
final repport

Project code: A.TEC.0062

Prepared by: Richard Aplin

Strategic Engineering System
Pty Ltd

Date published: April 2009

PUBLISHED BY
Meat & Livestock Australia Limited
Locked Bag 991
NORTH SYDNEY NSW 2059

Meat & Livestock Australia acknowledges the matching funds provided by the Australian
Government and contributions from the Australian Meat Processor Corporation to support the
research and development detailed in this publication.

This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the
information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or
opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction
in whole or in part of this publication is prohibited without prior written consent of MLA.

Sheep hock reposition vision system

Page 2 of 16

Contents

Page

1 Scope ...3

2 Software...3

2.1 Operating system... 3
2.2 Software architecture... 3

2.2.1 Main module... 4

2.2.2 GUI module .. 4

2.2.3 Button module .. 4

2.2.4 Event Handler module.. 4

2.2.5 Video Overlay module.. 4

2.2.6 Image Capture module... 4

2.2.7 Image Processing module.. 4
2.3 Detailed software overview ... 4

2.3.1 Main function (main).. 4

2.3.2 Image capture call back function (FrameReadyCallback)........................ 5

2.3.3 Tracking all objects (trackAllObjects) ... 5

2.3.4 Filter out gambrel data from contour/edge data for both legs
(filterAllContours).. 6

2.3.5 Filter contour/edge data for a leg (filterLegContourInArea)............... 6

2.3.6 Filtering contour data into sections
(maskContoursIntoContourSections).. 6

2.3.7 Finding end bottom of gambrel and modifying to constant position................ 9

3 Hardware..10

3.1 Camera and lens selection... 10
3.2 Computer system... 11
3.3 Lighting box.. 11
3.4 Trigger device... 11

4 Tracking methodology ...12

5 Results...13

6 Development path...15

7 Milestone 4 - Summary...16

A.TEC.0062 - Sheep hock reposition vision system

Page 3 of 16

Scope
This report details the conclusion of milestone two and three outcomes, including methodology
used to perform the vision systems required tasks, the results obtained thus far and a path
forward for the further development of research completed during the project. The sole milestone
4 outcome is the completion of this report.

2 Software

2.1 Operating system

For ease of development Microsoft Windows Vista was chosen as the operating system.
However, as the project may need to be ported to an embedded operating system in the future,
cross-platform software libraries have been utilised. This allows the easy porting of the software
from the current operating system to another with minimal changes, mostly related to the
compiler utilised on the varying operating system. The Integrated Development Environment
(IDE) used in developing the Sheep Hock Repositioning Vision System was Microsoft Visual
Studio. Some of the possible future operating system choices for embedding the vision system
include Windows CE, and numerous Linux variants with a real-time kernel.

2.2 Software architecture

The final software architecture for the Sheep Hock Reposition Vision System is detailed in Figure
1. A further explanation of each of these modules and their purpose is provided following the
diagram. The architecture has changed from the initial design to better perform tracking while
reducing processing requirements.

Figure 1: Software architecture. NB: dotted section refers to software components to be
implemented in possible future projects

A.TEC.0062 - Sheep hock reposition vision system

Page 4 of 16

2.2.1 Main module

Contains the main loop and controls the process of initialising modules at program start-up and
de-initialising all modules before program exiting.
2.2.2 GUI module

The GUI contains all user interfaces and is used to refresh the GUI plane on the right of the video
overlay, including drawing of all buttons. The role of this module has changed from initial design,
as the video overlay control is now removed from this module and handled separately.

2.2.3 Button module

All functions related to button control are implemented in this module. Buttons are used to update
settings, add new detection areas and other essential related functions.

2.2.4 Event Handler module

This module handles all mouse and keyboard events including mouse button presses and works
in conjunction with the button handling module to perform tasks such as creating new detection
areas or setting up gambrel information (gambrel thickness, etc).

2.2.5 Video Overlay module

Drawing of video data and all processing information is handled by this module. Processing
information overlaid onto video data includes detection area boxes, gambrel axis and detection
points and leg data such as top position of leg, knee, and leg axis.

2.2.6 Image Capture module

The Image Capture module interfaces with the camera driver and starts the image capture
stream. A call-back function is defined within the module and called each time the camera
captures an image.

2.2.7 Image Processing module

Processing of image data includes lens distortion correction, background subtraction and edge
detection and is performed within this module. Edge detection data is stored as contour vectors,
processing and filtering of these contours into gambrel and leg data is the core task of the
module. Default detection areas are spawned within the initialisation of the module from a
settings file.

2.3 Detailed software overview

2.3.1 Main function (main)

 Initialise camera module (initCamera)

 Initialise processing module (initProcessing)

 Initialise GUI module (initGUI)

 Initialise event handler module (initEventsHandler)

 Start video capture, starts a new thread where the image capture call back
function (see FrameReadyCallback)

A.TEC.0062 - Sheep hock reposition vision system

Page 5 of 16

 is called from (startVideoCapture)

 Start of loop

 Wait for an event (handleEventsWait)

 Refresh GUI (refreshGUI)

 Go to start of loop if a quit event has not occurred

 Stop video capture (stopVideoCapture)

 De-initialise camera (deInitCamera)

 De-initialise processing module (deInitProcessing)

 De-initialise GUI (deInitGUI)

2.3.2 Image capture call back function (FrameReadyCallback)

 Get frame (UCC_GetBitmapImage)

 Update/subtract background (updateAndSubtractBackground)

 Remap image to remove lens distortion (cvRemap)

 Process all corner detection areas - not used for this project
(overlayAllCorners)

 Process all edge detection areas (overlayAllEdges)

 Track all objects (see trackAllObjects)

 Convert video format to an SDL texture for displaying on the screen
(overlayAllEdges)

 Refresh video overlay (refreshVideoOverlay)

 Update detection area positions (updateAllDetectionAreaPoisitions)

2.3.3 Tracking all objects (trackAllObjects)

 Find connecting lines between detected blobs in gambrel top and bottom
detection areas (findAllConnectingLines)

 If at least two gambrels were found then convert points for left gambrel into a
gambrel axis line (convertTwoPointsToLine)

 Find end point (bottom) of gambrel (findEdgePointAlongLineInEdgeArea)

 Modify end point of gambrel to a more accurate known location
(modifyEdgePointToGambrelCenter)

 Calculate masking points of gambrel (findMaskingPointsOfGambrel)

 Perform above processing tasks for right gambrel

 Find connecting lines between detected blobs in leg top and bottom detection
areas (findAllConnectingLines)

A.TEC.0062 - Sheep hock reposition vision system

Page 6 of 16

 Filter out gambrel data from contour/edge data (see filterAllContours)

 Convert points for left leg into a leg axis line (convertTwoPointsToLine)

 Find end/top point of leg (findEndOfLegInEdgeArea)

 Find all points of interest for leg (findLegPointsOfInterest)

 Perform above processing tasks for right leg

2.3.4 Filter out gambrel data from contour/edge data for both legs (filterAllContours)

 Set up gambrel masking (setupGambrelMaskingData)

 Filter left leg (see filterLegContourInArea)

 Filter right leg (see filterLegContourInArea)

 Clear and clean up gambrel masking data (clearGambrelMaskingData)

2.3.5 Filter contour/edge data for a leg (filterLegContourInArea)

 Remove gambrel data from contour/edge data. This function causes the contour
data to be cut into sections that have been masked. These sections are placed in
an array with information on how their start and end points have been masked
(see maskContoursIntoContourSections)

 Find contour sections that should be joined and join them. This can be such
things as the leg hitting the gambrel (findJoiningContourSections)

 Join contour sections (joinContourSections)

 Remove empty contour sections from array. These contour sections have been
joined to other sections in the array and their entries in the array have been
memset to ‘0’ (removeEmptyContourSections)

 Place contours from array into contour tree that OpenCV can understand
placeContourArrayIntoContourTree)

2.3.6 Filtering contour data into sections (maskContoursIntoContourSections)

A member of the tProcessingData structure is the IplImage pointer to pTestingImage.
This image is an 8-bit image used when testing for a contour intersecting with a known line. For
example when testing for the bottom of the gambrel a white line (colour 0xFF) of a specified
thickness is projected along the axis of the gambrel. Each point of the contour data (which
contains x and y values) is then checked against the corresponding point on the testing image, if
the image contains a white pixel at a contour point then we know that at this specific point the
contour crosses the projected axis and it can be determined that this is the bottom of the
gambrel. This methodology is also used when filtering and masking gambrel contour data to
isolate only leg contour data only on a much lower lever.

The diagram below shows an approximation of how a gambrel is masked by drawing lines on the
pTestingImage image, this is performed by the setupGambrelMaskingData function. The
image on the left in Figure 2 shows a representation of what this masking data looks like when
drawn. Please note that pTestingImage is an 8-bit single channel image and hence is

A.TEC.0062 - Sheep hock reposition vision system

Page 7 of 16

greyscale, coloured illustrations have been used below to easily identify the difference in
masking lines.

A.TEC.0062 - Sheep hock reposition vision system

Page 8 of 16

Figure 2: Masking of a gambrel

The masking lines are explained below, the red line on the right image in Figure 2 is a
representation of a leg and how it is masked:

 Purple – masks the gambrel upright and should be wide enough to completely
mask the upright part of the gambrel. Contours that touch this part of the
masking area are cut, and at the next allowed un-masked contour point a new
contour section is started and continues until the contour finishes or hits another
purple or light blue masking line.

 Light blue – masks the gambrel prongs and should be wide enough to mask
them, care should be taken in choosing this value as the gambrel prong can often
be bent in the real world environment. Contours that touch this part of the
masking area are cut, and at the next allowed un-masked contour point a new
contour section is started and continues until the contour finishes or hits another
purple or light blue masking line.

 Dark blue – these lines go along the axis of the gambrel and along its prongs.
This is used to allow us when joining contours to know if the join being
calculated crosses through the gambrel

 Green – contours masked by this colour are not removed from the contour
being filtered. These areas are used when finding which contours should be
joined as a line sample between two end points which should be joined will
contain both green and purple pixels

 Light blue – contours masked by this colour are not removed from the contour
being filtered. These areas are used when finding which contours should be
joined as a line sample between two end points which should be joined will
contain.

A.TEC.0062 - Sheep hock reposition vision system

Page 9 of 16

2.3.7 Finding end bottom of gambrel and modifying to constant position

(findEdgePointAlongLineInEdgeArea and modifyEdgePointToGambrelCenter)

These two functions are responsible for finding the end of the gambrel and using this end point to
then find a point on the gambrel that is always relatively in the same location. This second point,
coloured blue in Figure 3, is used when referencing the gambrel.

Figure 3: Finding the end point and adjusted masking reference of the gambrel

The two green crosses in Figure 3 represent the midpoint of the two contours detected by the
upper and lower gambrel detection areas. These midpoints are calculated through the centre
moment of the contours. The function findEdgePointAlongLineInEdgeArea uses the axis
created by these two midpoints to project a white line of a specified width on the testing image
(pTestingImage). The contour data is then processed by taking each point of the contour and
checking the corresponding pixel value in the testing image, if the pixel is white then that contour
point crosses the axis of the gambrel. All points at which the contour passes through the line of
axis are then averaged to find the end point of the gambrel as represented by the purple cross in
Figure 3.

To adjust this endpoint to a point whose position is relatively the same and can be used as a
masking reference the modifyEdgePointToGambrelCenter is called. The first step in
determining the masking reference point is taking a point a specified distance up the axis of the
gambrel from the end point. At this point the distance between the left and right sides of the
gambrel shaft is determined (in a similar manner to finding the end point using the testing image
and checking contour data against lines projected perpendicularly from the point). The midpoint
between the two sides can calculated by finding the average of the left and right side points of
the gambrel shaft.

The process used to find the bottom point of the gambrel in the function
findEdgePointAlongLineInEdgeArea is also utilised within the function for finding the end
point of a leg, findEndOfLegInEdgeArea. However, modifications have been made to
increase the accuracy the process better suited for determining the end point of a leg.

A.TEC.0062 - Sheep hock reposition vision system

Page 10 of 16

3 Hardware
The hardware layout has been modified from the initial proposed layout. Through software
design it has been possible to remove the need for a triggering device to start tracking of the
gambrels. Figure 4 details the revised layout.

Figure 4: Hardware block diagram. NB: dotted section refers to hardware to be implemented in
possible future projects

3.1 Camera and lens selection

An Allied Vision Technologies Marlin F-080B was selected for the vision system. The
specifications for this camera are:

 1024 x 768 pixels
 Black and white
 20 fps (full frame mode)
 Firewire camera

Initially a colour camera was proposed, however, the use of back lighting essentially creates a
silhouette hindering the use of colour for processing useless. Using a colour camera under these
circumstances would then require a colour to black and white conversion step, wasting
processing time.

The lens utilised was a 4.0mm – 12.0mm varifocal industrial lens. A varifocal lens was used to
accommodate the different camera mounting positions allowing the system to be flexible enough
to trial in most abattoirs.

A.TEC.0062 - Sheep hock reposition vision system

Page 11 of 16

3.2 Computer system

The computer used was a standard laptop with the following specifications

 Intel Core 2 Duo 2.2GHz
 2GB RAM
 220GB HDD
 Onboard 4-pin Firewire port (requires 4 to 6-pin adapter for camera)
 Windows Vista operating system

Processing time using this system was approximately 16ms per frame. A frame rate of 25fps
allows for 40ms of processing time before the processing time causes lost frames and a
decrease in overall frame rate. Processing times show the computer system used easily handles
the processing requirements of the vision system.

3.3 Lighting box

During a preliminary site visit appropriate measurements for the light box dimensions were taken.
The initially proposed lighting box dimensions were 1200 x 900, however it was found that the
height of the box could be reduced. The finalised lighting box dimensions were 1250 x 700 x
2400. The lighting box contains five double battens evenly spaced with the iron core ballasts
swapped for high frequency Omnitronix ballasts to stop the flicker effects caused by a 50Hz AC
power supply.

3.4 Trigger device

A trigger device is no longer required as system processes data in real time and is able to
determine when the target is present in the viewing area.

A.TEC.0062 - Sheep hock reposition vision system

Page 12 of 16

4 Tracking methodology
The overall tracking methodology for the Sheep Hock Repositioning System is based on edge
detection and contour processing. Edge detection and contour processing combined with
multiple detection areas allows the accurate processing of leg and gambrel positions. Figure 5
shows the system successfully tracking a set of gambrels, sheep’s legs and associated points of
interest.

Figure 5: Screen capture of system successfully tracking

To find gambrel position -

1) The upper and lower gambrel detection areas are highlighted in red. The contour data
obtained from the black spots produce by the gambrel shafts in these detection areas is
used to find the axis of each gambrel. These axes are shown as purple lines.

2) These axes are then used within the blue detection areas. The bottom of the gambrels is
found by projecting this axis through the detection area and finding where this intersects with
the contour/edge detection data.

3) Once the bottom point of the gambrel is located the contour data from within the blue
detection area is used to more accurately find a reference from which the gambrel masking
data can be referenced to. This point is found by moving a specified distance up the gambrel
axis from the bottom point and then finding the midpoint of the gambrel shaft.

To find leg position and point of interest

1) In a similar method to calculate the gambrel axes the orange detection areas are used to
determine the leg axes.

2) Gambrel position and masking information is then used to masking gambrel edge/contour
data from the green detection areas.

A.TEC.0062 - Sheep hock reposition vision system

Page 13 of 16

3) The resulting contours are then processed in a similar method to finding the end points of the
gambrels.

4) Instead of further refining the top point of the leg into a masking reference point as it is on the
gambrels, this point is used as a reference for calculating the leg points of interest such as
the hair point and the knee.

5) The masked leg contour data is processed into a leg width array with the starting point being
the top point of the leg.

6) Leg width data is further processed into gradient data that is used to determine where the
hair point (light blue cross in Figure 5) and knee (light green cross in Figure 5) are located
for each leg

Using this methodology the Sheep Hock Repositioning Vision System provided results suitable to
be used within a larger robotic sheep leg repositioning system to provide appropriate pick up
positions for the robot.

5 Results
Promising results were obtained almost immediately after setting up the system on site. With only
a few modifications to the software the system was running extremely robustly. It was noted that
under some circumstances when the wool is not correctly removed from the leg then tracking of
the knee and wool line at the foot may not yield accurate results. This issue may need to be
addressed before integration of the complete system. As a whole the vision system software has
showed it is able to track the sheep’s legs accurately enough to guide an industrial robot to
specified leg pick up and placement positions.

Figure 6: Screen capture of system successfully tracking

A.TEC.0062 - Sheep hock reposition vision system

Page 14 of 16

Figure 7: Screen capture of system successfully tracking

A.TEC.0062 - Sheep hock reposition vision system

Page 15 of 16

6 Development path
Taking this research further would involve the implementation of the vision software in a
complete Robotic Hock Repositioning System. This robotic cell would require in-house trials
before installing the system on site and running comprehensive trials to assess the system and
to identify and solve any performance issues that may arise.

Upon successful completion and trial of the system, the path for new research may head in the
direction of adapting the vision software for new tasks. One such path is the tracking of the
sheep’s front legs before they are attached to the front gambrels of the production line. A robust
system able to effectively track the legs may provide a basis for the automation of the process in
which the front legs are lifted and placed into the front gambrels.

Figure 8: Possible project path for further research

A.TEC.0062 - Sheep hock reposition vision system

Page 16 of 16

7 Milestone 4 - Summary
During development of the Sheep Hock Repositioning Vision System milestones five and two
were merged and completed as one, thus completion of milestone four sees the conclusion of all
required research and development of the vision system. All software has been successfully
tested in a real-world environment and it is believed that the software in its current state has the
ability to robustly track sheep’s legs in real-time. Real-time tracking enables the Sheep Hock
Repositioning Vision System to provide a robot with real-time position co-ordinates. The
methodology in which the system tracks in real-time has been detailed and possible future paths
for research and development outlined.

A.TEC.0062 - Sheep hock reposition vision system

