
 

This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to 
ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for 
the accuracy or completeness of the information or opinions contained in the publication. You should make your 
own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this 
publication is prohibited without prior written consent of MLA. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Project code: B.NBP.0663 

Prepared by: Alistair Reid, Mitch Bryson, Salah Sukkarieh 
 

 Australian Centre for Field Robotics 
University of Sydney 
 

Date published: November 2012 

ISBN: 9781741919622 

 
 
PUBLISHED BY 
Meat & Livestock Australia Limited 
Locked Bag 991 
NORTH SYDNEY NSW 2059 

ished by  
 

New Detection and Classification Algorithms 
for Mapping Woody Weeds from UAV Data 

 

An extension of project B.NBP.0474 

final re ort  p

 
    

    

 
Meat & Livestock Australia acknowledges the matching funds provided by the 
Australian Government to support the research and development detailed in this 
publication. 

1.1.1.1.1.1  

 



 New Detection and Classification Algorithms for Mapping Woody Weeds from UAV Data 

 

Page 2 of 41 

Abstract 

 
The detection and eradication of woody weed infestations in native and farmland 
environments is a difficult and costly management problem. Seeking an efficient 
solution for surveying these environments, the preceding MLA project B.NBP.0474 
funded the development and testing of an Unmanned Aerial Vehicle (UAV) system at 
the Australian Centre for Field Robotics at the University of Sydney, focused on 
acquiring large-scale image datasets using a small, low-cost platform. The system 
was demonstrated in field trials, collecting accurately geo-referenced, high resolution 
red-green-blue images of woody weed infestations. The project also resulted in an 
initial concept of an algorithmic framework for building maps from the image data and 
using computer vision algorithms to detect different weed species in the imagery. 
 
The objective of this project (B.NBP.0663) has been to further develop the algorithms 
for processing the UAV aerial data. Specifically, new algorithm research and 
development has been focused on accurate large scale mapping through globally 
consistent image mosaicking, and on improving the framework for automated 
detection and classification of woody weeds through the application of state-of-the-art 
computer vision techniques that learn important visual features from the data. High 
level processing algorithms have also been investigated to delineate and count tree 
crowns, and even suggest intelligent paths that could be taken to visit the weeds 
based on the resulting maps. The combined goal of these analyses is to demonstrate 
that automated processing can maximise the efficiency of a UAV surveillance system, 
producing key information in a condensed accessible format, while avoiding large 
amounts of manual analysis that would counteract the advantages of automated 
surveillance. 
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Executive summary 
 
Woody weed infestations over large farmland regions pose a difficult and costly land 
management problem. The extent of an infestation or the presence of individual 
invasive trees can be difficult to detect from conventional remote-sensing data 
sources such as satellite images (due to their limited spatial resolution), making it 
difficult to rely on them for planning intelligent survey, control and eradication 
strategies. 
 

This project is part of a larger body of research to demonstrate a low flying 
autonomous Unmanned Aerial Vehicle (UAV) as a low cost solution for remotely 
sensing weed infestations (and potentially other spatially distributed natural 
phenomenon). The proposed system consists of a robotic aircraft and ground station 
to acquire data, and a framework of computer analysis algorithms to process the data 
and provide detections, maps and statistics.  
 

The preceding project (B.NBP.0474) was concerned with the development and 
testing of the robotic UAV system over a three year period from 2008-2010. The 
project concluded in field trials in 2009 and 2010, demonstrating small, low-cost 
UAVs operating effectively in a rugged farmland environment. The successful flight 
trials provided a number of large-scale aerial image datasets (consisting of high 
resolution red-green-blue image tiles with accompanying navigational information), 
and initial concepts were presented for classifying and mapping based on this data. 
 

In this ensuing project, development has been focused on the analysis algorithms 
with the goal of extracting high level scientific information from the UAV sensor data.  
Three key research areas have been pursued. 
 

Firstly, a large-scale bundle-adjustment framework has been designed to combine 
the UAV image tiles into a larger terrain representation with globally accurate geo-
referencing. This allows the locations of features in the imagery to be accurately 
pinpointed in geodetic co-ordinates, and also stitches images across frame edges 
allowing the vision analysis that follows to classify trees that span multiple camera 
frames as a single object. The three dimensional stereo vision techniques underlying 
this reconstruction also use (and can visualise) additional information such as three 
dimensional structure.  
 

Secondly, vision algorithms have been implemented for reliable detection of trees in 
the imagery, and even classification between species. This has involved identifying 
descriptors from the data for distinguishing between different types of objects, and 
applying machine learning techniques to automatically search the for the different 
classes in the data.  
 

The final research component has been to conduct a high level analysis of the 
resulting maps, deriving further statistics such as tree crown counts, cover area, and 
producing easy-to-interpret maps with detection overlays. Algorithms can then be 
used to suggest efficient paths for inspection and treatment, either for an aerial 
vehicle, a ground vehicle, or to serve as waypoints on a PDA for a field team. It is 
expected that these condensed high-level results will be of the most value and 
interest to environmental officers and land managers who operate UAVs in the future. 
 

While this project has used an experimental UAV system, it is setting the groundwork 
for a future of UAVs in Australian agriculture, and our results suggest that future 
management practices will benefit from the global trend of increasingly affordable 
and readily available commercial UAVs and sensor systems for civilian applications. 
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1 Background 

The detection and eradication of woody weed infestations in native and farmland 
environments is a difficult and costly management problem.  The objective of the 
proceeding project B.NBP.0474 with the University of Sydney was to develop and test 
an Unmanned Aerial Vehicle (UAV) system for weed detection and control, acquiring 
a large dataset of aerial images over farmland in Northern Queensland. This project 
(B.NBP.0663) is a continuation of the research to further develop the automated 
processing system for the UAV data. This report outlines the new developments in 
the algorithms for terrain modelling, classification and mapping. 
 
The data analysed in this project were acquired during field trials in 2009 and 2010, 
and focus on regions of known woody weed infestations of Parkinsonia, Prickly 
Acacia and Mimosa present amongst other species. Because the unmanned aircraft 
was able to operate safely at low altitudes, it acquired a very high pixel ground-
resolution (approximately 4cm), while employing automated flight control systems to 
obtain consistent overlapping swaths over survey regions extending beyond the sight 
range of the operator. However, due to weight, cost and power restrictions on the 
small UAV, the aircraft was not able to acquire multi-spectral pixels, instead capturing 
standard red-green-blue bands. The properties of this data modality have motivated 
computer vision analyses including stereo vision and texture-based classification.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Left: The UAV platform landing at a survey site in Julia Creek, QLD, 
Australia.  
Right: The platform was equipped with sensor hardware including a downward 
pointing colour camera, GPS, and Inertial Measurement Unit (IMU), an on-board 
computer to log the data to disk and an autopilot system for autonomous flight. 
 
UAV navigation data was also captured during field trials from an on-board Inertial 
Measuring Unit (IMU) and a Global Positioning System (GPS) receiver. By combining 
the IMU/GPS information and the overlapping aerial photographs, it was 
demonstrated that objects identified in the images could be geo-referenced in their 
environment (i.e. their precise three-dimensional position computed) with an 
accuracy of approximately +/- 1m. Part of the objective of the current project was to 
develop methods for processing collected imagery into easily interpretable map 
formats, such as imagery mosaics. 
 
Classification of vegetation in remotely sensed data has traditionally been 
approached using multi-spectral information from high altitude aircraft [Klinken07], 
commercial satellite data [Casady05], or public satellite data such as Landsat 
[Lawes08]. In spectrally rich data, reflection peaks in the visible and near infrared 
bands can be used as cellular and chemical fingerprints for different types of 
vegetation, allowing each pixel to be classified separately [Yu06]. The primary 
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drawback of spectral classification is that a coarse spatial resolution mixes the 
response with the background, so these methods cannot resolve small individual 
trees, or even low density clusters of trees from the background (for example, weed 
infestations of up to 30% ground cover have gone undetected in 4m/pixel data 
[Casady05]). Thus, the high spatial resolution of the UAV imagery is critical when the 
goal is to detect and map individuals of the weed population.  
 
Instead of relying on pixel spectral profiles, the approach taken in this project has 
been based on algorithms from the fields of machine learning and computer vision, 
and an interested reader is directed to recent publications coming from this project 
research including [Bryson10] and [Reid11]. Local spatial pattern, using the red, 
green and blue colour components together, is used to quantify appearance. 
Machine learning algorithms can then identify classes of vegetation in the imagery 
based on the chosen descriptors.  In other applications, this problem has received 
much attention from the computer vision community. The primary advantage of a 
learning approach is that the highly complex and subtle rules to describe appearance 
need not be devised or tuned manually – an algorithm can learn them from a set of 
informative examples [Everingham2011]. However, the subtlety of differences in 
appearance between different types of trees viewed from above, coupled with the 
natural variations in an unstructured natural survey environment, and the relatively 
low number of labels, makes for a unique and challenging vision application.  
 
Finally, we have sought to further analyse the classified imagery to obtain statistics 
and high-level information that would be of interest to weed managers who adopt 
UAV mapping technologies. We take a novel approach to tree crown delineation (the 
problem of finding individual crowns in imagery [Wulder00]), and use this information 
to derive information about the distribution, cover area and population of individual 
trees of different species, even demonstrating computer-assisted planning to suggest 
how points of interest can be efficiently visited given their spatial structure. 
 
 

2 Project Objectives 

Intelligent algorithms have been investigated for the detection and mapping of 
invasive woody weeds, based on the high-resolution colour aerial photographs and 
geo-spatial information captured by the autonomous UAV during project B.NBP.0474. 
The focus of this new research presented has been on analysis algorithms for: 
 
Estimating three dimensional scene structure using stereoscopic techniques: 

 Accurately joining image frames into a large scene mosaic/map: 

 Reconstructing visually consistent and geospatially consistent scene maps. 

 Providing GIS compatible representations of the data 
 
Using state of the art computer vision techniques for object classification: 

 Investigating quantitative descriptors to discriminate foliage 

 Training machine learning algorithms to detect trees of different species  

 Providing Batch classification of flights for mapping vegetation  
 
High-Level Analysis: 

 Estimating Tree Crown Locations 

 Computer Aided Path Planning for investigation/treatment. 

 Building an orthographic map representation of a survey area 
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3 Methodology (Algorithms) 

3.1 Overview of the Algorithm Framework 

A new framework of processing algorithms has been developed for the detection of 
invasive woody weeds in UAV aerial image data. This pipeline is composed of state 
of the art algorithms that utilise 3D structure in images to produce orthorectified 
maps, transform the images from pixels into features, and then into probabilistic 
classifications. Where possible, the framework utilises supervised machine learning 
techniques, where the rules to discriminate between the different classes selected in 
the data are automatically learnt from the data (supervised by a set of training 
examples that are provided to the algorithms). Machine learning is a very elegant and 
powerful way of configuring analysis algorithms, as it is not necessary for an 
engineer to design and tune a set of rules. A block diagram of the data flow between 
algorithms in this project is depicted below:  
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: A data flow diagram of the data processing framework. The blue disks symbolise 

data stores, grey boxes indicate human interaction (manual inputs, or producing outputs) 

 

3.2 Creation of Imagery Mosaics from UAV Data 

Instead of performing classification on individual images captured by the UAV, a 
mosaic-processing pipeline was developed that created large-scale, geo-referenced 
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information. These mosaics allowed for the imagery to be presented per spatial area, 
with consistent spatial dimensions and without overlap or doubling counting of the 
objects classified in the imagery data. 
 

 
Figure 3: 3D point cloud and image mosaic data for section of Flight 11 (Carrum, 2009), 
using a local NE reference frame. (a) Colour 3D point cloud data and (b) final colour imagery 
mosaic. (c) and (d) zoomed-in views of 3D point clouds and (e) zoomed in view of mosaic. 

 
The mosaic processing builds on the existing mapping pipeline developed in 
[Bryson10] starting from the bundle-adjusted UAV position and attitude information 
associated with each image captured from the UAV. Taking the pose data and the 
images, a multi-view stereo algorithm [Furukawa10] is then used to create a dense 
3D point cloud of the terrain corresponding to corner points extracted from the image 
data. This point cloud is used to build a surface model via Delaunay triangulation 
[Barber96]. For each face in the surface model, the best image corresponding to this 
face is selected based on the closest distance from each image to the face. Each 
face of the triangulation is then transformed into a vertical orthogonal projection and 
a rendering algorithm [Johnson-Roberson10] is used to project the image data into a 
mosaic raster graph, resulting in the image mosaic. 
 
Finally, the image mosaics are converted into geo-tiffs and are tagged with 
information about the spatial resolution of the image and its geographic coordinates, 
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allowing for the images to be interpreted by Geographic Information System (GIS) 
software. Figure 3 illustrates example outputs from the mapping pipeline including 3D 
point-clouds of the terrain and the final processed mosaic imagery maps. 

 

3.3 Computer Vision for Woody Weed Detection 

The image processing framework has been extensively developed to improve the 
detection and mapping of invasive woody weeds from remotely sensed red-green-
blue aerial images from the project UAV. To achieve this, the computer vision pipeline 
for woody-weed detection uses the state of the art strategy of transforming the 
images from pixels into features describing a local region, and then applying a 
machine learning system to autonomously label the feature vectors based on 
supervised training labels.  
 

3.3.1 Human Input for Algorithm-Training  

A supervised classification system has been implemented, where knowledge is 
provided to the computer algorithms through a set of training examples. In this case, 
these examples contain both a local region of the input imagery, and a 
corresponding, manually chosen output label. The self-configuring algorithms are 
then trained on this data in order to learn to recognise the pre-selected classes. This 
is as opposed to an unsupervised method, which would cluster similar image patches 
together without providing control over how the object classes are divided and the 
approach may not allocate the woody weeds to different classes, for example.  
 
In this work, the training data is used at two stages – firstly when considering feature 
selection (where the code to describe appearance is determined), and secondly to 
train a classification algorithm to recognise new examples of the classes in previously 
unseen query images. Because the classifier draws on information from its training 
data, correct labelling is critical to the success of the whole system. To prepare, the 
non-classified imagery was mosaicked onto a map, and overlaid with ground truth 
points collected with a hand held GPS receiver during the field trials. For example, 
Figure 4 shows this ground truth overlay for a region of the Carrum property, while 
Figure 5 shows an equivalent for a region of the Williams property. 
 
The GPS data cannot provide the training examples directly, because both the UAV 
imagery and the handheld GPS will be subject to small errors in geo-referencing. In 
addition, when conducting the ground survey, it was not possible to stand over the 
trees for recording. Therefore, the surveyed points are typically offset from the trees 
by a few metres and manual analysis was used as an intermediate step to provide 
training data that was well registered with the images.  
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Figure 4: Overlay of ground truth data with aerial image mosaic for project Flight 11 (Carrum, 
2009), using a local NE reference frame. 

 

 

Figure 5: Overlay of ground truth data with aerial image mosaic for project Flight 27 (Williams 
Outstation, 2010), using a local NE reference frame. 

 
Human input was in the form of a graphical user interface (GUI) where the user may 
click on the imagery to assign a particular class label. The example in Figure 6 shows 
how the ground truth data can be matched to the aerial imagery, allowing the GUI 
operator to recognise the appearance of different types of foliage (tree appearance 
can change markedly switching from an oblique to a downward looking perspective). 
 

 

Figure 6: Inspection of ground truth data together with aerial data: (A) The ground points can 
be associated with tree crowns manually. (B) This particular survey region of the Carrum 
property in 2009 contained almost exclusively Prickly Acacia (i), Parkinsonia (ii) and Native 
Eucalypts (iii). It should be noted that the vegetation type was heavily dominated by Prickly 
Acacia making the dataset highly unbalanced. 

 
Given the limited number of local vegetation types, for each property a number of 
classes were nominated. In the Carrum property, Prickly Acacia, Parkinsonia, and 
Eucalypts were each assigned a class. In the Williams property, Mimosa and 
Parkinsonia were nominated, while the varied remaining trees were aggregated into 
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a miscellaneous class. In addition, because most of the image pixels do not contain 
foliage, shadow and background classes were added to both class sets.  
 
While it was originally expected that size and shape might help early on in the 
classification process (as feature descriptors), it was found that simply looking at 
local image pixels was more robust at the classification stage: many of the tree 
crowns are irregularly shaped, partly shadowed, or clustered seamlessly with 
adjoining tree crowns. In addition, the Eucalypts often have a separated canopy 
composed of small nearby clumps.   
 

3.3.2 Feature Vectors to Describe Appearance 

The first challenge in a computer vision framework is to define a numerical language 
to represent the appearance of objects in the images. The numerical description is 
not itself a classification, but seeks to provide a vector of features to discriminate 
between the classes defined in the problem. With a sufficiently rich description, a 
machine learning algorithm can be trained to label new query data.  
 
As there are only three colour bands in the UAV images, the approach must analyse 
a local neighbourhood of pixels around each point to get a richer representation. In 
related applications, a wide range of patch-description strategies have been 
employed to describe vegetation texture, including co-occurrence matrix statistics 
[Yu06], multi-scale decompositions such as pyramids [Heeger95], and banks of 
Gabor Filters [Tang03]. In this project, we have sought to determine suitable 
descriptors from the data.  
 
With the many possible visual patterns and corresponding feature dimensions, it 
would be an overwhelming task for a human to design a set of rules and features for 
this problem without computer assistance. Statistical analyses and learning 
algorithms provide an elegant solution to this problem because they can 
automatically form effective pattern recognition on the training data. The following 
section outlines our approach. 
 
Neighbourhood Patch Sampling 
Prior to classification, statistical whitening was used to de-correlate the spectral 
responses of the dataset’s pixels without using spatial information. This does assist 
the analysis that follows, but it was important to do it prior to the manual labelling 
because it was found to improve human interpretation of the data. For example, the 
image on the left of Figure 7 has a strong colour cast that distracts from the 
informative colour extracted on the right, even though the transform is lossless and 
we can switch between them in both directions.  
 
The whitening transform applied as a pre-processing step involves statistical analysis 
of the image pixels. An empirical covariance matrix Σrgb was assessed over the whole 

mosaicked flight describing the empirical dependence between a pixel’s red, green 
and blue channels. Matrices containing the eigenvectors V and eigenvalues D of this 
covariance are then used to de-correlate the channels: 
 

RGBout = [V (D + σI)-0.5 VT ] RGBin 

 
Following the whitening, a sampling procedure was specified for the extraction of 
neighbourhood patches from the aerial images to describe appearance around a 
given point. Instead of simply sampling a rectangle, to simultaneously consider both 
fine detail such as leaf structure, and larger detail such as canopy shading structure, 
a multi-scale sampling construction was defined, where image 5x5 pixel blocks were 
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sampled at 1x, 5x and 9x scale, looking at 5x5, 25x25 and 45x45 pixel regions. This 
sampling pattern is illustrated in Figure 8. 
 

 

Figure 7: An example of the pixel spectral whitening that is applied as a pre-processing step 
before classification to assist both in feature extraction and in the supervised human 
interpretation of the imagery. 

 
 

 

Figure 8: A multi-scale sampling pattern provides a compromise between fine local detail and 
larger scale structural detail with a linear rather than quadratic increase in input 
dimensionality. 

 
This sampling was efficiently implemented by caching coarse block responses at 5x 
and 9x, allowing trivial extraction of the features by accessing cached image 
elements. Because the coarse blocks are potentially costly to extract from the 
imagery, a computationally efficient frequency space convolution has been employed. 
Some resulting multi-scale samples have been visualised below, demonstrating that 
the fine detail in the centre of a patch can capture foliage texture, while there is still 
enough detail in the coarse blocks to capture shadows, crown shape and 
surroundings to put the texture into context. 
 
Stable Features for High Dimensional Data 
Using the above sampling strategy, a patch is described by 225 dimensions resulting 
from 5x5 samples over three bands at three scales. On the other hand, this system is 
intended to start operating effectively from dozens of training labels. In the case that 
there are fewer examples of the rare classes in the training sets than the number of 
dimensions, many learning algorithms will fail to find a data explanation that can 
generalise to new data. A high dimensional feature space is challenging for a 
classification algorithm, because the algorithm needs to use increasingly extensive 
training sets and complex modelling to identify which combinations of dimensions are 
important to the problem. Consequently, it is common practise in vision problems to 
compact the raw pixel dimensions into sets of features.  
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In the literature, the D dimensional sampled vector x is often projected into new d-
dimensional feature vector f using a linear weighting matrix W such that f = Wx. A 
common technique to select W is Principal Component Analysis (PCA) [Jolliffe86] 
that has been used in vision problems such as face recognition [Tsalakanidou03]. 
PCA takes an unsupervised approach, and focuses on minimising the reconstruction 
error by extracting high variance eigenvectors from the empirical training covariance, 
and throwing away the least noticeable detail. However, with the subtle differences 
between classes over all the multi-scale dimensions included in this data, PCA was 
discarding discriminative information. 
 
To reduce the dimensionality of the problem from D=225 down to d<<D, a non-linear 
transformation was instead employed. A visual dictionary of a few reference patches 
P1…Pd has been learnt (unsupervised) using the training data x. The patches were 
selected by clustering the training data (using k-means clustering) into d groups, and 
then using the squared distance to each cluster’s mean to calculate the d distance 
features. In this data, d = 30 reference patches was found to give strong predictive 
performance. An example dictionary is shown below in Figure 9. 
 

 

Figure 9: The means of clusters from the training data –these multi-scale patches allow the 
number of samples to be linear with the width of the patch without sacrificing fine detail in the 
immediate vicinity of the sample. The distance from the clusters to the query patches form a 
lower dimensional space where the classifier can find simple data explanations. 

 
Calculating the squared distance is actually as computationally inexpensive as a PCA 
projection. By expressing f = √Σ(x-Pi)

2  as  f = √(ΣPi
2 + Σx2– 2ΣPix), it can be 

computed using on only three linear projections where the first two can be pre-
computed, and the last uses the cluster centroids as weights.  
 
The vector of distances generalises in a stable fashion from potentially few training 
vectors, as was needed for this problem. If a query point lies between two of the 
reference patches, its distances will lie between the distance patterns of the patches. 
The features were then projected into an over-complete frame, which is equivalent to 
a basis of a vector space, but allows more basis vectors than the dimensionality of 
the space. This acts to make the spatial responses sparse (only having a few non-
zero features at a time), which helps a classifier form simple rules:  
 

W = (ftrain
Tftrain)

-1ftrain  ,  Fquery = fquery W; 
 

3.3.3 Classification  

Having obtained a rich set of discriminative features, a classification algorithm is 
required to map them into class probabilities. Many classifiers in the literature 
(including techniques such as support vector machines and nearest neighbour 
techniques) output a ‘guess’ of the class, while others (including LogitBoost and 
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Gaussian Process classifiers) predict the class as a set of probabilities. The latter is 
the more flexible approach, as it allows the user to identify classifier confidence, or 
even tune the detection process afterwards by applying different thresholds to the 
probability (although the predicted class is usually equivalent) 
 
The probabilistic LogitBoost algorithm has been applied for its strong probabilistic 
predictive performance, coupled with its low computational costs. LogitBoost belongs 
to the boosting algorithm family that improves the performance of a weak learner by 
training an ensemble and weighting their outputs [Freund99]. The model complexity 
is varied through selection of the number of learners in the ensemble, and 
probabilistic outputs are obtained by statistically minimising a logistic loss function. In 
this work, the LogitBoost algorithm has been applied to boost the one level decision 
stump (equivalent to an ensemble of if-then-else rules).  
 
The complexity of the decision rules encapsulated in a LogitBoost classifier is 
controlled by the number of weak learners in the ensemble. The number of stumps is 
optimised using cross validation (withholding some of the training data for testing). 
Too few rules will cause the classifier performance to be poor, while too many rules 
will allow over-fitting, where the classifier can perform well on the training data but 
poorly on the query data.  
 

3.4 Training Set Cross-Validation 

Ten-fold cross validation has been measured over training examples collected from 
the aerial data. Data points were divided into ten random groups. In rounds, nine 
groups have been used for training the classifier, and one group has been withheld 
for testing. The most likely class from the cross validated predictions have then been 
used to build confusion matrices that contain the actual class along rows, and the 
predicted class down columns. These matrices allow us to identify the likely sources 
of error in the open-loop prediction when the trained classifier is either employed to 
batch-classify a region of interest, or an entire survey area. Within the confusion 
matrix, an ideal classification result is to place all outputs in the correct class, 
creating a fully diagonal matrix. To assist in the interpretation of these matrices, 
precision (the fraction of positive detections that are true) and recall (the fraction of 
true class occurrences that were detected) statistics have been derived. 
 
We note that the survey regions have been pre-selected for their heavy weed 
infestations, which has led to an oddly unbalanced classification problem where the 
data contains far more woody weeds than native trees (in fact, our results later in the 
analysis suggest that at the time of our 2009 field trials, 98% of the tree crowns in the 
chosen Carrum survey region were woody weeds). Unbalanced data is a difficult 
problem for a classification analysis to overcome because the ‘best accuracy’ 
behaviour is to forget about rare classes and learn a model for the frequent classes 
only. For example, the classifier that says ‘all trees are woody weeds’ would score a 
98% accuracy in the Carrum data, but clearly the results would not be meaningful if 
we train for this criterion. If (as is the case here) all classes are important to detect, 
then this can be prevented through prioritised sampling from the less from the 
frequent classes. By sampling a more balanced training distribution, the classifier has 
been able to consider the possibility of the infrequent classes occurring, at the 
expense of a higher exposure to false positives and average error rate.  
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Carrum Property - 10 fold cross validation  
 
Table 1: Confusion Matrix from 10 fold cross validation 

 
 

 PA PK EU SH BG 

PA 66 5 0 0 4 

PK 5 24 0 0 0 

EU 0 0 30 0 1 

SH 0 0 0 33 0 

BG 0 1 0 0 49 

 
Key:  PA (Prickly Acacia), PK (Parkinsonia), EUC (Eucalyptus), SH (Shadow), BG 
(Background) 
 
 
Table 2: Precision and Recall Statistics 

 

Mean Accuracy 92% PA PK EU 

Precision % 88 83 97 

Recall % 93 80 100 

 
We conclude that there is excellent discrimination between the natives, woody 
weeds, shadows and background. A fraction of the prickly acacia have been missed 
and labelled as background – examination of the image tiles later suggests the 
foliage can be very transparent when viewed from above and likely the background 
was showing through due to lighting conditions. 
 
Between the woody weeds, the classifier performance is not as strong, but it still 
achieves precisions of 88 and 83% for PA and PK respectively. These woody weeds 
are occasionally confused due to their similar size, shape and colour, although the 
classifier is correct the majority of the time. Later inspection of the images shows this 
confusion lies largely in the shadowed parts of the tree crown and can be post 
processed using techniques such as median filtering.   
 
 
From the ground truth labels, we were able to confidently cross reference sufficient 
labels of mimosa and parkinsonia woody weeds to support classifier training. A 
variety of other unlabelled species were present in this survey region and have been 
grouped into a general class for classifier training purposes. 
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Williams Outstation – 10 fold cross validation 
 
Table 3: Confusion Matrix 

 
 

 MIM PK OTHR SH BG 

MIM 
22 3 1 0 0 

PK 2 23 0 0 1 

OTHR 2 1 20 1 0 

SH 0 0 0 12 0 

BG 0 0 1 0 21 

 
Key: MIM (Mimosa bush), PK (Parkinsonia), OTHR (other trees), SH (Shadow), BG 
(grass/background). 
 
 
Table 4: Precision and recall statistics 

 

Mean Accuracy 89% MIM PK OTHR 

Precision % 85 88 83 

Recall % 85 85 91 

 
The confusion matrix shows that the classifier has performed very well in separating 
tree crowns from the background, and also well at separating the nominated species 
(mimosa and parkinsonia) effectively. A richer set of ground truth labels would enable 
the third general class to be split into additional categories, and it is also noted that 
the slightly lower overall accuracy compared to the previous validation is likely due to 
the less extensive label data available. It is expected that more labelling would have 
improved the classifier performance to the level of the previous scenario over the 
Carrum site. 
 

3.5 Comparison to Project B.NBP.0474 

The results from the Williams Outstation and Carrum Property are compared to those 
from the previous project (B.NBP.0474).  The vegetation classes are extracted from 
the confusion matrices to compute the overall precision and recall statistics. 
 
Table 5: Precision and recall statistics 

 

 PK PA EUC ME MIN Average 

2011 Precision % 48 - 84 86 15 58.3 

2011 Recall % 53 - 85 83 20 60.3 

2012 Precision % 85 88 97 - 85 88.8 

2012 Recall % 82 93 100 - 85 90.3 

 
Some classes are missing due to the slightly different evaluation sets used. Overall 
there is a clear improvement in the classification accuracy in the current approach. 
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The overall precision improves from 58.3% to 88.8%, whereas the recall improves 
from 60.3% to 90.3%. The improvement is due to the more expressive feature 
descriptors used in this project: in B.NBP.0474 only the local pixel colour were used 
for classification whereas, in this project, multi-scale image patches were used to 
encapsulate the regional image properties. 
 

3.6 Visualisations of Classified Images 

While validation data does not exist for all the pixels in the image datasets, the 
visualisation of classified outputs can still be very informative in assessing the 
strengths and weaknesses of the classification framework. Efficient Matlab code has 
been implemented to load mosaicked image tiles, extract features from the imagery 
(intelligently handling tile edges by loading adjacent views), and pass these features 
to the pre-trained classification algorithm. The software currently takes approximately 
3 seconds to fully process a raw UAV frame on a consumer-grade laptop, or more 
relevantly, about 3 seconds to process a 35x35m tile of mosaicked imagery. This time 
includes image loading, feature extraction and classification. This gives us the option 
of either processing a raw flight (taking approximately 12 hours), or mosaicking prior 
to classification taking an equivalent of 3 hours because redundant overlap has been 
removed. The smaller regions of interest only take a fraction of this time. We also 
note that the processing of image tiles is easily parallelisable because different 
computer cores can load and classify frames simultaneously. Distributing the 
classification work onto a cluster or even a multi-core desktop has not been 
implemented, but would easily allow the mosaicked-tile classifications to be 
completed within 1-2 hours of the image mosaic being completed.  
 
The images below in Figures 10-16 are a selection of outputs from the batch 
classifier. In these images, there are more classes than available display channels. 
Thus, target species have been mapped to red (Prickly acacia in Carrum and 
Mimosa in Williams), green (Parkinsonia) and blue (Eucalypt in Carrum, general 
OTHR class in Williams). In addition, shadows have been mapped to a black output, 
and background to a white output. The most likely class is used to colour the output 
image, overlaid with a 25% weight on the original RGB shading: 
 

 

Figure 10: Successful detection of prickly Acacia crowns and their shadows. (Left: original 
image, right: classifier visualisation) in the Carrum dataset. 
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Figure 11: Detection of a eucalypt crown (blue) amongst shadow and a joined canopy of 
prickly acacia (red). The speckled detection pattern of the eucalypt is related to the patchy 
appearance of the canopy.  
 
 

 

Figure 12: Detection of general trees (blue) against mimosa (red) and parkinsonia (green) in 
the Williams dataset. 
 
 

 

Figure 13: Correct classification of prickly acacia in a low contrast scene. Also note some 
trees appear to be dead or defoliated, and have been detected as shadows with no 
associated crowns. However, we also note that because of the multi-scale spatial sampling, 
the shadows actually strengthen the detection of these free standing crowns. 
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Figure 14: Correct classification of Eucalypt, prickly acacia, shadow and ground. 
 

 

Figure 15: The fraction of parkinsonia in the training data has been reduced to prevent false 
positives on the highly unbalanced prickly acacia class. This means they are still detected 
(green), but part of the crown will usually appear as prickly acacia (red). This particular 
phenomenon has been addressed in post processing.  
 

 

Figure 16: Dead trees can have a similar appearance to an isolated patch of eucalypt. For 
example, these dead trees have caused the classifier to exhibit a small response to the 
Eucalypt class (which has been subdued with median filtering later), although the majority of 
these are classified correctly to begin with.  
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3.7 High Level Analyses 

The above Figures 10-16 show that the classifier is generalising its detection 
behaviour reliably beyond the labelled points in the training data. Once the targets of 
interest have been classified over the image pixels, it becomes possible to propagate 
the information into more accessible information modalities such as maps and survey 
plans. Prior to doing these analyses, a very simple post-processing was applied to 
the classifier outputs – the standard closing morphological operator was applied to 
close the gaps in each class output to handle problems such as the patchy Eucalypt 
crowns, or the partial mixing of Parkinsonia crowns. 
 
3.7.1 Classified Regions of Interest 

This section presents batch classified imagery, both integrated and decoupled from 
the mosaicking results.  
 
Figures 17 and 18 show a map, and the corresponding classifications produced 
using the raw UAV navigation data to project each frame to a flat ground model. If 
classification is done pre-mosaicking then the narrow field of view makes it difficult to 
capture multi-scale data, so a central patch with principal component features has 
been used for this specific case.  
 
 

Figure 17: Projected aerial imagery of the Flight 11 survey region. This is simply a flat ground 
projection from the raw navigation information. The new mosaicking system used in the 
following figures has further improved the alignment quality using visual cues together with 

the UAV navigation solution. 
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Figure 18: A large scale visualisation of individual UAV-frame classifications clearly indicates 
the unbalanced nature of the classification problem – the survey site is dominated by prickly 

acacia. However, there are some other problems with tree crown alignment at the fine scale.  
 
The scenarios below have used the multi-scale features. They also benefit from 
mosaicking to align the images. If we first mosaic the imagery (aligning the imagery 
using both navigation data and visual cues as in Section 3.2), then the map output is 
spatially consistent, the amount of redundant classification processing is reduced, 
and we can extract consistent, larger scale features across the edges of tiles. This 
has produced the high fidelity regions of interest (Figures 19 and 20) 
 
 

 

Figure 19: A mosaicked and classified region from the Carrum site. Prickly Acacia (red), 
Parkinsonia (Green) and Eucalypt (Blue) are marked on the map. Coordinates are given in 

metres in a local reference frame. 
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Figure 20: A mosaicked and classified region from the Williams outstation site. Mimosa (red), 

Parkinsonia (Green) and Other trees (blue) are marked on the map. 
 

3.7.2 Delineation of Tree Crowns (enabling Tree Counting) 

As discussed previously, the problem of finding individual tree crowns in a fully 
connected canopy is known as tree crown delineation. This is a topic of interest in the 
remote sensing community and a number of publications have used heuristics such 
as finding local maximum shading peaks [Wulder00].   
 
Tree crown delineation is critical to estimating tree counts, as well as providing 
spatial co-ordinates in terms of latitude and longitude. An effective technique has 
been found by investigating the above mapping results and considering two distinct 
cases: some trees are sparse and fully separated, while others are part of a 
connected canopy. These cases are depicted in Figure 21: 
 

Figure 21: The two distinct tree crown delineation cases are handled differently: (Left) 
Connected Canopy Silhouettes and (Right) The relatively trivial sparse case.  
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In the sparse case, it is relatively easy to traverse sets of connected pixels using a 
standard algorithm such as breadth first search. Figure 22 below depicts the 
classifier detections, drawing red dots onto the tree crowns: 
 

 
Figure 22: For the simple case of sparsely connected tree crowns, their centroids can be 
obtained with image processing algorithms to extract the centroid. Left: raw classifier outputs, 

Right: Centroids marked onto the RGB image. 
 

The second case is much more difficult. We are faced with the task of breaking the 
silhouettes into crown regions – illustrated below in Figure 23.  
 
 
 
 
 
 
 
 
 
 
 
Figure 23: The goal of the cluster delineation algorithm is to split a classified silhouette of a 
cluster of trees into estimates of the locations of the tree crowns that compose it. 

 
An effective algorithm has been developed for this second case. The grouped 
canopy is detected by running an area analysis on all the connected regions. Those 
with abnormally large area (compared to the mode of the detections) are assumed to 
be clusters, and the number of constituent trees is estimated based on the group 
canopy area. The spatial coordinates of all the constituent pixels are clustered using 
the k-means clustering algorithm, relying on the principle that the pixels of each 
crown will be closer to its centre than to any other crown’s centre. This approach has 
proven highly effective – these estimated crowns are drawn with red * markers rather 
than dots so the user can see which algorithm has been applied in each case. 
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Figure 24 - a combination of single and connected tree crowns has been split into an 
estimated set of tree crown coordinates. Those obtained with the centroid algorithm are 

marked with red dots; those with the clustering algorithm are marked with stars.  
 
Inspection of Figure 24 shows this algorithm is producing state-of-the-art delineation. 
It is particularly effective on almost-separated trees. This analysis relies on the 
mosaicking process to avoid counting tree fragments multiple times, and has been 
applied to the regions of interest displayed previously to obtain some tree count 
estimates. Cover area can also be easily estimated by counting pixels of each class.  
 
 

Carrum ROI (264300m2)   Williams ROI (225300m^2) 
    

Class Trees Cover % CLASS Trees Cover % 

PA 2230 13.2 MIM 583 0.9 

PK 20 0.3 PK 49 1.4 

EUC 16 0.2 OTHR 1007 3.6 

 

 
Figure 25: A general view of part of the region of interest labelling tree crowns of different 
types. Note that there are some gaps in the UAV coverage that are not classified – this cross 

track error is caused by wind gusts rolling the UAV. 
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3.7.3 Path planning case studies 

Once tree crowns in the classifier output images have been delineated into spatial 
coordinates, the possibility of computer-aided planning comes into play. Depending 
on the desired application, computer aided path planning has the potential to 
program waypoints into a handheld GPS system for human officers to conduct further 
inspection and treatment, but also opens the possibility of a robotic system planning 
actions responding to the survey information, for example sending the project’s 
hovering aerial vehicle in for a closer look, or navigating a ground robot to administer 
treatment. These possibilities are explored here through a number of planning 
scenarios built around the mosaicked region of the Carrum property.  
 
In all the below cases, the path planning problem has been constructed by forming a 
graph over the survey region. Each target tree is assigned a node, and edges 
between all pairs of nodes represent potential paths the human or robot would take 
to traverse between them. Consequently, these edges have associated cost 
penalties.  For example, to visit all the non-acacia trees in this scenario, and 
assuming we travel in straight lines between them, the planning graph resulting is 
depicted in Figure 26. 
 
 

 
Figure 26: A graph over a set of target trees (nodes) in the constructed path planning 
problem, with direct edges between them. This forms a large space of paths from which to 

select a tour that visits each target once. 
 
Even in its simplest form, selecting a tour of the graph is a challenging problem. The 
core task is to visit each of the targets using a path that minimises the total cost. For 
more than a handful of targets, this becomes a daunting combinatorial problem of N! 
possible orders to visit N nodes. In fact, this is an applied form of the well understood 
travelling salesman problem from the computer science literature, for which it has 
been proven that it is not computationally possible to solve the problem in polynomial 
time. Instead, we must approximate the optimal path. 
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There have been many efficient approximations proposed for this problem 
[Hassin00], some with performance guarantees, and others with a high probability of 
finding a good path. In this work, both are applied. The deterministic Christofides 
approximation algorithm is initially employed to generate an approximate path 
guaranteed to be at worst 50% longer than the cost-optimal path. This is then 
improved by using the 3-opt algorithm to consider randomly re-ordering parts of the 
best known sequence searching for a cheaper solution. This typically untangles the 
path from crossing over itself and can further improve this bound close to 5% above 
optimal. Thus the resulting paths are expected to be near optimal while guaranteed 
to be within a certain excess. 
 

A complete tour of all detections 
Our initial treatment is to assume that distance (calculated by the length of the line 
between nodes) is the cost of a path. This allows us to assess the problem of visiting 
all the trees. To avoid an excessive waypoint list, the tree crowns have been 
collected over a 20 metre grid, determining the mean position of trees in each cell (if 
there is only one tree, the point will lie over the crown).  It is assumed the human or 
robot will want to start and finish at a station which has been added as a node in the 
graph marked with an X. The resulting tour is shown in Figure 27. 
 

 
Figure 27: A naïve path visiting all tree detections produces an inticrate tour of the region.  
This is certainly shorter than a systematic raster scan, but in many cases would not be an 

ideal strategy. 
 
Firstly, it is immediately apparent that the tour is still daunting from an operations 
perspective. It is guaranteed to be shorter than a simple raster scan, but perhaps too 
complicated for a human to realistically follow. In this case, a UAV collecting a 
secondary modality of data could be deployed, or the path could be simplified. In this 
case, the path has been smoothed by generating the straight line path in one metre 
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steps, and applying a weighted average filter independently in the x and y 
dimensions. This leads to a smooth continuous path that is still guaranteed to fall 
within a certain range (in this case approximately 5) metres of the target points. 
 

A prioritised path for a hovering vehicle 
A hovering UAV such as the secondary, rotary wing platform used in the original 
project has been considered. It would be useful to send this vehicle for additional 
image data, but not efficient to re-visit all detections. Strategies such as pointing a 
gimballed camera would allow the vehicle to travel close to targets, while it is 
important that the path is smooth and continuous, so the smoothing has been 
increased so the path lies within 15 metres. We consider that a reasonable task 
would be to fly over the areas where the less common classes were found (which in 
this case corresponds to visiting all the trees that are believed to not be prickly 
acacia).   The resulting tour is shown in Figure 28. 

 
Figure 28: a smoothed travelling-salesman solution to visit a subset of the targets, assuming 
that traversibility is dominated by distance and path smoothness. The path was not 

constrained to exactly pass through the tree crowns. 
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A 100-waypoint path for a handheld PDA 
A human can be expected to investigate their surroundings, so the main advantage 
of a planning system for use with a human survey team would be to identify an 
efficient ordering of waypoints, and to place virtual GPS markers to prevent the field 
team from missing locations (which is very easy to do in a large forested region). This 
can be achieved simply with a coarser block resolution, and omitting the path 
smoothing which would be difficult to convey over a GPS waypoint list, resulting in 
the ordered waypoints (black dots) shown in Figure 29. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 29: A path with reduced waypoints (100 not including the start location) to ensure it is 
manageable on a GPS system and no regions are missed. 
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A traversable path for a ground vehicle: 
In the previous cases, the cost of traversal has been associated with distance alone. 
However, it is possible to consider the terrain structure based on the mapping data 
collected. In this example scenario, a ground robot with motion constraints is 
considered. For example, the vehicle is primarily expected to navigate around trees. 
In addition, it has a secondary goal of information gathering and should avoiding 
travelling over empty ground when an alternative path that gathers visual information 
is available.  
 
These two criteria have been constructed as a simple spatial traversal cost function 
penalising movement through one pixel to the next in the map’s image-space. Path 
cost can then be evaluated as the cost as the shortest path through the image graph. 
Connections have been simulated at the pixel level by treating the image as a very 
large (but very sparse) 8-connected graph (with diagonal connections weighted to 
accommodate the additional length). This function, and the connectivity used to apply 
it to the image, is shown in Figure 30 below. 
 
From this non-linear connectivity mapping, it is possible to infer the cost-optimal 
paths by following the minimal cost cells back from the destination to the source of 
the simulation. This simulation has been run from each planning graph node to obtain 
a graph with equivalent structure, but non-trivial edges and edge costs. 
 
 

                
 
Figure 30: example cost function dependent on distance to the nearest tree. It heavily 
penalises distances shorter than 10m, also slightly penalises distances longer than 40m 
(empty space). Unexplored areas have also been made costly to traverse (to avoid going 
through trees that weren’t surveyed). There is also a small positive base cost penalising 

distance travelled. 
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The cost function and pixel connectivity are then applied to the image using Dijkstra’s 
shortest-path algorithm to propagate paths outwards from each target to all other 
points in the image space. This produces a non-trivial edge cost map between the 
source point and any other point: 
 

 

Figure 31: Left: The cost-function image, and Right: the result of propagating paths from the 
yellow dot in the top left corner to arbitrary positions in the cost map. Note the highly nonlinear 
patters induced by the tree positions. 

 
 
 

 

Figure 32: The cost-optimal paths between nodes (targets) are no longer straight lines due to 
our constructed cost function, but the travelling salesman algorithms can still find a tour 

provided these costs are reflected in the graph edge weightings. 
 

Interestingly, it is apparent that with the chosen cost function formulation, the path 
finding tends to converge into common ‘roads’ between the nodes, differing mainly at 
the end points. We will look at these roads shortly. It was also considered that the 
ground vehicle will be able to start and finish at different points (such as gates or 
roads) without having to return to the origin like an aircraft. This can be achieved by 
placing a start and finish node into the graph with a zero cost edge connecting them.  
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A path through this graph can then be found using the same travelling salesman 
approximation techniques as were applied before: 
 

 

Figure 33: a cost-optimal tour of all the target nodes from start to finish, following non-linear 
paths based on the constructed cost function. Note that it is built of edges from the above 
graph representation. 

 

Now, a close inspection of the path in Figure 33 (a closer view is shown in Figure 34 
below) explains the converging roads between nodes - the paths are locally optimal 
with respect to the cost function, visiting nodes in the target set (which is 
compulsory), but also opportunistically following the other trees that were not directly 
included in the waypoint list. The paths weaving between trees to avoid collisions, but 
the high cost of taking a longer path leads to behaviour such as using the perimeter 
of the dense infestation for quick traversal. 
 
Clearly this path would be better than the straight line plan when a ground robot is 
used.  
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Potentially, a simple cost function like this could be tuned to be a good approximation 
for the traversal goals of using a quad-bike (manned or autonomous), for example. 
 

     
 
Figure 34: a close view of the tour path selected in this planning scenario. Left:. Paths weave 
around trees due to proximity cost. Right: Paths follow the tree line rather than going through 
the trees or using empty space, avoiding both collisions and wasted data collection 
opportunities (because empty space is slightly penalised the robot is willing to take a slightly 
longer path to pass by trees of opportunity along the way). 

 
 

4 Conclusions 

The computer analysis framework presented in this report reflects progress towards 
the robust and reliable classification of woody weeds in aerial imagery. We also 
extend the analysis to large scale mapping, and high level analyses of the classified 
images. The research produced by this project could potentially provide support for 
management tasks such as early detection, assessing the extent of an infestation 
through detailed up to date mapping of survey regions, or even planning an efficient 
route to inspect and treat the detected targets. Illustrative results have been 
presented for UAV imagery collected over the Carrum and Williams properties in Julia 
Creek, Queensland Australia. 
 
A mosaic-processing pipeline was developed to render large-scale, geo-referenced 
mosaics from the UAV data, incorporating a three-dimensional terrain structure model 
to register the images rather than projecting them to a flat ground. These structural 
models allowed the imagery to be rendered as map mosaics with consistent spatial 
area, consistent spatial dimensions and without redundant overlap or doubling 
counting of the objects classified in the imagery data. 
 
A framework to compress the image textures into features relevant to the UAV aerial 
data has been demonstrated. The proposed features have been coupled with a 
popular machine learning approach to obtain estimates of the class of unlabelled 
objects seen in the aerial imagery. This learning framework has been designed to 
work with a relatively small number of example image patches that can be easily 
specified by a human user exploring the image data through a graphical user 
interface on their computer. In this case, the training/validation data was cross 
referenced with a limited ground survey of the region conducted by ACFR personnel.  
 
Following the design and training process, efficient software has been created to 
tractably batch-process multiple image frames. While the classification algorithm is 
performing well in cross validation with up to 92% accuracy, it can’t interpret the 
scenes in the aerial images at the comprehension level of a human. Humans can 
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intelligently handle unexpected out-of-training data such as animals, artefacts and 
gaps in coverage. The primary advantage of an automated vision classifier is 
therefore not in its flexibility, but in the fast processing of overwhelming data that 
would be time consuming and tiring for a human. This will both reduce analysis costs, 
and provide consistent attention to detail over large databases.  
 
This classification procedure has been integrated with the large scale spatial 
reconstruction pipeline to efficiently produce classification maps that are accurately 
aligned across the edge of image frames. This has allowed for simple and accurate 
delineation of the detected tree crowns, enabled the estimation of statistics such as 
tree counts, and allowed the exploration of efficient traversal routes between targets 
of interest using computer aided planning. An added advantage of integrating the 
classification and mosaicking systems is that the total amount of classification is 
reduced by avoiding the redundant processing of overlapping imagery - although the 
equally expensive cost of mosaicking overlapping imagery is introduced, we do not 
need to double up on both.  
 
There are some cases in the data where it is apparent that more discriminative 
spectral features would be helpful. Because sensor technology is continuously 
advancing and evolving, an updated UAV payload system in the future could include 
bands targeted to the vegetation discrimination problem, such as LIDAR sensors to 
measure height or near-infrared bands that are known to simplify vegetation 
discrimination and provide additional reliability. It has also been found that gaps occur 
in the mosaicked imagery despite the design intentions of the flight plans. These are 
primarily caused by cross-track error induced by wind gusts rolling the UAV platform. 
The sensor footprint control could be improved by either researching flight control 
algorithms that consider both the sensor footprint and the UAV dynamic response 
when following the flight plan, or by investigating an independently gimballed camera 
for full control over the sensor footprint. There is also scope in the future to consider 
other forms of vehicle such as an autonomous quad-bike to obtain ground 
perspectives and directly access the trees for treatment, using the aerial survey 
information for mission planning.  
 
In this project, our findings suggest that trees can be very reliably distinguished from 
the ground, and within the detections woody weeds can be effectively distinguished 
from native species. While not as reliable, in the majority of cases, types of woody 
weeds can be distinguished from each other. The impact of automating the analysis 
of UAV data is that, after a small amount of training from a human, the classification 
system can automatically interpret the data for potentially much larger areas, 
reducing the dependence on costly manual analysis, and offering affordable, up to 
date surveying, mapping, detection and planning capabilities in the field. 
 
 

5 Potential Future Work 

5.1 Algorithm Applicability to other Environments 

The algorithm pipeline developed and implemented in this project can be applied to 
different datasets collected at different locations and/or at different times.  
 
If there are no major changes to the environmental settings (similar lighting 
conditions, same type of vegetation species and background) the algorithm can be 
applied without retraining.  
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If the environmental settings have changed significantly, or a new vegetation species 
is detected, then retraining is required, although no changes are required of the 
algorithm itself. That is, a selection of images from the new dataset is provided to the 
expert who chooses the features of interest and the algorithm simply learns the new 
model. Further extensions of this work are in active learning, where the system itself 
chooses features to build a classification model and only queries the expert when it 
wants to improve on the confusion matrix that it self-generates. These techniques are 
based on statistical information gain principles and remove even further human effort 
required in trawling through the images.   
 
Thus a wide range of training data (i.e. different environments, different species, etc) 
creates a broader system implementation profile. As the number of models increase 
then a manner by which appropriate model selection occurs is required. New 
approaches to addressing this challenge are in the use of hierarchical classification. 
This is where a library of different models is learnt from different datasets 
representing new environments and/or species (as discussed above); and a scene 
classification algorithm based on logic and rule-based approaches is developed that 
decides on the best model to use for a particular environment automatically (based 
on more general environmental characteristics such as the overall colour of a large 
scene or texture changes).  
 
As observed in this project the classification performance relies heavily on the feature 
descriptors selected.  The multi-scale feature descriptor outperforms the pixel colour 
based features used in B.NBP.0474.  Another area worth investigating is to apply 
feature learning on the image dataset. Feature learning captures the feature 
descriptors from the dataset itself instead of requiring a human operator to perform 
feature selection and calibration. This would improve the classification performance 
further and at the same time reduce human effort required in calibration across 
different environments. 
 

5.2 UAV with Hyperspectral Sensors 

It is technically possible to mount a multi or hyperspectral sensor on the current UAV 
platform. There are a number of new sensors on the market that could easily be 
implemented.  
 
The multispectral sensor typically provides an extra band in the near infrared (NIR) 
spectrum, thus allowing for the calculation of Normalised Difference Vegetation Index 
(NDVI) that can be very useful in vegetation segmentation.  
 
The hyperspectral sensor can collect much higher spectral resolution data, in the 
order of hundreds of channels compared to the three-channel colour images 
collected currently. The hyperspectral data can be used to generate a spectral shape 
of different vegetation, and can potentially increase the discriminative power of the 
classifier. More interestingly would be to fly over vegetation during flowering. This 
would easily provide discriminative power beyond current approaches but would 
increase the difficulty of flight operations because of the short temporal window when 
flowering occurs.  
 
While multi and hyperspectral data can potentially provide better classification results 
it is also more difficult to collect repeatable and comparable data. This is because the 
sensor is more sensitive to changes in ambient lighting conditions compared to a 
three-channel colour camera, and this can potentially result in greater effort required 
for pre-mission calibration. Furthermore, the pixel resolution of multi and 
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hyperspectral sensors are orders of magnitude less than those of the three-channel 
colour camera (for comparable cost) and hence would limit its applicability in farm 
and agricultural situations for the time being.  
 
It should also be noted that in B.NBP.0474 we demonstrated that one could combine 
the high pixel power of a three-channel colour camera, obtained from a UAV, with 
lower resolution hyperspectral data obtained, from high altitude manned aircraft, to 
allow for classification over large areas. This itself would be interesting to conduct as 
a follow up study over larger areas and different environments, or it could also be the 
method applied in a single UAV flight operation. That is, flying at higher altitudes with 
the hyperspectral camera on a UAV would provide greater flight range capabilities (a 
larger portion of the farm is mapped), whilst providing very similar classification 
results to the high resolution three-channel colour camera after the correlations 
between the two sensors systems are learnt.  
 

5.3 Unmanned Ground Vehicles  

Unmanned Ground Vehicles (UGVs) will become a significant tool for the farm of the 
future. Immediate applications include greater discrimination of vegetation (because 
of its closer proximity and its greater capability of carrying more sensors); an ability to 
potentially treat weeds autonomously (which would also feed off the path planning 
algorithms presented earlier in this document); tracking and potentially even herding 
cattle; and the monitoring of infrastructure. Two examples are presented in Figures 
35 and 36. Both systems have been developed at the ACFR. The Argo vehicle is 
used in many defence and infrastructure projects, and the Segway system is 
currently being used in a horticulture project to look at individual tree classification 
and monitoring of soil conditions, and in a dairy farm project to look at soil and fodder 
condition as well as the monitoring of cows.  

Figure 35: the Argo autonomous vehicle was developed at the ACFR with the aim of building 
an intelligent multi-purpose platform that could be used in unstructured and undulating terrain. 
The system is equipped with various laser, radar and thermal sensors, and is capable of long 
distance and beyond line-of-sight operation.  
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Figure 36: Shrimp is an electric powered UGV that was developed at the ACFR to carry 
multiple sensors systems and conduct real-time segmentation and classification of the 
environment. It has a wide sensor capability that allows for the development of simultaneous 
in-ground and out-of-ground environment models. It is currently being used in a project 
sponsored by Horticulture Australia Limited for tree and fruit segmentation, and in an internal 
University of Sydney project to look at monitoring of ground nutrients and cows on a dairy 
farm.  
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6 Appendices 

6.1 UAV Flight Platform Summary 

The UAV platform used to acquire data in the proceeding project was equipped with 
an imaging payload system including a downward pointing camera, and a navigation 
system for geo-referencing. Specifications of the payload components are provided 
below in Table A1: 
 

Vision Camera Hitachi HV-F31 IMU Honeywell HG1900 

Sampling Rate 3.75Hz Sample Rate 600Hz, pre-
processed to 100Hz  

Field of View 28o x 22o Accel. Noise (1σ) 0.05m/s2 

Resolution 1024 x 768 pix Gyro Noise (1σ) 0.05o/s 

Angular 
Resolution 

0.0285o Accel. Bias(1σ) 0.05m/s2 

Ground Resolution 3.7cm/pix @ 100m, 
18.6cm/pix @ 500m 

Gyro Bias (1σ) 0.05o/s 

Ground  
Footprint 

38x30m @ 100m, 
190x150m @ 500m 

  

 

 
GPS Receiver 

Novatel OEM5, 
differentially 

corrected 

Sample Rate 5Hz 

Position Error (1σ) 1m 

Velocity Error (1σ) 10cm/s 

 
Table A1: Sensor Payload Specifications: The sensor payload consists of an IMU, GPS 
receiver and downwards-mounted colour monocular camera. 
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6.2 Julia Creek Flight Trial Patterns 

The two sites surveyed in 2009 and 2010 belong to the Carrum (Figure A1) and 
Williams (Figure A2) properties respectively. Given limited prior knowledge about the 
regions, UAV flights were planned to cover highly vegetated regions (such as along 
riverbeds). These flights have been conducted at 100m (small swath, 4cm/pixel 
resolution) and 500m (large swath, lower resolution). For the classification analysis 
conducted in this project, the high resolution flights have been used. Specifically, we 
have focused on one low altitude flight from each site as case studies. 
 

 
Figure A1: Flight paths for Flights 10, 11, 15, 16 and 17 at the Carrum farm site. Shown 
underneath the flight paths is low resolution map imagery of the area available from Google 
Earth.  

 

 
Figure A2: Flight paths for Flights 12, 13 and 14 at the Williams outstation site. Shown 
underneath the flight paths is low resolution map imagery of the area available from Google 
Earth. 
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6.3 In-Field Weed Identification 

Manual ground truth collection with a handheld GPS unit has been conducted within 
the survey regions (concurrent with flying). Surveyors were familiarised with the 
appearance of the weeds and other tree species (Figure A3), and data points were 
collected using a handheld GPS unit.  
 
 

       

Figure A3 – Ground based photographs of different woody weeds taken by the ground truth 
survey team: left, Prickly Acacia and right, Parkinsonia. 

 
 
Trees that were labelled were recorded and cross referenced with the aerial imagery 
to investigate their appearance from above (which can be surprisingly different to on 
the ground). An example of these class labels is shown below in Figure A4: 
 

 
Figure A4 – Ground Survey Data mapped onto the Carrum Farm Site: The green lines 
indicate the paths of different flights in the Carrum area while the red points indicate the 
locations of surveyed tree crowns. 
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