
 

     

 

 

 

 

 

 

 

 

Project code:   B.FLT.0164 

Prepared by:   A/Prof Luciano A. Gonzalez, Claudia Blakebrough-Hall and Prof 

Michael D’Occhio 

    The University of Sydney 

 

Date published:   20 May 2018 

 
  
PUBLISHED BY 
Meat and Livestock Australia Limited 
Locked Bag 1961 
NORTH SYDNEY NSW 2059 
 

Experiment 1 - Metabolomics of Bovine 

Respiratory Disease 

 

Meat & Livestock Australia acknowledges the matching funds provided by the Australian 

Government to support the research and development detailed in this publication. 

This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the 
information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or 
opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. 
Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA. 

final report  
 



B.FLT.0164 - Metabolomics of Bovine Respiratory Disease – Experiment 1 

 

Page 2 of 22 

 

Executive summary 
 
Bovine Respiratory Disease (BRD) is a multifactorial disease complex involving both bacterial and 
viral pathogens which makes its diagnosis difficult via pathogen identification. It is currently the 
most significant disease affecting feedlot cattle, causing huge economic and productivity losses to 
the industry. Current diagnosis methods in feedlots often have low accuracy in detecting sick 
animals and there is consequently a need to develop alternative diagnostic tools for BRD in feedlots.  

The aim of the current study was to develop diagnosis methods for BRD using the blood 
metabolome profile of steers sampled at a commercial feedlot.  

Visually sick (n=148) and visually healthy (n=152) steers were pulled from their pens by pen riders 
and brought to the hospital shed for clinical assessment and blood sampling for metabolomics 
analysis. Lung lesions indicative of BRD were scored for all trial animals upon slaughter. Nuclear 
magnetic resonance (NMR) spectrometry was used to identify chemical features in plasma to predict 
BRD status using classification and regression trees. Due to a lack of a universal gold standard for 
BRD diagnosis, six reference diagnosis methods were used to define an animal as sick or healthy: pen 
rider visual diagnosis (PD), rectal temperature diagnosis (TD; rectal temperature ≥ 40 ºC), lung 
auscultation diagnosis (LAD; lung auscultation score ≥ 2), hospital diagnosis (HD; sick according to 
either TD or LAD, or both), feedlot diagnosis (FD; sick according to both PD and HD), and lung lesion 
diagnosis at slaughter (LLD; lung consolidation ≥ 10% and pleurisy score of 2, or pleurisy score of 3).  

Multiple identified metabolites and unknown NMR features (peaks) showed high correlations with 
BRD status ranging from +0.68 to -0.71 (P < 0.001). The strongest correlations were found with PD 
and FD indicating that the blood metabolome reflected visual signs of sickness as recorded by pen 
riders. Tyrosine, citrate, glutamine, valine and alanine were lower in BRD case animals compared to 
controls. Hydroxybutyrate, glucose chains, isoleucine, phenylalanine and creatine were higher in 
BRD cases compared to control animals (P < 0.001). However, the largest differences between case 
and control animals were found for metabolites which could not be identified. 

Blood NMR demonstrated high accuracy (Acc) at detecting BRD defined by PD (Acc=0.85) and FD 
(Acc=0.81) but were less accurate to detect animals defined as sick according to TD (Acc=0.65), HD 
(Acc=0.67), LAD (Acc=0.61) and LLD (Acc=0.71). All diagnosis methods required one chemical feature 
(peak) or metabolite but HD and LLD used 3 and 5 peaks, respectively. The lower accuracy of TD, 
LAD, HD, and LLD could be due to the metabolome profile reflecting clinical signs at the time when 
the sample was taken. However, clinical signs such as rectal temperature or lung lesions at slaughter 
may have peaked or developed either prior to or following blood sample collection.  

Future work in this area should incorporate frequent blood sampling and clinical measures starting 
before exposure to BRD and going throughout infection to slaughter (e.g. serial slaughter of 
animals). Blood samples taken immediately prior to slaughter could allow searching for biomarkers 
related to lung lesions. The analyses of the metabolome profile of animals upon entry into the 
feedlot could also allow the discovery of biomarkers for diagnosis at this critical point in time. 
Additionally, independent datasets from different feedlots should be collected to evaluate the 
diagnostic methods and models developed in the present study. Further experimentation to identify 
those unknown features in blood relevant for BRD diagnosis discovered in the present study should 
also be pursued with the aim of developing simple crush-side tests. 

The results indicate that one to five metabolites in the blood of feedlot cattle are useful indicators to 
detect or confirm BRD in feedlots however the chemical structure of some of these need to be 
determined. Blood metabolomics shows great potential to aid in defining and confirming BRD cases 
under commercial feedlot conditions. This technology could help reducing the use of antimicrobial 
treatments and economic losses, and improve the effectiveness of treatment protocols and 
productivity.  
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1 Background 

Bovine Respiratory Disease (BRD) is a multifactorial disease complex of high significance to the 
Australian feedlot industry. Bovine Respiratory Disease results from a combination of environmental 
and physiological stressors prior to and upon feedlot entry such as transportation, mixing of 
unfamiliar animals and subsequent exposure to viral and bacterial agents (Cusack, McMeniman & 
Lean, 2003). Approximately 60 to 70% of the morbidity and mortality that occurs in Australian 
feedlots has been attributed to BRD (Sackett et al., 2006). The complex nature of BRD makes 
establishing a universal ‘gold standard’ for BRD case definition problematic (Fulton & Confer, 2012). 
Common diagnosis methods in feedlots currently rely on clinical signs of illness detected by pen 
riders, usually combined with rectal temperature or lung auscultation, or both, to trigger 
antimicrobial treatment protocols (Wolfger et al., 2015b). These diagnosis methods have been 
shown to have varying accuracy in diagnosing BRD, therefore exploration of alternative diagnosis 
methods is warranted (Buczinski et al., 2014; Mang et al., 2015; White & Renter, 2009).  

Metabolomics is an emerging field of science that monitors alterations in small metabolite cell 
function (Goldansaz et al., 2017). Small metabolites within circulation in the body include lipids, 
amino acids, vitamins and sugars. These metabolite biomarkers can provide an insight into the 
response of an animal’s biological systems to disease and can therefore be used to indicate the 
presence of disease, and classify animals into groups using statistical techniques for predictive 
modelling (Moore et al., 2007; Xia et al., 2013). Biomarkers are now routinely used in humans to 
screen for over 30 different disorders including diabetes and heart disease, where metabolic 
profiling has demonstrated a high accuracy for disease detection (Slupsky et al., 2009; Wang et al., 
2011). Metabolomics has also shown potential to improve diagnosis of pneumonia in humans, with 
numerous metabolite biomarkers identified related to the host response to infection (Laiakis et al., 
2010; Seymour et al., 2013; Stringer et al., 2011). More recently metabolomics has been used to 
predict and identify production traits in cattle such as residual feed intake and reproductive 
performance, as well as in detecting metabolic and reproductive disorders such as ketosis and 
metritis (Enjalbert et al., 2001; Karisa et al., 2014; Ospina et al., 2010).  

The research to date has shown promising preliminary results in relation to identifying 
biomarkers for metabolic and reproductive diseases in cattle, however little work has been done on 
infectious diseases such as BRD. One recent study used NMR-based metabolomics to identify twelve 
statistically significant metabolites in calves with bronchopneumonia, indicating the potential of 
metabolomics to diagnose BRD affected animals (Basoglu et al., 2016). As with most studies 
concerned with biomarker discovery for disease diagnosis in cattle (De Buck et al., 2014; Enjalbert et 
al., 2001; Goldansaz et al., 2017), this study lacked the sample size and validation necessary to 
ensure reproducibility. There has also been little work done on characterizing the metabolome of 
healthy control animals to identify baseline values (Goldansaz et al., 2017). The current study 
attempted to address these gaps in the previous literature using a larger sample size, case and 
control animals, and training and validation datasets under commercial conditions to ensure 
reproducibility of the detection methods on future datasets.  

The objective of the current study was to use proton nuclear magnetic resonance (H1 NMR) of 
the blood metabolome to predict and classify BRD cases in feedlot cattle. We hypothesized that the 
blood metabolome could be used to classify animals into sick and healthy against the most 
commonly used reference diagnosis methods and could therefore have the potential to be used as a 
diagnostic tool for BRD in the future. 
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2 Project objectives 

2.1.1 Complete metabolomics analysis of blood samples via 1H NMR and LC/MS 

2.1.2 Examine relationships between the metabolome and visual determination of BRD (sick or 
healthy), cumulative BRD score, nasal swab status, seroconversion and serological increase 
to BRD causative viruses, rectal temperature, whisper score and lung abscess score for 
feedlot animals. 

 

3 Methodology 

This experiment was reviewed and approved by the Institutional Animal Ethics Committee, Research 

Integrity and Ethics Administration, The University of Sydney, Australia (Approval # 2016/1118). 

3.1 Animals and management 

This experiment was conducted at a commercial cattle feedlot in Southern NSW, Australia. Four 
pens of mixed-breed steers (total n = 898; 300, 266, 91 and 241 steers in pen 1, 2, 3 and 4, 
respectively) were followed from induction to slaughter. Animals were slaughtered between 112 
and 117 days on feed (DOF). Animals were sourced from multiple locations and were either 
purchased through saleyards (n=788) or direct consignment from farms (n=110). The breeds used in 
the study were Angus (n=187), Angus crosses (Hereford x Angus; n=156), Bos indicus crosses (n=29), 
British crosses (British breed mix and less than 75% Angus; n=82), European (Simmental, Charolaise 
or Limousin; n=123), Hereford (n=226), Murray Grey (n=59) and Shorthorn (n=36). Cattle were 
inducted at approximately 1 to 2 years of age (0 to 2 permanent teeth) and weighed 432 ± 51 kg at 
the start of the trial (mean ± standard deviation). Induction was staggered so that the first pen was 
inducted on the 28th February 2017, the second and third pens were inducted on the 8th March 
2017 and the fourth pen was inducted on the 15th March 2017. At induction into the feedlot, all 
cattle had initial body weight recorded and were administered the standard feedlot induction 
treatments which included hormonal implant (Revalor S; Coopers Animal Health, NSW, Australia), 
and vaccination against Mannheimia haemolytica (Bovilis MH, Coopers Animal Health, NSW, 
Australia), bovine herpes virus-1 (BHV-1; Rhinogard, Zoetis Animal Health, New Jersey, USA), 
clostridial diseases  (Tasvax 5 in 1, Coopers Animal Health, NSW, Australia) and anti-parasitic 
injection (Bomectin, Bayer, Leverkusen, Germany). Following induction, animals were sent to 
production pens and were transitioned through a starter diet, and two intermediate diets before 
being placed on the finisher diet at 18 DOF. Feedlot diets were based on steam-flaked barley.  

3.2 Clinical measurements and sampling 

Animals were checked daily by trained feedlot pen riders for visual signs of BRD and scored using a 

modified version of the Wisconsin calf scoring chart (McGuirk, 2008). The adapted scoring system 

included seven visual symptoms: lethargy, head carriage, laboured breathing, cough, nasal 

discharge, ocular discharge and rumen fill to assess BRD presence (Mcmeniman & Batterham, 2016). 

Animals were assigned a score between 0 and 3 for each of these seven visual symptoms. Animals 

with visual signs of BRD (n=148; a score of greater than 0 on the visual score chart) were pulled from 

their pens and taken to the hospital shed for further inspection and clinical data collection. An 

equivalent number of visually healthy animals (n=152) with a score of 0 on the visual score chart 
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were pulled from the same pen each day and taken to the hospital shed along with the visually sick 

animals. Animals were between 2 and 42 DOF at the time of sampling when developed clinical signs 

of BRD for the case animals. 

At the hospital chute, time, date, visual ID, RFID, pen, sex and body weight were recorded for both 

visually sick and visually healthy (control) animals.  Rectal temperature was collected using a GLA 

M750 thermometer (GLA Agricultural Electronics, CA, USA) fitted with 10 cm probe and inserted for 

8 to 15 seconds until peak temperature was reached. Lung auscultation score was recorded using a 

Whisper Computer Assisted Lung Auscultation system (Geissler Corporation, MN, USA). The 

diaphragm of an electronic stethoscope was held over the 5th intercostal space of the right thoracic 

wall, approximately 10 cm posterior to the elbow and lung sounds recorded for 8 seconds. Recorded 

lung sounds were then transmitted wirelessly to a computer containing software to analyse the lung 

sounds. The Whisper program classifies lung sounds into scores from 1 to 5 (1 = normal, 2 = mild 

acute, 3 = moderate acute, 4 = severe acute, 5 = chronic). Blood samples for metabolomics analyses 

were collected from the tail vein of each case and control animal at pulling in a 10 ml Lithium 

Heparin BD Vacutainer. Samples were placed on ice until they could be centrifuged (2500 g for 20 

min) within an hour of collection. The plasma was then transferred to 1.5 ml Eppendorf safe-lock 

micro test tubes and frozen at -20 ºC until sampling was completed, and then sent to the laboratory 

for storage at -80 ºC until analysis. 

All animals were followed through to slaughter and lung abnormalities recorded using the lung 

scoring method explained by Theurer et al. (2013), where the consolidation on each lobe was 

summed to form a total percentage of lung consolidation. Pleurisy was recorded using a scoring 

system of 0 to 3 developed by Dr Kev Sullivan, Bell Veterinary Services (Table 1). Carcass weight was 

recorded on the processing chain for all trial animals. 
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Table 1. Pleurisy scoring system used at slaughter to define lesions associated with Bovine 

Respiratory Disease. 

Pleurisy Score Description 

0 No pleurisy or pleuritic tags evident on the lungs 

1 Tags between lobes or small pleuritic tags on the lung surface 

2 Significant pleuritic tags on the lung surface or small pieces of lung adhered to 
the thoracic wall or significant tags on the lung margins (fringing) or between 
lobes that could not be broken apart by the inspector 

3 All the lung adhered to the thoracic wall with no lung present on the offal table 
for scoring  

 

3.3 Diagnosis of Bovine Respiratory Disease 

In order to evaluate the utility of the blood metabolome in predicting BRD, six commonly used 
methods of BRD diagnosis in feedlots were used as reference methods as outlined below. The pen 
rider visual diagnosis definition (PD) classified animals as BRD cases if the BRD visual scores 
previously recorded were greater than zero whereas control animals had a score of zero. For the 
rectal temperature (TD) definition, animals with a rectal temperature greater than or equal to 40oC 
were considered cases and animals with a rectal temperature less than 40oC were considered 
controls (Schaefer et al., 2012; Wolfger et al., 2015a). For the lung auscultation diagnosis (LAD) 
definition, animals with a Whisper score of 2 or greater were considered cases and animals with a 
score of 1 were considered controls (Mang et al., 2015). For the hospital diagnosis (HD) definition, 
BRD cases were any animals with rectal temperature ≥ 40 ºC or Whisper lung auscultation score ≥ 2, 
or both. Pen rider and hospital diagnosis were combined to form a feedlot diagnosis (FD) definition 
as routinely used to trigger veterinary treatment protocols in feedlots where a visually sick animal is 
pulled from its pen and taken to the hospital shed to confirm presence of BRD by measuring rectal 
temperature and lung auscultation. According to the FD definition, an animal was classified as a BRD 
case if it showed visual signs of BRD (visual score > 0) and rectal temperature ≥ 40 ºC, or showed 
visual signs of BRD and had Whisper score ≥ 2. Thus, a BRD case animal according to FD was also a 
case for both the PD and HD concurrently. In contrast, a control animal according to FD was an 
animal that was a control according to either PD or HD. The lung lesions diagnosis (LLD) definition 
used in this study incorporated both the percentage of lung consolidation and pleurisy score at 
slaughter. According to the LLD definition, an animal was classified as a BRD case if it had either 
pleurisy score of 3 (regardless of lung consolidation percentage), or pleurisy score 2 with lung 
consolidation of 10% or more. An animal was classified as a LLD control if it had either a pleurisy 
score 1 or lung consolidation of less than 10%, or both.  
 
Animals in the present study received the first BRD treatment at the hospital shed with either 
Tulathromycin (Draxxin, Zoetis Animal Health, New Jersey, USA) for animals with lung auscultation 
score of 2 and rectal temperature ≥ 40 ˚C, or lung auscultation score 3 regardless of rectal 
temperature; or Tilmicosin (Tilan, Elanco Animal Health, West Ryde, NSW, Australia) for animals with 
lung auscultation score of 2 and rectal temperature less than 40 ˚C, or rectal temperature ≥ 40 ˚C 
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and lung auscultation score of 1. Blood sampling occurred only in animals treated for their first time 
for BRD or controls that were not treated for BRD previously since arrival to the feedlot. Animals 
with rectal temperature < 40 ºC and lung auscultation score of 1 were not treated regardless of 
visual signs. 
 

3.4 Metabolomics sample analysis 

Plasma samples were thawed, centrifuged at 12,000 g for 5 min at 4 °C and 350 µl aliquots were 
transferred to 5 mm NMR tubes where 350 µl of plasma buffer were added (Dona et al., 2014; Dona 
et al., 2016). Quality control samples were obtained by mixing the thawed plasma of several animals 
from the same cohort and prepped in the same way as the samples. Samples were placed in a rack 
and one control was run every 20 samples. Samples and controls were analysed with a Bruker 
Avance III 600 MHz spectrometer equipped with a 5-mm TCI cryoprobe (Bruker, MA, USA). Samples 
were run under automation mode using a SampleJet with all samples refrigerated at 278 K until just 
prior to acquisition. Data was collected at 310 K for a total of 20 minutes. Two water suppressed 1D 
1H NMR spectra were acquired using the noesygrrp1d and cpmgpr1d pulse sequences (32 scans 
collected for each experiment). Irradiation of the solvent (water) resonance was applied during pre-
saturation delay (4.0 s) for all spectra and the noesy during the mixing time (0.01 s). The pulse 
sequence parameters including the 90° pulse (~ 12 μs) receiver gain (~ 100) were optimized for each 
sample set run. The data were collected with approximately 96 k (noesy) or 32 k (cpmg) real data 
points and processed with an exponential line broadening of 0.3 Hz prior to Fourier transformation. 
Raw spectrums were imported into Matlab (MathWorks, Natick, MA), automatically phased, 
baseline corrected and referenced to the α-C1H glucose doublet occurring at 5.23 ppm (Dona et al., 
2016). The water peak was truncated to reduce analytical variation. Probabilistic quotient 
normalization of the spectrums was performed across all samples (Dona et al., 2016). The 
normalized spectrums were then analysed using Principal Component Analysis which determined 
that the quality controls clustered together when plotted (Dona et al., 2016). Once aligned and 
normalized, the spectrums were processed using Standard Recoupling of Variables to calculate the 
start and end points of each peak or feature (Craig et al., 2006). Then, the area under each peak was 
calculated which represents the relative abundance of each peak (Dona et al., 2016). Raw spectrums 
were then imported into Chenomx NMR Suite (Chenomx, Edmonton, Canada) to identify 
metabolites using reference libraries (Dona et al., 2016). 
 

3.5 Data processing and statistical analysis 

Data were analyzed using the statistical software package SAS (v 9.4, SAS Institute, NC, USA). 
Pearson correlation coefficients were calculated between the relative concentration of a metabolite 
or unknown peak and clinical measures (e.g. rectal temperature) or the correlation with diagnosis 
methods after assigning a value of one to BRD cases and zero to the controls. Mixed-effects linear 
regression models were used to compare case and control groups for induction weight, live weight 
at first pull, rectal temperature, lung auscultation score, lung consolidation percentage, pleurisy 
score, carcass weight and average daily gain (ADG) to pull for the case and control groups for all six 
reference diagnosis methods outlined previously (PD, HD, FD, TD, LAD and LLD). Average daily gain 
to pull was calculated as the difference between induction weight and hospital weight at pulling 
divided by DOF at pull. Fixed effects included in the models were diagnosis method, induction 
weight as a covariate (for pull weight, ADG to pull and carcass weight) and breed. DoF and vendor 
(or source) were also included as fixed effects for pull weight, rectal temperature, lung auscultation 
score and ADG to pull. Pen was a random effect for this analysis. The models were constructed by 
including all potential effects previously mentioned and removing nonsignificant (P > 0.05) effects 
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one at a time in a backwards manner so the final model included only variables with values of P ≤ 
0.05. Data for lung consolidation was log transformed for skewness prior to analysis. Animals that 
had metabolomics samples taken initially and were then pulled for BRD after the blood sampling 
period ended were removed from all analysis relating to slaughter data (e.g. carcass weight and lung 
consolidation) because this data would not be representative of the blood sample.  

Classification and regression trees (Breiman et al., 1984) were used to develop models to predict 
BRD status using the blood metabolome and identify potential biomarkers for the six BRD diagnosis 
definitions. All peaks identified by the NMR were used to develop the prediction models however it 
is important to point out that a metabolite may be comprised by one or more ‘peaks’ or features 
(Goldansaz et al., 2017). Models were developed using entropy to grow the trees (JinFu, 2010) with 
cost-complexity pruning (Breiman et al., 1984). The data was partitioned into training (model 
development; n=150) and validation data sets (n=150) before analysis. All the metabolite peaks were 
added to the model as predictors with diagnosis method as the dependent variable to be predicted. 
Sensitivity, specificity and accuracy (100 minus error rate) was calculated using the number of true 
positive, true negative, false positive and false negative. Sensitivity was defined as the frequency 
with which the model correctly identified BRD cases according to each reference diagnosis method. 
Specificity was defined as the frequency with which the model correctly identified controls according 
to each reference diagnosis method. Accuracy was calculated as the sum of the proportion of true 
positive and true negative animals. Sensitivity and 1- specificity were plotted against each other to 
produce an area under the curve (AUC) which determined the overall accuracy of the models. 
Parametric receiver operating characteristic (ROC) curves were created for the final models to 
determine their overall accuracy at predicting BRD using the blood metabolome. 

 

4 Results 

The number of animals classified as cases and controls for each of the six diagnosis methods are 
displayed in Table 2. Following initial pulling based on visual observation by the pen riders, 49.3% of 
all 300 animals pulled by the pen riders were considered cases according to PD. However, less than 
one third (31%) of all pulled animals exhibited rectal temperatures ≥ 40 ºC and were therefore 
considered BRD cases according to TD. In contrast, the LAD definition classified 62.3% of all pulled 
animals as cases and the HD definition classified 66.7% of all pulled animals as cases due to high 
rectal temperature or high lung auscultation score, or both. Only 24% of all animals were classified 
as BRD cases according to LLD as a result of showing lesions in the lungs or pleurisy at slaughter 
(Table 2). 

When assessing differences between case and control animals, breed was found to have a significant 
effect on induction weight, lung auscultation score and carcass weight (P < 0.05; data not shown). 
Induction weight as a covariate was found to have a significant effect on hospital pull weight and 
carcass weight (P < 0.05; data not shown), whereas DoF had a significant effect on hospital pull 
weight, rectal temperature and ADG to pull (P < 0.05; data not shown). Induction weight was lower 
for BRD case animals for PD, HD, FD and TD diagnosis methods (P < 0.05) however it was not 
different between case and control animals for LAD and LLD (P > 0.05; Table 3). Weight and ADG at 
pulling were higher in the control animals compared to the BRD case animals for all diagnosis 
methods (P < 0.05). Rectal temperature and lung auscultation score were higher for case animals 
compared to control animals across all six diagnosis methods (P <0.05; Table 3). Lung consolidation 
percentage was greater in the case animals compared to control animals for PD, FD and LLD (P < 
0.05), however no differences in lung consolidation existed between BRD case and control animals 
for HD, TD and LAD (P > 0.05). Carcass weight was higher in the controls compared to the case 
animals for all six diagnosis methods (P > 0.05), with the greatest difference between groups for PD 
and FD methods (Table 3).   
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Table 2. The number of observations classified as cases or controls for the six reference diagnosis 

methods to classify feedlot steers as case or control for Bovine Respiratory Disease. 

Diagnosis method Cases  Controls Total 

Number Percent  Number Percent 

Pen Rider 148 49.3  152 50.7 300 

Temperature 93 31.0  207 69.0 300 

Lung Auscultation 187 62.3  113 37.7 300 

Hospital 200 66.7  100 33.3 300 

Feedlot 138 46.0  162 54.0 300 

Lung Lesions 66 24.3  206 75.7 272 



 

Table 3. Performance and clinical measures for six reference diagnosis methods of Bovine Respiratory Disease case and control groups in feedlot cattle. 

 Pen Rider Diagnosis Hospital Diagnosis Feedlot Diagnosis Temperature Diagnosis Lung Auscultation Diagnosis Lung Lesion Diagnosis 

Case Control P-value Case Contr
ol 

P-
value 

Case Control P-value Case Control P-value Case Contr
ol 

P-value Case Control P-value 

Induction weight 
(kg/hd) 

426 ± 
10.6 

442 ± 
10.4 

0.005 430 ± 
10.5 

444 ± 
10.8 

0.03 426 ± 
10.6 

442 ± 
10.4 

0.004 424 ± 
10.9 

440 ± 
10.1 

0.009 432 ± 
10.5 

440 ± 
10.8 

0.15 452 ± 
9.4 

453 ± 
4.8 

0.90 

Pull weight 
(kg/hd) A 

444 ± 
5.5 

481 ± 
5.5 

<0.001 454 ± 
6.1 

480 ± 
6.6 

<0.001 444 ± 
5.9 

480 ± 
5.8 

<0.001 444 ± 
6.1 

472 ± 5.5 <0.001 455 ± 
6.1 

475 ± 
6.5 

<0.001 452 ± 
8.1 

473 ± 
3.3 

0.02 

ADG to pull 
(kg/hd/day) A 

-0.27 
± 0.31 

1.80 ± 
0.31 

<0.001 0.13 ± 
0.35 

1.63 ± 
0.37 

<0.001 -0.31 ± 
0.31 

1.60 ± 
0.30 

<0.001 -0.32 ± 
0.33 

1.17 ± 
0.29 

<0.001 0.13 ± 
0.36 

1.42 ± 
0.37 

<0.001 -0.13 
± 0.57 

1.03 ± 
0.43 

0.01 

Rectal 
temperature (oC) 

40.0 ± 
0.06 

39.2 ± 
0.06 

<0.001 39.8 ± 
0.06 

39.0 ± 
0.08 

<0.001 40.0± 
0.06 

39.2 ± 
0.06 

<0.001 40.4 ± 
0.05 

39.1 ± 
0.04 

<0.001 39.8 ± 
0.06 

39.2 ± 
0.08 

<0.001 39.8 ± 
0.16 

39.5 ± 
0.06 

0.03 

Lung auscultation 
score 

1.97 ± 
0.06 

1.44 ± 
0.05 

<0.001 2.03 ± 
0.03 

1.02 ± 
0.04 

<0.001 2.02 ± 
0.05 

1.42 ± 
0.05 

<0.001 1.95 ± 
0.07 

1.58 ± 
0.05 

<0.001 2.11 ± 
0.02 

1.00 ± 
0.03 

<0.001 1.87 ± 
0.12 

1.61 ± 
0.05 

0.03 

Lung 
consolidation (%)B 

5.08 ± 
0.60 

2.60 ± 
0.47 

<0.001 3.96 
± 

0.52 

2.74 ± 
0.56 

0.48 5.14 ± 
0.61 

2.61 ± 
0.47 

<0.001 4.00 ± 
0.69 

3.24 ± 
0.46 

0.08 3.80 ± 
0.53 

2.97 ± 
0.55 

0.86 12.78 
± 0.73 

2.23 ± 
0.32 

<0.001 

Pleurisy score 1.58 ± 
0.11 

1.30 ± 
0.11 

0.003 1.31 
± 

0.10 

1.27 ± 
0.10 

0.72 1.46 ± 
0.10 

1.22 ± 
0.08 

0.01 1.44 ± 
0.12 

1.25 ± 
0.09 

0.07 1.29 ± 
0.09 

1.30 ± 
0.10 

0.87 2.06 ± 
0.14 

1.19 ± 
0.07 

<0.001 

Carcass weight 
(kg/hd) A 

345 ± 
3.38 

364 ± 
2.65 

<0.001 354 ± 
3.02 

362 ± 
3.25 

0.03 345 ± 
3.45 

363 ± 
2.66 

<0.001 349 ± 
3.98 

360 ± 
2.65 

0.004 353 ± 
3.02 

362 ± 
3.15 

0.02 344 ± 
5.77 

359 ± 
2.56 

0.01 

A Induction weight was used as a covariate. 

B P-values for lung consolidation were obtained after log transformation of the data. 



 

 

The NMR spectra resulted in 323 peaks or features after processing the raw spectrums using the 
standard recoupling of variables (data not shown). However, only 112 out of 323 features were 
assigned to one of 44 metabolites identified using Chenomx (Fig. 1). Pearson correlation coefficients 
between the relative concentration of identified metabolites and health status value ranged 
between +0.64 to -0.66 with the strongest correlations found for PD and FD (Fig. 1). The strongest 
positive Pearson correlations or increase in the relative concentration of metabolites in sick animals 
for FD were found for hydroxybutyrate (r = 0.62), glucose chains (r = 0.61), phenylalanine (r = 0.56), 
and creatinine (r = 0.47; P < 0.001; Fig. 1). The largest negative correlations or lower relative 
concentration of metabolites in sick animals for FD was found for tyrosine (r = -0.63), glutamine (r = -
0.61), citrate (r = -0.60), and valine (r = -0.47; Fig. 1). 

 

 

Fig. 1. Heat map showing Pearson correlation coefficients between the relative concentration of 
plasma metabolites and Bovine Respiratory Disease defined through six reference diagnosis 
methods based on visual signs (Pen Rider), clinical signs of high rectal temperature (Temp) or lung 
auscultation scores (Lung Ausc) or either of both (Hospital), concurrent visual and clinical signs 
(Feedlot Diagnosis), and lung lesions at slaughter (Lung Lesions). LDL: low density lipids; VLDL: very 
low-density lipids.  
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However, there were peaks or features that could not be identified or assigned to a chemical 
structure which yielded slightly stronger correlations with health status ranging from +0.67 to -0.71 
(Fig. 2). Furthermore, 71.2% of all 323 peaks showed significant correlations with Pen Rider 
Diagnosis value (P < 0.05; data not shown). 

 

 

Fig. 2. Maximum and minimum Pearson correlation coefficients between the relative concentration 
of chemical structures in plasma and the status of Bovine Respiratory Disease in feedlot cattle. BRD 
was defined through six reference diagnosis methods based on visual signs (PD), high rectal 
temperature (TD), lung auscultation scores (LAD), either high temperature or lung auscultation (HD), 
concurrent visual signs, temperature and lung auscultation (FD), and lung lesions at slaughter (LLD). 
Relative concentration was measured through the area under the peaks or features in the NMR 
spectra. 

 

The sensitivity, specificity and accuracy of the models developed to classify an animal as a case or 
control for each diagnosis method are shown in Table 4. Detecting BRD cases from the blood 
metabolome was generally good for the training datasets, with accuracy decreasing for the 
validation data sets for all reference diagnosis methods. However, the reduction in the accuracy with 
the validation dataset compared to the training dataset was smaller for some diagnosis methods 
such as PD (-2%) compared to others such as LLD (-19%; Table 4). The metabolome profile best 
predicted BRD cases defined by the pen rider visual diagnosis definition as it showed the highest 
accuracy (Acc = 85%) in the validation data set. This accuracy was achieved with only two leaves and 
one peak or feature in the classification tree of the final pruned tree. Interestingly, Peak 92 showed 
the strongest negative correlation with pen rider diagnosis value (R2=0.70; data not shown). A 
metabolite search did not allow identification of the chemical compound although it is a singlet 
occurring at 5.39 ppm (data not shown).  
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Table 4. Sensitivity and specificity of H NMR metabolomics to detect Bovine Respiratory Disease in feedlot cattle defined with six reference diagnosis 

methods: pen rider diagnosis (PD), hospital diagnosis (HD), feedlot diagnosis (FD), rectal temperature diagnosis (TD), lung auscultation diagnosis (LAD) and 

lung lesion diagnosis (LLD). 

Diagnosis method Dataset Sensitivity Specificity Accuracy AUC A N leaves B N peaks C Peak Number 
Metabolite ID 

Pen Rider Training 0.81 0.93 0.87 0.87 2 1  92 

Validation 0.82 0.87 0.85 0.85 2 1 Unknown (Singlet at 5.39 ppm) 

Hospital Training 0.77 0.85 0.79 0.81 2 1  227 

Validation 0.79 0.54 0.70 0.67 2 1 3-Hydroxybutyrate 

Feedlot Training 0.99 0.88 0.93 0.94 4 3  55, 211, 158 

Validation 0.88 0.74 0.81 0.83 4 3 Tyrosine, Citrate, 3-hydroxybutyrate 

Temperature Training 0.76 0.88 0.85 0.82 2 1  34 

Validation 0.52 0.77 0.69 0.65 2 1 Phenylalanine 

Lung Auscultation Training 0.80 0.73 0.77 0.76 2 1  123 

Validation 0.77 0.45 0.64 0.61 2 1 Lactate 

Lung Lesions Training 0.76 0.97 0.92 0.90 6 5 219, 130, 292, 305, 25 

 Validation 0.38 0.89 0.74 0.71 6 5 Citrate, Unknown, Unknown, Leucine, Unknown 

A AUC = Area Under the Curve 

B N leaves = number of leaves in final tree  

C N peaks = number of peaks selected in final tree by the classification tree analysis



 

The feedlot diagnosis definition produced a model with the highest accuracy in the training dataset 
but a slightly lower accuracy in the validation data set which had 19% of the observations 
misclassified and an AUC of 0.83 (Table 4). This model used 3 peaks to classify an animal as sick or 
healthy, with peak 55 being the most important and belonging to one of two peaks of tyrosine (data 
not shown). The other 2 peaks selected to predict FD were identified as citrate (peak 211) and 3-
hydroxybutyrate (peak 158). Detecting a sick animal as defined by LAD showed the lowest accuracy 
(Acc = 0.64), with 36% of animals being misclassified in the validation dataset and an AUC of 0.61. 
Using the blood metabolome to detect a BRD case as defined by LLD yielded high accuracy and AUC 
for the training dataset however the sensitivity was only 38% when the prediction model was 
applied to the validation dataset (Table 4). Detecting BRD cases as defined by LLD used 5 peaks with 
3 of them not identified (unknown) and the other 2 being citrate and leucine. 

 

5 Discussion 

The present study was carried out in a commercial feedlot setting utilizing steers of mixed breeds 
and sourced from both saleyards and private vendors to ensure robustness and generalization of the 
detection methods under investigation. A case-control study was selected to capture both BRD 
affected and healthy animals for appropriate model development and evaluation. The major 
limitation of research evaluating BRD detection and diagnosis is the lack of a gold standard to define 
a truly BRD-affected animal (Wolfger et al., 2015). This was the reason to use six reference diagnosis 
methods instead of trying to define a gold standard. The present study also analysed blood samples 
taken at induction and pulling to assess seroconversion to BRD causative viruses, and nasal swabs 
taken at pulling to assess viral shedding using qPCR (BHV-1, BVDV, BRSV, BPI3 and BoCV; data not 
shown). These data were found to provide limited utility to help differentiating sick and healthy 
animals because most animals were either pre-exposed to all viruses or seroconverted to at least 
one of the viruses because of the vaccination program at induction (data not shown). In addition, 
only 18.1% of all animals or 29.0% of the visually sick animals were shedding a virus at the time of 
pulling and sampling. These data were therefore not considered for further analysis or to diagnose 
BRD. The sample size for lung lesions at slaughter (LLD) was smaller than for the other reference 
methods due to both mortalities during the trial (n = 19) and exclusion from analysis of animals that 
were pulled as BRD cases after blood samples were taken for metabolomics. These latter animals 
were not included for the analysis of lung lesions because the blood sample may has been taken 
before the BRD event causing histopathological lesions of the lungs observed at slaughter have 
occurred (i.e. pulled as controls for blood sampling and as BRD case after blood sampling was 
finished). 

In the absence of a true gold standard, the ability of blood metabolomics to detect BRD cases was 
determined for six reference diagnosis methods commonly used in the industry. Case animals were 
initially pulled due to visual signs of BRD, and a visually healthy animal was pulled for every case 
animal. Visual signs included nasal and ocular discharge, breathing difficulty and lethargy. This 
approach resulted in a balanced number of case and control animals for PD. However, over two 
thirds of all animals pulled by the pen riders were classified as HD cases upon further examination at 
the hospital shed particularly due to high lung auscultation scores. The proportion of animals with 
high rectal temperature was only 31% however these also contributed to the increased number of 
HD cases from 187 in LAD to 200 in HD. This resulted in 41.5% of the visually healthy animals pulled 
by pen riders receiving antimicrobial treatment. This disparity between visual signs and other clinical 
measures such as elevated temperature and abnormal lung sounds has been well reported in the 
literature and are believed to be due to the prey instinct of cattle which causes them to hide signs of 
illness (Portillo, 2014; White & Renter, 2009). However, this hypothesis suggests that visual signs are 
not a good indicator of BRD and that rectal temperature and lung auscultation are more suitable 
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indicators. This contrasts with the findings of the present study where the strongest correlation 
between the blood metabolome and any clinical measure was found for visual signs of BRD, i.e. PD 
and FD. 

Animal performance and clinical results were included in the present study to illustrate differences 
between case and control groups for the different reference diagnosis methods. BRD cases had 
lower induction weight than controls, which affected final carcass weight despite the fact induction 
weight was used as a covariate to correct for their lower induction weights. Several studies have 
suggested that lighter animals are at greater risk of BRD than heavier animals which is supported by 
our results (Martin et al., 1989; Sanderson, Dargatz & Wagner, 2008). In general, BRD case animals 
demonstrated lower performance across all six diagnosis methods. However, the largest differences 
in performance between case and control animals (BW at pulling, ADG from induction to pulling, and 
carcass weight) were observed for PD and FD. For instance, the difference between case and control 
animals for ADG to pull (time of blood sampling) was largest for PD (2.07kg/d) and FD (1.91 kg/d) 
and smallest for LLD (1.16 kg/d). In contrast, the lowest differences in carcass weight between case 
and control animals were demonstrated for HD and LAD whereas PD and FD still showed the largest 
difference between groups. Interestingly, PD and FD were the only diagnosis methods apart from 
LLD that showed a significant difference between case and control animals for pleurisy score and 
lung consolidation percentage. These results on animal performance and clinical data suggest that 
using the visual signs as done by pen riders in the present study may be the most accurate method 
to detect BRD affected animals. However, a low proportion of the PD and FD cases showed lung 
lesions at slaughter suggesting that the infection may have resolved leaving no lesions. The strongest 
correlations between disease status and blood metabolomics were also reported for PD and FD 
supporting this hypothesis. However, caution should be taken when interpreting these results 
because the present study was not designed to confirm the best method for evaluating the impact of 
BRD and the discovery of a gold standard is still needed. The results also highlight the need to 
consider temporal changes of the measured variables from prior to exposure and the onset of 
disease to adequately evaluate detection methods. In conclusion, PD and FD displayed the greatest 
utility in differentiating between BRD affected and healthy animals from both the live animal and 
slaughter data. In contrast, HD, TD and LAD appeared to have the least utility in differentiating 
between case and control animals based on clinical examination and performance data. 

The NMR spectra obtained in the current study identified 323 peaks or features however multiple 
peaks or features could belong to the same metabolite (Goldansaz et al., 2017). Twelve out of the 
323 peaks were selected by the classification tree models. Interestingly, none of the peaks of 
importance selected were the same for the six reference diagnosis methods, which may indicate 
that the underlying metabolic mechanisms involved in, or affected by BRD, may differ depending on 
the clinical measures used to define BRD. Alternatively, this may indicate that different clinical signs 
reflected through the blood metabolome through different metabolites. Previous studies analysing 
metabolites of BRD-affected cattle have identified and quantified up to 30 metabolites (Aich et al., 
2009; Basoglu et al., 2016). Out of the 30 metabolites identified by Basoglu et al. (2016), seven were 
found to be significantly different between healthy and diseased dairy calves defined through visual 
scoring. These were propionate, 2-methylglutarate, ethanol, acetate, dimethyl-sulfone, allantoin and 
phenylalanine. These metabolites, except phenylalanine, differ from those found to be important to 
define BRD cases in the present study which could be due to differences in analytical and statistical 
techniques used, the type of animals and possible causative agents. Metabolites with negative 
correlations with disease in the present study indicate that the relative concentration of those 
metabolites was lower in sick animals compared to healthy animals. In agreement with the present 
study, phenylalanine also increased in sick animals of Basoglu et al. (2017) however the 4 
metabolites with strongest correlation with disease in the present study were not significant in the 
study cited although tyrosine and hydroxybutyrate showed similar direction of the response. 
Findings from the present study agree with the lower relative concentration in sick animals of 
tyrosine, citrate and glutamate at 12 hours after artificially infecting beef steers, and to the increase 
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in phenylalanine and leucine reported by Terril et al. (2010). The rest of the metabolites with 
strongest correlations with disease of the present study differed between the two studies. However, 
it is important to note that the metabolic changes observed by Terril et al. (2010) were inconsistent 
and partly dependent on the type of infection (viral or bacterial) and time after infection. An 
interesting difference between the present study and Basoglu et al. (2016) is the fact that in the 
present study a larger number of metabolites and peaks seemed to be significantly correlated to 
disease status. For example, 71.2% of all 323 peaks showed significant correlations (P < 0.05) with 
Pen Rider Diagnosis values. Another study assessing biomarkers for BRD prediction found that 
lactate and cortisol predicted mortality and conversely, higher glucose concentrations were 
associated with survival (Aich et al., 2009).  The present study has identified 44 metabolites from the 
323 peaks with a total of 12 peaks deemed of importance in differentiating sick from healthy animals 
across all diagnosis methods. However, the largest differences on the relative concentration of blood 
components between case and control animals were found for metabolites which could not be 
identified to assign a metabolite name. For example, peak 92 occurring at 5.39 ppm was the only 
peak selected by the classification trees to detect BRD cases according to PD however its chemical 
structure could not be identified. Further research is required to identify this metabolite and its 
chemical composition. In contrast to PD, FD cases could be detected with high accuracy based on the 
relative concentration of tyrosine, citrate and 3-hydroxybutyrate. Citrate was negatively correlated 
with both PD and FD indicating that sick animals had lower relative concentration compared to 
controls, whereas 3-hydroxybutyrate showed a positive correlation with PD and FD indicating that 
BRD cases had higher concentration. Citrate is a member of the tricarboxylic acid cycle whereas 
hydroxybutyrate is one of the ketone bodies that normally accumulate in the bloodstream of cattle 
under negative energy balance. Interestingly, Baticz et al. (2002) demonstrated that these two 
compounds follow opposite trends and have a negative correlation in dairy cows after calving. 
Therefore, the identification of peak 92, and the use of citrate and 3-hydroxybutyrate could assist to 
objectively define BRD cases in feedlots. 

The present study used classification and regression trees to search for biomarkers of disease and to 
develop prediction models that could be applicable to new datasets in the future. This technique 
searches for variables (NMR peaks or metabolites) that partition the dataset with the highest 
accuracy or lowest error rate when classifying an animal as sick or healthy. Classification and 
regression trees were selected because these allow predictive modelling through the identification 
and selection of specific biomarkers and are simple to understand. Simple handheld devices based 
on these biomarkers identified could be implemented as crush-side diagnostic tools for BRD. Other 
machine learning techniques such as random forests, orthogonal partial least square discriminant 
analysis, and support vector machines could result in higher accuracy, but these are more complex 
for practical applications as they may require entire NMR spectrums and consistent peak definitions 
for predictions in future datasets. It is important to point out however, that the training and 
validation datasets were not completely independent with the animals being part of the same trial 
and feedlot. Future work should validate the prediction models developed in the present study with 
completely independent datasets from different feedlots (Liland, 2011). The robustness of the 
results is however supported by the fact that the study was performed under commercial 
conditions, with animals from different sources, breeds, ages, nutritional status, days on feed, diets, 
and body condition, and sampled on different dates with different environmental conditions.  

The sensitivity, specificity and accuracy of the models developed in the present study to predict BRD 
using the PD and FD definitions are higher than many of the current methods of BRD diagnosis. 
Methods using white blood cell counts (WBC) have been shown to have sensitivities and specificities 
ranging from 25 to 78% and 77 to 94%, respectively (Schaefer et al., 2012; Schaefer et al., 2007). 
Such large ranges in diagnostic accuracy and relatively low sensitivity make WBC of limited value to 
confirm BRD in feedlots. Acute phase proteins (APPs) have demonstrated a relatively high sensitivity 
(93%) and specificity (86-93%) to detect BRD with only one to two APPs used so far for laboratory 
confirmation (Idoate et al., 2015). However, it is important to note that APPs are not specific to 
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infection but just indicate tissue trauma or inflammation which could be due to several reasons 
including social stress (González et al., 2008). Stress related hormones such as cortisol have been 
shown to have high sensitivity (75 to 100%) in detecting BRD however these are not specific to 
infection or inflammation resulting in low specificity ranging from 52.9 to 53.8% (Schaefer et al., 
2012; Schaefer et al., 2007). Other diagnostic methods including behavioural monitoring and 
infrared thermography have displayed varying accuracy at detecting BRD, with sensitivities and 
specificities ranging from 60 to 81% and 100 to 87.2%, respectively (Schaefer et al., 2012). In 
contrast to the present study, Schaefer et al. (2012) reported that both rectal and orbital IR 
temperature had a sensitivity of 100% and specificity of 97.4% to detect BRD. It is apparent from 
these results that there is a need for alternative, more accurate diagnosis methods to be developed, 
and the accuracy of the models developed in the current study indicate the potential of blood 
metabolomics to classify animals with BRD.  

The blood metabolome best predicted visual signs of BRD (PD and FD) and this could be due to the 
fact that samples were taken on the day when clinical symptoms were most apparent. Therefore, 
the metabolites identified in the present study could be used as an accurate and objective method 
of confirming BRD initially detected through subjective clinical observation by the pen riders. 
Basoglu et al. (2016) reported better accuracy (0.95) compared to the present study however the 
study had only ten healthy controls and 50 cases, which does not permit adequate comparison, and 
did not use a validation dataset to test the model performance. Principal Component Analysis (PCA) 
was used to develop the classification models and it is uncertain how these models would perform 
on future datasets using a selection of metabolites. 

The blood metabolome in the present study had the lowest accuracy in predicting BRD when using 
TD, LAD, HD and LLD definitions. The low accuracy of the TD, LAD and HD models could likely be due 
to the fact that only one blood sample was taken at the time the animal exhibited visual signs. 
However, clinical symptoms (rectal temperature and lung sounds) may not have peaked or been 
most evident at this time depending on the stage of infection at the time of sampling (Timsit et al., 
2011). Daily measurements prior to and after exposure to infection would be required to determine 
changes in the blood metabolome in relation to visual signs, rectal temperature and lung 
auscultation. Similarly, the fact that the metabolome was not accurate at classifying BRD according 
to LLD is not unexpected given the metabolome is highly dynamic and susceptible to rapid change, 
meaning that the blood composition at the time of sampling is only reflective of that time point 
(Goldansaz et al., 2017). Lesions evident at slaughter could have developed prior to feedlot entry, or 
before or after a blood sample was obtained, or alternately lesions could have resolved prior to 
slaughter. Previous research has reported lesions at slaughter in as few as 37% of animals clinically 
diagnosed with BRD (Gardner et al., 1999). This latter study also reported that the number of 
animals that displayed lesions at slaughter and not treated for BRD (29%) was similar to the number 
of animals with lesions that were treated for BRD (37%). This suggests that lung pathology at 
slaughter is not always representative of the clinical diagnoses of BRD in the live animal. In addition, 
lung lesions cannot be used as a diagnosis method of BRD to trigger antimicrobial treatments as it 
requires slaughter or ultrasonography which is time consuming and requires expertise. It is therefore 
suggested that lung pathology is an imperfect reference test for the present study as it cannot be 
correlated to the metabolome profile of the animal at the time the blood sample was taken.  

 

6 Conclusions/recommendations 

6.1 Conclusions 

The blood metabolome is a useful tool to classify BRD case and healthy animals and could be used as 

an accurate diagnostic tool in feedlots. Defining BRD cases from visual signs obtained by pen riders 
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and confirmed with rectal temperature and lung auscultation seems the most accurate diagnosis 

method. Single measurements of rectal temperature or lung auscultation at pulling, and lung lesions 

at slaughter may be less accurate to define BRD cases compared to visual signs. At the time of 

pulling, the metabolome is most closely correlated to visual signs than to rectal temperature, lung 

auscultation score, blood serology, pathogen shedding from nasal swabs and lung lesions at 

slaughter. However, it is unknown if the blood metabolome could be able to detect changes in rectal 

temperature, lung auscultation and lung lesions when these clinical and pathological measures are 

developing or at their peak. An important finding is that one to five metabolites could be able to 

accurately detect or confirm BRD in feedlot cattle opening opportunities to develop simple, rapid 

and practical crush-side tests. 

6.2 Recommendations 

Future work in this area should incorporate frequent blood sampling and serial slaughter of animals 
starting before infection with BRD, and blood samples taken immediately preceding slaughter to 
search for biomarkers related to lung lesions at slaughter. The analyses of the metabolome profile of 
animals upon entry into the feedlot could also provide more detailed information on the usefulness 
of this method as a diagnosis tool at this critical point in time. Additionally, independent datasets 
from different feedlots should be used to evaluate the models developed in the present study. 
Further research to identify the chemical structure of those blood ‘features’ which showed high 
accuracy to define BRD cases is also recommended. 
 

7 Key messages 

 Blood biomarkers of BRD in feedlot cattle are a promising tool for the detection and 
confirmation of the disease with potential to become a crush side diagnostic tool. 

 The largest difference between case and control groups in weight at pulling, growth rate to 
pulling, and carcass weight was found when animals were classified as BRD cases using visual 
signs only, or visual signs confirmed by high rectal temperature and lung auscultation scores 
at pulling. 

 Rectal temperature at pulling, lung auscultation score at pulling and lung lesions at slaughter 
may not be accurate for BRD case definition as single, independent measures. 

 Blood metabolomics can detect animals with visual signs of BRD with 85% accuracy, or with 
visual signs of BRD confirmed by high rectal temperature and lung auscultation score with 
81% accuracy.  

 Blood metabolomics can detect animals with high rectal temperature, high lung auscultation 
scores, and lung lesions at slaughter with 69, 64, and 71% accuracy, respectively. 

 

8 Bibliography  

Aich, P, Babiuk, LA, Potter, AA & Griebel, P 2009, 'Biomarkers for prediction of bovine respiratory 
disease outcome', Omics : a journal of integrative biology, vol. 13, no. 3, pp. 199-209. 

Basoglu, A, Baspinar, N, Tenori, L, Vignoli, A & Yildiz, R 2016, 'Plasma metabolomics in calves with 
acute bronchopneumonia', Metabolomics, vol. 12, no. 8, pp. 1-10. 



B.FLT.0164 - Metabolomics of Bovine Respiratory Disease 

Page 20 of 22 

 

Breiman, L, Friedman, J, Stone, C, J. & Olshen, RA 1984, Classification and Regression Trees, 
Wadsworth International Group. 

Buczinski, S, Forté, G, Francoz, D & Bélanger, AM 2014, 'Comparison of Thoracic Auscultation, Clinical 
Score, and Ultrasonography as Indicators of Bovine Respiratory Disease in Preweaned Dairy 
Calves', Journal of Veterinary Internal Medicine, vol. 28, no. 1, pp. 234-242. 

Buczinski, S, Ménard, J & Timsit, E 2016, 'Incremental Value (Bayesian Framework) of Thoracic 
Ultrasonography over Thoracic Auscultation for Diagnosis of Bronchopneumonia in 
Preweaned Dairy Calves', Journal of Veterinary Internal Medicine, vol. 30, no. 4, pp. 1396-
1401. 

Cusack, PMV, Mcmeniman, N & Lean, IJ 2003, 'The medicine and epidemiology of bovine respiratory 
disease in feedlots', Australian Veterinary Journal, vol. 81, no. 8, pp. 480-487. 

De Buck, J, Shaykhutdinov, R, Barkema, HW & Vogel, HJ 2014, 'Metabolomic profiling in cattle 
experimentally infected with mycobacterium avium subsp. paratuberculosis', PLoS ONE, vol. 9, 
no. 11, pp. e111872. 

Dona, A. C., Jiménez, B., Schäfer, H., Humpfer, E., Spraul, M., Lewis, M. R., Pearce, J. T. M., Holmes, 
E., Lindon, J. C., and Nicholson, J. K. 2014. Precision High-Throughput Proton NMR 
Spectroscopy of Human Urine, Serum, and Plasma for Large-Scale Metabolic Phenotyping. 
Analytical Chemistry, 86, 9887-9894. 

Dona, A. C., KyriakideS, M., Scott, F., Shephard, E. A., Varshavi, D., Veselkov, K. and Everett, J. R. 
2016. A guide to the identification of metabolites in NMR-based metabonomics/metabolomics 
experiments. Computational and Structural Biotechnology Journal, 14, 135-153. 

Enjalbert, F, Nicot, MC, Bayourthe, C & Moncoulon, R 2001, 'Ketone Bodies in Milk and Blood of 
Dairy Cows: Relationship between Concentrations and Utilization for Detection of Subclinical 
Ketosis', Journal of Dairy Science, vol. 84, no. 3, pp. 583-589. 

Fulton, RW & Confer, AW 2012, 'Laboratory test descriptions for bovine respiratory disease diagnosis 
and their strengths and weaknesses: gold standards for diagnosis, do they exist?', The 
Canadian veterinary journal = La revue vétérinaire canadienne, vol. 53, no. 7, pp. 754. 

Gardner, BA, Dolezal, HG, Bryant, LK, Owens, FN & Smith, RA 1999, 'Health of finishing steers: effects 
on performance, carcass traits, and meat tenderness', Journal of Animal Science, vol. 77, no. 
12, pp. 3168. 

Goldansaz, SA, Guo, AC, Sajed, T, Steele, MA, Plastow, GS & Wishart, DS 2017, 'Livestock 
metabolomics and the livestock metabolome: A systematic review', PLoS ONE 12(5): 
e0177675. 

Idoate, I, Vander Ley, B, Schultz, L & Heller, M 2015, 'Acute phase proteins in naturally occurring 
respiratory disease of feedlot cattle', VETERINARY IMMUNOLOGY AND IMMUNOPATHOLOGY, 
vol. 163, no. 3-4, pp. 221-226. 

Jinfu, HUQGMYDL 2010, 'Information entropy for ordinal classification', 中国科学：信息科学（英

文版）, vol. 53, no. 6, pp. 1188-1200. 

Karisa, BK, Thomson, J, Wang, Z, Li, C, Montanholi, YR, Miller, SP, Moore, SS & Plastow, GS 2014, 
'Plasma metabolites associated with residual feed intake and other productivity performance 
traits in beef cattle', Livestock Science, vol. 165. 

Laiakis, EC, Morris, GaJ, Fornace, AJ & Howie, SRC 2010, 'Metabolomic analysis in severe childhood 
pneumonia in The Gambia, West Africa: Findings from a pilot study', PLoS ONE, vol. 5, no. 9, 
pp. 1-9. 

Liland, KH 2011, 'Multivariate methods in metabolomics – from pre-processing to dimension 
reduction and statistical analysis', Trends in Analytical Chemistry, vol. 30, no. 6, pp. 827-841. 

Mang, AV, Buczinski, S, Booker, CW & Timsit, E 2015, 'Evaluation of a Computer‐aided Lung 
Auscultation System for Diagnosis of Bovine Respiratory Disease in Feedlot Cattle', Journal of 
Veterinary Internal Medicine, vol. 29, no. 4, pp. 1112-1116. 

Martin, SW, Bateman, KG, Shewen, PE, Rosendal, S & Bohac, JE 1989, 'The frequency, distribution 
and effects of antibodies, to seven putative respiratory pathogens, on respiratory disease and 



B.FLT.0164 - Metabolomics of Bovine Respiratory Disease 

Page 21 of 22 

 

weight gain in feedlot calves in Ontario', Canadian journal of veterinary research = Revue 
canadienne de recherche veterinaire, vol. 53, no. 3, pp. 355-362. 

Mcguirk, SM 2008, 'Disease Management of Dairy Calves and Heifers', Veterinary Clinics of North 
America: Food Animal Practice, vol. 24, no. 1, pp. 139-153. 

Mcmeniman, J & Batterham, T 2016, 'Visual scoring system for identification of Bovine Respiratory 
Disease', Brisbane, QLD  

Moore, RE, Kirwan, J, Doherty, MK & Whitfield, PD 2007, 'Biomarker discovery in animal health and 
disease: the application of post-genomic technologies', Biomarker insights, vol. 2, pp. 185-196. 

Ospina, PA, Nydam, DV, Stokol, T & Overton, TR 2010, 'Evaluation of nonesterified fatty acids and β-
hydroxybutyrate in transition dairy cattle in the northeastern United States: Critical thresholds 
for prediction of clinical diseases', Journal of Dairy Science, vol. 93, no. 2, pp. 546-554. 

Portillo, TA 2014, 'Pen riding and evaluation of cattle in pens to identify compromised individuals', 
no. Journal, Electronic, pp. 5,  

Sackkett, D, Holmes, P, Abbott, K, Jephcott, S & Barber, M 2006, 'Assessing the economic cost of 
endemic disease on the profitability of Australian beef cattle and sheep producers', AHW.087, 
Meat and Livestock Australia, Sydney, NSW, Australia. 

Sanderson, MW, Dargatz, DA & Wagner, BA 2008, 'Risk factors for initial respiratory disease in 
United States' feedlots based on producer-collected daily morbidity counts', Canadian 
Veterinary Journal, vol. 49, no. 4, pp. 373-378. 

Schaefer, AL, Cook, NJ, Bench, C, Chabot, JB, Colyn, J, Liu, T, Okine, EK, Stewart, M & Webster, JR 
2012, 'The non-invasive and automated detection of bovine respiratory disease onset in 
receiver calves using infrared thermography', Research in veterinary science, vol. 93, no. 2, pp. 
928-935. 

Schaefer, AL, Cook, NJ, Church, JS, Basarab, J, Perry, B, Miller, C & Tong, AKW 2007, 'The use of 
infrared thermography as an early indicator of bovine respiratory disease complex in calves', 
Research in Veterinary Science, vol. 83, no. 3, pp. 376-384. 

Seymour, CW, Yende, S, Scott, MJ, Pribis, J, Mohney, RP, Bell, LN, Chen, Y-F, Zuckerbraun, BS, Bigbee, 
WL, Yealy, DM, Weissfeld, L, Kellum, JA & Angus, DC 2013, 'Metabolomics in pneumonia and 
sepsis: an analysis of the GenIMS cohort study', Intensive Care Medicine, vol. 39, no. 8, pp. 
1423-1434. 

Slupsky, CM, Cheypesh, A, Chao, DV, Fu, H, Rankin, KN, Marrie, TJ & Lacy, P 2009, 'Streptococcus 
pneumoniae and Staphylococcus aureus pneumonia induce distinct metabolic responses', 
Journal of Proteome Research, vol. 8, no. 6, pp. 3029-3036. 

Stringer, KA, Serkova, NJ, Karnovsky, A, Guire, K, Paine, R & Standiford, TJ 2011, 'Metabolic 
consequences of sepsis-induced acute lung injury revealed by plasma H-1-nuclear magnetic 
resonance quantitative metabolomics and computational analysis', American Journal of 
Physiology-Lung Cellular and Molecular Physiology, vol. 300, no. 1, pp. L4-L11. 

Terrill, S. J. 2010. Effect of bovine respiratory disease infection on the metabolic profiles of beef 
steers. Faculty of the Graduate College, Oklahoma State University, MSc Thesis. Available: 
https://shareok.org/bitstream/handle/11244/8872/Terrill_okstate_0664M_10993.pdf?seque
nce=1. Accessed, 9 of June 2018. 

Timsit, E, Assié, S, Quiniou, R, Seegers, H & Bareille, N 2011, 'Early detection of bovine respiratory 
disease in young bulls using reticulo-rumen temperature boluses', The Veterinary Journal, vol. 
190, no. 1, pp. 136-142. 

Wang, TJ, Larson, MG, Vasan, RS, Cheng, S, Rhee, EP, Mccabe, E, Lewis, GD, Fox, CS, Jacques, PF, 
Fernandez, C, O'donnell, CJ, Carr, SA, Mootha, VK, Florez, JC, Souza, A, Melander, O, Clish, CB 
& Gerszten, RE 2011, 'Metabolite profiles and the risk of developing diabetes', Nature 
Medicine, vol. 17, no. 4, pp. 448-453. 

White, BJ & Renter, DG 2009, 'Bayesian estimation of the performance of using clinical observations 
and harvest lung lesions for diagnosing bovine respiratory disease in post-weaned beef 
calves', Journal of Veterinary Diagnostic Investigation, vol. 21, no. 4, pp. 446-453. 

https://shareok.org/bitstream/handle/11244/8872/Terrill_okstate_0664M_10993.pdf?sequence=1
https://shareok.org/bitstream/handle/11244/8872/Terrill_okstate_0664M_10993.pdf?sequence=1


B.FLT.0164 - Metabolomics of Bovine Respiratory Disease 

Page 22 of 22 

 

Wolfger, B, Schwartzkopf-Genswein, KS, Barkema, HW, Pajor, EA, Levy, M & Orsel, K 2015a, 'Feeding 
behavior as an early predictor of bovine respiratory disease in North American feedlot 
systems', JOURNAL OF ANIMAL SCIENCE, vol. 93, no. 1, pp. 377-385. 

Wolfger, B, Timsit, E, White, BJ & Orsel, K 2015b, 'A Systematic Review of Bovine Respiratory Disease 
Diagnosis Focused on Diagnostic Confirmation, Early Detection, and Prediction of Unfavorable 
Outcomes in Feedlot Cattle', The Veterinary clinics of North America. Food animal practice, 
vol. 31, no. 3, pp. 351-365. 

Xia, J, Broadhurst, DI, Wilson, M & Wishart, DS 2013, 'Translational biomarker discovery in clinical 
metabolomics: an introductory tutorial', Metabolomics, vol. 9, no. 2, pp. 280-299. 


