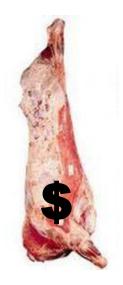
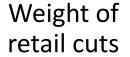
Objective measurement informing feedback to improve productivity

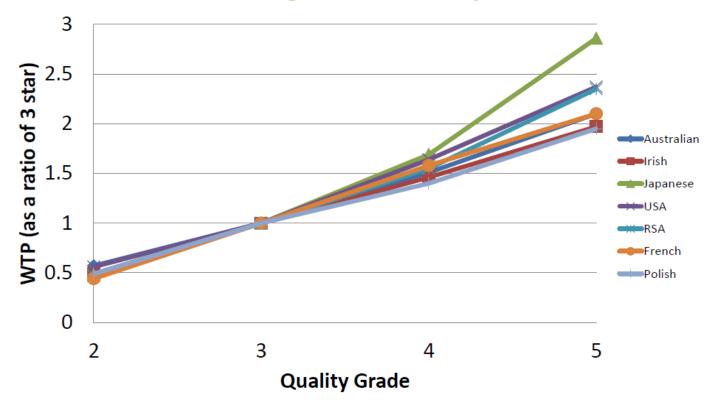

Richard Apps

Meat & Livestock Australia

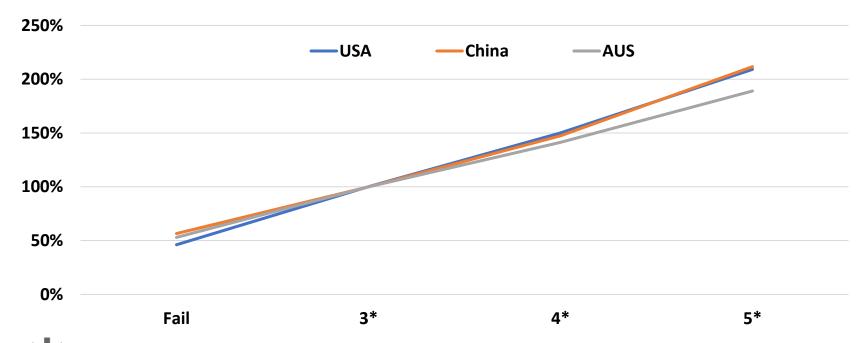

True value of the carcase

Carcase value

kg

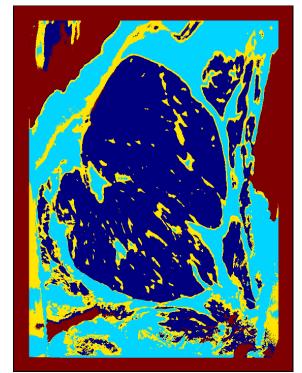

\$ / kg

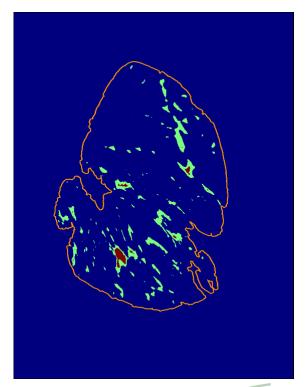
Value of the cuts


Beef Consumer Willingness to Pay

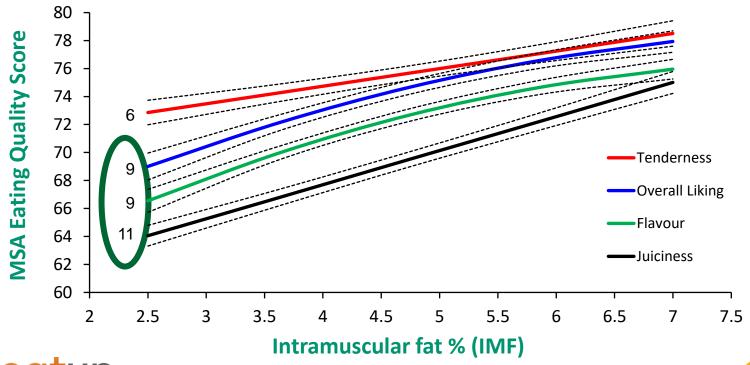
Consumers are willing to pay more for quality

Multiple technologies under development

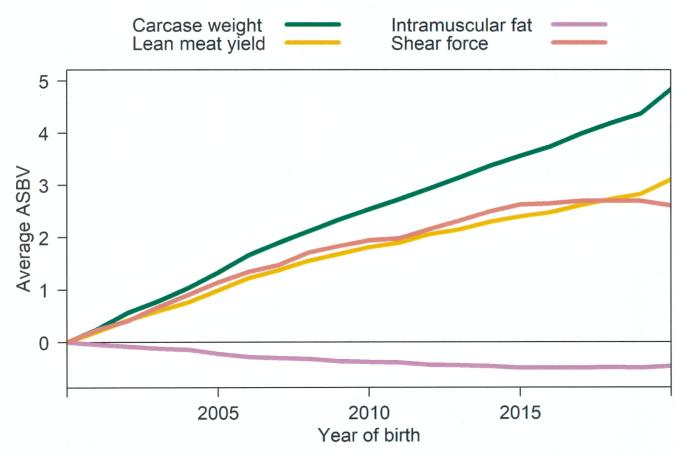




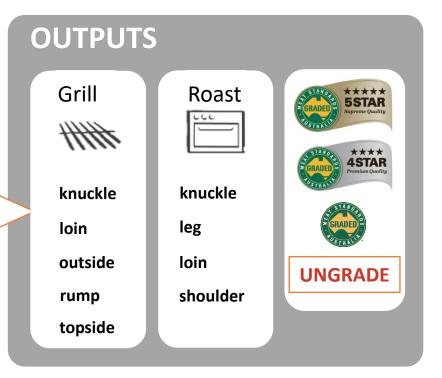
Rib-eye grading cameras



IMF increases lamb eating quality



Productivity improving but eating quality declining



Lamb Cut-based MSA - nine cut by cook combinations

INPUTS

- Hot carcase weight (HCW)
- Lean meat yield (LMY)
- Intramuscular fat (IMF)
- Electrical stimulation
- Ageing (5-20 days)

Carcase inputs will generate nine potential EQ outcomes.

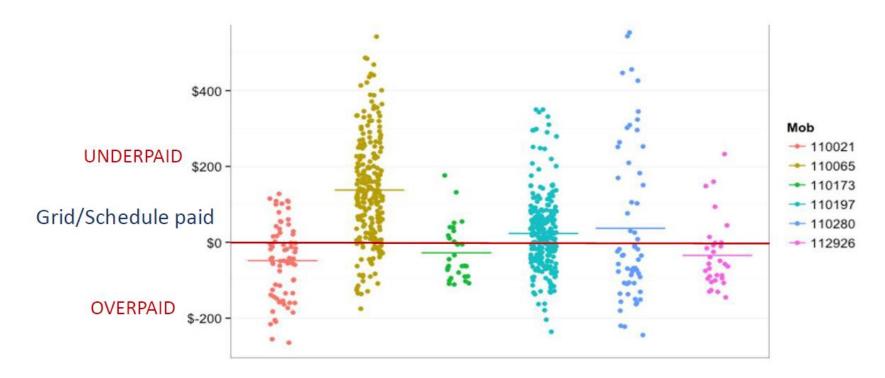
Why is yield important in lamb?

Score 4
Carcase Wt. 23.0 kg
GR 20.0 mm
Saleable Meat Yield 48%

Score 2
Carcase Wt. 23.6 kg
GR 10.0 mm
Saleable Meat Yield 56%

Excess fat costs - on-farm & in processing

- On-farm reduced feed-efficiency (4 1)
- Bone-out time compared to 23kg FS3
 - FS4 = +10%
 - FS5 = +20%
 - 30 Kg FS5 = +40%



 High Fat Score/GR has a greater negative effect on profit in heavier carcases.

Variation in beef carcase value

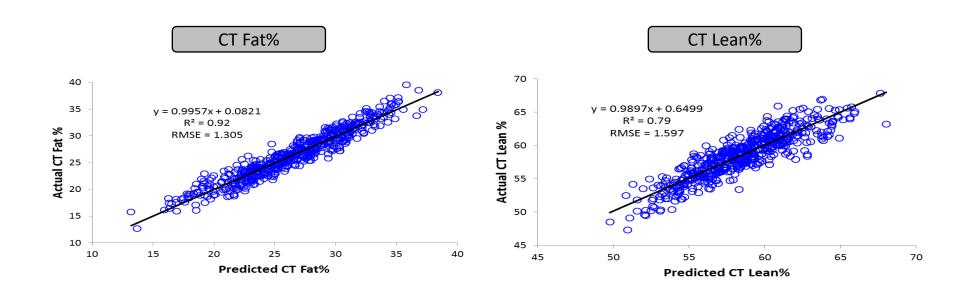
Angus Australia Sire Benchmarking Program

Cohort 1 – 3: 121 sires

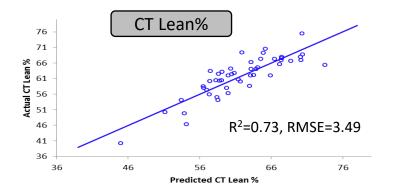
Top 5 v Bottom 5 Sires within year

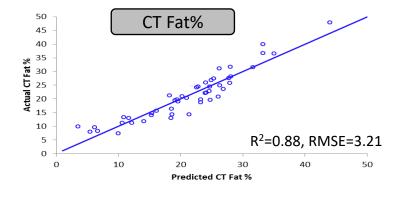
Cohort 4: 21 sires

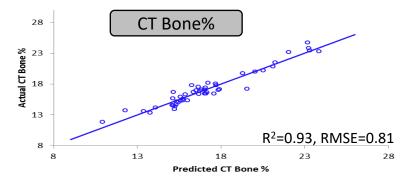
283 steers

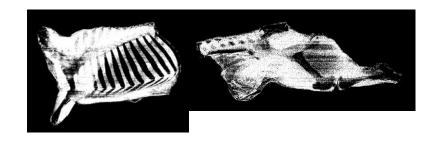

Sire progeny group carcase value variation

\$619

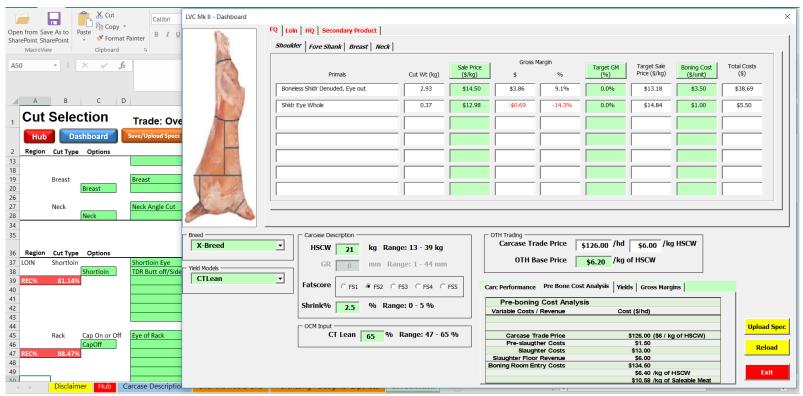

DEXA predicting lamb carcase composition

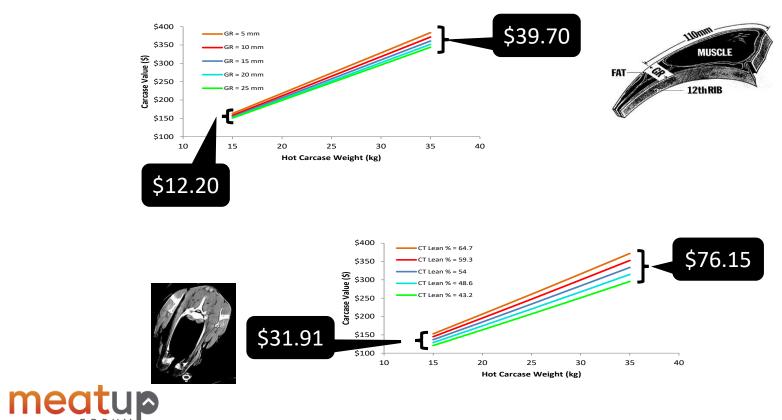


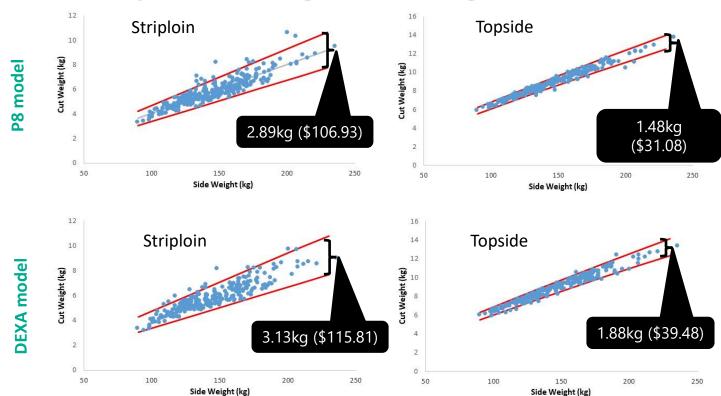




DEXA predicting beef carcase composition

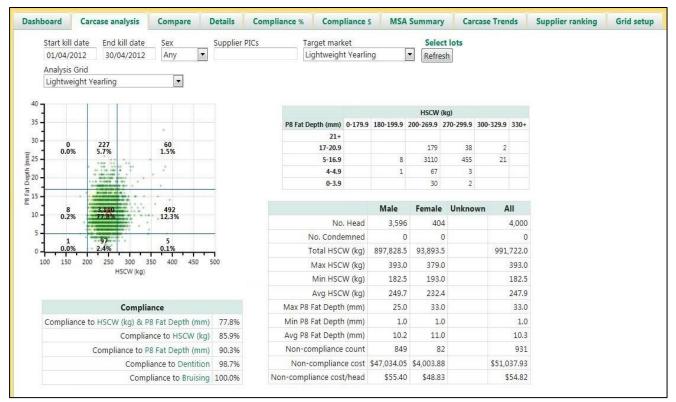


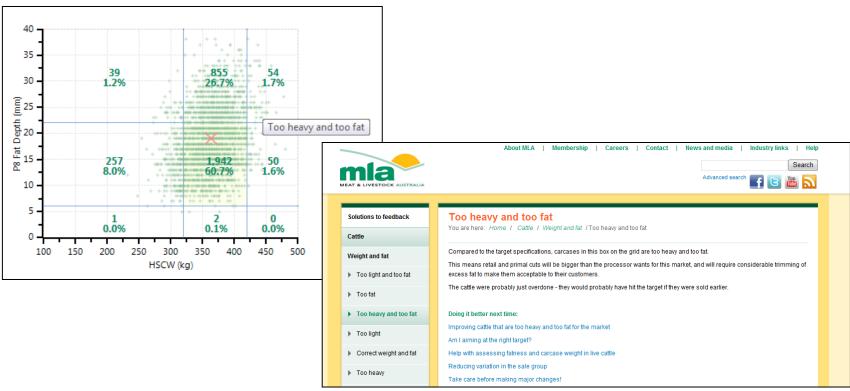

Carcase value calculator



What does extra precision mean?

Beef DEXA predicting cut weights




How do I measure up?

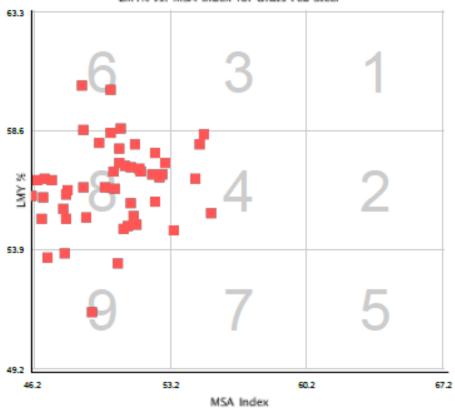
How can I improve?

What might future grids look like?

- Will include weight
- Will include Fat Score
- Will include LMY
- Will include eating quality
- Possibly compliance bonus?

					Weight (kgs)							
LMY	FS	0-10	12-16	16-18	18-19	20-22	22-24	24-26	26-28	28-30	30-32	32+
54-56	5											
56-57	4											
57-58	3											
58-60	2											
60+	1											
					MSA loin index= 72							

Rig	Weight	Breed	BG	EMA	MSA Mb	AUS Mb	Oss	FC	мс	Fat	Shape	Dent	Farm Tag	RFID	Body Sex
	130.0	Dioca	9	56	300	1	160	2	1C	9	С	2	rug	Tailo	377 M
	117.0		10	60	350	1	130	1	1C	8	c	2	34		378 M
	158.0		9	64	180	0	150	2	2	8	c	2	16		379 M
	135.0		10	37	300	1	170	3	1C	11	C	2	175		380 M
	131.5		10	55	320	1	150	2	3	5	c	2	54		381 M
	142.0		11	60	140	0	140	3	3	5	C	2			382 M
	138.5		8	60	330	1	130	3	1C	6	С	2	87		383 M
	139.0			71	180	0	150	3	1C	4	С	2	99		384 M
	128.0		12	56	210	0	140	2	2	8	С	1	122		385 M
	158.5		9	75	300	1	150	4	1C	5	С	4	47		386 M
	135.5		8	60	350	1	180	2	2	6	С	2	46		387 M
	126.5		8	50	250	0	150	2	1C	5	С	2	18		388 M
	137.5		9	65	300	1	140	3	3	9	С	0	110		389 M
	132.5			44	230	0	150	3	1C	3	С	2	156		390 M
	140.0			64	270	0	130	2	3	4	С	0	92		391 M
	138.0		12	42	320	1	170	2	1C	5	С	2	91		392 M
	130.0		6	50	330	1	130	3	1C	8	С	2	97		393 M
	137.0		6	72	430	2	150	3	1C	6	С	2	77		394 M
	160.5		9	74	200	0	150	2	1C	6	С	2	56		395 M
	135.0		9	44	240	0	140	1	2	6	С	2			396 M
	126.0		9	50	320	1	160	2	2	8	С	2			397 M
	122.5		11	76	350	1	190	3	3	8	С	4	6		398 M
	151.5		8	68	260	0	150	3	1C	5	C	2	121		399 M
	126.0			66	180	0	140	2	4	4	С	2	123		400 M
	139.0		12	65	250	0	200	3	1C	11	С	2	172		401 M
	128.5		10	60	300	1	140	3	2	5	С	4	161		402 M
	131.0		12	64	230	0	190	4	3	10	С	2	94		403 M
	125.0		12	52	250	0	150	3	1C	8	С	2	151		404 M


MSA Index	LMY*	VBM Group
50.42	56.34	8
49.64	58.16	8
51.47	54.98	8
49.24	51.54	9
49.92	56.40	8
49.89	56.39	8
52.84	56.89	8
48.79	56.39	8
50.66	57.37	8
52.31	56.89	8
52.45	55.85	8
51.21	57.18	8
47.88	53.84	9
55.31	55.40	4
54.69	58.10	4
		•

Total ISCW (kg)	Total Value	MSA Index	LMY*	VBM Group
260.0	1,326.00	50.42	56.34	8
234.5	1,172.50	49.64	58.16	8
317.0	1,648.40	51.47	54.98	8
272.5	1,389.75	49.24	51.54	9
264.5	1,348.95	49.92	56.40	8
284.0	1,462.60	49.89	56.39	8
275.0	1,457.50	52.84	56.89	8
277.5	1,359.75			
257.5	1,300.38	48.79	56.39	8
316.5	1,614.15	50.66	57.37	8
272.0	1,441.60	52.31	56.89	8
256.5	1,346.63	52.45	55.85	8
274.5	1,399.95	51.21	57.18	8
265.0	1,298.50			
279.0	1,367.10			
275.5	1,405.05	47.88	53.84	9
259.5	1,362.38	55.31	55.40	4
276.5	1,382.50	54.69	58.10	4
319.5	1,661.40	51.66	57.12	8
271.0	1,382.10	51.38	55.30	8
251.5	1,270.08	51.20	55.77	8
244.5	1,234.73	48.76	60.37	6
303.5	1,638.90	52.42	57.77	8
252.5	1,212.00			
277.0	1,412.70	45.74	56.10	8
258.0	1,302.91	50.19	58.53	8
260.5	1,302.50	46.89	56.72	8
251.5	1,270.08	46.78	56.01	8
	_			

LMY% vs. MSA Index for Grass Fed Steer

Take home messages

Be prepared for more detailed feedback

- New objective measures = new carcase value feedback
- Use ASBVs, EBVs and Indexes to improve both LMY and EQ
 - balance is essential
- Develop management systems to capture genetic potential
- Use carcase feedback to benchmark and improve performance
- Develop your processor relationships

Tools and resources

- Australian Sheep Breeding Values (ASBVs)
- BREEDPLAN EBVs
- Meat Standards Australia (MSA)
- Livestock Data Link (LDL)
- Processor feedback systems

