Red Meat Eating Quality What producers need to know to satisfy consumers of tomorrow!

Peter McGilchrist

University of New England, Armidale NSW

Outline

- Value of Yield & Quality
- Maturity patterns
- Genetic selection for \uparrow carcass value
- Prevalence of dark cutting
- Major causes in SA & Vic
- Take home messages

Breeding Profitable Cattle & Sheep

A. Fit for **your** farm

B. Suitable for market

Value of a carcase **Quantity of saleable meat Quality of the meat**

Value of a carcase

% Carcass Value

- 112 steers boned out
 - 100 DOF
 - All HGP treated
 - Ave MSA Index = **57.22** ± 1.59
- 45th Percentile nationally
- Min MSA Index = 54.08

100% LMY 36 80% Quality 60% 97 95 40% 64 20% 0% Flat cut price MSA premiums MSA premiums all cuts Loin cuts Yield is worth more \$ in lower meatup quality cattle

Value of a carcase

cattle **IF** all cuts on quality

McGilchrist et al. 2022

Value of Carcase YIELD?

- Faster weight gain on-farm
- 6X more grass/feed to deposit a Kg of fat
- \uparrow efficiency of production CN30
- ↑ Value chain profits

Terminal lamb genetic trends for carcase traits

Genetic selection for LMY & quality

Intramuscular fat — Lean meat yield

Breeding Values allow for selection of Yield & Eating Quality

New Englan

How to measure Carcase YIELD?

How to measure Carcase YIELD?

- Currently use P8 fat and carcass weight $R^2 \sim 0.2$
- Other systems available or undergoing development
 - 1. Dual X-Ray Absorptiometry (DEXA)
 - 2. Frontmatec BCC-3 yield camera
 - 3. E+V carcass yield camera
 - 4. Video Image Analysis (VIA) scan
 - 5. UTS Carcass yield camera
- Need ongoing investment & development

How to measure carcass QUALITY?

The MSA Index

A single number to indicate the overall quality of a carcass

A weighted average of 39 eating quality scores

What are the key genetic drivers of QUALITY?

- IMF = \uparrow Marbling
- Growth = \downarrow Ossification

What do we have to be careful of?

University of New England

Very big &/or heavily muscled animals may never enter the linear increase phase

Modern Pig & high MCW cattle may never enter linear increase phase

Breeding Profitable animals

A. Fit for *your* farm

B. Suitable for market

Breeding Profitable animals

Same age, Same Environment! Different genes

Same age, Same Environment! Different genes

^Quantity & Quality Genetically

Take fat off outside of meat & put it inside

• ASBP sires n=322

• 102 sires in ideal quadrant = 32%

IMF V's Retail Beef Yield % EBV

• ASBP sires n=322

• 100 sires in ideal quadrant = 31%

^Quantity & Quality Genetically

New Englan

Resource Flock Sire LMY & IMF ASBVs by breed

Females of the future – How much fat? Meat:

- Flavour
- Tenderness
- Juiciness

Females:

- Age of puberty
- Reproductive capacity
- \downarrow Post Partum Anoestrus Interval
- Seasonal resilience

New Englan

...what is 'dark cutting'?

What's wrong with high pH meat?

- Darker colour
- Variable tenderness
- V. difficult to cook right
- Bacterial growth more rapid

Causes of Dark Cutting

pH_u = 5.9

pH_u = 5.5

Prevalence of Dark Cutting

Compliance to MSA requirements: SA/NT

South Australia – 96.1% compliance to MSA specifications

(Nationally 94.9% carcases met MSA minimum requirements)

New Englan

Compliance to MSA requirements: VIC

New Englan

(Nationally 94.9% carcases met MSA minimum requirements)

Impact of season in grass fed cattle – 5 years data New England 14 McGilchrist et al. 2014 Incidence of Dark Cutting (%) SA TAS VIC WA **Problem Periods**

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

What is causing it?

0

Season -> Season transition

Can't all consign cattle at same time!

Experimental Design

MEAT & LIVESTOCK AUSTRALIA

Rates of Dark Cutting

Very low incidence of dark cutters

BUT Had a positive effect on glycogen at slaughter

Muscle Glycogen at Slaughter – Grain pellets

HSCW advantage

Supplementation summary

- Supplementation with **30 MJ ME** extra per day works
 - ↑ Carcass weights
 - ↑ Glycogen
 - \downarrow risk of dark cutting
- Prepare your cattle for market
- Know sale date *have a strategy!*
- Need high ME feed moderate protein ~14%

Impact of season in grass fed cattle – 5 years data

University of New England

Pasture Magnesium – King Island (P<0.05)

Loudon et al. 2018

Low Magnesium = 'Subclinical Grass Tetany'

- \downarrow voluntary feed intake
- \downarrow insulin sensitivity
- \uparrow adrenaline release
- \uparrow stress responsive

Glycogen storage

↑ Glycogen usage pre-slaughter

Solutions

- 1. Mg Concentration in pasture need >0.24% Mg
- 2. Pasture intake rates need minimum 1500kg DM/Ha
- 3. **个** Mg absorption hindered by high K, fast rumen passage rates etc

MYCOTOXINS

Rye Grass Staggers

Pasture mycotoxin prevalence – 66 pastures

University of New England

Pasture mycotoxin prevalence – 66 pastures

Loudon et al. 2018 MEAT & LIVESTOCK

Water source impact

50% increased risk dark cutting on mobs drinking **dam water**

Water source impact

50% increased risk dark cutting on mobs drinking **dam water**

↑ water palatability

- = **↑** water intake
- = 1 feed intake
- = **↑** glycogen storage

Dam pumped straight into Trough:

• 10-16% **↑ growth rate**

Hyder et al, 1968 Willms et al, 2002

Supplementary feed impact In the last week prior to slaughter

me

25% decreased risk dark cutting if mobs fed **supplementary feed**

Supplementary feed impact In the last week prior to slaughter New Englan 80 ME (MJ/kg DM) Crude Protein (%) 60 Ι * NDF (%) WS Carbs (%) 40 * 20 * * \mathbf{O} Silage Pasture meatup Silage is WORSE Quality MEAT & LIVESTOCK AL Loudon et al. 2018

Supplementary feed impact In the last week prior to slaughter

30% decreased risk dark cutting if mobs fed **supplementary feed**

POSSIBLE MECHANISMS:

- • Teffective fibre = slower rumen transit rate ?

Summary

- Knowledge from historic data critical
- Relative risk of dark cutting is \downarrow by:
 - \uparrow pasture Mg concentrations
 - \downarrow mycotoxins
- Feed rye grass at 3 leaf stage provide minerals on brassica & cereal crops
- Reduce time between paddock/pen & knocking box
- Maximise time to grading

Take home messages

• Pursue high quality & high yield

- Utilise EBVs & ASBVs to select sires with the desired traits
- Get fat in the right depots
- Know your incidence of dark cutting
- Maximise growth rates
- Minimise time between mustering & knocking box = communication
- Review each consignment \rightarrow Make necessary changes next time

