflecting the inverse of the variance of the studies included according to no-standard method (Stata Version 14).

Variable	Weighted mean difference		95%	CI
Intake of N, g/d	43.291	35.649	-	50.933
Retained body N, g/d	6.107	4.019	-	8.195
Urinary N, g/d	30.669	25.413	-	35.925
Faecal N, g/d	4.450	2.475	-	6.426
Serum and plasma urea N, mg/dL	3.064	2.217	-	3.911

4.10.1 Retained body nitrogen

The only variable that was significant in describing RBN was design code, with Latin Square studies having approximately 1.4 SD, (12 g/d) more RBN than studies using randomised controlled studies. However, Fig. 3 shows that the effects of treatment were significant overall and with urea and other interventions both increasing nitrogen retention.

Fig. 3. Forest plot of studies which examined the effect of dietary protein and nitrogen interventions on retained body nitrogen. Box sizes of the effect size estimate of each study are proportional to the inverse variance of the estimates. Summary estimates of treatment effects according to dietary treatments (diamond shapes) and all studies (Overall) are reported. There were too few studies to evaluate using robust regression models.

4.10.2 Urinary nitrogen loss

Fig. 4 shows the forest plot of the effects of treatment on UNL. The estimate of ES estimated using robust regression models that account for the nested effect of trial within study (Hedges et al., 2010) is 1.72 (95% CI 0.660 to 2.77; P = 0.006). Models were developed that described UNL (Table 20). A model that included only the difference in CP intake between the treatments and controls was highly significant and explained much of the variance in urinary output with an Adjusted R² of 0.91. Other models were developed with monensin and estimated MP difference or difference in ADLG intake. Where reliable significant models were identified using the robust regression methods (Hedges et al., 2010), these are displayed in the Table 20. Models were not developed for MP or ME amino acids following investigation of model stability.

Study name	Year	SMD (95% CI)	% Weigh
Jrea		<u>_</u>	
Tritschler et al. (58.444) - Metab	1984	1.94 (0.17, 3.70)	3.50
Tritschler et al. (58.444) - Metab	1984	2.90 (0.75, 5.05)	3.12
Tritschler et al. (58.444) - Metab	1984	7.55 (3.06, 12.04)	1.46
Tritschler et al. (58.444) - Metab	1984	8.52 (3.50, 13.53)	1.25
Knaus et al. (102.3)	2002	4.49 (1.59, 7.38)	2.45
Cole et al. (84:3421)	2006	2.50 (1.05, 3.96)	3.81
Valkeners et al. (86.680) Trial 2	2008	7.43 (3.98, 10.88)	2.04
Valkeners et al. (86.680) Trial 2	2008	16.27 (9.05, 23.49)	0.70
Vasconcelos et al. (87:1174)	2009	0.18 (-1.79, 2.15)	3.30
Vasconcelos et al. (87:1174)	2009	0.26 (-1.72, 2.24)	3.29
Menezes et al. (223.239)	2016	1.42 (0.13, 2.71)	3.97
Menezes et al. (223.239)	2016	1.82 (0.44, 3.20)	3.88
Subtotal (I-squared = 76.8%, p = 0.000)		3.24 (1.90, 4.57)	32.77
Distillers grain		<u>i</u>	
Walter et al. (90.1291)	2012	2.37 (0.67, 4.07)	3.57
Walter et al. (90.1291)	2012	4.42 (1.92, 6.91)	2.79
Hunerberg et al. (91.2846)	2013	2.24 (0.36, 4.12)	3.39
Hunerberg et al. (91.2846)	2013	6.66 (2.64, 10.67)	1.70
Hunerberg et al. (91.2846)	2013	4.32 (1.51, 7.13)	2.52
Li et al. (170.43)	2014	5.26 (1.98, 8.54)	2.15
Li et al. (170.43)	2014	5.87 (2.27, 9.46)	1.94
Li et al. (170.43)	2014	5.12 (1.91, 8.34)	2.20
Subtotal (I-squared = 31.8%, p = 0.174)	2017	3.96 (2.82, 5.10)	20.26
Other			
Knaus et al. (76.1481)	1998	-0.03 (-1.41, 1.36)	3.88
Knaus et al. (76.1481)	1998	1.76 (0.05, 3.46)	3.56
Knaus et al. (76.1481)	1998	1.82 (0.10, 3.55)	3.54
Knaus et al. (79.753)	2001	0.23 (-1.16, 1.62)	3.88
Knaus et al. (79.753)	2001	1.64 (-0.03, 3.30)	3.60
Knaus et al. (102.3)	2002	3.65 (1.16, 6.13)	2.80
Knaus et al. (102.3)	2002	4.93 (1.81, 8.04)	2.00
Vasconcelos et al. (87:1174)	2002	0.79 (-1.31, 2.90)	3.16
Vasconcelos et al. (87:1174)	2009	1.01 (-1.19, 3.20)	3.10
Koenig and Beauchemin (91.2310)	2013	1.00 (-0.50, 2.49)	3.77
5			
Koenig and Beauchemin (91.2310)	2013	0.57 (-0.86, 1.99)	3.85
Koenig and Beauchemin (91.2310) Subtotal (I-squared = 34.7%, p = 0.113)	2013	0.48 (-0.93, 1.89) 1.14 (0.52, 1.76)	3.86 41.25
/heat distillers			
Walter et al. (90.1291)	2012	3.10 (1.14, 5.06)	3.31
Walter et al. (90.1291) Walter et al. (90.1291)	2012		2.42
Subtotal (I-squared = 39.6% , p = 0.198)	2012	5.41 (2.48, 8.34)	2.42 5.73
Subtotal (I-squared = 39.6%, p = 0.198)		3.99 (1.78, 6.19)	5.73
Overall (I-squared = 69.9%, p = 0.000)		Q 2.61 (1.95, 3.26)	100.00
NOTE: Weights are from random effects	analysis		
	-23.5	0 23.5	

Fig. 4. Forest plot of studies which examined the effect of dietary protein and nitrogen interventions on urinary nitrogen loss. Box sizes of the effect size estimate of each study are proportional to the inverse variance of the estimates. Summary estimates of treatment effects according to dietary treatments (diamond shapes) and all studies (Overall) are reported.

Table 20. Urinary nitrogen loss (g/d) evaluated using univariable and multivariable meta-regression models based on differences between treated and control groups in intakes of diet fractions and monensin intake. Knapp-Hartung methods were used to derive estimates of the co-efficients, estimates of model fit (R^2) and heterogeneity (I^2) and variance (τ^2). The permutation methods of Higgins and Thompson (2004), Harbord and Higgins (2008), and Harbord and Steichen (2004) were used for estimates of *P*-values. These are compared to robust regression models that account for the nested effect of trial within study (Hedges et al., 2010).

Variable	Coefficient	SE	g	95%	CI	Adjusted R ²	l ²	τ^{2}	Adjusted <i>P</i> -value
CP, g/d	0.006	0.001	0.003	-	0.008	0.917	0.498	0.254	<0.001
CP, g/d (Robust model)	0.006	0.001	0.004	-	0.007		0	0	<0.001
MP, g/d	0.007	0.002	0.002	-	0.012	0.664	0.572	1.025	0.002
Monensin dose, mg/kg DM	-0.049	0.017	-0.082	-	-0.015				0.003
MP, g/d (Robust model)	0.008	0.001	0.003	-	0.012		0	0	0.009
Acid detergent lignin, kg/d Monensin dose,	0.058	0.016	0.027	-	0.090	0.772	0.517	0.695	<0.001
mg/kg DM	-0.054	0.016	-0.086	-	-0.022				0.001
Acid detergent lignin, kg/d (Robust model)	No valid m	nodel							

4.10.3 Faecal nitrogen loss

Fig. 5 shows the forest plot of the effects of treatment on FNL. The estimate of ES estimated using robust regression models that account for the nested effect of trial within study (Hedges et al., 2010) is 0.522 (95% CI 0.003 to 1.050; P = 0.040). Only one multivariable model was developed that described FNL and this was based on differences in carbohydrate intakes, specifically of ADF and soluble fibre (Table 21). The robust models developed were not reliable. Univariable models that included only the difference in CP intake or in Protein A₂ fraction between the treatments and controls were highly significant and explained much of the variance in FNL with an Adjusted R² of 60.9 and 76.2, respectively (Appendix Table 14).

Table 21. Faecal nitrogen loss (g/d) evaluated using univariable and multivariable meta-regression models based on differences between treated and control groups in intakes of diet fractions. Knapp-Hartung methods were used to derive estimates of the co-efficients, estimates of model fit (R^2) and heterogeneity (l^2) and variance (τ^2). The permutation methods of Higgins and Thompson (2004), Harbord and Higgins (2008), and Harbord and Steichen (2004) were used for estimates of *P*-values.

/ariable 0	Coefficient	SE		95% CI		Adjusted R ²	ľ	τ^2	Adjusteo <i>P</i> -value	
ADF, kg/d	0.008	0.003	0.003	-	0.013	0.500	0.382	0.317	0.002	
oluble fibre, kg/d	0.007	0.003	0.002	-	0.013				0.001	
Study name	Year							SMD (95% CI)	% Weigh	
								. ,		
Urea Tritschler et al. (58.444) - Metab	1984				1			1.86 (0.12, 3.60)	2.16	
Tritschler et al. (58.444) - Metab	1984						_	3.06 (0.84, 5.28)	1.62	
Tritschler et al. (58.444) - Metab	1984					-		1.86 (0.12, 3.60)	2.16	
Tritschler et al. (58.444) - Metab	1984				-			2.40 (0.46, 4.34)	1.91	
Knaus et al. (79.753)	2001					_		-1.10 (-2.62, 0.42)	2.48	
Knaus et al. (102.3)	2002				•			0.85 (-0.62, 2.31)	2.56	
Zinn et al. (81.2383) Trial 1	2003			•				-1.71 (-3.41, -0.02)	2.23	
Zinn et al. (81.2383) Trial 1	2003			•	- L i i			-2.14 (-3.98, -0.30)	2.03	
Zinn et al. (81.2383) Trial 1	2003							-0.21 (-1.61, 1.18)	2.69	
Cole et al. (84:3421)	2006					_		0.99 (-0.14, 2.12)	3.14	
Valkeners et al. (86.680) Trial 2 Valkeners et al. (86.680) Trial 2	2008 2008							-0.52 (-1.67, 0.63) 0.63 (-0.53, 1.80)	3.10 3.08	
Vasconcelos et al. (87:1174)	2008							-0.08 (-2.04, 1.88)	1.89	
Vasconcelos et al. (87:1174)	2009							-0.32 (-2.30, 1.67)	1.86	
Menezes et al. (223.239)	2016							1.18 (-0.06, 2.42)	2.94	
Menezes et al. (223.239)	2016							0.76 (-0.42, 1.93)	3.05	
Subtotal (I-squared = 62.0%, p = 0.001)							0.43 (-0.18, 1.05)	38.89	
Soyabean meal	4000							0.60 (-0.83, 2.02)	0.00	
Zinn and Shen (76.1280) Trial 1 Subtotal (I-squared = .%, p = .)	1998				\triangleleft	>		0.60 (-0.83, 2.02)	2.63 2.63	
Distillers grain					- <u>L</u> ¦ -					
Walter et al. (90.1291)	2012			_	• •	-		0.02 (-1.22, 1.26)	2.95	
Walter et al. (90.1291)	2012			_	•			-0.12 (-1.36, 1.12)	2.94	
Hunerberg et al. (91.2846)	2013			-		-		0.26 (-1.13, 1.66)	2.68	
Hunerberg et al. (91.2846)	2013 2013							3.69 (1.19, 6.20)	1.37	
Hunerberg et al. (91.2846) Li et al. (170.43)	2013							2.78 (0.68, 4.88) 2.03 (0.23, 3.83)	1.74 2.08	
Li et al. (170.43)	2014					· · · ·		1.60 (-0.06, 3.25)	2.28	
Li et al. (170.43)	2014							0.92 (-0.56, 2.40)	2.54	
Subtotal (I-squared = 54.4%, p = 0.032)				<	>		1.12 (0.28, 1.96)	18.58	
Other					- i i					
Knaus et al. (76.1481)	1998			-	•			0.42 (-0.98, 1.83)	2.66	
Knaus et al. (76.1481)	1998			_	•	-		0.02 (-1.37, 1.41)	2.69	
Knaus et al. (76.1481)	1998							0.71 (-0.73, 2.15)	2.60	
Knaus et al. (79.753)	2001				- • i	-		-0.02 (-1.41, 1.37)	2.69	
Knaus et al. (79.753)	2001					-		0.10 (-1.28, 1.49)	2.69	
Knaus et al. (102.3) Knaus et al. (102.3)	2002 2002				<u> </u>			1.88 (0.14, 3.63)	2.15 1.85	
Knaus et al. (102.3) Vasconcelos et al. (87:1174)	2002							2.54 (0.54, 4.53) 0.40 (-1.60, 2.40)	1.85 1.84	
Vasconcelos et al. (87:1174)	2009							0.61 (-1.44, 2.66)	1.84	
Koenig and Beauchemin (91.2310)	2013				-			-0.28 (-1.68, 1.11)	2.68	
Koenig and Beauchemin (91.2310)	2013				- + + -			-0.31 (-1.71, 1.08)	2.68	
Koenig and Beauchemin (91.2310)	2013				•	-		-0.06 (-1.45, 1.33)	2.69	
Subtotal (I-squared = 0.0%, p = 0.486)					P			0.34 (-0.10, 0.78)	29.01	
Wheat distillers										
Walter et al. (90.1291) Walter et al. (90.1291)	2012				i i			3.11 (1.14, 5.07)	1.88	
Subtotal (I-squared = 24.4%, p = 0.250)	2012				1			 5.11 (2.32, 7.91) 3.85 (1.95, 5.75) 	1.17 3.05	
	,								0.00	
Fish meal										
Zinn and Shen (76.1280) Trial 1	1998			-	•	_		0.36 (-1.04, 1.76)	2.67	
Zinn and Shen (76.1280) Trial 1	1998							1.07 (-0.44, 2.58)	2.49	
Zinn and Shen (76.1280) Trial 1 Subtotal (I-squared = 0.0%, p = 0.459)	1998							-0.24 (-1.63, 1.15) 0.36 (-0.47, 1.19)	2.68 7.84	
Overall (I-squared = 52.6%, p = 0.000)					\			0.66 (0.31, 1.00)	100.00	
NOTE: Weights are from random effects	s analysis									

Fig. 5. Forest plot of studies which examined the effect of dietary protein and nitrogen interventions on faecal nitrogen loss. Box sizes of the effect size estimate of each study are proportional to the

inverse variance of the estimates. Summary estimates of treatment effects according to dietary treatments (diamond shapes) and all studies (Overall) are reported.

4.10.4 Serum and plasma urea nitrogen concentrations

The only significant variable that remained in multivariable models tested was monensin intake (mg/kg DM) that acted to reduce concentrations of serum and plasma nitrogen.

4.11 Predictions of nitrogen outputs from nitrogen intake

Further investigation of these data provided evaluations of the relationship between the difference in intake nitrogen between the treated and control cattle and the difference in RBN, UNL, and FNL using mixed models regression with study as a random effect. Figures showing these relationships are provided as Appendix Fig. 2-5. Table 22 shows the coefficients estimated for the relationship between intake N (centred) and RBN (centred), UNL, FNL, and SUN. Only 16% of N was retained in the body. Approximately 60% of N was linearly lost in urine. As the difference in nitrogen supplied increased, the difference in excretion of faecal N increased quadratically (Table 22).

Table 22. Random effects mixed model predicting the coefficients and SE, 95% CI, *P*-value, and random effect of study estimated for the relationship between intake N (centred) and Retained body N (centred), Urinary N loss, Faecal N loss, and Serum and plasma urea N.

							Study Effect				
Variable	No.	Coefficient	SE	95% CI		P-value	Coefficient	SE 95% C		CI	
Retained body N, g/d	43	0.160	0.034	0.093 -	0.226	<0.001	55.354	24.475	23.270	-	131.678
Urinary N loss, g/d	35	0.598	0.026	0.546 -	0.650	<0.001	<0.001	<0.001	<0.001	-	<0.001
Faecal N loss, g/d	47	0.144	0.024	0.098 -	0.190	<0.001	<0.001	<0.001	<0.001	-	<0.001
Faecal N loss ² , g/d		0.001	<0.001	<0.001 -	0.002	0.002					

5 Discussion

This study provides a quantitative evaluation of dietary and other factors that influence the production outputs critical to the profitability and environmental sustainability of cattle production in feedlots. There is a particular focus on the effects of dietary protein and nitrogen intake evaluated using different methods on the production performance and on the retention and loss of these dietary components. The dietary data were extracted rigorously according to previously described methods using feed data from the studies themselves and from the NDS feedbank. Notwithstanding the rigor applied, limitations in the estimates of all dietary components exist including; undescribed variations in the diets fed, feed analyses and estimations. It is anticipated that these errors are likely to be non-differential, that is neither favouring nor supporting the key hypotheses. Under these conditions, errors in estimation are likely to drive hypotheses towards the null and, therefore, findings in the study are likely to be robust, but conservative.

There were three data sets established that addressed: production responses using classical metaanalytical methods; LMY using mixed models regression and; nitrogen retention and loss using classical meta-analytical methods. The data sets contained mutual studies, but the study content differed markedly between the production responses and the nitrogen balance studies and the latter included Latin Square studies, whereas the other two data sets did not.

5.1 Evaluation of models to predict production responses

The effects of treatment on the production responses are evaluated in Table 11, that shows significant responses to the treatments for all production variables tested. There are the results of two statistical models presented. The robust regression models account for the effect of trial within study in models that, therefore, account for much of the variance. Consequently, these models do not allow an exploration of other sources of variance. These are provided in the Knapp-Hartung estimates that allow for investigation of heterogeneity in responses. Investigation of the sources of heterogeneity using meta-regression should identify factors that modify responses to treatment. The robust regression models were very similar in estimates of co-efficients to the Knapp-Hartung and permutation models, but contain fewer variables. In some cases, specifically MP NRC, there were no valid models developed using the robust regression approach.

It is important to note that one of the challenges in interpreting responses to nitrogen and protein interventions is the inherent confounding that results from any single intervention i.e., with rare exceptions such as urea or a heat or formaldehyde protected protein, an intervention does not only supply nitrogen or protein, but changes fermentation of the diet and supplies fats or carbohydrates and other nutrients. Therefore, the evaluation of treatment responses is a relatively crude evaluation of a response to protein or nitrogen and modeling of the responses using the software developed may provide greater insight.

5.1.1 Univariable and multivariable evaluation of final body weight, hot carcass weight and average daily gain

While these outcomes have quite similar attributes, the univariable and multivariable models tended to differ. For FBW, the multivariable models all had excellent fit, explaining much of the variance and for the amino acid models, MP CNCPS 6.55 model and CP providing low remaining heterogeneity (l^2) <20 with a low τ^2). The amino acid model, in particular, had an I^2 of only 2.1 and τ^2 of 0. Models based on MP NRC, protein fractions, and RDP 3x maintenance fitted guite well also. Although there was no valid robust regression model for MP NRC. The similarity in performance of the multivariable models is well reflected in the univariable results, which identified strong associations for differences in intake of some amino acids as well as for ME difference, MP CNCPS 6.55 difference, and CP. The models that had best fit and lowest heterogeneity also had quadratic terms which for FBW included: CP, RDP 3x maintenance and Leu, Val, Phe, and non-essential amino acids. For ADG it included: MP, CP, soluble intake protein, RUP 1x and RDP 3x maintenance, Thr, Leu, and nonessential amino acids. For HCW it included: MP, CP, Protein A2, RUP 1x and RDP 3x maintenance. As noted previously, there is considerable collinearity between amino acids and the identification of particular amino acids as significant should not be considered definitive. Most of the robust models were similar to the permutation and Knapp-Hartung models, but contained fewer variables. The exception to this was the amino acid model for ADG which did not produce any significant predictive variables for the robust model.

For HCW, the univariable outcomes of initial BW difference, ME difference, and difference in ether extract had large associations, but the protein and nitrogen estimates did not. Notwithstanding these results, protein and nitrogen estimates routinely remained in final models. The multivariable models containing amino acid, CP, and RDP x3 maintenance had excellent fit as did MP CNCPS 6.55. These model structures were quite similar and often differed only in the method of protein/ nitrogen estimation. These results were evident in the more parsimonious robust regression models.

The multivariable estimates of ADG fitted less well than those for FBW and HCW. When such outcomes are quite highly correlated, the reasons for this are not clear, but may indicate more inherent variability or error in measurement of ADG considering the problems of estimating and managing body shrink. The heterogeneity remaining as indicated by I^2 and τ^2 was higher for ADG than for either FBW or HCW. The robust regression models for ADG contained fewer significant terms than for FBW and HCW.

The other covariables remaining in the FBW, HCW, and ADG models were unsurprising with the exception of ether extract. Initial BW of the controls and difference in BW between the treated and control groups would be expected to influence final outcomes, as would differences in the energy density of the diets used. These variables, though, were often excluded from the robust regression models. However, ether extract entered many of the models, apparently independent of a role in providing energy that should be accounted for in the ME of the diets.

5.1.2 Univariable and multivariable evaluation of dry matter intake and gain: feed

The models developed for evaluating differences in DMI between the treated and control groups had relatively modest fits with R² between 44 to 52, with only MP CNCPS 6.55 (R² = 67), energy components that included MP CNCPS 6.55 (R² = 69), amino acid (R² = 100) and protein fractions (R² = 100) having good fits. The protein A₂ component had a very strong association with DMI, that appeared to be influenced strongly by the energy and protein content of the diet, with few other variables that entered the models. The protein fraction model had an I^2 of 0 and a τ^2 of 0 indicating that this and ME differences in diets predicted DMI well and reduced heterogeneity in responses to a low level. This response was the only model for which protein fractions were the best model. However, the fit for the amino acid model was equal with Leu, Val, and non-essential amino acids having linear and quadratic fits and Trp a linear fit. The model that also contained the difference in ME intake between the treatment and control diets also had an I^2 of 0 and a τ^2 of 0.

The protein fraction ($R^2 = 73$) model had the best fit for G:F and this variable was notable for the poor fit for the CNCPS 6.55 model. All other models had poor fit for this variable and even the protein model had moderate remaining heterogeneity. Ether extract entered a number of the G:F models.

The robust models were not significant on a number of occasions, but in general were similar in the estimated co-efficients for the remaining terms but contained fewer significant terms than the Knapp-Hartung and permutation models. The MP CNCPS 6.55 and CP models were very similar whether developed by robust methods or by Knapp Hartung and permutation.

5.1.3 Univariable and multivariable evaluation of longissimus muscle area and fat thickness

Models evaluating the LMA were poor with very few univariable associations being significant. However, models containing differences between treatments and controls in MP CNCPS 6.55, CP, and protein fraction (protein fraction A_2) that contained ME all had low heterogeneity ($I^2 < 20$). There were very few models for LMA derived using the robust regression methods.

Fat thickness models provided relatively good fit for difference in amino acid intakes ($R^2 = 79$) and for differences in MP CNCPS 6.55. Interestingly the amino acid model that contained Leu, Phe, and Trp as linear and quadratic effects did not contain the difference in ME between treatment and control diets whereas the other models contained either the difference in ME or ether extract between treatment and control diets. Interestingly, there were robust regression models developed for fat thickness and these included the CP and amino acid models, however, the MP CNCPS 6.55 model was not significant.

The use of ether extract in models containing estimates of ME was not initially intended as the estimated ME of diets comprises, in part, the EE of the diet. The inclusion and subsequent testing of ether extract in the diets reflected the inclusion of these in the RDP and RUP models and an awareness of the univariable significance ($P \le 0.5$) of ether extract for all variables except LMA. There is an increasing awareness of fats as nutraceutical agents, particularly in regard to reproduction and effects on the neonate (Symonds et al., 2016), but there is little published on the effects of these in stimulating growth in beef cattle, apart from an energetic role. Interestingly, Vasconcelos and Gaylean (2007) note that 71% of clients serviced by feedlot nutritionists in the USA utilise added fats in their diets, with the primary sources being tallow and yellow grease. The treatments used in this study differed significantly in fat content (data not shown) and this factor could influence responses to treatment. Strandvik (2015) notes the roles of fatty acids as active components in membranes, that influence cell signalling, ion channels, receptors, enzymes, and gene expression either directly or through the metabolic products of fats. While the possibility exists that the role of the ether extract in the models reflects unaccounted for energetic benefits, the role of these as metabolic modifiers seems more probable, given that ether extract entered models independently of the ME estimates.

5.1.4 Lean muscle yield models

The LMY models were derived using a mixed models regression approach that provided the opportunity to evaluate the effect of other factors influencing growth including, sex, breed, hormonal implants, rumen modifiers, and duration of the feeding period.

The results from the models were quite consistent and found that heifers gained approximately 8 kg less, cows 3 kg less, and bulls 5 kg more than steers. Similarly, Synovex H provided a substantial 10 kg advantage in studies in which it was used, while other implants did not always provide significant benefits, despite the point directions being quite large (eg 5 kg). Considering the established increase in growth rate in response to treatment with growth promotants containing oestradiol and androgens, alone or in combination, with cattle on energy dense diets (Hunter, 2010), and the anabolic effect of these mediated by increased muscle protein synthesis and decreased muscle protein degradation at the cellular level (Dayton and White, 2013) thereby increasing musculature in

all areas of the carcass (Wood et al., 1986), it is unclear why significant increases in LMY were not generally observed. The excess of muscle protein synthesis over degradation in response to treatment with anabolic steroids is the basis of the use of body nitrogen retention as an indicator of anabolic activity (Istasse et al., 1988) and suggests the possibility that more consistent and greater responses to growth promotants might be observed with a greater supply of metabolisable protein at the tissue level.

Treatment effects, *per se*, were only significant for the CP model, indicating that the effects of dietary nitrogen and protein interventions were well explained by the outcome variables used in the other models, and those models had better statistical fit.

The rumen modifiers monensin and tylosin entered a number of the models; lasalocid had too few observations to enter. Interestingly, while the effects of monensin were positive for LMY, the effect of tylosin was negative. The effect of monensin is consistent with the positive effects of monensin that have been previously described for ADG (Duffield et al., 2012), but the negative effects of tylosin differ from the univariable estimate. Tylosin use is primarily directed towards control of liver abscessation, and inherently, control of ruminal acidosis. Studies report weight gains with tylosin use, but almost always in conjunction with monensin use. This finding indicates that tylosin *per se*, may not increase LMY.

As anticipated, effects of treatment duration and initial BW entered all models.

The LMY models were all very similar in regards to the AIC and BIC estimates. The models that provided the poorest fit were RDP 3x maintenance and CP.

5.2 A comparison of the results achieved using CNCPS 6.55, crude protein, metabolisable protein estimated using NRC (2000) level 1, protein fractions, and measures of rumen degraded and undegraded dietary protein from NRC (2000)

Importantly, the results indicate that, apart from LMA, models developed using existing nutritional standards predicted outcomes well, with many models exceeding an R² of 80. The protein models used provided some insights to the success of development of models over time, however, models containing more basic descriptions of feed including CP and RDP/ RUP from the NRC (2000) level 1 performed well in general. The statistical modelling provided clear evidence that the NRC (2000) level 1 estimates of MP were poor predictors of outcomes despite a strong correlation between these and the CNCPS 6.55 estimates of MP. This result may reflect the method used to predict MP NRC. The estimate of peNDF used for feeds was derived from the NDS feedbank rather than the original NRC feedbank, and given that the NRC (2000) level 1 is an empirical model, this decision may have affected the precision of estimation of MP. This concern was tested by including a dichotomous variable for low peNDF (<20%) where the NRC (2000) correction factor is applied for the effect of NDF on microbial protein production and studies with a higher peNDF for which the term is not applied. This variable was not significant in the analyses conducted (data not shown) possibly indicating a more substantive concern with the MP as estimated by NRC (2000).

Gaylean and Tedeschii (2014), using a large database of 285 studies in which microbial CP yield was measured, found that the NRC (1996, 2000) predictions of microbial CP yield, with or without adjustment for peNDF had significant mean and linear bias. Owens and Sapienza (2014) also

assembled 3 substantial data bases, one of which included 155 protein- diet comparisons in growing cattle and evaluated the relationship compared the estimates of microbial CP supply and the UDP, RDP, and MP predicted from TDN, UDP, and RDP tabular estimates for the compiled diets from model 1 of NRC (2000) with microbial crude protein supply, UDP, RDP, and MP measurements within the experiments. They (Owens and Sapienza 2014) found a poor fit for the NRC predictions, especially when the effect of DMI was excluded from the models and noted that implausible predictions of greater MP production than biologically possible were present. Further, Owens and Sapienza (2014) identified that 67% of the diets provided insufficient RDP for maximal microbial protein production. The NRC (2016) notes that estimates of MP production need to reflect availability of nitrogen in the rumen and will not be maximal unless the nitrogen availability is addressed. The NRC (2016) therefore used a correction for less than optimal availability of nitrogen and protein in the rumen and also estimated responses using a fat free TDN. In this data set used for our study only 1.6% of the diets contained more than 12.5% RDP and only 62.8% were >8.5% CP, as estimated at 1 times maintenance. A RDP of 12.5% is consistent with a diet that produces 5 mg/100 ml of ammonia in the rumen, a concentration of ammonia that is associated with optimal microbial production (Satter and Roffler 1975). These observations suggest that our findings of poor predictive value for outcome variables and lack of effect of correction for peNDF may reflect fundamental failings in the NRC (2000) model, rather than use of the more recent estimates of peNDF. The failure to account for the limiting effect of RDP on microbial protein production and estimation of microbial protein production based on TDN and eNDF, without accounting for the effects of fat in TDN are serious model flaws. Specifically, the NRC (1996) Level 1 predictions for microbial CP synthesis made in the computer model use a 0.13 x TDNI x eNDF adj factor that does not account for a reduction in microbial protein synthesis if DIP supply is less than the DIP required for optimal microbial CP synthesis.

The use of CP intake proved superior to CNCPS 6.55 for FBW and HCW but generally explained less of the variance. Use of CP intake was superior to MP estimates derived from NRC (2000) levels 1. The RDP 3x maintenance model performed well for a number of outcomes. The RUP 1x maintenance models performed well in a very little limited number of outcomes. The performance of the MP NRC (2000) estimates may provide a rationale for the limited acceptance of MP NRC (2000) by field nutritionists. However, differences of MP intake between treatments and controls using MP derived from CNCPS 6.55 and the amino acid models provided many promising predictive models suggesting benefits in production outcomes might be achieved by using this approach rather than using CP or NRC (2000) estimates.

The Cornell Net Protein and Carbohydrate Systems (CNCPS) as initially described in a series of four papers (Russell et al., 1992; Sniffen et al., 1992; Fox et al., 1992; O'Connor et al., 1993) predicts nutrient digestion based on the competition between rate of passage and rate of digestion of protein and carbohydrate fractions that are intended to be chemically and digestively uniform using the equation (Kd/(Kd+Kp)) (Sniffen et al., 1992). In CNCPS, bacteria are classified as either structural carbohydrate fermenters or non-structural carbohydrate fermenters. Microbial protein yield for each bacterial type is a function of the growth rate that the available carbohydrate can drive (rate of digestion), the bacterial maintenance rate, and the theoretical maximum growth yield. Bacterial yield is decreased reflecting the energy spilling that results from futile cycles when bacterial growth is limited by substrates such as ammonia and peptides and resulting in a low rumen pH (Russell and Strobel 1993). The yield of non-structural carbohydrate fermenters increases with peptide availability. The majority of diets present in the current study had limited rumenal nitrogen and peptides.

The CNCPS nutritional model has changed considerably over the last two decades. Chemical compositions of about 800 different ingredients in the CNCPS feed library were updated (Higgs et al., 2015). New protein and carbohydrate fractionation schemes and corresponding rates of degradation and passage were developed based on recent research (Van Amburgh et al., 2015). Proteins are categorized into Fraction A1, A2, B1, B2, and C. Soluble CP (soluble in borate-phosphate buffer) is comprised of Ammonia (Fraction A1) in addition to soluble true protein (Fraction A2). As a result of changes in characterisation and rates of degradation and passage, soluble protein now contributes to MP whereas previously most of the soluble protein was converted to rumen ammonia. Furthermore, the rate of ammonia degradation and presumed uptake by rumen bacteria has been reduced. Protein fractions B2 and C are insoluble after boiling in neutral detergent solution while protein fraction C is also insoluble after boiling in acid detergent solution. Protein fraction B2 is slowly degraded while protein fraction C is unavailable. Crude protein which is not soluble in borate-phosphate buffer but is soluble in neutral detergent is estimated to be the B1 fraction which is degraded at an intermediate rate in the rumen. Feed amino acid values and usage efficiencies were also updated based on more recent research.

Further research into production responses with changes in protein intake must be accompanied by laboratory analytical characterization of the protein fractions of feedstuffs and diets since library values provide a guide at best, particularly when they are based on foreign cultivars. As acknowledged in this paper, there is inaccuracy inherent to the use of feed library reference values which would likely be amplified by the application of US values to Australian diets and which could make Australian studies meaningless without corresponding feedstuff analyses.

The amino acid models performed consistently well, with the exception of G:F, LMA and ADG, and this raises the potential for amino acid-based models for the prediction of feedlot performance. However, as noted above, there was strong collinearity of the amino acids, suggesting that the particular amino acids identified in models may not be definitive. Notwithstanding this observation, there was some consistency of amino acids identified in the models with Leu, Phe, and non-essential amino acids entering 50% of the models. This work should be considered in the context that many of the studies used non-protein nitrogen as the treatment intervention and ADG achieved were 1.5 kg/d on average, suggesting that more studies are needed in populations stimulated to achieve greater gains, possibly using higher quality proteins or amino acids. Notwithstanding the latter comments, most of the study diets would have benefited from supply of additional nitrogen, and peptides in the rumen.

There is a difficulty in designing studies to evaluate responses of cattle to proteins. Specifically, the theoretical production response to dietary change to specific amino acids obtained within the MP delivered to the intestine. The difficulty has been to assess the impact of the changes in diet on the supply of MP amino acids in the production context. Simply, the confounding effects of dietary change, that is the removal or dilution of a particular nutrient to increase the MP supply of amino acids necessarily results in other changes in the diet that may influence rumen function, absorption or partition of nutrients. While meta-analytical approaches to evaluating responses are the most powerful available to us, these are limited by the quality and range of the data on which they are based. In this study, the data base was extensive and the range of diets used was quite wide, but the cattle performance, was not high, being only 1.5 kg ADG.

One of the objectives of this series of studies was to identify an optimal nitrogen or protein intake. There is evidence that identifying an optimum is realistic as evidenced by the many analyses that provide quadratic terms in models (Tables 4-10 and Tables 12-17) and in the Appendix Fig. 6 and 7. However, recommending an optimum for any particular model is not a strategy that we generally recommend. The evaluation of LMY identified many modifying factors for most methods used to assess the impact of diet that predict LMY including initial body weights, hormonal treatments, sex, and rumen modifiers (Tables 12-17). In the case of the amino acid models that often had excellent fit the uncertainty regarding the merit of any particular amino acid entering the model, suggests caution in interpretation. Lastly, the goal of good nutritional strategy should be to identify means to perform above the average and there is sufficient residual variance or heterogeneity to provide the opportunity for that. It is also becoming increasingly clear that there are marked differences in the rumen microbiome of cattle that will influence responses of individuals within populations and, potentially among populations (Golder et al., 2014ab). Further, the range of ADG and limitations of diet design with many of the diets being based on urea or corn distillers grains suggests that alternate diets may be identified, which have greater potential for performance. Further research is required as outlined in the recommendations arising from this report to better define the inputs required to model the optimum nitrogen or protein intake with diets of higher protein concentrations that those analysed in this report (ie. greater than 13% CP).

5.3 Models evaluating responses to nitrogen and nitrogen balance

The models that were developed using differences in nitrogen intake between the treated and control groups and nitrogen retention or loss in faeces and urine or increases in blood used classical meta-analytical methods. Further investigation was undertaken to examine the results in the context of each diet using mixed models regression methods.

The results indicate that feeding additional protein and nitrogen increased retention of nitrogen and that urea and 'other' interventions increased the retention of nitrogen in the body. However, the model had substantial heterogeneity ($I^2 = 66$) and only study design explained some of this in meta-regression models, as Latin-square studies had higher effect sizes for retained N. The mixed model showed that around 16% of the nitrogen fed was retained in the body and that this was a linear relationship with N intake (Table 22 and Appendix Fig. 2). Koenig et al. (2013) found that N retention was greater earlier in the feeding period, but found little difference among treatments used. The effect of greater N retention earlier in the feeding period is further enhanced in response to treatment with hormonal growth promotants (Hunter et al., 1988).

The difference in nitrogen intake was reflected in increased UNL with the nitrogen and protein interventions individually significantly increasing urinary excretion and as a group. The pooled ES was large (ES = 2.6), but there was substantial heterogeneity ($I^2 = 70\%$) that was reduced by meta-regression models containing CP, MP CNCPS 6.55 and monensin, and ADLG and monensin. These models still had substantial remaining heterogeneity ($I^2 \sim 50\%$). One of the actions of monensin is to reduce deamination and, thereby, to increase bypass of protein and the lower urinary excretion of N is consistent with this action. Yang and Russell (1993) found a greater than 30% reduction in ruminal ammonia concentrations and increased microbial protein concentration by a similar 30% *in vivo* in response to monensin. These changes were the result of a nearly 10 fold decrease in amino acid fermenting bacteria. McGuffey et al. (2001) concluded that the effects of monensin on inhibition of

deamination were greater than on proteolysis. Poos et al. (1979) found decreased bacterial nitrogen flow to the small intestine of steers fed monensin with diets containing 11.5% CP, indicating that the effects of monensin on protein will be influenced by diet.

The mixed model (Table 22) showed that around 60% of the nitrogen fed was lost in urine and that this was a strong linear relationship. This result was consistent with the estimates from the WMD (Table 20) that estimated approximately 70% loss in urine, 10% loss in faeces, and 14% retention in the body. As the difference in nitrogen supplied increased, the difference in excretion of faecal N increased quadratically (Table 22), indicating that this was perhaps a more sensitive indicator of adequacy of supply in the diet than urinary loss. As expected, the difference in SUN concentrations increased linearly (Table 22).

Overall, the percentage of nitrogen fed that is retained is low and the vast majority is lost in urine as a linear function of intake with faecal excretion increasing quadratically with intake.

6 Conclusions/recommendations

The data available are remarkably extensive in providing up to 230 observations that could be used to predict lean muscle yield and approximately 200 observations for other outcomes. There is a high level of internal consistency in the predictive models that have been developed.

The nutritional models used, with the exception of MP NRC provided excellent predictions of performance, particularly MP CNCPS 6.55 and amino acid models, however, protein fractions, CP, and RDP/RUP all yielded good models.

We do not have a high level of confidence in the predictive value of specific amino acids because of the marked collinearity between these. However, the methods used to evaluate these were the most appropriate we could identify and these provided the models with the best statistical fit suggesting a need for much more work in this area. Mixtures of rate limiting amino acids and non-protein nitrogen may provide the potential for greater weight gains and higher nitrogen retention.

However, and importantly, there are relatively few circumstances where average daily gain exceeds 2.0 kg/d in these databases and diets seldom exceed 13% crude protein, with many interventions being based solely on non-protein nitrogen. Consequently, we are reluctant to over-emphasise optimal levels of protein/ nitrogen in the diet as these depend on many factors including, breed, sex, implant strategy, and other factors in the diets as evident in the many analyses provided.

These limitations indicate the potential to explore other strategies to increase growth of cattle in feedlots. Critically, further studies are needed to explore:

- Cattle growing at more than 2 kg/head.day
- Diets based on wheat
- Diets higher in true protein with detailed characterisation of the protein fractions and amino acid profiles, and the carbohydrate fractions
- Diets using NPN and protected amino acids.

The finding in regards to the ether extract content of the diet is important, particularly in regards to the potential for fats to act not just as sources of energy, but to act as metabolic signalling agents.

7 Key messages

We identified a large number of studies that evaluated responses of beef feedlot cattle to protein.

Both, production responses to protein and nitrogen balance studies were identified. However, almost all studies were from the USA or Europe.

The computer-based nutrition models available provided good levels of prediction of responses to protein.

The CNCPS 6.55 estimates of MP were generally superior to use of CP to predict outcomes such as average daily gain, hot carcass weight, and feed:gain, and both of these were superior to estimates of MP based on NRC (2000) level 1 methods.

The LMY models were all very similar in regards to model fit and indicated that the protein and nitrogen estimates were useful in explaining LMY. The LMY models provided the opportunity to evaluate the effect of other factors influencing growth including, sex, breed, hormonal implants, rumen modifiers, and duration of the feeding period. Similarly, the hormonal implant, Synovex H provided a substantial 10 kg advantage in studies in which it was used, while other implants did not always provide significant benefits, despite the point directions being quite large (eg 5 kg). Results from the different models were quite consistent and found that heifers gained approximately 8 kg, cows 3 kg less and bulls 5 kg more than steers.

Interestingly, ether extract entered a large number of models independent of its inclusion in metabolisable energy suggesting that fats may play a role in increasing the efficiency of beef feedlot production as signalling agents.

Multivariable models were developed to predict production outcomes and to predict nitrogen retention and loss. The results indicate that feeding additional protein and nitrogen increased retention of nitrogen and that urea and 'other' interventions increased the retention of nitrogen in the body. Only approximately 16% of dietary nitrogen was retained in the body. Nitrogen loss in urine increased with dietary nitrogen and protein intake and faecal loss increased quadratically with increased nitrogen intake. Results indicate the potential to increase the efficiency of nitrogen use.

There are indications that optimal dietary protein and nitrogen intake strategies exist as indicated by quadratic terms for protein and nitrogen measures in many of the models developed.

However, and importantly, there are relatively few circumstances where average daily gain exceeds 2.0 kg/d in these databases and diets seldom exceed 13% crude protein, with many interventions being based solely on non-protein nitrogen. Consequently, we are reluctant to over-emphasise optimal levels of protein/ nitrogen in the diet as these depend on many factors including, breed, sex, implant strategy, and other factors in the diets as evident in the many analyses provided.

These limitations indicate the potential to explore other strategies to increase growth of cattle in feedlots. Critically, further studies are needed to explore:

- Cattle growing at more than 2 kg/head.day
- Diets based on wheat

- Diets higher in true protein with detailed characterisation of the protein fractions and amino acid profiles, and the carbohydrate fractions
- Diets using NPN and protected amino acids.

8 Bibliography

Baldwin RL (1995) 'Modeling Ruminant Digestion and Metabolism.' (Chapman and Hall: London)

- Dayton, WR, White ME (2013) Mechanisms of anabolic steroid action in bovine skeletal muscle. Evaluating Veterinary Pharmaceutical Behavior in the Environment. ACS Symposium Series. American Chemical Society, Washington DC, 1-12.
- DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Controlled Clinical Trials 7, 177-188.
- Duffield TF, Merrill JK, Bagg RN (2012) Meta-analysis of the effects of monensin in beef cattle on feed efficiency, body weight gain, and dry matter intake. *Journal of Animal Science* **90**, 4583-4592.
- Egger M, Smith GD (2001) Principles of and procedures for systematic reviews. In 'Systematic reviews in health care meta-analysis in context No. 23-42.' (Eds M Egger and GD Smith). (British Medical Journal Books: London).
- Fox, DG, Sniffen CJ, O'Connor JD, Van Soest, PJ, Russell, JB (1992) A net carbohydrate and protein system for evaluating cattle diets. III. Cattle requirements and diet adequacy. *Journal of Animal Science* **70**, 3578-3596.
- Galyean M, Tedeschi L (2014) Predicting microbial protein synthesis in beef cattle: Relationship to intakes of total digestible nutrients and crude protein. *Journal of Animal Science* **92**, 5099-5111.
- Golder HM, Celi P, Rabiee AR, Lean IJ (2014a) Effects of feed additives on rumen and blood profiles during a starch and fructose challenge. *Journal of Dairy Science* 97(8):5131-50. doi: 10.3168/jds.2014-8003
- Golder HM, Denman SE, McSweeney C, Celi P, Lean IJ (2014b) Ruminal bacterial community shifts in grain, sugar, and histidine challenged dairy heifers. *Journal of Dairy Science* **97**, 5131-5150.

Harbord RM, Higgins J (2008) Meta-regression in Stata. Meta 8, 493-519.

- Harbord RM, Steichen TJ (2004) "METAREG: Stata module to perform meta-analysis regression," Statistical Software Components S4446201.' (Boston College, Department of Economics, Revised 5 Jan. 2009).
- Hedges LV, Tipton E, Johnson MC (2010) Robust variance estimation in meta-regression with dependent effect size estimates. *Research synthesis methods* **1**, 39-65.
- Higgs R, Chase L, Ross D, Van Amburgh M (2015) Updating the Cornell Net Carbohydrate and Protein System feed library and analyzing model sensitivity to feed inputs. *Journal of Dairy Science* **98**, 6340-6360.

- Higgins JPT, Green S (2011) Cochrane handbook for systematic reviews of interventions, version 5.1.0 (updated March 2011). The Cochrane Collaboration. http://handbook.cochrane.org/ (Accessed Oct. 7, 2015).
- Higgins JPT, Thompson SG (2004) Controlling the risk of spurious findings from meta-regression. *Statistics in Medicine* **23**, 1663-1682.
- Higgins JPT, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. *Statistics in Medicine* **21**, 1539-1558.
- Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ: British Medical Journal **327**, 557.
- Hunter, RA (2010) Hormonal growth promotant use in the Australian beef industry. *Animal Production Science* **50**, 637-659.
- Hunter RA, Magner T, Berger KT (1998). Sustained growth promotion of steers, using anabolic steroids. *Australian Journal of Agricutural Research* **49**, 589-596.
- IntHout J, Ioannidis JP, Borm GF (2014) The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. *BMC Medical Research Methodology* **14**, 25.
- Istaase I, Evrard P, Eenaeme M, Gielen M, Maghuin-Rogister G, Bienfait JM (1988) Trenbolone acetate in combination with 17β-oestradiol: influence of implant supports and dose levels on animal performance and plasma metabolites. *Journal of Animal Science* **66**, 1212-1222.
- Knapp G, Hartung J (2003) Improved tests for a random effects meta-regression with a single covariate. *Statistics in Medicine* **22**, 2693-2710.
- Lean IJ, Rabiee AR, Duffield TF, Dohoo IR (2009) Invited review: Use of meta-analysis in animal health and reproduction: Methods and applications. *Journal of Dairy Science* **92**, 3545-3565.
- Light RJ, Pillemer DB (1984) 'Summing Up: The Science of Reviewing Research.' (Harvard University Press: Cambridge, MA).
- McGuffey RK, Richardson LF, Wilkinson JID (2001) Ionophores for Dairy Cattle: Current Status and Future Outlook. *Journal of Dairy Science* **84**, E194-E203.
- National Research Council (NRC) (2001) 'Nutrient requirements of dairy cattle.' 7th edn. (National Academic Press: Washington, DC, USA)
- National Research Council (NRC) (1996) 'Nutrient requirements of beef cattle.' 7th edn. (National Academic Press, Washington, DC, USA)
- O'Connor JD, Sniffen CJ, Fox DG, Chalupa, W. (1993) A net carbohydrate and protein system for evaluating cattle diets: IV. Predicting amino acid adequacy. *Journal of Animal Science* **71**, 1298-1311.
- Owens F, Qi S, Sapienza D (2014) INVITED REVIEW: Applied protein nutrition of ruminants—Current status and future directions. *The Professional Animal Scientist* **30**, 150-179.

- Poos MI, Hanson TL, Klopfenstein TJ (1979) Monensin Effects on Diet Digestibility, Ruminal Protein Bypass and Microbial Protein Synthesis. *Journal of Animal Science* **48**, 1516-1524.
- Satter LD, Roffler RE (1975) Nitrogen Requirement and Utilization in Dairy Cattle. *Journal of Dairy Science* **58**, 1219-1237.
- Russell JB, O'Connor JD, Fox, DG, Van Soest PJ, Sniffen CJ. (1992) A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. *Journal of Animal Science* **70**, 3551-3561.
- Russell JB, Strobel HJ (1993) Microbial energetics. Pages165–186 in Quantitative Aspects of Ruminant Digestion and Metabolism. JM Forbes and J France, ed. Commonwealth Agricultural Bureaux International, Wallingford, UK.
- Sniffen CJ, O'Connor JD, Van Soest PJ, Fox, DG, Russell JB. (1992) A net carbohydrate and protein system for evaluating cattle diets. II. Carbohydrate and protein availability. *Journal of Animal Science* **70**, 3562-3577.
- Sterne JA, Harbord RM (2004) Funnel plots in meta-analysis. Stata Journal 4, 127-141.
- Strandvik B (2015) Perinatal programming by diets with essential fatty acid deficient/high saturated fatty acids or different n-6/n-3 ratios for diseases in adulthood. *European Journal of Lipid Science and Technology* **117**, 1513-1521.
- Symonds M, Dellschaft N, Pope M, Birtwistle M, Alagal R, Keisler D, Budge H (2016) Developmental programming, adiposity, and reproduction in ruminants. *Theriogenology* **86**, 120-129.
- Tanner-Smith EE, Tipton E (2014) Robust variance estimation with dependent effect sizes: practical considerations including a software tutorial in Stata and SPSS. *Research Synthesis Methods* **5**, 13-30.
- Van Amburgh, ME, Collao-Saenz EA, Higgs RJ, Ross DA, Recktenwald EB, Raffrenato E, Chase LE, Overton TR, Mills JK, Foskolos A (2015) The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5. *Journal of Dairy Science* **98**, 6361-6380.
- Vasconcelos J, Galyean M (2007) Nutritional recommendations of feedlot consulting nutritionists: The 2007 Texas Tech University survey. *Journal of Animal Science* **85**, 2772-2781.
- Wood JD, Fisher AV, Whelehan OP. 1986. The effects of a combined androgenic-oestrogenic anabolic agent in steers and bulls. 2. Muscle weight distribution, partition of body fat and carcass value. *Animal Production* **42**, 213-222.
- Yang CM, Russell JB (1993) The effect of monensin supplementation on ruminal ammonia accumulation *in vivo* and the numbers of amino acid-fermenting bacteria. *Journal of Animal Science* **71**, 3470-3476.

9 Appendix

9.1 List of scientific references contained in the data bases

- Adamu A, Russell J, McGilliard A, Trenkle A (1989) Effects of added dietary urea on the utilization of maize stover silage by growing beef cattle. *Animal Feed Science and Technology* **22**, 227-236.
- Adamu A, Russell J, Trenkle A (1988) Effects of ruminal degradability of the protein supplement on the utilization of maize-stover silage by growing beef cattle. *Animal Feed Science and Technology* **20**, 241-250.
- Al-Suwaiegh S, Fanning K, Grant R, Milton C, Klopfenstein TJ (2002) Utilization of distillers grains from the fermentation of sorghum or corn in diets for finishing beef and lactating dairy cattle. *Journal of Animal Science* **80**, 1105-1111.
- Anderson P, Bergen W, Merkel R, Hawkins D (1988) The effects of dietary crude protein level on rate, efficiency and composition of gain of growing beef bulls. *Journal of Animal Science* **66**, 1990-1996.
- Anderson V, Ilse B, Wiederholt R (2011) Effects of increasing levels of distillers grains in barley-based diets on growing and finishing feedlot performance, carcass traits and nutrients in manure. *Journal of Animal Science* **27**, 547-552.
- Archibeque S, Freetly H, Cole N, Ferrell C (2007a) The influence of oscillating dietary protein concentrations on finishing cattle. II. Nutrient retention and ammonia emissions. *Journal of Animal Science* **85**, 1496-1503.
- Archibeque S, Miller D, Freetly H, Berry E, Ferrell C (2007b) The influence of oscillating dietary protein concentrations on finishing cattle. I. Feedlot performance and odorous compound production. *Journal of Animal Science* **85**, 1487-1495.
- Arias R, Unruh-Snyder L, Scholljegerdes E, Baird A, Johnson K, Buckmaster D, Lemenager R, Lake S (2012) Effects of feeding corn modified wet distillers grain plus solubles co-ensiled with directcut forage on feedlot performance, carcass characteristics, and diet digestibility of finishing steers. *Journal of Animal Science* **90**, 3574-3583.
- Bailey C, Duff G, Sanders S, Treichel J, Baumgard L, Marchello JA, Schafer DW, McMurphy C (2008) Effects of increasing crude protein concentrations on performance and carcass characteristics of growing and finishing steers and heifers. *Animal Feed Science and Technology* **142**, 111-120.
- Barajas R, Zinn R (1998) The feeding value of dry-rolled and steam-flaked corn in finishing diets for feedlot cattle: Influence of protein supplementation. *Journal of Animal Science* **76**, 1744-1752.
- Beauchemin KA, Koenig KM (2005) Feedlot cattle diets based on barley or corn supplemented with dry corn gluten feed evaluated using the NRC and CNCPS beef models. *Canadian Journal of Animal Science* **85**, 365-375.
- Beliveau R, McKinnon J (2008) Effect of graded levels of wheat-based dried distillers' grains with solubles on performance and carcass characteristics of feedlot steers. *Canadian Journal of Animal Science* **88**, 677.

- Block H, Macken C, Klopfenstein T, Erickson GE, Stock R (2005) Optimal wet corn gluten and protein levels in steam-flaked corn-based finishing diets for steer calves. *Journal of Animal Science* **83**, 2798-2805.
- Bourg B, Tedeschi L, Wickersham T, Tricarico J (2012) Effects of a slow-release urea product on performance, carcass characteristics, and nitrogen balance of steers fed steam-flaked corn. *Journal of Animal Science* **90**, 3914-3923.
- Brown M, Montgomery T, Biggs T (2003) Effect of dietary cottonseed meal concentration on feedlot performance and carcass characteristics of cull beef cows. *The Professional Animal Scientist* **19**, 350-356.
- Buttrey E, Cole N, Jenkins K, Meyer B, McCollum F, Preece S, Auvermann B, Heflin K, MacDonald J (2012) Effects of twenty percent corn wet distillers grains plus solubles in steam-flaked and dry-rolled corn-based finishing diets on heifer performance, carcass characteristics, and manure characteristics. *Journal of Animal Science* **90**, 5086-5098.
- Cecava M, Hancock D (1994) Effects of anabolic steroids on nitrogen metabolism and growth of steers fed corn silage and corn-based diets supplemented with urea or combinations of soybean meal and feathermeal. *Journal of Animal Science* **72**, 515-522.
- Chiavegato M, Powers W, Palumbo N (2015) Ammonia and greenhouse gas emissions from housed Holstein steers fed different levels of diet crude protein. *Journal of Animal Science* **93**, 395-404.
- Cole N, Clark R, Todd R, Richardson C, Gueye A, Greene L, McBride K (2005) Influence of dietary crude protein concentration and source on potential ammonia emissions from beef cattle manure. *Journal of Animal Science* **83**, 722-731.
- Cole N, Defoor P, Galyean M, Duff G, Gleghorn J (2006) Effects of phase-feeding of crude protein on performance, carcass characteristics, serum urea nitrogen concentrations, and manure nitrogen of finishing beef steers. *Journal of Animal Science* **84**, 3421-3432.
- Cole N, Greene L, McCollum F, Montgomery T, McBride K (2003) Influence of oscillating dietary crude protein concentration on performance, acid-base balance, and nitrogen excretion of steers. *Journal of Animal Science* **81**, 2660-2668.
- Corrigan M, Erickson G, Klopfenstein T, Luebbe M, Vander Pol K, Meyer N, Buckner C, Vanness S, Hanford K (2009) Effect of corn processing method and corn wet distillers grains plus solubles inclusion level in finishing steers. *Journal of Animal Science* **87**, 3351-3362.
- Duff G, Malcolm-Callis K, Galyean M, Walker D (2003) Effects of dietary urea concentration on performance and health of receiving cattle and performance and carcass characteristics of finishing cattle. *Canadian Journal of Animal Science* **83**, 569-575.
- Farran T, Erickson GE, Klopfenstein T, Macken C, Lindquist R (2006) Wet corn gluten feed and alfalfa hay levels in dry-rolled corn finishing diets: Effects on finishing performance and feedlot nitrogen mass balance. *Journal of Animal Science* **84**, 1205-1214.
- Firkins J, Berger L, Fahey G (1985) Evaluation of wet and dry distillers grains and wet and dry corn gluten feeds for ruminants. *Journal of Animal Science* **60**, 847-860.

- Gleghorn J, Elam N, Galyean M, Duff G, Cole N, Rivera J (2004) Effects of crude protein concentration and degradability on performance, carcass characteristics, and serum urea nitrogen concentrations in finishing beef steers. *Journal of Animal Science* **82**, 2705-2717.
- Gunn P, Weaver A, Lemenager R, Gerrard D, Claeys M, Lake S (2009) Effects of dietary fat and crude protein on feedlot performance, carcass characteristics, and meat quality in finishing steers fed differing levels of dried distillers grains with solubles. *Journal of Animal Science* **87**, 2882-2890.
- Hales K, Cole N, MacDonald J (2012) Effects of corn processing method and dietary inclusion of wet distillers grains with solubles on energy metabolism, carbon– nitrogen balance, and methane emissions of cattle. *Journal of Animal Science* **90**, 3174-3185.
- Hales K, Cole N, MacDonald J (2013) Effects of increasing concentrations of wet distillers grains with solubles in steam-flaked, corn-based diets on energy metabolism, carbon-nitrogen balance, and methane emissions of cattle. *Journal of Animal Science* **91**, 819-828.
- Ham G, Stock R, Klopfenstein T, Larson E, Shain D, Huffman R (1994) Wet corn distillers byproducts compared with dried corn distillers grains with solubles as a source of protein and energy for ruminants. *Journal of Animal Science* **72**, 3246-3257.
- Hankins S, Arseneau J, Lemenager R, Sutton A (2005) Performance, carcass traits, and nutrient excretion of beef feedlot cattle fed a corn gluten feed diet. *The Professional Animal Scientist* **21**, 1-6.
- Hao X, Mir PS, Shah MA, Travis GR (2005) Influence of canola and sunflower diet amendments on cattle feedlot manure. *Journal of Environmental Quality* **34**, 1439-1445.
- He M, Gibb D, McKinnon J, Mcallister T (2013) Effect of high dietary levels of canola meal on growth performance, carcass quality and meat fatty acid profiles of feedlot cattle. *Canadian Journal of Animal Science* **93**, 269-280.
- Hünerberg M, McGinn S, Beauchemin K, Okine E, Harstad O, Mcallister T (2013) Effect of dried distillers grains plus solubles on enteric methane emissions and nitrogen excretion from growing beef cattle. *Journal of Animal Science* **91**, 2846-2857.
- Hussein H, Berger L (1995) Effects of feed intake and dietary level of wet corn gluten feed on feedlot performance, digestibility of nutrients, and carcass characteristics of growing-finishing beef heifers. *Journal of Animal Science* **73**, 3246-3252.
- Kennington L, Szasz J, Hunt C, Hinman D, Sorensen S (2009) Effect of degradable intake protein level on performance of feedlot steers fed dry-rolled corn-or barley-based finishing diets. *The Professional Animal Scientist* **25**, 762-767.
- Knaus W, Beermann D, Guiroy P, Boehm M, Fox D (2001) Optimization of rate and efficiency of dietary nitrogen utilization through the use of animal by-products and (or) urea and their effects on nutrient digestion in Holstein steers. *Journal of Animal Science* **79**, 753-760.
- Knaus W, Beermann D, Robinson T, Fox D, Finnerty K (1998) Effects of a dietary mixture of meat and bone meal, feather meal, blood meal, and fish meal on nitrogen utilization in finishing Holstein steers. *Journal of Animal Science* **76**, 1481-1487.

- Knaus W, Beermann D, Tedeschi L, Czajkowski M, Fox D, Russell J (2002) Effects of urea, isolated soybean protein and blood meal on growing steers fed a corn-based diet. *Animal Feed Science and Technology* **102**, 3-14.
- Koenig K, Beauchemin K (2013) Nitrogen metabolism and route of excretion in beef feedlot cattle fed barley-based finishing diets varying in protein concentration and rumen degradability. *Journal of Animal Science* **91**, 2310-2320.
- Koenig K, McGinn S, Beauchemin K (2013) Ammonia emissions and performance of backgrounding and finishing beef feedlot cattle fed barley-based diets varying in dietary crude protein concentration and rumen degradability. *Journal of Animal Science* **91**, 2278-2294.
- Koenig KM, Beauchemin KA (2005) Barley-versus protein-supplemented corn-based diets for feedlot cattle evaluated using the NRC and CNCPS beef models. *Canadian Journal of Animal Science* **85**, 377-388.
- Li Y, Beauchemin K, Mcallister T, Yang W (2014) Intakes and excretion route of nitrogen, phosphorous and sulfur by finishing beef heifers fed increasing levels of wheat dried distillers grains with solubles to substitute for barley grain and barley silage. *Livestock Science* **170**, 43-52.
- López-Soto M, Aguilar-Hernández J, Dávila-Ramos H, Estrada-Angulo A, Ríos F, Urías-Estrada J, Barreras A, Calderón J, Plascencia A (2015) Effects of a combining feed grade urea and a slowrelease product on performance, dietary energetics and carcass characteristics of steers fed finishing diets. *Journal of Applied Animal Research* **43**, 303-308.
- Luebbe M, Erickson G, Klopfenstein T, Greenquist M (2012a) Nutrient mass balance and performance of feedlot cattle fed corn wet distillers grains plus solubles. *Journal of Animal Science* **90**, 296-306.
- Luebbe M, Patterson J, Jenkins K, Buttrey E, Davis T, Clark B, McCollum F, Cole N, MacDonald J (2012b) Wet distillers grains plus solubles concentration in steam-flaked-corn-based diets: Effects on feedlot cattle performance, carcass characteristics, nutrient digestibility, and ruminal fermentation characteristics. *Journal of Animal Science* **90**, 1589-1602.
- Mandell I, Buchanan-Smith J, Holub B, Campbell C (1997) Effects of fish meal in beef cattle diets on growth performance, carcass characteristics, and fatty acid composition of longissimus muscle. *Journal of Animal Science* **75**, 910-919.
- Mathison G, Engstrom D (1995) Chromium and protein supplements for growing-finishing beef steers fed barley-based diets. *Canadian Journal of Animal Science* **75**, 549-558.
- McGinn S, Koenig K, Coates T (2002) Effect of diet on odorant emissions from cattle manure. *Canadian Journal of Animal Science* **82**, 435-444.
- Menezes ACB, Valadares Filho SC, *et al.* (2016) Does a reduction in dietary crude protein content affect performance, nutrient requirements, nitrogen losses, and methane emissions in finishing Nellore bulls? *Agriculture, Ecosystems & Environment* **223**, 239-249.
- Milton C, Brandt R, Titgemeyer E (1997a) Effects of dietary nitrogen source and concentration in high-grain diets on finishing steer performance and nutrient digestion. *Journal of Animal Science* **75**, 2813-2823.

- Milton C, Brandt R, Titgemeyer E (1997b) Urea in dry-rolled corn diets: finishing steer performance, nutrient digestion, and microbial protein production. *Journal of Animal Science* **75**, 1415-1424.
- Milton C, Brandt R, Titgemeyer E, Kuhl G (1997c) Effect of degradable and escape protein and roughage type on performance and carcass characteristics of finishing yearling steers. *Journal of Animal Science* **75**, 2834-2840.
- Ojowi M, McKinnon J, Mustafa A, Christensen D (1997) Evaluation of wheat-based wet distillers' grains for feedlot cattle. *Canadian Journal of Animal Science* **77**, 447-454.
- Ouellet D, Faucitano L, Pellerin D, D'Amours M, Berthiaume R (2010) Effect of corn particle size and soybean meal treatment on performance of finishing beef steers fed corn-silage-based diets. *Canadian Journal of Animal Science* **90**, 555-562.
- Parsons C, Vasconcelos J, Swingle R, Defoor P, Nunnery G, Salyer G, Galyean M (2007) Effects of wet corn gluten feed and roughage levels on performance, carcass characteristics, and feeding behavior of feedlot cattle. *Journal of Animal Science* **85**, 3079-3089.
- Pesta A, Nuttelman B, Shreck A, Griffin W, Klopfenstein T, Erickson G (2015) Finishing performance of feedlot cattle fed condensed distillers solubles. *Journal of Animal Science* **93**, 4350-4357.
- Pesta A, Titlow A, Hansen J, Berger A, Furman S, Luebbe M, Erickson G, Jenkins K (2012) Effects of feeding field peas in combination with distillers grains plus solubles in finishing and growing diets on cattle performance and carcass characteristics. *The Professional Animal Scientist* **28**, 534-540.
- Rotger A, Ferret A, Calsamiglia S, Manteca X (2006) Effects of nonstructural carbohydrates and protein sources on intake, apparent total tract digestibility, and ruminal metabolism *in vivo* and *in vitro* with high-concentrate beef cattle diets. *Journal of Animal Science* **84**, 1188-1196.
- Rumsey T, Elsasser T, Kahl S (1999) Performance and digestibilities of beef cattle fed diets supplemented with either soybean meal or roasted soybeans and implanted with Synovex. *Journal of Animal Science* **77**, 1631-1637.
- Salim H, Wood K, Abo-Ismail M, McEwen P, Mandell I, Miller S, Cant J, Swanson K (2012) Influence of feeding increasing levels of dry corn distillers grains plus solubles in whole corn grain-based finishing diets on total tract digestion, nutrient balance, and excretion in beef steers. *Journal of Animal Science* **90**, 4441-4448.
- Spicer LA, Theurer CB, Sowe J, Noon T (1986) Ruminal and post-ruminal utilization of nitrogen and starch from sorghum grain-, corn-and barley-based diets by beef steers. *Journal of Animal Science* **62**, 521-530.
- Tedeschi L, Baker M, Ketchen D, Fox D (2002) Performance of growing and finishing cattle supplemented with a slow-rlease urea product and urea. *Canadian Journal of Animal Science* **82**, 567-573.
- Thornton K, Richard R, Colle M, Doumit M, de Veth M, Hunt C, Murdoch G (2015) Effects of dietary potato by-product and rumen-protected histidine on growth, carcass characteristics and quality attributes of beef. *Meat Science* **107**, 64-74.

- Tritschler J, Shirley R, Bertrand J (1984) Tissue protein and energy deposition in steers fed isocaloric diets with different levels of nitrogen. *Journal of Animal Science* **58**, 444-451.
- Utley P, Hill G, West J (1993) Substitution of peanut skins for soybean hulls in steer finishing diets containing recommended and elevated crude protein levels. *Journal of Animal Science* **71**, 33-37.
- Valkeners D, Thewis A, Van Laere M, Beckers Y (2008) Effect of rumen-degradable protein balance deficit on voluntary intake, microbial protein synthesis, and nitrogen metabolism in growing double-muscled Belgian Blue bulls fed corn silage-based diet. *Journal of Animal Science* **86**, 680-690.
- Vasconcelos J, Cole N, McBride K, Gueye A, Galyean M, Richardson C, Greene L (2009) Effects of dietary crude protein and supplemental urea levels on nitrogen and phosphorus utilization by feedlot cattle. *Journal of Animal Science* **87**, 1174-1183.
- Vasconcelos J, Shaw L, Lemon K, Cole N, Galyean M (2007) Effects of graded levels of sorghum wet distiller's grains and degraded intake protein supply on performance and carcass characteristics of feedlot cattlefed steam-flaked corn-based diets. *The Professional Animal Scientist* **23**, 467-475.
- Veracini J, Walker P, Faulkner M, Hall R, Atkinson R, Wiegand B (2013) Effects of high fat, modified wet, corn distiller's grains plus solubles on beef steer performance and carcass characteristics. *Livestock Science* **157**, 151-161.
- Wagner J, Engle T, Bryant T (2010) The effect of rumen degradable and rumen undegradable intake protein on feedlot performance and carcass merit in heavy yearling steers. *Journal of Animal Science* **88**, 1073-1081.
- Walker D, Titgemeyer E, Drouillard J, Loe E, Depenbusch B, Webb A (2006) Effects of ractopamine and protein source on growth performance and carcass characteristics of feedlot heifers. *Journal of Animal Science* **84**, 2795-2800.
- Walter L, Mcallister T, Yang W, Beauchemin K, He M, McKinnon J (2012) Comparison of wheat or corn dried distillers grains with solubles on rumen fermentation and nutrient digestibility by feedlot heifers. *Journal of Animal Science* **90**, 1291-1300.
- Watson A, Vander Pol K, Huls T, Luebbe M, Erickson G, Klopfenstein T, Greenquist M (2014) Effect of dietary inclusion of wet or modified distillers grains plus solubles on performance of finishing cattle. *The Professional Animal Scientist* **30**, 585-596.
- Yang W, Xu L, Li C, Beauchemin K (2013) Short communication: Effects of supplemental canola meal and various types of distillers' grains on growth performance of backgrounded steers. *Canadian Journal of Animal Science* **93**, 281-286.
- Zinn R, Barrajas R, Montano M, Ware R (2003) Influence of dietary urea level on digestive function and growth performance of cattle fed steam-flaked barley-based finishing diets. *Journal of Animal Science* **81**, 2383-2389.
- Zinn R, Shen Y (1998) An evaluation of ruminally degradable intake protein and metabolizable amino acid requirements of feedlot calves. *Journal of Animal Science* **76**, 1280-1289.

9.2 Figures

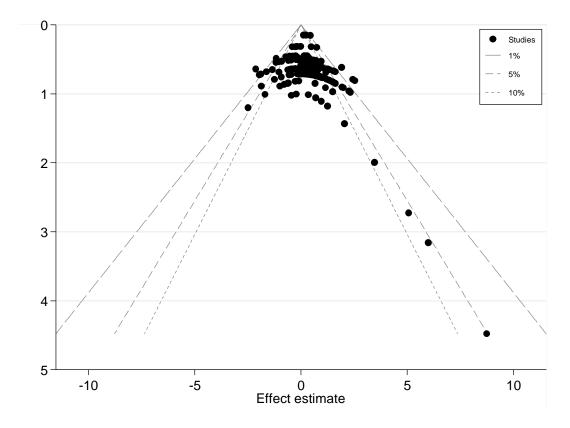


Fig. 1. Funnel plot of effects of treatment on the difference in hot carcass weight (kg).

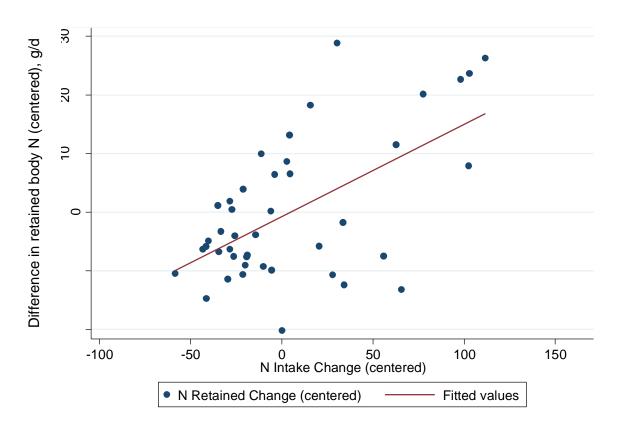


Fig. 2. Bivariate fit of retained body nitrogen from all studies by nitrogen intakes

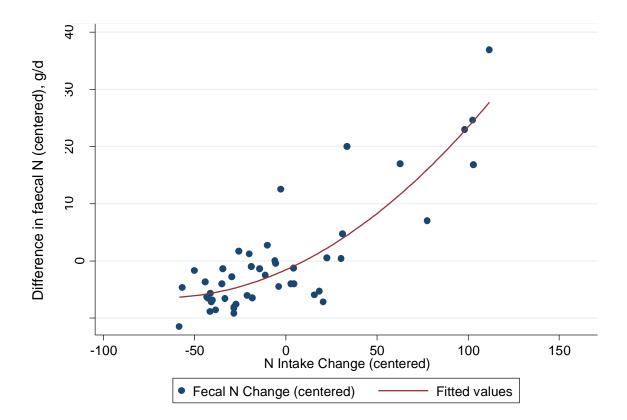


Fig. 3. Bivariate fit of faecal nitrogen loss from all studies by nitrogen intakes

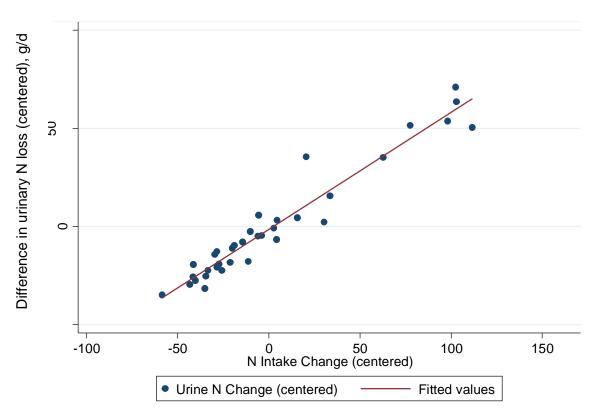


Fig. 4. Bivariate fit of urinary nitrogen loss from all studies by nitrogen intakes

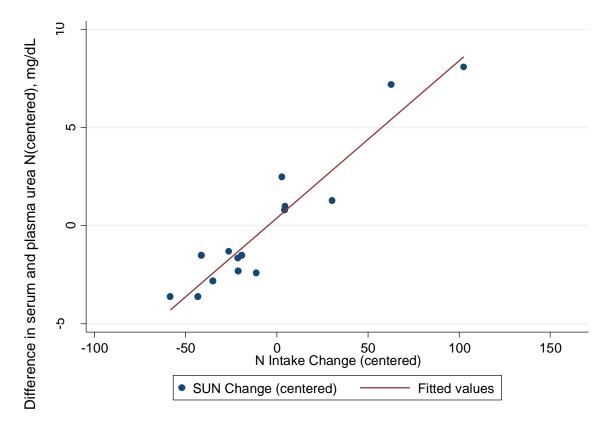


Fig. 5. Bivariate fit of serum and plasma urea nitrogen (SUN) from all studies by nitrogen intakes

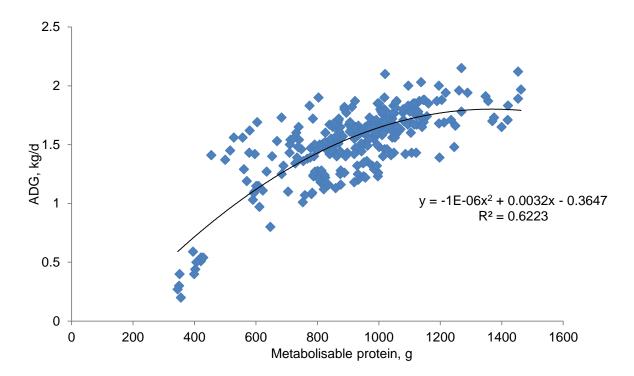


Fig. 6. Relationship between metabolisable protein and ADG

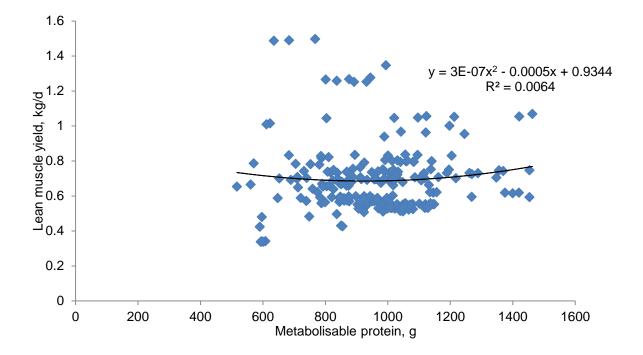


Fig. 7. Relationship between metabolisable protein and Lean muscle yield

9.3 Tables

Table 1. Summary of search engines, search terms, constraints, number of articles that resulted and the number of articles that were downloaded for secondary screening

Search engine	Search terms	Additional constraints	No. of articles resulting	No. of articles for secondary screening
ISI	(Beef feedlot OR Beef OR Beef cattle) AND (protein OR urea OR non-protein OR amino acid) AND (weight gain OR carcass gain OR nitrogen retention OR nitrogen loss OR manure OR urea)	 Foreign languages excluded Articles, clinical trials or reports only Refined for veterinary science can agriculture fields 	2,483	Screened against Google Scholar retained articles to avoid duplication
Pubmed	(Beef or Beef Cattle or Beef Feedlot) and (Protein or urea or nitrogen or amino acid or weight or gain or nitrogen retention or nitrogen loss)	First 350 results sorted by relevance	11,309	18 (total)
	Beef(w)Cattle Beef(w)Feedlot Protein weight(w)gain and carcass(w)gain and nitrogen(w)retention		5722	
	Nitrogen(w)loss and manure and urea Beef(w)Cattle Beef(w)Feedlot		2381	
	Protein urea and non-protein nitrogen and amino acid			
	weight(w)gain and carcass(w)gain and nitrogen(w)retention Nitrogen(w)loss and manure and urea			
Google Scholar	Beef Feedlot weight OR and OR gain "protein "			54 51
	Beef cattle Feedlot protein weight gain carcass grain			31
	Beef cattle Feedlot non-protein nitrogen urea amino acids carcass weight gain			33
	Beef cattle Feedlot nitrogen OR loss OR manure OR urea "non-protein nitrogen"			26
	Beef cattle Feedlot Nitrogen loss manure urea			
Science direct	(Beef or Beef Cattle or Beef Feedlot) and (Protein or urea or nitrogen or amino acid or weight or gain or nitrogen retention or nitrogen loss)		784	31 (total from all 3 searches)
	nitrogen loss) (beef or beef feedlot) and (protein or urea or non-protein nitrogen or amino		464	
	acid or weight gain or carcass gain or nitrogen retention or nitrogen loss)		506	

ALL(Beef or Beef Cattle or Beef Feedlot) and ALL(Protein or urea or non-protein nitrogen or amino acid or weight gain or carcass gain or nitrogen retention or nitrogen loss or manure)

TOTAL

430

Table 2. Descriptive statistics for continuous explanatory variables

Variable	No.	Mean	SD	Minimum	Maximun
Initial BW, kg	297	341.9	54.4	202.7	469.0
Treatment length, d	304	129.2	38.2	28.0	267.0
DMI, kg	304	9.3	1.6	4.5	12.7
ME, Mcal	304	24.7	4.9	8.6	34.4
MP, g/d	304	906.0	218.2	345.4	1,462.8
CP, g	304	1,282.1	351.3	384.5	2,430.8
MP NRC, g/d	282	898.0	244.0	329.3	1,903.9
Soluble intake protein, g	304	409.1	137.0	113.0	902.2
Ammonia, g	304	122.6	129.9	0.0	591.5
Protein A ₂ , g	304	286.3	124.2	105.7	902.2
Protein B ₁ , g	304	669.1	211.0	158.8	1,334.8
Protein B ₂ , g	304	121.5	80.2	16.8	585.6
RDP x3 maintenance, g	303	824.3	206.8	234.1	1,363.7
RUP x1 maintenance, g	303	457.3	170.3	106.9	1,136.1
MP Met, g	304	21.0	4.9	8.1	33.8
MP Lys, g	304	55.3	12.2	24.5	92.3
MP Arg, g	304	54.8	12.3	22.6	88.8
MP Thr, g	304	43.0	9.8	17.5	68.9
MP Leu, g	304	78.6	21.6	27.4	142.4
MP Ile, g	304	44.0	9.9	18.8	71.3
MP Val, g	304	50.3	11.7	20.1	81.7
MP His, g	304	24.4	6.2	9.2	51.5
MP Phe, g	304	45.2	10.8	17.6	73.9
MP Trp, g	304	11.9	2.8	5.0	20.8
MP Non-essential AA, g	304	475.2	119.9	171.0	781.4
MP/ME Met, g/Mcal	304	0.9	0.1	0.5	1.3
MP/ME Lys, g/Mcal	304	2.3	0.4	1.2	3.7
MP/ME Arg, g/Mcal	304	2.2	0.3	1.2	3.6
MP/ME Thr, g/Mcal	304	1.8	0.3	1.0	2.7
MP/ME Leu, g/Mcal	304	3.2	0.6	1.9	5.4
MP/ME IIe, g/Mcal	304	1.8	0.3	1.0	2.8
MP/ME Val, g/Mcal	304	2.1	0.3	1.2	3.2
MP/ME His, g/Mcal	304	1.0	0.2	0.6	2.1
MP/ME Phe, g/Mcal	304	1.8	0.3	1.1	2.7
MP/ME Trp, g/Mcal	304	0.5	0.1	0.3	0.8
MP/ME Non-essential AA, g/Mcal	304	19.3	3.5	11.3	32.5
ADF, g	304	906.0	350.3	326.5	2,003.3
Amylase NDF organic matter basis, g	304	1,809.3	613.9	756.4	3,720.8
Forage NDF, g	304	620.1	576.8	0.0	2,663.4
Physically effective NDF, g	304	1,066.1	479.5	325.5	2,804.9
Acid detergent lignin, g	304	212.3	74.9	93.1	424.4
Simple sugars, g	304	348.7	176.2	47.2	1070.2
Starch, g	304	4,597.3	1459.0	534.2	7,757.5

Soluble fibre, g	304	299.7	237.3	8.8	1,699.2
Fermentable simple sugars, g	304	265.4	127.7	35.9	799.5
Fermentable starch, g	304	3,539.4	1089.3	405.0	6,102.0
Fermentable soluble fibre, g	304	261.6	201.0	8.8	1,478.4
Fermentable NDF, g	304	649.3	354.2	0.0	1,853.2
Rumen unsaturated fatty acid load, g	304	288.0	129.3	47.7	636.9
Ether extract, g	304	457.9	191.4	84.6	951.3

Variable	No.	Percent
Sex		
Steers	265	87.2
Heifers	22	7.2
Steers and heifers	8	2.6
Bulls	6	2.0
Cows	3	1.0
Total	304	
Breed		
Britich crossbred, Angus, British Breed	173	56.9
BritishxContinental	89	29.3
Bos indicus cross	24	7.9
Not identified	18	5.9
Total	304	
Monensin dose, mg/kg DM		
0	115	37.8
17-25	24	7.9
26-35	147	48.4
36-37	18	5.9
Total	304	
Tylosin dose, mg/kg DM		
0	153	50.3
7-10	104	1.0
11-22	47	48.7
Total	304	
Lasalocid dose, mg/kg DM		
0	294	96.7
20	6	2.0
40	4	1.3
Total	304	
Protein treatment intervention		
Control	77	25.3
Other	58	19.1
Distillers grain	52	17.1
Urea	34	11.2
Corn gluten feed	28	9.2
Soyabean meal	19	6.3
Canola meal	11	3.6
Cottonseed meal	6	2.0
Grains	5	1.6
Fish meal	5	1.6

Table 3. Descriptive statistics for non-continuous explanatory variables

Protected protein meal	4	1.3
Commerical blend	4	1.3
Wheat distillers	1	0.3
Total	304	
Grain type		
Corn	247	81.3
Barley	41	13.5
Sorghum	9	3.0
Corn and Barley	7	2.3
Total	304	
Hormonal implant		
Revalor-S	82	27.0
No implant	72	23.7
Synovex S	57	18.8
Ralgro	25	8.2
Component ES	17	5.6
Revalor-IS	14	4.6
Compudose	12	4.0
Revalor-H	8	2.6
Synovex H	6	2.0
E2	4	1.3
Revalor-XS	4	1.3
Synovex C	3	1.0
Total	304	

Initial BW (Control only), kg209Initial BW, kg209ME, Mcal208MP, g/d208CP, g209MP NRC, g/d206Soluble intake protein, g208Ammonia, g209Protein A2, g209		SE	95	5% CI		Adjusted R ²	I ²	τ^2	P-value
ME, Mcal208MP, g/d208CP, g209MP NRC, g/d206Soluble intake protein, g208Ammonia, g209	0.037	0.020	-0.002	-	0.076	2.3	58.0	0.541	0.061
MP, g/d208CP, g209MP NRC, g/d206Soluble intake protein, g208Ammonia, g209	-0.005	0.002	-0.008	-	-0.001	0.4	58.4	0.552	0.004
CP, g209MP NRC, g/d206Soluble intake protein, g208Ammonia, g209	0.273	0.045	0.185	-	0.361	27.9	52.5	0.402	< 0.001
MP NRC, g/d206Soluble intake protein, g208Ammonia, g209	0.002	0.001	<0.001	-	0.003	-2.1	58.8	0.570	0.006
Soluble intake protein, g208Ammonia, g209	0.001	<0.001	<0.001	-	0.001	0.9	58.2	0.549	0.003
Ammonia, g 209	0.001	<0.001	<0.001	-	0.001	-1.2	57.5	0.522	0.142
, 0	0.001	0.001	< 0.001	-	0.002	5.5	57.6	0.522	0.071
Protein A ₂ , g 209	<0.001	<0.001	-0.001	-	0.001	-0.9	58.6	0.558	0.714
200	0.001	0.001	-0.001	-	0.002	-2.1	58.5	0.565	0.415
Protein B ₁ , g 209	0.001	0.001	<0.001	-	0.002	4.5	57.9	0.529	0.007
Protein B ₂ , g 209	0.002	0.001	<0.001	-	0.004	1.5	58.3	0.545	0.041
RDP x3 maintenance, g 208	0.001	0.001	<0.001	-	0.002	-2.1	58.7	0.572	0.037
RUP x1 maintenance, g 208	0.001	0.001	<0.001	-	0.002	4.5	58.1	0.535	0.008
MP Met, g 209	0.037	0.022	-0.006	-	0.081	-4.4	58.5	0.578	0.094
MP Lys, g 209	0.010	0.008	-0.005	-	0.025	-4.9	58.2	0.581	0.191
MP Arg, g 209	0.019	0.008	0.003	-	0.035	-4.3	58.6	0.577	0.023
MP Thr, g 209	0.020	0.011	-0.001	-	0.041	-4.9	58.5	0.581	0.063
MP Leu, g 209	0.011	0.005	<0.001	-	0.021	-1.1	58.5	0.559	0.047
MP IIe, g 209	0.020	0.011	-0.001	-	0.041	-4.6	58.5	0.579	0.061
MP Val, g 209	0.022	0.009	0.004	-	0.041	-4.4	58.6	0.578	0.019
MP His, g 209	0.048	0.018	0.013	-	0.082	-1.4	58.5	0.561	0.007
MP Phe, g 209	0.030	0.011	0.009	-	0.051	-2.1	58.5	0.566	0.005
MP Trp, g 209	0.075	0.037	0.003	-	0.148	-5.6	58.5	0.584	0.042
MP Non-essential AA, g 209	0.003	0.001	0.001	-	0.005	-2.0	58.5	0.565	0.005
MP/ME Met, g/Mcal 209	-0.135	0.580	-1.278	-	1.008	-0.9	57.7	0.559	0.816
MP/ME Lys, g/Mcal 209	-0.077	0.199	-0.470	-	0.316	-0.3	57.3	0.555	0.700

Table 4. Univariable analyses for ADG. Includes number of comparisons used (No.), coefficient, SE, 95% CI, estimates of model fit (R^2), heterogeneity as assessed by I^2 and τ^2 , and P-value.

MP/ME Arg, g/Mcal	209	0.089	0.214	-0.333	-	0.511	-2.5	58.0	0.568	0.677
MP/ME Thr, g/Mcal	209	-0.003	0.278	-0.551	-	0.545	-1.6	57.7	0.562	0.991
MP/ME Leu, g/Mcal	209	0.045	0.139	-0.230	-	0.320	-1.8	58.4	0.564	0.748
MP/ME IIe, g/Mcal	209	-0.013	0.278	-0.561	-	0.536	-1.4	57.7	0.562	0.963
MP/ME Val, g/Mcal	209	0.092	0.243	-0.386	-	0.571	-2.5	58.0	0.567	0.704
MP/ME His, g/Mcal	209	0.404	0.451	-0.485	-	1.293	-2.4	58.4	0.567	0.371
MP/ME Phe, g/Mcal	209	0.212	0.284	-0.348	-	0.771	-2.7	58.3	0.569	0.457
MP/ME Trp, g/Mcal	209	0.194	0.957	-1.693	-	2.081	-2.2	57.7	0.566	0.840
MP/ME Non-essential AA, g/Mcal	209	0.018	0.024	-0.030	-	0.066	-2.5	58.3	0.568	0.454
ADF, g	209	0.001	<0.001	<0.001	-	0.001	-0.6	58.2	0.557	0.017
Amylase NDF organic matter basis, g	209	<0.001	<0.001	<0.001	-	0.001	3.5	57.9	0.534	0.008
Forage NDF, g	209	0.001	0.001	<0.001	-	0.001	-1.5	58.5	0.562	0.229
Physically effective NDF, g	209	0.001	<0.001	<0.001	-	0.002	1.8	57.8	0.544	0.002
Acid detergent lignin, g	209	0.003	0.001	<0.001	-	0.005	-2.2	58.6	0.566	0.046
Simple sugars, g	209	0.002	0.001	<0.001	-	0.003	-2.4	58.6	0.567	0.082
Starch, g	209	<0.001	<0.001	<0.001	-	0.000	0.9	58.4	0.549	0.361
Soluble fibre, g	209	0.001	<0.001	0.001	-	0.002	15.1	56.9	0.470	< 0.001
Fermentable starch, g	209	<0.001	<0.001	<0.001	-	0.000	-0.8	58.6	0.558	0.761
Fermentable soluble fibre, g	209	0.002	<0.001	0.001	-	0.002	15.9	56.7	0.465	< 0.001
Fermentable NDF, g	209	0.001	<0.001	<0.001	-	0.002	3.9	57.7	0.532	0.009
Ether extract, g	209	0.003	0.001	0.001	-	0.004	22.9	54.4	0.427	<0.001

Variable	No.	Coefficient	SE		95% C	1	Adjusted R ²	l ²	τ^2	P-value
Initial BW (Control only), kg	166	-0.005	0.002	-0.008	-	-0.002	19.4	42.9	0.227	<0.001
Initial BW, kg	166	0.048	0.016	0.017	-	0.080	19.4	43.3	0.227	0.003
ME, Mcal	165	0.189	0.039	0.112	-	0.266	38.0	39.3	0.175	<0.001
MP, g/d	165	0.003	0.001	0.002	-	0.004	42.0	37.9	0.164	<0.001
CP, g	166	0.001	<0.001	0.001	-	0.002	20.7	41.4	0.223	<0.001
MP NRC, g/d	164	0.001	<0.001	<0.001	-	0.001	1.8	44.0	0.253	0.064
Soluble intake protein, g	165	0.001	0.001	<0.001	-	0.002	0.7	45.9	0.277	0.203
Ammonia, g	166	<0.001	<0.001	-0.001	-	0.001	-1.9	46.3	0.286	0.685
Protein A ₂ , g	166	0.001	0.001	-0.001	-	0.002	-4.1	46.3	0.293	0.266
Protein B ₁ , g	166	0.001	<0.001	0.001	-	0.002	17.3	42.5	0.233	<0.001
Protein B ₂ , g	166	0.002	0.001	<0.001	-	0.003	3.3	45.5	0.272	0.105
RDP x3 maintenance, g	166	0.002	0.001	0.001	-	0.003	24.1	41.2	0.213	<0.001
RUP x1 maintenance, g	166	0.001	0.001	<0.001	-	0.002	8.4	44.5	0.258	0.017
MP Met, g	166	0.093	0.022	0.049	-	0.137	21.5	41.4	0.221	<0.001
MP Lys, g	166	0.042	0.008	0.026	-	0.058	33.8	38.9	0.186	<0.001
MP Arg, g	166	0.050	0.008	0.034	-	0.066	53.0	34.8	0.132	<0.001
MP Thr, g	166	0.055	0.011	0.033	-	0.077	30.4	39.4	0.196	<0.001
MP Leu, g	166	0.013	0.005	0.004	-	0.023	9.6	44.0	0.254	0.006
MP lle, g	166	0.054	0.011	0.033	-	0.075	32.8	38.8	0.189	<0.001
MP Val, g	166	0.047	0.009	0.029	-	0.066	31.6	39.0	0.192	<0.001
MP His, g	166	0.064	0.016	0.031	-	0.096	14.1	42.7	0.242	<0.001
MP Phe, g	166	0.050	0.010	0.031	-	0.070	34.4	38.4	0.184	<0.001
MP Trp, g	166	0.228	0.038	0.154	-	0.303	44.2	35.5	0.157	<0.001
MP Non-essential AA, g	166	0.004	0.001	0.002	-	0.006	26.2	40.6	0.207	<0.001
MP/ME Met, g/Mcal	166	1.586	0.640	0.321	-	2.850	4.8	44.8	0.268	0.014
MP/ME Lys, g/Mcal	166	0.884	0.236	0.417	-	1.351	15.3	43.0	0.238	<0.001
MP/ME Arg, g/Mcal	166	1.043	0.235	0.579	-	1.507	27.5	40.9	0.204	<0.001
0.0.										

Table 5. Final BW univariable analyses. Includes number of comparisons used (No.), coefficient, SE, 95% CI, estimates of model fit (R^2), heterogeneity as assessed by I^2 and τ^2 , and P-value.

MP/ME Thr, g/Mcal	166	1.047	0.321	0.414	-	1.681	9.7	43.8	0.254	0.001
MP/ME Leu, g/Mcal	166	0.189	0.129	-0.067	-	0.444	-0.4	45.8	0.282	0.146
MP/ME IIe, g/Mcal	166	1.016	0.309	0.407	-	1.625	11.3	43.5	0.249	0.001
MP/ME Val, g/Mcal	166	0.873	0.267	0.347	-	1.400	9.5	43.8	0.254	0.001
MP/ME His, g/Mcal	166	1.095	0.453	0.201	-	1.989	1.6	45.2	0.277	0.017
MP/ME Phe, g/Mcal	166	0.929	0.281	0.374	-	1.484	11.5	43.3	0.249	0.001
MP/ME Trp, g/Mcal	166	4.619	1.099	2.448	-	6.789	20.2	41.5	0.224	<0.001
MP/ME Non-essential AA, g/Mcal	166	0.069	0.025	0.019	-	0.119	6.1	44.7	0.264	0.007
ADF, g	166	0.001	<0.001	0.000	-	0.001	0.2	45.6	0.28	0.090
Amylase NDF organic matter basis, g	166	<0.001	<0.001	0.000	-	0.001	-1.6	46.1	0.285	0.145
Forage NDF, g	166	0.001	0.001	-0.001	-	0.002	-4.1	46.3	0.293	0.427
Physically effective NDF, g	166	0.001	<0.001	<0.001	-	0.001	-0.6	45.6	0.283	0.029
Acid detergent lignin, g	166	0.003	0.001	<0.001	-	0.005	3.4	45.1	0.271	0.043
Simple sugars, g	166	0.003	0.001	0.001	-	0.004	14.2	43.4	0.241	0.002
Starch, g	166	<0.001	<0.001	< 0.001	-	<0.001	-1.2	46.3	0.284	0.675
Soluble fibre, g	166	0.001	<0.001	< 0.001	-	0.001	7.2	45.3	0.261	0.020
Fermentable starch, g	166	<0.001	<0.001	<0.001	-	<0.001	-2.9	46.4	0.289	0.757
Fermentable soluble fibre, g	166	0.001	<0.001	<0.001	-	0.002	7.9	45.2	0.259	0.018
Fermentable NDF, g	166	0.001	<0.001	<0.001	-	0.001	0.3	45.5	0.28	0.034
Ether extract, g	166	0.001	0.001	<0.001	-	0.002	10.1	44.7	0.253	0.046

Variable	No.	Coefficient	SE	9	5% CI		Adjusted R ²	l ²	τ^2	P-value
Initial BW (Control only), kg	172	0.067	0.018	0.031	-	0.103	25.4	32.9	0.106	< 0.001
Initial BW, kg	172	-0.004	0.001	-0.006	-	-0.001	-8.1	36.4	0.154	0.009
ME, Mcal	172	0.161	0.036	0.091	-	0.231	58.6	29.7	0.059	<0.001
MP, g/d	172	0.001	<0.001	<0.001	-	0.002	-15.8	36.7	0.165	0.006
CP, g	172	0.001	<0.001	< 0.001	-	0.001	-4.6	36.1	0.149	0.005
MP NRC, g/d	169	<0.001	<0.001	<0.001	-	0.001	-6.6	35.1	0.131	0.120
Soluble intake protein, g	172	0.001	<0.001	< 0.001	-	0.002	2.8	36.4	0.138	0.061
Ammonia, g	172	<0.001	<0.001	-0.001	-	< 0.001	-4.7	37.3	0.149	0.280
Protein A ₂ , g	172	0.001	0.001	<0.001	-	0.002	-16.6	37.3	0.166	0.063
Protein B ₁ , g	172	0.001	<0.001	< 0.001	-	0.002	3.8	35.7	0.137	0.005
Protein B ₂ , g	172	0.002	0.001	< 0.001	-	0.003	-1.5	36.7	0.144	0.055
RDP x3 maintenance, g	171	0.001	<0.001	< 0.001	-	0.001	-3.9	37.3	0.151	0.045
RUP x1 maintenance, g	171	0.001	<0.001	< 0.001	-	0.002	1.8	36.3	0.143	0.009
MP Met, g	172	0.020	0.016	-0.010	-	0.051	-11.0	37.5	0.158	0.192
MP Lys, g	172	0.007	0.005	-0.004	-	0.017	-12.6	37.6	0.160	0.211
MP Arg, g	172	0.013	0.006	0.002	-	0.024	-14.5	37.1	0.163	0.024
MP Thr, g	172	0.012	0.007	-0.003	-	0.027	-14.3	37.5	0.162	0.107
MP Leu, g	172	0.007	0.004	-0.001	-	0.014	-6.2	37.2	0.151	0.085
MP IIe, g	172	0.012	0.007	-0.003	-	0.027	-12.6	37.5	0.160	0.112
MP Val, g	172	0.014	0.007	0.001	-	0.027	-15.5	37.2	0.164	0.035
MP His, g	172	0.028	0.013	0.003	-	0.053	-13.2	37.0	0.161	0.027
MP Phe, g	172	0.019	0.008	0.004	-	0.034	-10.6	36.8	0.157	0.013
MP Trp, g	172	0.042	0.025	-0.008	-	0.092	-14.3	37.5	0.162	0.096
MP Non-essential AA, g	172	0.002	0.001	0.001	-	0.003	-13.8	36.5	0.162	0.006
MP/ME Met, g/Mcal	172	0.042	0.403	-0.754	-	0.837	-5.4	37.4	0.150	0.918
MP/ME Lys, g/Mcal	172	0.029	0.135	-0.236	-	0.295	-6.7	37.4	0.152	0.827

Table 6. Univariable analyses for HCW. Includes number of comparisons used (No.), coefficient, SE, 95% CI, estimates of model fit (R^2), heterogeneity as assessed by I^2 and τ^2 , and P-value.

MP/ME Arg, g/Mcal	172	0.166	0.147	-0.123	-	0.456	-12.8	37.6	0.16	0.259
MP/ME Thr, g/Mcal	172	0.086	0.192	-0.293	-	0.466	-8.7	37.5	0.155	0.654
MP/ME Leu, g/Mcal	172	0.063	0.102	-0.139	-	0.265	-6.9	37.6	0.152	0.540
MP/ME lle, g/Mcal	172	0.073	0.192	-0.307	-	0.452	-7.7	37.5	0.153	0.707
MP/ME Val, g/Mcal	172	0.146	0.171	-0.192	-	0.483	-11.8	37.6	0.159	0.395
MP/ME His, g/Mcal	172	0.357	0.320	-0.275	-	0.990	-12.4	37.6	0.160	0.266
MP/ME Phe, g/Mcal	172	0.229	0.202	-0.169	-	0.627	-11.3	37.6	0.158	0.257
MP/ME Trp, g/Mcal	172	0.316	0.647	-0.962	-	1.594	-8.8	37.5	0.155	0.626
MP/ME Non-essential AA, g/Mcal	172	0.025	0.018	-0.010	-	0.059	-13.8	37.6	0.162	0.163
ADF, g	172	<0.001	<0.001	<0.001	-	0.001	-4.8	36.9	0.149	0.084
Amylase NDF organic matter basis, g	172	<0.001	<0.001	< 0.001	-	0.001	-0.2	35.8	0.142	0.008
Forage NDF, g	172	<0.001	<0.001	-0.001	-	0.001	-2.2	37.6	0.145	0.939
Physically effective NDF, g	172	0.001	<0.001	< 0.001	-	0.001	5.6	35.1	0.134	0.004
Acid detergent lignin, g	172	0.001	0.001	-0.001	-	0.003	-8.3	37.5	0.154	0.181
Simple sugars, g	172	0.001	0.001	< 0.001	-	0.003	-13.0	37.3	0.161	0.033
Starch, g	172	<0.001	<0.001	< 0.001	-	< 0.001	-2.8	36.9	0.146	0.067
Soluble fibre, g	172	0.001	<0.001	< 0.001	-	0.001	5.5	35.8	0.134	0.011
Fermentable starch, g	172	<0.001	<0.001	< 0.001	-	< 0.001	-5.4	37.5	0.150	0.315
Fermentable soluble fibre, g	172	0.001	<0.001	< 0.001	-	0.001	6.8	35.7	0.132	0.009
Fermentable NDF, g	172	0.001	<0.001	<0.001	-	0.001	6.8	35.3	0.132	0.006
Ether extract, g	172	0.001	0.001	<0.001	-	0.002	25.5	34.4	0.106	0.006

Variable	No.	Coefficient	SE	9!	5% CI		Adjusted R ²	l ²	τ^2	P-value
Initial BW (Control only), kg	157	-0.015	0.029	-0.072	-	0.042	-1.3	66.8	0.527	0.616
Initial BW, kg	157	-0.001	0.002	-0.005	-	0.003	-23.5	66.3	0.103	0.578
ME, Mcal	157	0.046	0.061	-0.075	-	0.166	0.3	66.6	0.519	0.453
MP, g/d	157	<0.001	0.001	-0.001	-	0.001	-3.1	66.4	0.537	0.623
CP, g	157	<0.001	<0.001	< 0.001	-	0.001	-2.3	66.9	0.532	0.266
MP NRC, g/d	155	0.001	<0.001	< 0.001	-	0.001	-1.3	67.1	0.534	0.074
Soluble intake protein, g	157	0.002	0.001	0.001	-	0.003	12.0	66.3	0.458	0.002
Ammonia, g	157	-0.001	0.001	-0.001	-	0.000	-1.0	66.3	0.526	0.311
Protein A ₂ , g	157	-0.002	0.001	-0.004	-	-0.001	24.9	54.8	0.391	0.001
Protein B ₁ , g	157	0.001	0.001	0.000	-	0.002	7.1	64.7	0.483	0.004
Protein B ₂ , g	157	0.002	0.001	0.000	-	0.004	-0.1	66.8	0.521	0.071
RDP x3 maintenance, g	156	-0.001	0.001	-0.002	-	0.000	3.1	66.8	0.505	0.121
RUP x1 maintenance, g	156	0.002	0.001	0.000	-	0.003	3.5	66.3	0.503	0.005
MP Met, g	157	-0.003	0.023	-0.049	-	0.044	-1.3	66.5	0.527	0.912
MP Lys, g	157	-0.006	0.008	-0.022	-	0.009	1.4	65.9	0.513	0.444
MP Arg, g	157	0.001	0.009	-0.016	-	0.018	-2.0	66.5	0.530	0.930
MP Thr, g	157	-0.002	0.011	-0.024	-	0.021	-1.2	66.3	0.526	0.882
MP Leu, g	157	0.006	0.006	-0.005	-	0.017	-2.3	70.0	0.535	0.306
MP lle, g	157	0.001	0.011	-0.021	-	0.023	-1.9	66.7	0.530	0.935
MP Val, g	157	0.002	0.010	-0.018	-	0.022	-2.3	66.5	0.532	0.834
MP His, g	157	0.006	0.019	-0.031	-	0.044	-2.5	66.4	0.533	0.743
MP Phe, g	157	0.012	0.012	-0.011	-	0.035	-2.9	67.0	0.536	0.310
MP Trp, g	157	0.002	0.039	-0.074	-	0.079	-1.9	66.7	0.53	0.949
MP Non-essential AA, g	157	0.001	0.001	-0.001	-	0.003	-3.5	66.5	0.538	0.446
MP/ME Met, g/Mcal	157	-0.510	0.606	-1.707	-	0.688	2.1	65.9	0.510	0.402
MP/ME Lys, g/Mcal	157	-0.276	0.202	-0.674	-	0.123	5.3	65.2	0.493	0.174

Table 7. Univariable analyses for G:F. Includes number of comparisons used (No.), coefficient, SE, 95% CI, estimates of model fit (R^2), heterogeneity as assessed by I^2 and τ^2 , and P-value.

MP/ME Arg, g/Mcal	157	-0.134	0.222	-0.573	-	0.305	0.9	65.9	0.516	0.547
MP/ME Thr, g/Mcal	157	-0.259	0.290	-0.832	-	0.314	2.5	65.8	0.507	0.374
MP/ME Leu, g/Mcal	157	0.040	0.149	-0.255	-	0.335	-2.1	66.9	0.531	0.790
MP/ME Ile, g/Mcal	157	-0.188	0.290	-0.760	-	0.384	1.1	66.2	0.515	0.518
MP/ME Val, g/Mcal	157	-0.151	0.258	-0.661	-	0.358	0.8	66.0	0.516	0.558
MP/ME His, g/Mcal	157	-0.221	0.481	-1.172	-	0.730	0.1	65.8	0.520	0.646
MP/ME Phe, g/Mcal	157	0.060	0.301	-0.535	-	0.655	-2.2	66.8	0.532	0.842
MP/ME Trp, g/Mcal	157	-0.574	0.982	-2.514	-	1.365	0.6	66.4	0.517	0.559
MP/ME Non-essential AA, g/Mcal	157	-0.003	0.027	-0.055	-	0.050	-1.3	65.9	0.527	0.915
ADF, g	157	<0.001	<0.001	< 0.001	-	0.001	-2.6	66.9	0.534	0.398
Amylase NDF organic matter basis, g	157	<0.001	<0.001	< 0.001	-	<0.001	-2.3	65.2	0.532	0.638
Forage NDF, g	157	<0.001	<0.001	-0.001	-	0.001	-1.0	66.9	0.526	0.624
Physically effective NDF, g	157	<0.001	<0.001	-0.001	-	0.001	0.7	64.6	0.517	0.411
Acid detergent lignin, g	157	0.002	0.001	-0.001	-	0.005	-1.8	66.8	0.530	0.156
Simple sugars, g	157	-0.001	0.001	-0.002	-	0.001	-0.7	67.0	0.524	0.600
Starch, g	157	0.000	<0.001	< 0.001	-	<0.001	-0.9	66.9	0.525	0.031
Soluble fibre, g	157	0.001	<0.001	0.001	-	0.002	6.8	66.9	0.485	0.001
Fermentable starch, g	157	0.000	<0.001	-0.001	-	0.000	-2.8	66.6	0.535	0.071
Fermentable soluble fibre, g	157	0.002	<0.001	0.001	-	0.002	8.1	66.9	0.478	<0.001
Fermentable NDF, g	157	0.000	<0.001	-0.001	-	0.001	-1.6	65.5	0.529	0.922
Ether extract, g	157	0.003	0.001	0.001	-	0.004	13.7	65.7	0.449	<0.001

Variable	No.	Coefficient	SE	9	5% CI		Adjusted R ²	I ²	τ^2	P-value
Initial BW (Control only), kg	213	0.045	0.016	0.014	-	0.075	10.8	46.3	0.176	0.004
Initial BW, kg	213	-0.002	0.001	-0.005	-	<0.001	4.3	47.3	0.189	0.068
ME, Mcal	212	0.272	0.035	0.204	-	0.341	40.0	37.8	0.118	<0.001
MP, g/d	212	0.002	<0.001	0.001	-	0.002	16.5	44.1	0.164	<0.001
CP, g	213	0.001	<0.001	< 0.001	-	0.001	3.2	47.4	0.191	0.005
MP NRC, g/d	210	<0.001	<0.001	< 0.001	-	0.001	-1.6	48.3	0.198	0.445
Soluble intake protein, g	212	<0.001	<0.001	-0.001	-	<0.001	-2.4	48.2	0.202	0.342
Ammonia, g	213	<0.001	<0.001	-0.001	-	0.001	-2.0	47.4	0.201	0.951
Protein A ₂ , g	213	0.003	<0.001	0.002	-	0.004	73.2	32.4	0.053	<0.001
Protein B ₁ , g	213	0.000	<0.001	-0.001	-	0.001	-2.0	48.3	0.201	0.820
Protein B ₂ , g	213	0.001	0.001	-0.001	-	0.003	0.5	48.1	0.196	0.265
RDP x3 maintenance, g	212	0.002	<0.001	0.001	-	0.002	8.2	46.3	0.180	<0.001
RUP x1 maintenance, g	212	0.000	<0.001	< 0.001	-	0.001	-0.8	48.4	0.197	0.418
MP Met, g	213	0.059	0.016	0.028	-	0.091	9.3	46.0	0.179	<0.001
MP Lys, g	213	0.020	0.005	0.009	-	0.030	10.4	45.8	0.177	<0.001
MP Arg, g	213	0.024	0.006	0.012	-	0.035	13.7	45.2	0.170	<0.001
MP Thr, g	213	0.031	0.008	0.016	-	0.046	9.7	45.6	0.178	<0.001
MP Leu, g	213	0.013	0.004	0.005	-	0.021	6.2	46.9	0.185	0.002
MP IIe, g	213	0.029	0.008	0.014	-	0.044	8.5	46.2	0.181	<0.001
MP Val, g	213	0.029	0.007	0.015	-	0.042	10.5	45.2	0.177	<0.001
MP His, g	213	0.050	0.013	0.024	-	0.075	12.1	45.0	0.173	<0.001
MP Phe, g	213	0.029	0.008	0.014	-	0.045	8.0	46.5	0.182	<0.001
MP Trp, g	213	0.085	0.026	0.033	-	0.137	5.3	47.0	0.187	0.002
MP Non-essential AA, g	213	0.003	0.001	0.002	-	0.004	17.6	43.8	0.163	<0.001
MP/ME Met, g/Mcal	213	0.788	0.425	-0.049	-	1.625	3.1	47.7	0.191	0.065
MP/ME Lys, g/Mcal	213	0.293	0.143	0.011	-	0.575	4.8	47.4	0.188	0.042

Table 8. Univariable analyses for DMI. Includes number of comparisons used (No.), coefficient, SE, 95% CI, estimates of model fit (R^2), heterogeneity as assessed by I^2 and τ^2 , and *P*-value.

MP/ME Arg, g/Mcal	213	0.355	0.154	0.052	-	0.658	6.6	47.2	0.184	0.022
MP/ME Thr, g/Mcal	213	0.447	0.202	0.050	-	0.845	4.0	47.4	0.189	0.028
MP/ME Leu, g/Mcal	213	0.153	0.107	-0.059	-	0.364	0.9	48.1	0.197	0.157
MP/ME IIe, g/Mcal	213	0.386	0.203	-0.015	-	0.786	2.8	47.8	0.192	0.059
MP/ME Val, g/Mcal	213	0.412	0.178	0.061	-	0.764	4.0	47.3	0.189	0.022
MP/ME His, g/Mcal	213	0.724	0.335	0.063	-	1.385	4.6	47.0	0.188	0.032
MP/ME Phe, g/Mcal	213	0.359	0.212	-0.059	-	0.777	1.4	48.0	0.195	0.092
MP/ME Trp, g/Mcal	213	1.046	0.693	-0.320	-	2.412	1.2	48.1	0.195	0.133
MP/ME Non-essential AA, g/Mcal	213	0.043	0.018	0.007	-	0.079	7.3	46.6	0.183	0.019
ADF, g	213	0.001	<0.001	< 0.001	-	0.001	4.2	46.4	0.189	0.004
Amylase NDF organic matter basis, g	213	0.001	<0.001	< 0.001	-	0.001	29.8	39.6	0.139	<0.001
Forage NDF, g	213	0.001	<0.001	< 0.001	-	0.001	-1.3	48.2	0.200	0.113
Physically effective NDF, g	213	0.001	<0.001	0.001	-	0.002	24.4	39.9	0.149	<0.001
Acid detergent lignin, g	213	0.002	0.001	< 0.001	-	0.004	-0.4	48.1	0.198	0.048
Simple sugars, g	213	0.003	0.001	0.001	-	0.004	-1.5	47.4	0.200	<0.001
Starch, g	213	<0.001	<0.001	< 0.001	-	<0.001	-3.9	48.4	0.205	0.204
Soluble fibre, g	213	<0.001	<0.001	< 0.001	-	0.001	0.4	46.6	0.197	0.640
Fermentable starch, g	213	<0.001	<0.001	< 0.001	-	<0.001	-3.9	48.1	0.205	0.576
Fermentable soluble fibre, g	213	<0.001	<0.001	-0.001	-	0.001	-0.2	46.8	0.198	0.707
Fermentable NDF, g	213	0.001	<0.001	0.001	-	0.001	19.2	42.1	0.159	<0.001
Ether extract, g	213	0.001	0.001	< 0.001	-	0.002	5.9	47.2	0.186	0.052

Variable	No.	Coefficient	SE	95	5% CI		ľ	τ^2	P-value
Initial BW (Control only), kg	169	-0.007	0.016	-0.038	-	0.025	23.5	0	0.680
Initial BW, kg	169	-0.002	0.001	-0.004	-	0.001	22.7	0	0.168
ME, Mcal	169	0.082	0.033	0.016	-	0.148	20.8	0	0.015
MP, g/d	169	<0.001	<0.001	<0.001	-	0.001	23.2	0.001	0.373
CP, g	169	<0.001	<0.001	<0.001	-	< 0.001	23.6	0	0.985
MP NRC, g/d	166	<0.001	<0.001	-0.001	-	< 0.001	23.2	0	0.217
Soluble intake protein, g	168	<0.001	<0.001	<0.001	-	0.001	22.0	0	0.204
Ammonia, g	169	<0.001	<0.001	-0.001	-	0.001	23.5	0	0.698
Protein A ₂ , g	169	0.001	0.001	<0.001	-	0.002	21.5	0.007	0.031
Protein B ₁ , g	169	<0.001	<0.001	-0.001	-	0.001	23.5	0	0.657
Protein B ₂ , g	169	-0.001	0.001	-0.002	-	0.001	23.3	0	0.402
RDP x3 maintenance, g	168	<0.001	<0.001	<0.001	-	0.001	24.0	0	0.690
RUP x1 maintenance, g	168	<0.001	<0.001	-0.001	-	0.000	23.9	0	0.567
MP Met, g	169	0.009	0.012	-0.014	-	0.032	23.3	0	0.442
MP Lys, g	169	0.004	0.004	-0.004	-	0.011	23.2	0.003	0.347
MP Arg, g	169	0.005	0.004	-0.004	-	0.013	23.1	0.006	0.266
MP Thr, g	169	0.005	0.006	-0.006	-	0.016	23.3	0.002	0.412
MP Leu, g	169	0.001	0.003	-0.005	-	0.007	23.6	0	0.756
MP lle, g	169	0.004	0.006	-0.007	-	0.015	23.3	0	0.441
MP Val, g	169	0.004	0.005	-0.006	-	0.014	23.4	0	0.474
MP His, g	169	0.010	0.010	-0.009	-	0.029	23.1	0.002	0.312
MP Phe, g	169	0.003	0.006	-0.008	-	0.015	23.4	0	0.575
MP Trp, g	169	0.012	0.019	-0.025	-	0.049	23.4	0	0.512
MP Non-essential AA, g	169	0.001	0.001	-0.001	-	0.002	23.3	0.001	0.385
MP/ME Met, g/Mcal	169	0.122	0.301	-0.472	-	0.715	23.5	0	0.687
MP/ME Lys, g/Mcal	169	0.069	0.099	-0.126	-	0.263	23.4	0.001	0.487
MP/ME Arg, g/Mcal	169	0.093	0.109	-0.122	-	0.308	23.3	0.004	0.396

Table 9. Univariable analyses for LM area. Includes number of comparisons used (No.), coefficient, SE, 95% CI, heterogeneity as assessed by I^2 and τ^2 , and *P*-value. Adjusted R² values are not available.

MP/ME Thr, g/Mcal	169	0.071	0.142	-0.208	-	0.351	23.5	0	0.614
MP/ME Leu, g/Mcal	169	0.006	0.082	-0.167	-	0.155	23.6	0	0.942
MP/ME IIe, g/Mcal	169	0.064	0.143	-0.218	-	0.346	23.5	0	0.653
MP/ME Val, g/Mcal	169	0.050	0.127	-0.201	-	0.301	23.5	0	0.692
MP/ME His, g/Mcal	169	0.164	0.245	-0.320	-	0.648	23.4	0	0.504
MP/ME Phe, g/Mcal	169	0.030	0.153	-0.273	-	0.333	23.6	0	0.845
MP/ME Trp, g/Mcal	169	0.169	0.471	-0.761	-	1.099	23.5	0	0.721
MP/ME Non-essential AA, g/Mcal	169	0.007	0.013	-0.020	-	0.034	23.5	0	0.611
ADF, g	169	<0.001	<0.001	-0.001	-	<0.001	23.4	0	0.565
Amylase NDF organic matter basis, g	169	<0.001	<0.001	0.000	-	<0.001	23.5	0	0.630
Forage NDF, g	169	<0.001	<0.001	-0.001	-	0.001	23.5	0	0.734
Physically effective NDF, g	169	<0.001	<0.001	<0.001	-	0.001	23.6	0	0.794
Acid detergent lignin, g	169	-0.001	0.001	-0.002	-	0.001	23.3	0	0.407
Simple sugars, g	169	<0.001	0.001	-0.001	-	0.001	23.6	0	0.872
Starch, g	169	<0.001	<0.001	<0.001	-	<0.001	23.5	0	0.733
Soluble fibre, g	169	<0.001	<0.001	<0.001	-	0.001	22.1	0	0.070
Fermentable starch, g	169	<0.001	<0.001	<0.001	-	<0.001	23.6	0	0.868
Fermentable soluble fibre, g	169	0.001	<0.001	<0.001	-	0.001	22.2	0	0.078
Fermentable NDF, g	169	<0.001	<0.001	<0.001	-	0.001	23.6	0	0.825
Ether extract, g	169	<0.001	<0.001	-0.001	-	0.001	23.5	0	0.587

Variable	No.	Coefficient	SE	9	5% CI		Adjusted R ²	ľ	τ^2	P-value
Initial BW (Control only), kg	173	0.018	0.019	-0.019	-	0.055	2.1	36.9	0.103	0.326
Initial BW, kg	173	0.001	0.001	-0.001	-	0.004	0.1	36.8	0.103	0.363
ME, Mcal	173	0.075	0.037	0.001	-	0.149	12.7	35.7	0.092	0.046
MP, g/d	173	<0.001	<0.001	<0.001	-	0.002	-19.4	35.8	0.126	0.007
CP, g	173	<0.001	<0.001	<0.001	-	0.001	4.6	34.2	0.100	0.002
MP NRC, g/d	170	<0.001	<0.001	<0.001	-	0.001	4.3	36.3	0.106	0.018
Soluble intake protein, g	172	<0.001	<0.001	-0.001	-	0.001	-1.6	36.9	0.106	0.658
Ammonia, g	173	<0.001	<0.001	-0.001	-	0.001	-2.9	37.2	0.108	0.983
Protein A ₂ , g	173	<0.001	0.001	-0.001	-	0.001	-1.7	37.1	0.107	0.698
Protein B ₁ , g	173	0.001	<0.001	0.001	-	0.002	16.7	32.5	0.088	<0.001
Protein B ₂ , g	173	0.002	0.001	<0.001	-	0.003	5.2	35.7	0.100	0.037
RDP x3 maintenance, g	172	0.001	<0.001	< 0.001	-	0.001	-1.27	36.7	0.108	0.120
RUP x1 maintenance, g	172	0.001	<0.001	<0.001	-	0.002	16.51	33.7	0.089	0.001
MP Met, g	173	0.039	0.015	0.009	-	0.069	-20.5	36.1	0.127	0.011
MP Lys, g	173	0.008	0.005	-0.002	-	0.019	-21.2	37.0	0.128	0.103
MP Arg, g	173	0.013	0.006	0.001	-	0.024	-22.3	36.5	0.129	0.027
MP Thr, g	173	0.018	0.007	0.004	-	0.033	-23.4	36.3	0.130	0.015
MP Leu, g	173	0.015	0.004	0.007	-	0.022	1.9	32.8	0.103	<0.001
MP IIe, g	173	0.019	0.007	0.005	-	0.033	-22.9	36.1	0.129	0.011
MP Val, g	173	0.019	0.007	0.006	-	0.032	-22.8	35.7	0.129	0.004
MP His, g	173	0.032	0.012	0.008	-	0.056	-18.2	36.0	0.125	0.010
MP Phe, g	173	0.028	0.008	0.013	-	0.043	-17.6	34.3	0.124	<0.001
MP Trp, g	173	0.052	0.025	0.003	-	0.101	-23.7	36.7	0.130	0.039
MP Non-essential AA, g	173	0.002	0.001	0.001	-	0.004	-15.1	34.9	0.121	0.001
MP/ME Met, g/Mcal	173	0.404	0.397	-0.379	-	1.188	-13.0	37.2	0.119	0.310
MP/ME Lys, g/Mcal	173	0.040	0.132	-0.221	-	0.301	-8.7	37.2	0.115	0.765

Table 10. Univariable analyses for fat thickness. Includes number of comparisons used (No.), coefficient, SE, 95% CI, estimates of model fit (R^2), heterogeneity as assessed by I^2 and τ^2 , and *P*-value.

MP/ME Arg, g/Mcal	173	0.101	0.145	-0.185	-	0.387	-11.7	37.2	0.118	0.487
MP/ME Thr, g/Mcal	173	0.175	0.189	-0.199	-	0.549	-13.5	37.2	0.120	0.357
MP/ME Leu, g/Mcal	173	0.243	0.001	0.046	-	0.441	-6.4	35.8	0.112	0.016
MP/ME lle, g/Mcal	173	0.194	0.190	-0.180	-	0.569	-13.9	37.2	0.120	0.307
MP/ME Val, g/Mcal	173	0.211	0.169	-0.122	-	0.544	-14.9	37.1	0.121	0.213
MP/ME His, g/Mcal	173	0.340	0.318	-0.288	-	0.968	-12.3	37.1	0.118	0.287
MP/ME Phe, g/Mcal	173	0.384	0.198	-0.007	-	0.775	-16.4	36.6	0.123	0.054
MP/ME Trp, g/Mcal	173	0.447	0.633	-0.803	-	1.697	-12.6	37.2	0.119	0.481
MP/ME Non-essential AA, g/Mcal	173	0.026	0.018	-0.009	-	0.060	-11.7	36.9	0.118	0.145
ADF, g	173	0.001	<0.001	< 0.001	-	0.001	11.4	34.8	0.093	0.010
Amylase NDF organic matter basis, g	173	<0.001	<0.001	< 0.001	-	0.001	16.3	35.3	0.088	0.031
Forage NDF, g	173	0.001	<0.001	< 0.001	-	0.001	9.6	36.1	0.095	0.089
Physically effective NDF, g	173	<0.001	<0.001	<0.001	-	0.001	3.7	36.5	0.102	0.171
Acid detergent lignin, g	173	0.002	0.001	<0.001	-	0.004	-5.4	36.2	0.111	0.043
Simple sugars, g	173	<0.001	0.001	-0.001	-	0.001	-2.2	37.1	0.108	0.826
Starch, g	173	<0.001	<0.001	< 0.001	-	<0.001	-1.9	37.1	0.107	0.662
Soluble fibre, g	173	<0.001	<0.001	< 0.001	-	0.001	1.6	36.5	0.104	0.130
Fermentable starch, g	173	<0.001	<0.001	< 0.001	-	<0.001	-2.1	37.1	0.108	0.462
Fermentable soluble fibre, g	173	0.001	<0.001	< 0.001	-	0.001	1.7	36.5	0.104	0.130
Fermentable NDF, g	173	0.001	<0.001	<0.001	-	0.001	24.7	34.7	0.079	0.017
Ether extract, g	173	0.002	0.001	0.001	-	0.003	36.6	32.6	0.067	0.001

/ariable	df	SMD	95% CI	Weight (%)	ľ	τ^2
ADG						
Distillers grain	51	0.604	0.322 - 0.885	26.54	60.0	0.604
Urea	31	0.750	0.339 - 1.161	11.64	44.3	0.543
Corn gluten feed	27	0.227	-0.091 - 0.545	13.21	57.9	0.259
Soyabean meal	15	1.269	0.610 - 1.928	5.62	53.3	0.821
Canola meal	10	-0.301	-0.698 - 0.097	7.17	56.3	0.225
Cottonseed meal	5	0.119	-0.403 - 0.641	3.36	16.9	0.072
Grains	4	-0.719	-1.644 - 0.207	3.00	71.4	0.788
Fish meal	4	-1.150	-1.9280.372	1.94	5.7	0.046
Commercial blend	3	-0.295	-1.049 - 0.460	1.77	0	0
Protected protein meal	3	0.308	-0.808 - 1.423	1.40	30.0	0.421
Wheat distillers	0	1.346	-0.235 - 2.928	0.43		
Other	44	0.287	0.044 - 0.530	23.93	43.4	0.282
Overall	208	0.365	0.229 - 0.500	100.00	58.4	0.478
inal BW						
Distillers grain	47	0.309	0.057 - 0.562	30.09	50.9	0.383
Urea	25	0.604	0.275 - 0.933	12.45	19.7	0.139
Corn gluten feed	13	-0.002	-0.300 - 0.296	10.92	51.5	0.110
Soyabean meal	13	1.072	0.451 - 1.694	6.45	54.0	0.716
Canola meal	4	1.041	0.234 - 1.849	2.35	26.5	0.223
Cottonseed meal	4	0.249	-0.372 - 0.871	3.10	20.5	0.104
Grains	4	-0.796	-1.821 - 0.229	3.53	75.9	1.025
Fish meal	4	-1.098	-1.9500.246	2.09	21.1	0.200
Commercial blend	3	-0.087	-0.829 - 0.654	1.99	0	0
Protected protein meal	0	0.613	-0.286 - 1.512	0.88		

Table 11. Standardised mean differences (SMD) and 95% CI for the production outcome variables by nitrogen or protein intervention. Includes degrees of freedom (df), study weight, l^2 and τ^2 .

	Wheat distillers	0	1.207	-0.3	38	-	2.752	0.480		
	Other	37	0.118	-0.0	77	-	0.314	25.67	10.0	0.038
	Overall	165	0.259	0.1	31	-	0.387	100.00	46.0	0.271
нс	CW									
	Distillers grain	46	0.341	0.1	17	_	0.564	27.43	38.0	0.220
	Urea	18	0.372	0.0		_	0.719	9.43	19.2	0.114
	Corn gluten feed	27	0.321	-0.0		_	0.646	14.90	58.8	0.272
	Soyabean meal	9	1.058	0.5		_	1.518	4.41	0	0
	Canola meal	8	-0.14	-0.3		_	0.099	8.87	0	0
	Cottonseed meal	5	0.135	-0.4		_	0.761	3.60	39.2	0.234
	Grains	3	-1.074	-2.3		_	0.243	2.37	78.8	1.418
	Fish meal	1	-1.366	-3.1		_	0.417	0.57	37.7	0.653
	Commercial blend	3	-0.414	-1.1		_	0.346	1.67	0	0.055
	Other	42	0.131	-0.0		_	0.304	26.75	0	0
	Overall	42	0.217	-0.0		_	0.329	100.00	37.2	0.173
	Overall	1/1	0.217	0.1	05	-	0.329	100.00	57.2	0.175
G:	F									
	Distillers grain	47	0.774	0.4	92	-	1.057	29.47	57.2	0.526
	Urea	20	0.239	-0.1	82	-	0.661	12.24	47.8	0.447
	Corn gluten feed	19	-0.413	-0.7	04	-	-0.122	13.42	49.7	0.145
	Soyabean meal	6	0.855	-0.0	11	-	1.722	4.22	64.6	0.869
	Canola meal	7	-0.608	-0.8	95	-	-0.32	6.94	21.0	0.036
	Cottonseed meal	3	-0.017	-0.5	36	-	0.503	2.94	0	0
	Grains	2	-1.016	-3.7	78	-	1.746	1.88	92.4	5.496
	Fish meal	1	-2.273	-18.6	69	-	14.122	0.16	92.7	129.896
	Commercial blend	0	1.938	0.3	76	-	3.499	0.53		
	Wheat distillers	0	0.074	-1.3	12	-	1.461	0.60		
	Other	41	0.323	0.1	33	-	0.514	27.60	9.6	0.038
	Overall	156	0.328	0.1	70	-	0.486	100.00	66.7	0.585

DMI

Distillers grain	51	0.113	-0.092 -	0.318	27.03	32.0	0.172
Urea	33	0.507	0.081 -	0.933	11.37	49.9	0.694
Corn gluten feed	27	0.762	0.476 -	1.048	12.71	44.9	0.163
Soyabean meal	15	0.595	0.109 -	1.080	5.89	32.3	0.287
Canola meal	10	0.280	-0.007 -	0.566	7.37	23.9	0.053
Cottonseed meal	5	0.043	-0.575 -	0.662	3.22	37.9	0.221
Grains	4	-0.401	-0.958 -	0.156	3.11	29.5	0.119
Fish meal	4	-2.263	-3.180 -	-1.346	1.30	0	0
Commercial blend	3	-0.932	-1.732 -	-0.133	1.52	0	0
Protected protein meal	3	0.374	-0.341 -	1.089	1.49	0	0
Wheat distillers	0	0.556	-0.866 -	1.977	0.45		
Other	46	-0.082	-0.253 -	0.089	24.54	0	0
Overall	212	0.171	0.051 -	0.291	100.00	48.2	0.314
LM area							
Distillers grain	46	-0.201	-0.369 -	-0.034	29.29	0	0
Urea	22	-0.049	-0.403 -	0.305	10.10	24.3	0.175
Corn gluten feed	24	0.360	0.08 -	0.640	11.32	0	0
Soyabean meal	9	0.266	-0.474 -	1.007	4.34	56.5	0.728
Canola meal	8	-0.077	-0.315 -	0.161	10.30	0	0
Cottonseed meal	5	-0.152	-1.017 -	0.712	3.58	66.1	0.750
Grains	3	-0.440	-1.734 -	0.854	2.59	79.9	1.386
Fish meal	1	-0.149	-1.293 -	0.994	0.75	0	0
Commercial blend	3	-0.074	-0.818 -	0.671	1.70	0	0
Other	38	-0.120	-0.333 -	0.094	26.04	28.4	0.128
Overall	168	-0.066	-0.173 -	0.040	100.00	23.1	0.108
Fat thickness							
Distillers grain	46	0.721	0.456 -	0.985	27.49	51.7	0.414
Urea	22	0.357	0.018 -	0.696	10.50	16.5	0.110

Corn gluten feed	24	0.162	-0.191 - 0.515	11.49	28.4	0.213
Soyabean meal	9	0.679	-0.010 - 1.369	4.64	51.2	0.594
Canola meal	8	-0.055	-0.294 - 0.184	8.86	0	0
Cottonseed meal	5	-0.265	-0.726 - 0.196	3.97	0	0
Grains	3	-0.120	-0.922 - 0.682	2.86	54.1	0.362
Fish meal	1	-0.721	-1.914 - 0.473	0.78	0	0
Commercial blend	3	-0.071	-0.813 - 0.670	1.88	0	0
Other	42	0.257	0.073 - 0.441	27.52	8.1	0.031
Overall	172	0.331	0.211 - 0.452	100.00	36.9	0.219

Initial BW (Control only), kg 33 0.185 Initial BW, kg 33 <0.001 ME, Mcal 33 -0.035 MP, g/d 33 -0.001 CP, g 33 <0.001 Soluble intake protein, g 33 <0.001	0.181 0.004 0.259 0.002 0.001 0.003 0.003 0.003	-0.185 -0.009 -0.564 -0.005 -0.003 -0.008 -0.006	- - - -	0.555 0.009 0.493 0.004 0.003 0.007	-17.0 -8.5 -9.9 -9.3 -9.6	63.8 63.4 63.9 63.9 63.9	1.401 1.299 1.315 1.308 1.311	0.316 0.985 0.892 0.824
ME, Mcal 33 -0.035 MP, g/d 33 -0.001 CP, g 33 <0.001 Soluble intake protein, g 33 <0.001	0.259 0.002 0.001 0.003 0.003	-0.564 -0.005 -0.003 -0.008	- - -	0.493 0.004 0.003	-9.9 -9.3 -9.6	63.9 63.9	1.315 1.308	0.892 0.824
MP, g/d 33 -0.001 CP, g 33 <0.001	0.002 0.001 0.003 0.003	-0.005 -0.003 -0.008	-	0.004 0.003	-9.3 -9.6	63.9	1.308	0.824
CP, g 33 <0.001	0.001 0.003 0.003	-0.003 -0.008	-	0.003	-9.6			
Soluble intake protein, g 33 <0.001	0.003 0.003	-0.008				63.9	1 211	
	0.003		-	0.007			1.211	0.766
		-0.006		0.007	-7.1	62.6	1.282	0.901
Ammonia, g 33 <0.001	0.007		-	0.006	-7.9	62.8	1.291	0.944
Protein A ₂ , g 33 <0.001	0.007	-0.014	-	0.015	-7.2	63.6	1.284	0.958
Protein B ₁ , g 33 0.001	0.002	-0.003	-	0.006	-4.7	63.4	1.253	0.539
Protein B ₂ , g 33 <0.001	0.003	-0.007	-	0.007	-9.7	63.8	1.313	0.977
RDP x3 maintenance, g 33 <0.001	0.001	-0.003	-	0.003	-9.5	63.8	1.311	0.963
RUP x1 maintenance, g 33 0.001	0.002	-0.004	-	0.006	-8.4	63.6	1.298	0.714
MP Met, g 33 -0.073	0.100	-0.278	-	0.132	-6.7	63.5	1.277	0.474
MP Lys, g 33 -0.016	0.038	-0.094	-	0.062	-7.2	63.6	1.283	0.675
MP Arg, g 33 -0.013	0.035	-0.085	-	0.059	-8.7	63.8	1.301	0.718
MP Thr, g 33 -0.027	0.048	-0.126	-	0.072	-7.4	63.6	1.286	0.585
MP Leu, g 33 -0.009	0.024	-0.057	-	0.039	-8.4	63.7	1.298	0.712
MP lle, g 33 -0.025	0.043	-0.113	-	0.062	-8.5	63.7	1.299	0.559
MP Val, g 33 -0.017	0.042	-0.102	-	0.068	-7.6	63.7	1.288	0.682
MP His, g 33 -0.013	0.083	-0.182	-	0.157	-8.5	63.8	1.299	0.881
MP Phe, g 33 -0.013	0.044	-0.102	-	0.076	-8.6	63.8	1.300	0.769
MP Trp, g 33 -0.056	0.164	-0.390	-	0.278	-8.6	63.8	1.300	0.735
MP Non-essential AA, g 33 0.000	0.002	-0.005	-	0.005	-10.6	63.9	1.324	0.997
MP/ME Met, g/Mcal 33 -0.565	2.052	-4.749	-	3.619	-8.7	63.8	1.301	0.785
MP/ME Lys, g/Mcal 33 0.150	0.778	-1.437	-	1.737	-9.7	63.9	1.313	0.848
MP/ME Arg, g/Mcal 33 0.078	0.679	-1.307	-	1.462	-9.4	63.9	1.310	0.910

Table 12. Retained body N univariable analyses. Includes number of comparisons used (No.), coefficient, SE, 95% CI, estimates of model fit (R^2), heterogeneity as assessed by I^2 and τ^2 , and *P*-value.

MP/ME Thr, g/Mcai33-0.0460.990-2.066-1.973-9.463.81.3090.963MP/ME Leu, g/Mcai330.0070.497-1.016-1.020-9.763.91.3140.989MP/ME Leu, g/Mcai330.0760.837-1.632-1.701-9.563.91.3130.928MP/ME Vai, g/Mcai330.0760.837-1.629-1.784-9.763.91.3130.928MP/ME His, g/Mcai330.0760.870-1.629-1.918-9.863.91.3140.869MP/ME Thr, g/Mcai330.6243.285-6.75-7.323-9.463.91.3090.851MP/ME Thr, g/Mcai330.0020.004-0.010-0.005-8.863.81.3030.556ADF, g33-0.0020.004-0.010-0.005-8.863.31.3000.556ADF, g33-0.0130.001-0.003-0.002-8.663.71.3000.556Forage NDF, g33-0.0040.005-0.003-0.00327.558.90.8680.111Physically effective NDF, g33-0.0040.005-0.013-0.001-1.763.81.3370.699Simple sigars, g33-0.0010.001-0.013-0.011-1.1763.81.3370.699 <trr<tr>Simple sigars, g33<</trr<tr>											
MP/Mc lie wMP/Mc lie w33-0.1150.890-1.931-1.701-9.563.91.3100.898MP/Mc Val, g/Mcal330.0760.837-1.632-1.784-9.763.91.3120.928MP/ME Phe, g/Mcal330.5801.658-2.802-3.962-1.0563.91.3220.729MP/ME Phe, g/Mcal330.1450.870-1.629-1.918-9.863.91.3090.851MP/ME Non-essential AA, g/Mcal330.0580.107-0.575-7.323-9.463.91.3090.851ADF, g33-0.0020.004-0.010-0.159-6.163.51.2700.590ADF, g33-0.0010.001-0.003-0.002-8.863.81.3000.556Forage NDF, g33-0.0130.001-0.003-0.0032.7558.90.8680.111Physically effective NDF, g33-0.0010.001-0.003-0.003-1.1763.81.3020.583Simple sugars, g33-0.0010.001-0.001-0.001-9.763.91.3140.986Starch, g33-0.0010.001-0.001-0.001-9.763.91.3140.986Soluble fibre, g33-0.0010.001-0.001-90.011-8.863.61.2780.807Fermen	MP/ME Thr, g/Mcal	33	-0.046	0.990	-2.066	-	1.973	-9.4	63.8	1.309	0.963
MP/ME Val, g/Mcal330.0760.837-1.632-1.784-9.763.91.3130.928MP/ME His, g/Mcal330.5801.658-2.802-3.962-10.563.91.3220.729MP/ME Phe, g/Mcal330.1450.870-1.629-1.918-9.863.91.3140.869MP/ME Trp, g/Mcal330.6243.285-6.075-7.323-9.463.91.3090.851MP/ME Non-essential AA, g/Mcal33-0.0280.004-0.010-0.159-6.163.51.2700.590ADF, g33-0.0020.004-0.005-8.863.81.3030.556Amylase NDF organic matter basis, g33-0.0110.001-0.003-0.005-8.863.21.2670.392Physically effective NDF, g33-0.0040.005-0.013-0.005-5.863.21.2670.392Simple sugars, g33-0.0040.005-0.013-0.001-9.763.91.3140.973Soluble fibre, g33-0.0010.001-0.001-0.001-9.763.91.3140.986Fermentable sarch, g33-0.0010.001-0.001-9.763.91.3140.986Simple sugars, g330.0010.001-0.001-9.763.91.3140.986Fermentable sarch, g330.0010.001<	MP/ME Leu, g/Mcal	33	0.007	0.497	-1.006	-	1.020	-9.7	63.9	1.314	0.989
MP/ME His, g/Mcal330.5801.658-2.802-3.962-10.563.91.3220.729MP/ME Phe, g/Mcal330.1450.870-1.629-1.918-9.863.91.3140.869MP/ME Trp, g/Mcal330.6243.285-6.075-7.323-9.463.91.3090.851MP/ME Non-essential AA, g/Mcal33-0.0580.107-0.275-0.159-6.163.51.2700.590ADF, g33-0.0020.004-0.010-0.005-8.863.81.3030.565Forage NDF, g33-0.0130.001-0.003-0.002-8.663.71.3000.565Forage NDF, g33-0.0040.005-0.013-0.00327.558.90.8680.111Physically effective NDF, g33-0.0040.005-0.013-0.00327.558.90.5831.3020.583Simple sugars, g33-0.0040.005-0.013-0.001-1.013-1.1763.81.3020.583Simple sugars, g33-0.0030.001-0.001-0.001-9.763.91.3140.973Soluble fibre, g330.0010.001-0.001-0.001-9.863.61.2780.807Fermentable soluble fibre, g330.0010.001-0.001-9.001-9.863.61.2970.622 <td>MP/ME IIe, g/Mcal</td> <td>33</td> <td>-0.115</td> <td>0.890</td> <td>-1.931</td> <td>-</td> <td>1.701</td> <td>-9.5</td> <td>63.9</td> <td>1.310</td> <td>0.898</td>	MP/ME IIe, g/Mcal	33	-0.115	0.890	-1.931	-	1.701	-9.5	63.9	1.310	0.898
MP/ME Phe, g/Mcal330.1450.870-1.629-1.918-9.863.91.3140.869MP/ME Trp, g/Mcal330.6243.285-6.075-7.323-9.463.91.3090.851MP/ME Non-essential AA, g/Mcal33-0.0580.107-0.275-0.159-6.163.51.2700.590ADF, g33-0.0020.004-0.010-0.005-8.863.81.3030.565Amylase NDF organic matter basis, g33-0.0130.001-0.003-0.002-8.6663.71.3000.565Forage NDF, g33-0.0130.008-0.013-0.005-5.863.21.2670.392Acid detregent lignin, g33-0.0040.005-0.013-0.003-5.8863.81.3370.699Starch, g33-0.0010.001-0.001-0.011-1.1763.81.3440.973Soluble fibre, g33-0.0010.001-0.011-0.011-9.763.91.3140.986Fermentable sarch, g330.0010.005-0.009-0.011-9.863.61.2780.807Fermentable sarch, g330.0010.005-0.009-0.011-9.863.91.3140.986Fermentable sarch, g330.0010.006-0.001-0.004-8.463.61.2790.622<	MP/ME Val, g/Mcal	33	0.076	0.837	-1.632	-	1.784	-9.7	63.9	1.313	0.928
MP/ME Trp, g/Mcal330.6243.285-6.075-7.323-9.463.91.3090.851MP/ME Non-essential AA, g/Mcal33-0.0580.107-0.275-0.159-6.163.51.2700.590ADF, g33-0.0020.004-0.010-0.005-8.863.81.3030.565Amylase NDF organic matter basis, g33-0.0110.001-0.003-0.002-8.663.71.3000.565Forage NDF, g33-0.0130.008-0.005-0.005-5.863.21.2670.392Acid detergent lignin, g33-0.0030.008-0.013-0.023-8.863.81.3370.699Starch, g33-0.0030.008-0.011-0.011-9.763.91.3140.973Soluble fibre, g33-0.0010.001-0.001-9.763.91.3140.973Fermentable starch, g330.0010.001-0.001-9.863.91.3140.986Fermentable sluble fibre, g330.0010.003-0.001-9.863.91.3140.986Fermentable sluble fibre, g33-0.0010.001-0.012-7.963.71.2920.903Fermentable sluble fibre, g33-0.0010.003-0.004-863.61.2970.622Ether extract, g33-0.0010.003-0.004-8.4 <t< td=""><td>MP/ME His, g/Mcal</td><td>33</td><td>0.580</td><td>1.658</td><td>-2.802</td><td>-</td><td>3.962</td><td>-10.5</td><td>63.9</td><td>1.322</td><td>0.729</td></t<>	MP/ME His, g/Mcal	33	0.580	1.658	-2.802	-	3.962	-10.5	63.9	1.322	0.729
MP/ME Non-essential AA, g/Mcal33-0.0580.107-0.275-0.159-6.163.51.2700.590ADF, g33-0.0020.004-0.010-0.005-8.863.81.3030.556Amylase NDF organic matter basis, g33-0.0010.001-0.003-0.002-8.663.71.3000.565Forage NDF, g33-0.0130.008-0.013-0.005-5.863.21.2670.392Acid detergent lignin, g33-0.0030.008-0.013-0.013-11.763.81.3370.699Simple sugars, g33-0.0010.001-0.001-0.001-9.763.91.3140.973Soluble fibre, g33-0.0010.001-0.001-0.011-6.863.61.2780.807Fermentable starch, g330.0010.001-0.001-0.011-9.863.91.3140.986Fermentable sluble fibre, g330.0010.005-0.011-0.012-7.963.71.2920.903Fermentable sluble fibre, g33-0.0010.003-0.004-8.463.61.2970.622Ether extract, g33-0.0020.004-0.004-8.463.61.2970.622Ether extract, g33-0.0020.004-0.006-8.763.71.3010.639Hormonal implant yes or no33 <t< td=""><td>MP/ME Phe, g/Mcal</td><td>33</td><td>0.145</td><td>0.870</td><td>-1.629</td><td>-</td><td>1.918</td><td>-9.8</td><td>63.9</td><td>1.314</td><td>0.869</td></t<>	MP/ME Phe, g/Mcal	33	0.145	0.870	-1.629	-	1.918	-9.8	63.9	1.314	0.869
ADF, g33-0.0020.004-0.010-0.005-8.863.81.3030.556Amylase NDF organic matter basis, g33-0.0010.001-0.003-0.002-8.663.71.3000.565Forage NDF, g33-0.0130.008-0.030-0.00327.558.90.8680.111Physically effective NDF, g33-0.0040.005-0.013-0.002-5.863.21.2670.392Acid detergent lignin, g33-0.0030.008-0.019-0.013-11.763.81.3370.699Simple sugars, g33-0.0010.001-0.001-0.001-9.763.91.3140.973Soluble fibre, g33-0.0010.001-0.001-0.011-6.863.61.2780.807Fermentable starch, g330.0010.005-0.001-0.011-6.863.61.2970.622Fermentable soluble fibre, g330.0010.006-0.011-0.012-7.963.71.3010.639Fermentable NDF, g33-0.0010.003-0.006-0.004-8.4463.61.2970.622Ether extract, g33-0.0020.004-0.009-0.006-8.7763.71.3010.639Trial design331.4060.5180.350-2.46222.257.90.9310.011	MP/ME Trp, g/Mcal	33	0.624	3.285	-6.075	-	7.323	-9.4	63.9	1.309	0.851
Amylase NDF organic matter basis, g33-0.0010.001-0.003-0.002-8.663.71.3000.565Forage NDF, g33-0.0130.008-0.030-0.00327.558.90.8680.111Physically effective NDF, g33-0.0040.005-0.013-0.005-5.863.21.2670.392Acid detergent lignin, g33-0.0030.008-0.019-0.023-8.863.81.3020.583Simple sugars, g33-0.0030.008-0.019-0.013-11.763.81.3370.699Starch, g33-0.0010.001-0.001-0.001-9.763.91.3140.973Soluble fibre, g330.0010.005-0.009-0.011-6.863.61.2780.807Fermentable starch, g330.0010.001-0.001-0.012-7.963.71.2920.903Fermentable soluble fibre, g330.0010.006-0.011-0.004-8.463.61.2970.622Ether extract, g33-0.0020.004-0.009-0.006-8.763.71.3010.639Trial design33-0.0020.004-0.009-0.006-8.763.71.3010.639Trial design330.0020.004-0.009-0.006-8.763.71.3010.639	MP/ME Non-essential AA, g/Mcal	33	-0.058	0.107	-0.275	-	0.159	-6.1	63.5	1.270	0.590
Forage NDF, g33-0.0130.008-0.030-0.00327.558.90.8680.111Physically effective NDF, g33-0.0040.005-0.013-0.005-5.863.21.2670.392Acid detergent lignin, g33-0.0080.015-0.040-0.023-8.863.81.3020.583Simple sugars, g33-0.0030.008-0.019-0.013-11.763.81.3370.699Starch, g33-0.0010.001-0.001-0.001-9.763.91.3140.973Soluble fibre, g330.0010.005-0.009-0.011-6.863.61.2780.807Fermentable starch, g330.0010.005-0.001-0.001-9.863.91.3140.986Fermentable soluble fibre, g330.0010.006-0.011-0.012-7.963.71.2920.903Fermentable NDF, g33-0.0010.003-0.006-0.004-8.463.61.2970.622Ether extract, g33-0.0020.004-0.009-0.006-8.763.71.3010.639Trial design331.4060.5180.350-2.46222.257.90.9310.011Hormonal implant yes or no330.4520.607-0.786-1.691-8.363.51.2970.462<	ADF, g	33	-0.002	0.004	-0.010	-	0.005	-8.8	63.8	1.303	0.556
Physically effective NDF, g33-0.0040.005-0.013-0.005-5.863.21.2670.392Acid detergent lignin, g33-0.0080.015-0.040-0.023-8.863.81.3020.583Simple sugars, g33-0.0030.008-0.019-0.013-11.763.81.3370.699Starch, g33<0.001	Amylase NDF organic matter basis, g	33	-0.001	0.001	-0.003	-	0.002	-8.6	63.7	1.300	0.565
Acid detergent lignin, g33-0.0080.015-0.040-0.023-8.863.81.3020.583Simple sugars, g33-0.0030.008-0.019-0.013-11.763.81.3370.699Starch, g33<0.0010.001-0.001-0.001-9.763.91.3140.973Soluble fibre, g330.0010.005-0.009-0.011-6.863.61.2780.807Fermentable starch, g330.0010.001-0.001-0.012-7.963.71.2920.903Fermentable soluble fibre, g330.0010.006-0.011-0.012-7.963.71.2920.903Fermentable NDF, g33-0.0010.003-0.006-0.004-8.4463.61.2970.622Ether extract, g33-0.0020.004-0.009-0.006-8.7763.71.3010.639Trial design33-0.0020.004-0.009-0.006-8.7763.71.3010.631Hormonal implant yes or no330.4520.607-0.786-1.691-8.363.61.2970.462Monensin dose, mg/kg DM33-0.0150.014-0.044-0.013-1.363.11.2130.286	Forage NDF, g	33	-0.013	0.008	-0.030	-	0.003	27.5	58.9	0.868	0.111
Simple sugars, g33-0.0030.008-0.019-0.013-11.763.81.3370.699Starch, g33<0.001	Physically effective NDF, g	33	-0.004	0.005	-0.013	-	0.005	-5.8	63.2	1.267	0.392
Starch, g33<0.0010.001-0.001-0.001-9.763.91.3140.973Soluble fibre, g330.0010.005-0.009-0.011-6.863.61.2780.807Fermentable starch, g330.0000.001-0.001-0.001-9.863.91.3140.986Fermentable soluble fibre, g330.0010.006-0.011-0.012-7.963.71.2920.903Fermentable NDF, g33-0.0010.003-0.006-0.004-8.463.61.2970.622Ether extract, g33-0.0020.004-0.009-0.006-8.763.71.3010.639Trial design331.4060.5180.350-2.46222.257.90.9310.011Hormonal implant yes or no330.4520.607-0.786-1.691-8.363.51.2970.462Monensin dose, mg/kg DM33-0.0150.014-0.044-0.013-1.363.11.2130.286	Acid detergent lignin, g	33	-0.008	0.015	-0.040	-	0.023	-8.8	63.8	1.302	0.583
Soluble fibre, g330.0010.005-0.009-0.011-6.863.61.2780.807Fermentable starch, g330.0000.001-0.001-0.001-9.863.91.3140.986Fermentable soluble fibre, g330.0010.006-0.011-0.012-7.963.71.2920.903Fermentable NDF, g33-0.0010.003-0.006-0.004-8.463.61.2970.622Ether extract, g33-0.0020.004-0.009-0.006-8.763.71.3010.639Trial design331.4060.5180.350-2.46222.257.90.9310.011Hormonal implant yes or no330.4520.607-0.786-1.691-8.363.51.2970.462Monensin dose, mg/kg DM33-0.0150.014-0.044-0.013-1.363.11.2130.286	Simple sugars, g	33	-0.003	0.008	-0.019	-	0.013	-11.7	63.8	1.337	0.699
Fermentable starch, g330.0000.001-0.001-0.001-9.863.91.3140.986Fermentable soluble fibre, g330.0010.006-0.011-0.012-7.963.71.2920.903Fermentable NDF, g33-0.0010.003-0.006-0.004-8.463.61.2970.622Ether extract, g33-0.0020.004-0.009-0.006-8.763.71.3010.639Trial design331.4060.5180.350-2.46222.257.90.9310.011Hormonal implant yes or no330.4520.607-0.786-1.691-8.363.51.2970.462Monensin dose, mg/kg DM33-0.0150.014-0.044-0.013-1.363.11.2130.286	Starch, g	33	<0.001	0.001	-0.001	-	0.001	-9.7	63.9	1.314	0.973
Fermentable soluble fibre, g330.0010.006-0.011-0.012-7.963.71.2920.903Fermentable NDF, g33-0.0010.003-0.006-0.004-8.463.61.2970.622Ether extract, g33-0.0020.004-0.009-0.006-8.763.71.3010.639Trial design331.4060.5180.350-2.46222.257.90.9310.011Hormonal implant yes or no330.4520.607-0.786-1.691-8.363.51.2970.462Monensin dose, mg/kg DM33-0.0150.014-0.044-0.013-1.363.11.2130.286	Soluble fibre, g	33	0.001	0.005	-0.009	-	0.011	-6.8	63.6	1.278	0.807
Fermentable NDF, g33-0.0010.003-0.006-0.004-8.463.61.2970.622Ether extract, g33-0.0020.004-0.009-0.006-8.763.71.3010.639Trial design331.4060.5180.350-2.46222.257.90.9310.011Hormonal implant yes or no330.4520.607-0.786-1.691-8.363.51.2970.462Monensin dose, mg/kg DM33-0.0150.014-0.044-0.013-1.363.11.2130.286	Fermentable starch, g	33	0.000	0.001	-0.001	-	0.001	-9.8	63.9	1.314	0.986
Ether extract, g33-0.0020.004-0.009-0.006-8.763.71.3010.639Trial design331.4060.5180.350-2.46222.257.90.9310.011Hormonal implant yes or no330.4520.607-0.786-1.691-8.363.51.2970.462Monensin dose, mg/kg DM33-0.0150.014-0.044-0.013-1.363.11.2130.286	Fermentable soluble fibre, g	33	0.001	0.006	-0.011	-	0.012	-7.9	63.7	1.292	0.903
Trial design331.4060.5180.350-2.46222.257.90.9310.011Hormonal implant yes or no330.4520.607-0.786-1.691-8.363.51.2970.462Monensin dose, mg/kg DM33-0.0150.014-0.044-0.013-1.363.11.2130.286	Fermentable NDF, g	33	-0.001	0.003	-0.006	-	0.004	-8.4	63.6	1.297	0.622
Hormonal implant yes or no330.4520.607-0.786-1.691-8.363.51.2970.462Monensin dose, mg/kg DM33-0.0150.014-0.044-0.013-1.363.11.2130.286	Ether extract, g	33	-0.002	0.004	-0.009	-	0.006	-8.7	63.7	1.301	0.639
Monensin dose, mg/kg DM 33 -0.015 0.014 -0.044 - 0.013 -1.3 63.1 1.213 0.286	Trial design	33	1.406	0.518	0.350	-	2.462	22.2	57.9	0.931	0.011
	Hormonal implant yes or no	33	0.452	0.607	-0.786	-	1.691	-8.3	63.5	1.297	0.462
Tylosin dose, mg/kg DM 33 -0.061 0.059 -0.182 - 0.060 -3.5 63.3 1.239 0.314	Monensin dose, mg/kg DM	33	-0.015	0.014	-0.044	-	0.013	-1.3	63.1	1.213	0.286
	Tylosin dose, mg/kg DM	33	-0.061	0.059	-0.182	-	0.060	-3.5	63.3	1.239	0.314

Variable	No.	Coefficient	SE	9	95% CI		Adjusted R ²	l ²	τ^{2}	P-value
Initial BW (Control only), kg	31	-0.194	0.450	-1.115	-	0.726	-9.4	71.3	3.332	0.669
Initial BW, kg	31	-0.003	0.005	-0.012	-	0.007	-6.0	70.8	3.227	0.573
ME, Mcal	34	-0.339	0.330	-1.011	-	0.332	7.6	69.2	2.816	0.311
MP, g/d	34	0.007	0.003	0.001	-	0.012	50.0	62.7	1.524	0.018
CP, g	34	0.006	0.001	0.003	-	0.008	91.7	49.8	0.254	<0.001
Soluble intake protein, g	34	0.002	0.005	-0.009	-	0.012	-9.2	70.8	3.328	0.754
Ammonia, g	34	-0.003	0.005	-0.013	-	0.007	0.7	69.8	3.027	0.525
Protein A ₂ , g	34	0.034	0.011	0.012	-	0.055	57.2	61.0	1.306	0.004
Protein B ₁ , g	34	0.009	0.004	0.002	-	0.017	47.2	62.7	1.611	0.019
Protein B ₂ , g	34	0.007	0.002	0.003	-	0.012	69.6	58.7	0.926	0.002
RDP x3 maintenance, g	34	0.005	0.002	0.002	-	0.009	62.0	59.6	1.159	0.003
RUP x1 maintenance, g	34	0.008	0.002	0.004	-	0.013	79.9	56.6	0.6141	0.001
MP Met, g	34	0.227	0.125	-0.027	-	0.481	28.3	66.1	2.186	0.078
MP Lys, g	34	0.052	0.047	-0.044	-	0.149	8.1	68.9	2.802	0.276
MP Arg, g	34	0.086	0.045	-0.005	-	0.178	29.8	65.9	2.141	0.063
MP Thr, g	34	0.112	0.061	-0.012	-	0.235	28.8	66.0	2.17	0.075
MP Leu, g	34	0.071	0.031	0.008	-	0.135	45.4	63.2	1.664	0.029
MP lle, g	34	0.105	0.054	-0.005	-	0.215	30.4	66.0	2.123	0.060
MP Val, g	34	0.108	0.051	0.006	-	0.211	39.1	64.5	1.857	0.040
MP His, g	34	0.251	0.101	0.045	-	0.456	50.4	62.6	1.511	0.018
MP Phe, g	34	0.130	0.052	0.023	-	0.237	48.3	63.0	1.576	0.018
MP Trp, g	34	0.381	0.194	-0.014	-	0.777	28.8	66.3	2.169	0.058
MP Non-essential AA, g	34	-0.003	0.003	-0.010	-	0.003	-1.7	70.6	3.100	0.325
MP/ME Met, g/Mcal	34	6.102	2.500	1.010	-	11.194	50.9	62.2	1.498	0.020
MP/ME Lys, g/Mcal	34	1.751	0.997	-0.279	-	3.782	28.3	65.7	2.186	0.088
MP/ME Arg, g/Mcal	34	2.085	0.863	0.326	-	3.843	46.8	62.9	1.622	0.022

Table 13. Urinary N loss univariable analyses. Includes number of comparisons used (No.), coefficient, SE, 95% CI, estimates of model fit (R^2), heterogeneity as assessed by I^2 and τ^2 , and *P*-value.

MP/ME Thr, g/Mcal	34	3.076	1.210	0.611	-	5.541	54.3	61.7	1.393	0.016
MP/ME Leu, g/Mcal	34	1.701	0.604	0.470	-	2.932	65.5	59.7	1.051	0.008
MP/ME IIe, g/Mcal	34	2.825	1.083	0.618	-	5.032	53.6	61.8	1.415	0.014
MP/ME Val, g/Mcal	34	2.861	0.975	0.876	-	4.846	67.7	59.4	0.986	0.006
MP/ME His, g/Mcal	34	6.025	1.873	2.211	-	9.840	75.8	58.0	0.737	0.003
MP/ME Phe, g/Mcal	34	3.181	0.987	1.171	-	5.191	73.4	58.2	0.813	0.003
MP/ME Trp, g/Mcal	34	10.344	3.860	2.482	-	18.207	53.2	61.9	1.427	0.012
MP/ME Non-essential AA, g/Mcal	34	-0.228	0.134	-0.500	-	0.045	20.0	67.5	2.439	0.098
ADF, g	34	0.006	0.005	-0.005	-	0.016	8.4	68.3	2.794	0.295
Amylase NDF organic matter basis, g	34	0.002	0.002	-0.002	-	0.005	4.4	68.6	2.916	0.409
Forage NDF, g	34	-0.007	0.003	-0.014	-	-0.001	33.3	65.9	2.034	0.038
Physically effective NDF, g	34	-0.005	0.002	-0.010	-	-0.001	42.1	64.2	1.765	0.020
Acid detergent lignin, g	34	0.046	0.019	0.009	-	0.084	49.3	62.2	1.546	0.018
Simple sugars, g	34	0.022	0.015	-0.008	-	0.052	9.4	68.8	2.762	0.141
Starch, g	34	-0.001	0.001	-0.002	-	0.000	47.4	63.1	1.604	0.025
Soluble fibre, g	34	0.005	0.007	-0.009	-	0.020	-4.0	70.4	3.172	0.440
Fermentable starch, g	34	-0.001	0.001	-0.003	-	0.000	49.7	62.6	1.532	0.020
Fermentable soluble fibre, g	34	0.007	0.008	-0.009	-	0.023	-2.9	70.2	3.136	0.388
Fermentable NDF, g	34	0.005	0.004	-0.002	-	0.013	18.5	67.2	2.484	0.140
Ether extract, g	34	0.004	0.005	-0.007	-	0.014	3.4	68.7	2.947	0.455
Trial design	34	1.935	0.934	0.032	-	3.838	9.4	69.7	2.761	0.046
Hormonal implant yes or no	34	-0.532	0.876	-2.315	-	1.252	-6.3	70.7	3.24	0.548
Monensin dose, mg/kg DM	34	-0.052	0.020	-0.092	-	-0.012	20.5	67.1	2.423	0.013
Tylosin dose, mg/kg DM	34	-0.134	0.086	-0.308	-	0.041	1.0	70.4	3.019	0.129

Variable	No.	Coefficient	SE	95% CI	Adjusted R ²	l ²	τ^{2}	P-value
Initial BW (Control only), kg	39	0.040	0.208	-0.383 - 0.462	-10.4	51.1	0.573	0.850
Initial BW, kg	39	0.001	0.002	-0.003 - 0.005	-9.0	50.9	0.566	0.507
ME, Mcal	42	0.028	0.168	-0.312 - 0.368	-5.8	53.4	0.670	0.869
MP, g/d	42	0.003	0.001	0.001 - 0.006	28.7	46.3	0.451	0.009
CP, g	42	0.003	0.001	0.001 - 0.004	60.9	34.8	0.248	<0.001
Soluble intake protein, g	42	<0.001	0.002	-0.004 - 0.003	-8.2	53.7	0.685	0.841
Ammonia, g	42	-0.002	0.002	-0.005 - 0.001	-0.3	52.3	0.635	0.182
Protein A ₂ , g	42	0.022	0.005	0.013 - 0.031	76.2	27.5	0.151	<0.001
Protein B ₁ , g	42	0.004	0.002	0.001 - 0.008	31.6	46.1	0.433	0.009
Protein B ₂ , g	42	0.004	0.001	0.002 - 0.006	45.3	41.4	0.346	0.001
RDP x3 maintenance, g	42	0.003	0.001	0.001 - 0.005	23.5	45.66	0.484	0.003
RUP x1 maintenance, g	42	0.005	0.001	0.002 - 0.007	44.9	39.49	0.349	0.000
MP Met, g	42	0.101	0.056	-0.012 - 0.214	10.2	50.6	0.568	0.079
MP Lys, g	42	0.033	0.021	-0.009 - 0.074	11.9	50.7	0.558	0.120
MP Arg, g	42	0.046	0.020	0.006 - 0.085	24.8	47.9	0.476	0.025
MP Thr, g	42	0.053	0.026	0.000 - 0.106	15.5	49.6	0.535	0.051
MP Leu, g	42	0.027	0.014	-0.001 - 0.056	7.9	50.6	0.583	0.061
MP lle, g	42	0.052	0.024	0.004 - 0.100	18.6	48.9	0.515	0.034
MP Val, g	42	0.051	0.022	0.007 - 0.096	21.4	48.3	0.497	0.024
MP His, g	42	0.114	0.045	0.023 - 0.205	24.5	47.5	0.478	0.016
MP Phe, g	42	0.061	0.023	0.014 - 0.108	26.7	46.9	0.464	0.012
MP Trp, g	42	0.212	0.085	0.040 - 0.383	28.0	47.1	0.456	0.017
MP Non-essential AA, g	42	-0.001	0.002	-0.005 - 0.002	-8.7	53.4	0.688	0.351
MP/ME Met, g/Mcal	42	1.964	1.175	-0.411 - 4.338	6.1	51.1	0.594	0.102
MP/ME Lys, g/Mcal	42	0.699	0.430	-0.171 - 1.569	10.7	50.7	0.565	0.112
MP/ME Arg, g/Mcal	42	0.878	0.395	0.080 - 1.677	20.0	48.6	0.506	0.032

Table 14. Faecal N loss univariable analyses. Includes number of comparisons used (No.), coefficient, SE, 95% CI, estimates of model fit (R^2), heterogeneity as assessed by I^2 and τ^2 , and *P*-value.

MP/ME Leu, g/Mcal 42 0.539 0.295 -0.058 - 1.136 5.3 51.0 0.599 0 MP/ME Ile, g/Mcal 42 1.041 0.500 0.031 - 2.052 14.5 49.5 0.541 0 MP/ME Val, g/Mcal 42 1.018 0.456 0.097 - 1.939 17.1 48.9 0.525 0 MP/ME His, g/Mcal 42 2.213 0.917 0.359 - 4.067 20.6 48.1 0.502 0 MP/ME Phe, g/Mcal 42 1.198 0.479 0.229 - 2.166 21.8 47.7 0.495 0	P/ME Leu, g/Mcal P/ME IIe, g/Mcal P/ME Val, g/Mcal P/ME His, g/Mcal	0.062 0.076 0.044 0.031 0.021
MP/ME Ile, g/Mcal 42 1.041 0.500 0.031 - 2.052 14.5 49.5 0.541 0 MP/ME Val, g/Mcal 42 1.018 0.456 0.097 - 1.939 17.1 48.9 0.525 0 MP/ME His, g/Mcal 42 2.213 0.917 0.359 - 4.067 20.6 48.1 0.502 0 MP/ME Phe, g/Mcal 42 1.198 0.479 0.229 - 2.166 21.8 47.7 0.495 0	P/ME lle, g/Mcal P/ME Val, g/Mcal P/ME His, g/Mcal	0.044 0.031
MP/ME Val, g/Mcal 42 1.018 0.456 0.097 - 1.939 17.1 48.9 0.525 0 MP/ME His, g/Mcal 42 2.213 0.917 0.359 - 4.067 20.6 48.1 0.502 0 MP/ME Phe, g/Mcal 42 1.198 0.479 0.229 - 2.166 21.8 47.7 0.495 0	P/ME Val, g/Mcal P/ME His, g/Mcal	0.031
MP/ME His, g/Mcal 42 2.213 0.917 0.359 - 4.067 20.6 48.1 0.502 0 MP/ME Phe, g/Mcal 42 1.198 0.479 0.229 - 2.166 21.8 47.7 0.495 0	P/ME His, g/Mcal	
MP/ME Phe, g/Mcal 42 1.198 0.479 0.229 - 2.166 21.8 47.7 0.495 0		0.021
	P/ME Phe, g/Mcal	
		0.017
MP/ME Trp, g/Mcal 42 4.314 1.765 0.747 - 7.880 24.0 47.6 0.481 0	P/ME Trp, g/Mcal	0.019
MP/ME Non-essential AA, g/Mcal 42 -0.005 0.003 -0.011 - 0.000 14.5 49.7 0.542 0	P/ME Non-essential AA, g/Mcal	0.042
ADF, g 42 0.008 0.003 - 0.014 23.0 45.9 0.488 0	F, g	0.004
Amylase NDF organic matter basis, g 42 0.002 0.001 0.000 - 0.003 -7.7 52.5 0.681 0	nylase NDF organic matter basis, g	0.102
Forage NDF, g 42 -0.002 0.002 -0.005 - 0.001 3.8 52.1 0.609 0	rage NDF, g	0.229
Physically effective NDF, g 42 -0.002 0.001 -0.004 - 0.000 5.5 51.3 0.598 0	ysically effective NDF, g	0.097
Acid detergent lignin, g 42 0.026 0.010 0.006 - 0.046 14.4 48.4 0.542 0	id detergent lignin, g	0.011
Simple sugars, g 42 0.017 0.006 0.004 - 0.029 31.5 45.9 0.433 0	nple sugars, g	0.009
Starch, g 42 -0.001 0.000 -0.001 - 0.1 51.3 0.634 0	irch, g	0.050
Soluble fibre, g 42 0.007 0.003 0.001 - 0.013 31.2 47.3 0.436 0	uble fibre, g	0.027
Fermentable starch, g 42 -0.001 0.000 -0.001 - 0.000 1.3 51.0 0.625 0	rmentable starch, g	0.039
Fermentable soluble fibre, g 42 0.008 0.003 0.001 - 0.015 30.5 47.3 0.440 0	rmentable soluble fibre, g	0.026
Fermentable NDF, g 42 0.004 0.002 <0.001 - 0.308 -0.3 50.9 0.635 0	rmentable NDF, g	0.031
Ether extract, g 42 <0.001 0.002 -0.005 - 8.6 53.7 0.687 0	ner extract, g	0.998
Hormonal implant yes or no 42 0.492 0.382 -0.280 - 1.264 11.9 51.1 0.558 0	rmonal implant yes or no	0.205
Monensin dose, mg/kg DM 42 -0.010 0.010 -0.030 - 0.011 3.1 52.3 0.613 0		0.346

Variable	No.	Coefficient	SE	95%	6 CI	Adjusted R ²	l ²	τ^{2}	P-value
Initial BW (Control only), kg	12	0.558	0.501	-0.558 -	1.674	17.4	49.0	0.743	0.292
Initial BW, kg	12	-0.001	0.005	-0.011 -	0.010	22.7	57.0	1.104	0.902
ME, Mcal	15	-0.440	0.430	-1.370 -	0.489	0.2	55.3	1.085	0.325
MP, g/d	15	0.008	0.003	0.002 -	0.014	69.4	27.7	0.333	0.013
CP, g	15	0.005	0.001	0.002 -	0.007	100.0	0	0	0.001
Soluble intake protein, g	15	0.001	0.004	-0.007 -	0.010	-13.2	57.5	1.231	0.730
Ammonia, g	15	-0.001	0.003	-0.009 -	0.006	-10.8	56.5	1.204	0.665
Protein A ₂ , g	15	0.021	0.008	0.005 -	0.038	62.3	30.6	0.410	0.016
Protein B ₁ , g	15	0.006	0.002	0.001 -	0.011	58.0	30.7	0.457	0.016
Protein B ₂ , g	15	0.004	0.002	-0.001 -	0.009	23.1	48.7	0.836	0.117
RDP x3 maintenance, g	15	0.009	0.002	0.005 -	0.014	100.0	0	0	0.001
RUP x1 maintenance, g	15	0.006	0.003	0.000 -	0.011	38.8	42.0	0.665	0.051
MP Met, g	15	0.408	0.148	0.087 -	0.728	79.1	28.8	0.228	0.017
MP Lys, g	15	0.049	0.042	-0.041 -	0.140	19.0	48.5	0.881	0.260
MP Arg, g	15	0.106	0.044	0.011 -	0.200	64.1	33.8	0.390	0.031
MP Thr, g	15	0.159	0.065	0.019 -	0.299	68.3	33.0	0.345	0.029
MP Leu, g	15	0.129	0.029	0.066 -	0.193	100.0	0	0	0.001
MP IIe, g	15	0.168	0.055	0.049 -	0.287	85.0	24.0	0.163	0.009
MP Val, g	15	0.146	0.053	0.031 -	0.261	75.6	29.1	0.265	0.017
MP His, g	15	0.304	0.094	0.101 -	0.507	88.1	21.0	0.130	0.006
MP Phe, g	15	0.184	0.048	0.080 -	0.288	98.7	9.4	0.015	0.002
MP Trp, g	15	0.451	0.196	0.029 -	0.874	61.8	35.3	0.415	0.038
MP Non-essential AA, g	15	-0.018	0.006	-0.030 -	-0.005	82.8	25.3	0.187	0.011
MP/ME Met, g/Mcal	15	14.078	3.064	7.458 -	20.697	100.0	0	0	0.001
MP/ME Lys, g/Mcal	15	1.881	0.914	-0.095 -	3.856	52.4	38.9	0.517	0.060
MP/ME Arg, g/Mcal	15	3.029	0.822	1.252 -	4.805	90.5	12.0	0.104	0.003
MP/ME Thr, g/Mcal	15	4.958	1.206	2.354 -	7.563	100.0	2.4	0	0.001

Table 15. Serum and plasma urea N univariable analyses. Includes number of comparisons used (No.), coefficient, SE, 95% CI, estimates of model fit (R^2), heterogeneity as assessed by I^2 and τ^2 , and *P*-value.

MP/ME Leu, g/Mcal	15	2.601	0.593	1.320	-	3.881	100.0	0	0	0.001
MP/ME lle, g/Mcal	15	4.997	1.098	2.624	-	7.370	100.0	0	0	0.001
MP/ME Val, g/Mcal	15	3.792	0.998	1.636	-	5.949	93.7	9.5	0.069	0.002
MP/ME His, g/Mcal	15	6.470	1.784	2.617	-	10.323	91.5	13.4	0.092	0.003
MP/ME Phe, g/Mcal	15	4.297	0.966	2.210	-	6.385	100.0	0	0	0.001
MP/ME Trp, g/Mcal	15	14.192	3.609	6.396	-	21.988	100.0	7.2	0	0.002
MP/ME Non-essential AA, g/Mcal	15	-0.158	0.111	-0.397	-	0.082	22.1	47.7	0.846	0.178
ADF, g	15	0.007	0.008	-0.011	-	0.025	-3.5	56.2	1.125	0.438
Amylase NDF organic matter basis, g	15	0.001	0.005	-0.010	-	0.013	-10.8	57.6	1.204	0.795
Forage NDF, g	15	-0.013	0.004	-0.022	-	-0.003	68.4	27.9	0.344	0.011
Physically effective NDF, g	15	-0.005	0.002	-0.009	-	-0.001	50.1	37.2	0.542	0.028
Acid detergent lignin, g	15	0.037	0.028	-0.023	-	0.098	9.3	52.8	0.986	0.205
Simple sugars, g	15	0.024	0.009	0.005	-	0.044	54.9	32.3	0.490	0.019
Starch, g	15	-0.001	0.001	-0.003	-	0.000	62.1	31.7	0.412	0.016
Soluble fibre, g	15	0.013	0.004	0.004	-	0.022	72.5	20.8	0.299	0.006
Fermentable starch, g	15	-0.002	0.001	-0.003	-	0.000	57.9	34.0	0.458	0.021
Fermentable soluble fibre, g	15	0.015	0.005	0.005	-	0.025	73.7	20.9	0.286	0.006
Fermentable NDF, g	15	0.019	0.006	0.006	-	0.032	71.5	24.5	0.310	0.008
Ether extract, g	15	0.006	0.006	-0.007	-	0.018	2.3	54.5	1.062	0.343
Trial design	15	-0.933	0.879	-2.832	-	0.965	14.0	49.5	0.935	0.308
Hormonal implant yes or no	15	-1.977	0.991	-4.118	-	0.165	32.7	45.1	0.732	0.068
Monensin dose, mg/kg DM	15	-0.075	0.015	-0.107	-	-0.042	100.0	0	0	<0.001

Variable	df	SMD		95% CI		Weight (%)	l ²	τ^{2}
N intake								
Urea	12	3.806	2.187	-	5.424	36.23	81.4	6.082
Distillers grain	7	3.202	2.333	-	4.070	25.57	12.1	0.192
Wheat distillers	1	4.091	1.387	-	6.796	6.43	56.7	2.243
Other	11	2.167	0.768	-	3.566	31.77	75.3	3.464
Overall	34	3.188	2.366	-	4.009	100.00	75.6	3.858
Retained body N								
Urea	13	1.079	0.361	-	1.796	46.22	66.7	1.186
Soyabean meal	3	-1.033	-3.46	-	1.394	6.74	59	3.567
Distillers grain	1	0.658	-0.37	-	1.685	7.60	19.1	0.106
Wheat distillers	1	0.904	-0.293	-	2.102	7.46	36.1	0.272
Other	10	1.493	0.574	-	2.412	31.98	64.3	1.459
Overall	32	1.017	0.533	-	1.501	100.00	62.7	1.156
Faecal N loss								
Urea	15	0.435	-0.180	-	1.049	38.89	62	0.937
Distillers grain	7	1.121	0.284	-	1.957	18.58	54.4	0.766
Wheat distillers	2	3.853	1.954	-	5.752	3.05	0	0
Fish meal	1	0.361	-0.466	-	1.188	7.84	24.4	0.490
Soyabean meal	0	0.595	-0.831	-	2.021	2.63		
Other	11	0.343	-0.097	-	0.783	29.01	0	0
Overall	41	0.657	0.309	-	1.005	100.00	52.6	0.670
Urinary N loss								
Urea	11	3.236	1.898	-	4.573	32.77	76.8	3.705

Table 16. Standardised mean differences (SMD), 95% CI for nitrogen balance outcomes by nitrogen or protein intervention. Including degrees of freedom (df), study weight, heterogeneity as assessed by heterogeneity statistic, I^2 , and τ^2 .

Distillers grain	7	3.960	2.821	-	5.099	20.26	31.8	0.826
Wheat distillers	1	3.988	1.783	-	6.193	5.73	39.6	1.058
Other	11	1.141	0.524	-	1.758	41.25	34.7	0.399
Overall	33	2.608	1.954	-	3.262	100.00	69.9	2.367
erum and plasma urea N								
Urea	2	2.349	-0.006	-	4.704	20.49	78.2	3.278
Distillers grain	2	3.964	2.439	-	5.489	14.30	0	0
Other	8	1.965	1.180	-	2.750	65.22	44.2	0.625
Overall	14	2.315	1.588	-	3.043	100.00	54.3	1.066