

final report

Project code:	P.PIP.0153
Prepared by:	Anthony Boarer
	Keith Engineering (Australia) Pty Ltd
Date submitted:	May 2010

PUBLISHED BY Meat & Livestock Australia Limited Locked Bag 991 NORTH SYDNEY NSW 2059

Solid Waste Boiler Combustion Trial -Reduction in Fossil Fuel Derived Energy in 5 years at Dinmore Food Processing Facility

This research was a joint collaboration between Meat & Livestock Australia and JBS Australia.

This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA.

Abstract

This project is an important facet of a multi-stage plan by AMH to achieve a better than anticipated 10% reduction in fossil fuel derived energy in 5 years at its Dinmore facility.

The basis of the following trials was to prove firstly whether a super-heated steam dryer could adequately dry Australia Meat Holding's waste streams and secondly whether the efficiency of this process will fit in line with the overall project.

The trials were run over a period of five days, the first three days on week one were used for obtaining machine set points and operating temperatures and on week two the last two days were used to obtain energy figures that are represented in the mass balance.

The Super-Heated Steam Dryer dried all raw materials presented to a desired moisture content and we experienced none of the problems associated with conventional drying technology. Due to the physical nature of the sludge and the way it was presented to the dryer drum a higher than originally quoted energy figure was realised. This figure would be reduced with a more efficient feed system and a longer drum for product retention.

The dryer does exhaust a small amount of non-condensable gas, which has an odorous compound. This gas has been sampled and results will be forwarded to AMH.

The dryer is capable of processing the sludge and waste stream mixture at lower operating temperatures (350°c) although at higher temperatures it is expected that the energy efficiency will increase as the temperature rises. The super-heated steam heat to energy curve is higher than that of conventional air dryers.

Overall, the trial determined that the process was not sustainable due to the high moisture content of the dried materials. The cost of further drying the materials for produce more efficient burning was not viable. Further development in efficiencies of drying technologies and approaches are required in order for this process is to be considered viable.

Contents

Page

1	Background	4
2	Project Objectives	4
3	Methodology	4
4	Observations	6
5	Opportunities arising	11
6	Outcomes	

1 Background

Australia Meat Holdings Pty Ltd (AMH) is recognised as one of the nation's 250 largest energy users. To reduce their reliance on imported energy, AMH have established a corporate target of achieving a 10% reduction in fossil fuel demand at their Dinmore food processing facility within a 5 year period. One potential method of achieving this goal is to recover energy, in the form of electricity, steam and/or hot water from the solid waste streams currently generated at the site.

Energy could potentially be recovered or saved by in an overarching strategy by:

- Collecting and combusting the biogas generated by the existing anaerobic ponds;
- Dewatering the organic solid waste streams to reduce the energy used to transport the solids offsite for disposal; and/or
- Using thermal methods to recover energy from the dewatered organic solid wastes.

To further explore these possibilities, AMH entered into a "Partnership in Innovation" project grant with Meat and Livestock Australia (MLA) to conduct trials to assess the technical and financial risks associated with these opportunities for energy recovery. In particular, the study focused on developing an integrated process solution for utilisation of solid waste feed materials in order to confirm capital and operating costs for a full-scale commercial operation at the AMH Dinmore site.

The purpose of the project was to further develop the drying technology and efficiency over an extended period using the AMH Dinmore solid waste feed material in order to confirm capital and operating costs for a full-scale commercial operation. In addition, the project proposes to utilise the dried material as a fuel for combustion trials in the GE coal-fired boiler and examine the energy profile and environmental performance of the boiler under varied feed conditions utilising both coal and dried solid waste separately and in combination.

2 **Project Objectives**

The overall objective of this project was to. The specific aims were to:

- Determined the capital and operating cost economics of the Keith Engineering SHS dryer technology to process AMH Dinmore's solid waste at a commercial scale; and
- Assessed the technical viability of utilising the dried solids as an alternative source of fuel in AMH Dinmore's GE coal-fired boiler.

3 Methodology & Key Activities

The pilot study was completed in a number of phases, as follows:

1. Project team leaders will identify in a written report accepted by MLA: - Various consultants and expertise required to conduct the Project. Brief risk assessment on Project deliverables.

2. Keith Engineering undertakes preliminary modifications to the airless dryer and other necessary preparations to undertake trial at Dinmore.

3.1. Complete installation for solids drying trial to produce solid fuel for combustion trial by Australia Meat Holdings.

3.2. Complete installation of Airless dryer for solids drying trial by Keith Engineering.

4.1. Australia Meat Holdings conduct solids drying trial to produce boiler fuel for combustion trial. Report received and accepted by MLA.

4.2 Keith Engineering conduct solids drying trial to produce boiler fuel for combustion trial. Report received and accepted by MLA.

5. Conduct fuel combustion trial in the GE Boiler. Report received and accepted by MLA.

6.1 Australia Meat Holdings contribution to draft report on findings of the drying and combustion trials received and accepted by MLA.

6.2 Keith Engineering's contribution to draft report on findings of the drying and combustion trials received and accepted by MLA.

7.1. Australia Meat Holdings contribution to final report on the findings of the drying and combustion trials received and accepted by MLA.

7.2 Keith Engineering's contribution to final report on the findings of the drying and combustion trials received and accepted by MLA.

The process to evaluate the solid waste drying trial was as follows:

- Belt press cake was fed through the dryer at varying temps, samples taken at each temp change until maximum drying achieved. The temp reflecting the best drying was 350 Deg C. samples of the emissions were taken and sent for analysis [odour concentration]. Moisture reduced from 85 % in to 15 % out.
- Solid waste combined and put through Fan press [Stage 1], belt press sludge combined through mincer and total solids put through dryer. Temp set at 350 Deg C, moisture reduced from 76 % to 6 %.
- Samples from both trials were collected and sent for G.C.V. analysis.
- Trials conducted to ascertain energy consumption to achieve drying.

The following steps were utilised to evaluate the solid waste mix :

Step 1.

- Note bin weight.
- Add 500 kg Paunch grass.
- Add 200 kg Saveall 2 solids.
- Add 200 kg D.A.F. float [unflocculated].

Step 2.

- Collect bin from hide area and weigh.
- Note weight on bin.
- Take bin to Saveall area.

Step 3.

- Collect meal bin from D.C.B. area, bin has a slide gate in it.
- Take bin to Saveall area.

The specific waste streams measured as part of the waste to energy audit was as follows.

- Paunch grass.
- Primary D.A.F. float. [flocculated].
- Belt Press sludge.[flocculated]
- Saveall # 2 bottom scrapings.
- Saveall # 2 contrashear solids.

- Truck wash solids.
- Plastic waste, [3cu/m bins].
- Re-cycle cardboard.
- Waste cardboard.
- Hay, [Yearly total x 250 kg / bale] divided into weekly allotment

Loads were weighed daily, trailer numbers recorded and volumes calculated from data recorded. In the case of Plastic's, re-cycle cardboard and waste cardboard volumes were determined from bins accumulated.

4 **Results and Observations**

The results of detailed sampling schedules are as follows.

 Table 1 : Solid waste volumes for week ending 7th February 2005

Waste	Volumes daily	Total
-------	---------------	-------

Origin	Tues	Wed	Thur	Fri	Sat	Sun	Mon Week
Cirgin	1000	ww.cu	THU		out	Ouri	

Paunch	64.7	62	67.6	37	32	30	51.8	345
Grass Tonnes								
Saveall 2bottom Tonnes	13.40	15.10	20.2	30.9	16	14.6	5.2	115.4
Saveall 2contra Tonnes	7.44	10.7	5.9	2.3	1.4	2.9	3.7	34.3
D.A.F. Float Tonnes	27.51	25.8	31.1	10 poly dose low	22 Poly from B.P.	5 poly dosing B.P.	10 B.P. Poly	131.4
Belt press Tonnes	70.25	62.1	61.9	30.6	0	70.6	32.6	328
Truck wash Tonnes			32					32
Plastic's cu/M	12	12	12	12	4.5	7.5	6	66

Re-cycle cardboar d		1.44		1.91			1.87	5.22
Tonnes								
Waste cardboar d cu/M	3	4.5	3.5	4.5	4.5	4.5	5	29.5
Hay								6.75 T
Dales								week

 Table 2:
 Belt Press set run time / flows / cake for week ending 7 February 2005.

Day	Т	Т	W	W	Th	Th	F	F	S	S	Su	Su	М	М	Tot	Tot
Run	12	12	12	12	10	12	4 br	2 br	0	0	8 br	6	12 br	12 br	58	56
ume	hr	hr	hr	hr	hr	hr	111	111	hr	hr	111	hr	111	111	hr	hr
	Tue	s V	Ned	Thu	ir l	Fri	Sat	S	Sun	Mor	n To	otal				

4a 4b 4a 4b

Cake Tonnes	70.25	62.1	61.9	30.6	0	70.6	45	341

Note:

• Belt press actual run times depend on tank levels / trailer emptying etc.

 Total M.L.S.S. wasted to blue mixing tank for week ending 7-02-05: 4A: 4345 KL. 4b: 4317 KL.

Table 3: Volumes for week ending 14 February 2005.

Volumes daily	Total
	Volumes daily

Origin	Tues	Wed	Thur	Fri	Sat	Sun	Mon Week

Paunch	70	73	68	33	35	34	58	371
Grass								
Tonnes								
Saveall	22.2	17.6	17.4	24.7	14.1	13.7	12.7	122
2bottom								
Tonnes								

Saveall 2contra Tonnes	3.4	2.3	4.5	1.1	1	3	3.7	15
D.A.F.	20	12	21	23	14	18	18	
Float Tonnes	Belt	Press	Poly	Used, as	normal	poly run out	poly on	126
Belt press Tonnes	62	52	27	15	28	62	53	295
Truck wash Tonnes					36			36
Plastic's cu/M	13	12	12	15	5	9	12	76
Re-cycle cardboar d Tonnes	The	Data	For	The past	Three	months	av	5.8 wk
Waste cardboar d cu/M	3	4	3	5	4.5	3.5	3	26
Hay Bales Tonne wk								6.75

 Table 4: Belt Press run time / flows / cake for week ending 14 February 2005.

4a 4b 4a 4b

Day	Т	Т	W	W	Th	Th	F	F	S	S	Su	Su	М	М	Tot	Tot
Run time hrs	12	12	10	6	6	3	1	2	2	6	7	7	12	12	50	48
	Tue	s \	Ned	Thu	ır l	Fri	Sat	5	Sun	Mor	n To	otal				

Cake	62	52	27	15	28	62	53	295
Tonnes								

Page 8 of 21

Note

• Belt press actual run times depend on tank levels / trailer emptying etc.

In summary the results of the trial was as follows:

- Total M.L.S.S. wasted to blue mixing tank for week ending 14-02-05: 4a: 3728 KL. 4b: 3700 KL.
- 4A / 4B M.L.S.S. remained between 6000 / 6500 mg/L.
- The belt press operated at 80cu/M Hr for the duration of the trial.
- 4A wasting rate was estimated at 29 L/sec.
- 4B wasting rate was estimated at 26 L/sec.
- At 80cu / Hr 4a runs for 15 min to reach the top level setpoint, it remains off for 6 min until the low level setpoint is attained, therefore total volume wastage / Hr run time is 74568 L.
- At 80cu / Hr 4b total is 77082 L.
- Refer to Figure 1 for photograph of the final dried product ready for burning.

Figure 1. Waste to energy dried samples

5 Outcomes

The results showed:

- The Super Heated Steam Dryer dried all raw materials presented to a desired moisture content and we experienced none of the problems associated with conventional drying technology.
- No back mixing of product is required and at no stage did the dryer experience a "sticky phase" with any of the materials presented for drying.
- Due to the physical nature of the sludge and the way it was presented to the dryer drum a higher than originally quoted energy figure was realised. This figure would be reduced with a more efficient feed system and a longer drum for product retention.
- The dryer does exhaust a small amount of non-condensable gas, which has an odorous compound. This gas has been sampled and results will be forwarded to AMH.
- The dryer is capable of processing the sludge and waste stream mixture at lower operating temperatures (350°c) although at higher temperatures it is expected that the energy efficiency will increase as the temperature rises. The super-heated steam heat to energy curve is higher than that of conventional air dryers.
- A condenser would be required to condense the surplus steam generated in the drying process.
- The sludge feed system on the pilot plant was labour intensive and a new system would be designed on a full-scale model to feed the sludge more consistently and in smaller particle sizes to aid in drying efficiency.
- The waste stream mixture that was presented to the dryer was easier to feed, dry and was more energy efficient. The waste stream mix was lighter and contained a lot more dust particles in its dry state.
- The waste stream mix would require multiple cyclones or a more efficient cyclone to reduce the carry over into the heat exchanger.

It is considered by the contractor that the figure for waste heat recovery can't be accurately quoted as the theory and practice involved with waste heat recovery figures very rarely match up. Using the heat from the burner exhaust to preheat the air going to the burner will increase the overall efficiency of the dryer but to what extent can only be guessed at this stage. Using the waste steam from the dryer to further reduce energy costs could come in the form of using the hot water from the condenser to pre-heat the sludge in a jacketed screw conveyor. Again this figure I believe can only be an assumption.

The only indicative energy figure we have at this stage is 4.5MJ/KG for sludge and 3.6MJ/KG for the waste stream mix. We also know that we can reduce these figures by redesigning the feed system, using the waste heat from the burner loop to pre-heat the air entering the burner and using the waste steam to heat water in a jacketed conveyor to pre-heat the raw material. What results these modifications will have on our overall energy performance can only be theorised at this stage.

Overall, the trial determined that the process was not sustainable due to the high moisture content of the dried materials. The cost of further drying the materials for produce more efficient burning was not viable. Further development in efficiencies of drying technologies and approaches are required in order for this process is to be considered viable.

6 **Opportunities arising / Recommendations**

The corporate target of reducing fossil fuel usage at the Dinmore site by 10 % can be achieved with the implementation of a waste to energy program. Depending on the configuration adopted, 25 to 35% of the electrical needs and 15 to 25% of the steam/hot water needs of the site can meet through recovery of energy from solid waste and biogas generated on the site. This conclusion is premised on the ability to demonstrate that 50 % moisture can be achieved in the dewatered solid waste using mechanical dewatering technology.

The key conclusions for the specific areas of investigation for this report are as follows.

- Further detailed evaluation of the energy recovery options from solid waste should be deferred until the results of the SPC dewatering test work program are assessed. The success or otherwise of the mechanical dewatering circuit will be key in defining the economics and technical issues for energy recovery;
- If a suitable technology for mechanical dewatering to <50% moisture is not defined, it is recommended that anaerobic digestion be reconsidered;
- A site energy review is required to optimise the proposed layout, with particular emphasis on whether to maximise electricity or steam generation;
- Discussions with selected vendors (suppliers of FBC technologies) should be progressed to
 obtain an improved understanding of the commercial and technical issues associated with
 implementing waste to energy technologies on the Dinmore feed stocks;
- Vendors may recommend pilot testing. This should be considered on a case by case basis; and Pending agreement on the choice of FBC as the preferred technology and trailing the SPC dewatering unit, a detail design would be required to confirm waste composition and variation.

In concluion, if the energy figures supplied minus the assumed savings via the modifications don't add up to AMH's budgetary figures for the entire project, further experimentation should be carried out. Some previous trials in the form of coagulating the wet sludge have shown some promise and would present the sludge to the dryer in a form that would increase the energy efficiency.

Please note that reducing moisture content through heat transfer is the most uneconomical form of evaporation and if the moisture content of the product provided to the dryer was around the 55% to

60% mark from the above example huge savings would be made in gas usage and would offset the

capital expenditure for the extra equipment.

7 Acknowledgements

AMH and Meat & Livestock Australia would like to acknowledge the matching funds provided by the Australian Government to support the research and development detailed in this publication.

8 Appendix 1 – Detailed independent analyses of dried solid waste materials

project ID00250issue number1clientHiTech Pty Ltdissue date27th March 2007testing date8th March 2007contactMr. Phill Redmond

New Environmental Quality P.O. Box 119 Coopers Plains Qld. 4108 ABN: 56 115 736 046

Source emissions monitoring conducted on the Coal Fired Boiler at Australian Meat Holdings Pty Ltd

Table 1: Document Control

Report ID	Date	Comment	Author
250-1	27 th March 2007	Initial release	LP

Yours Faithfully New Environmental Quality Pty Ltd

NATA Signatory Lyle Pott B.Sc Technical Manager

Page 1 of 10

Page 12 of 21

report to HiTech Pty Ltd		nev	EQ Project ID: 00250 issue number:1
	EXECUTIVE SUMM	ARY	
Table 2: Coal Fired Boiler Results	Summary		
Parameter	Baseline Test Result (g/Nm ³	55% Paunch Trial Test Result (g/Nm³)	Regulatory Limit (g/Nm³)
Total Particulates Actual : @ 12% CO ₂ :	0.24 0.35	0.27 0.45	0.25
Nitrogen Oxides as NO ₂ :	0.38	0.34	0.50
This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 47005			NATA
NATA accredited laboratory 15438. This report must not be reproduced except in full.			
New Environmental Quality Pty Ltd			Page 2 of 10

report to HiTech Pty Ltd	newEQ Project ID: 00250 issue number:1
TABLE OF CONTENTS	
	Page
EXECUTIVE SUMMARY	2
INTRODUCTION	4
TEST METHODS	4
QUALITY ASSURANCE & QUALITY CONTROL	4
DEFINITIONS	5
CALCULATION OF RESULTS	6
APPENDIX 1: CALIBRATION AND UNCERTAINTY CERTIFICATE	8
LIST OF TABLES	
Table 1: Document Control Table 2: Coal Fired Boiler Results Summary Table 3: Test Methods Table 4: Analysis Notes Table 5: PM Determination, Baseline Table 6: PM Determination, 55% Paunch Trial	1 2 4 6 7
This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/1502.5 NATA accredited laboratory 1548. This report must not be reproduced except in full. New Environmental Quality Pty Ltd	Page 3 of 10

L

report to HiTech Pty Ltd		newEQ Project ID: 00250 issue number:1
NTRODUCTION		
New Environmental Quality (ner rom a coal fired boiler at Austra by newEQ on 8 th March 2007.	wEQ) was commissioned by HiTech alian Meat Holdings in Dinmore. Sa	Pty Ltd to monitor stack emissions mpling and analysis was conducted
ewEQ was responsible for the ealed and preserved in the a repared and analysed by the c	collection and analysis of all sample appropriate manner. Upon return to orrect methodologies.	es. The collected samples remained the laboratory the samples were
TEST METHODS		
Unless otherwise stated, the sampling and analysis was con report are related to one or mor	following test methods meet the ducted by newEQ unless otherwise e reference calibrations held by new	requirements of the Qld EPA. All stated. The results presented in this EQ.
Table 3: Test Methods		
Parameter	Test Method	Deviations
Sample plane criteria	AS 4323.1	Nil
Gas Velocity and Temperature	USEPA 2	Nil
Stack gas Density	USEPA 3a	Nil
Moisture	USEPA 4	Nil
Carbon monoxide	USEPA 10	Nil
Oxides of nitrogen	USEPA 7E	Nil
otal particulate matter	USEPA 5	Nil
Analysis Note Comp 1 newE 2 SGS	Dany NATA Accredite Q 15438 2562 (4354)	ation ID Report Number 00245-1 50913
UALITY ASSURANCE & QU/ ewEQ operates within a qua ystem defines specific proced onducted with the highest la rocedures address such facets - project management - equipment calibration a - adherence to specific s - selection of sub-contra - storage and freight of c - final report preparation	ALITY CONTROL (QA/QC) lity system based upon the require ures and methodologies to ensure a evel of quality given the specific a as: nd maintenance ampling methodologies sting laboratories ollected samples	ements of ISO17025. Our quality ny project undertaken by newEQ is confines of each project. These
This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISCVIEC 17025.		NATA
This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 15438. This report must not be reproduced except in full.		NATA

	issue number:1
DEFINITI	DNS
<	The analytes tested for was not detected; the value stated is the reportable limit of detection
°C	Degrees celsius
m	Metres
mb	Millibars
ml	Millilitres
Kg	Kilograms
Mole	SI unit that measures the amount of substance
9	Grams
uq	Minigrams (10 ⁻⁶ grams)
ng	Nanograms (10 ⁻⁹ grams)
m ³	Gas volume in cubic metres at measured conditions
Nm ³	Gas volume in dry cubic metres at standard temperature and pressure (0°C and 101.3 kPa)
sec	Second
min	Minute
mmH ₂ O	Millimetres of water
STP	Standard temperature and pressure (0°C and 101.3 kPa)
FH	Front half of sample train (probe and filter holder) sample recovery
his document th NATA's ac coredited for ATA accredit	Is issued in accordance prediation requirements. smplance with IBCVIEC 17025.

newEQ Project ID: 00250 issue number:1

report	to	на	och	Phy	1 fel
report			eun		200

CALCULATION OF RESULTS

Table 5: PM Determination, Baseline

	source Data		
Client		AMH	
Sampling Location		Boller stack	
Operating Condition		coal fired	
Reference Method		AS4323.2	
Test Parameters		PM	
Historical L	ata & Hardware Inf	ormation 8 Mar 07	del mana sar
Run Statt Date		0-Mai-07	du-mm-yy
Project ID		250	
Run ID Bun Ctad Time		0.05	h h - mun
Run Statt Time		9.20	hh.mm
Nates Calibration Easter		1.000	10.000
Dist Tube Coofficient	(0)	0.840	
Actual Nozzle Diameter	(C ₀)	6.000	mm
Actual Nozzle Dialifieter	Stock Test Data	0.000	
Initial Meter Volume	AV 1	40.352	m²
Final Meter Volume	(V)	40.875	m ³
Total Sampling Time	(****	1:11	hhimin
Average Meter Temperature	(t)	38.9	°c
Average Stack Temperature	(t).	226.9	°c
Barometric Pressure	(P ₂)	1005	mb
Stack Static Pressure	(P)	15.00	mm H.O
Absolute Stack Pressure	(Pateto/	1007	mb
	Sample Volumes		
Total Meter Volume	(V_)	0.528	m°
Standard Meter Volume	(V_)	0.459	dscm
Standard Meter Volume - refernced	at 7%O2	0.310	dscm
Standard Meter Volume - refernced	at 10%O2	0.396	dscm
Standard Meter Volume - refernced	at 12%CO2	0.309	dscm
Mo	lature Content Data		
Impingers 1-3 Water Volume Gain	(V _n)	22.0	ml
Impinger 4 Silica Gei Weight Gain	(W _n)	5.0	g
Total Water Volume Collected	(V _k)	27	mi
Calculated Stack Moisture	(B _{ass(calct})	6.82	%
(Sas Analysis Data		
Carbon Dioxide Percentage	(%CO ₂)	8.08	%
Oxygen Percentage	(%O ₂)	11.5	%
Carbon Monoxide Percentage	(%CO)	0.00	%
Nitrogen Percentage	(%N ₂)	80.4	%
Dry Gas Molecular Weight	(M _d)	1.33	kg/Nm3
Dry Gas Molecular Weight	(M _d)	28.95	g/g-mole
Wet Stack Gas Molecular Weight	(M ₈)	28.95	q/q-mole
Volu	metric Flow Rate Da	ata	
Average Stack Gas Velocity	(V.)	8.98	m/sec
Stack Diameter	DS	1.28	m
Stack Cross-Sectional Area	(A _x)	1.29	m-
Actual Stack Flow Rate	(Q _{aw})	693	Am /min
wet standard stack Flow Rate	(Q _{sw})	377	Nm*/min-wet
Dry Standard Stack Flow Rate	(Q _{sd})	351	Nm*/min-ary
Percent of Isokinetic Rate	(I)	99	%
Total Mass of Particulator	(m.)	0.11	
Citack DM Connectication	(m _n)	0.11	y a Alexa
Stack PM Concentration	(C ₈)	0.24	g/Nm ma/Nm ³
Darticulate Emission Pate	(E)	230	ng/nm*
Particulate Emission Rate	(E)	03	grinin
Particulate Emission Rate	(C) to Uncertainty Only	1.4	g/sec
Particula Uncertainty expressed at 95% Cl	(1)	5.36	92
	(0)	0.00	/ D
Uncertainty expressed at 55%CI	an	12.7	mailtim ³

newEQ Project ID: 00250 issue number:1

report to HiTech Pty Ltd

Table 6: PM Determination, 55% Paunch Trial

	Source Data		
Client		AMH	
Sampling Location		Boller stack	
Operating Condition		55/45 paunch/coal	
Reference Method		A\$4323.2	
Test Parameters		PM	
Historical D	ata & Hardware Ini	formation	
Run Start Date		8-Mar-07	dd-mm-vv
Project ID		250	
Run ID		200	
Run Start Time		14:50	bb:mm
Run Stan Time		16:03	bb:mm
Notes Collibration English	00	10.00	101.000
Ditet Tube Coefficient	(1)	1.009	
Actual Natzia Diamator	(Cp)	0.040	
Actual Nozzle Diameter	(Una)	6.000	mm
Initial Mater Volume	Stack Test Data	40.801	
Final Meter Volume	(Vm)	40.091	m ³
Final Meter Volume	(Vm)r	41.332	m
Total Sampling Time	(°)	1:13	nn:min
Average Meter Temperature	(Im)aug	41.1	"C
Average Stack Temperature	(t _s) _{wg}	208.2	-C
Barometric Pressure	(P _b)	1006	mb
Stack Static Pressure	(Pstatic)	15.00	mm H ₂ O
Absolute Stack Pressure	(P,)	1007	mb
	Sample Volumes		
Total Meter Volume	(V _m)	0.445	m"
Standard Meter Volume	(V _m) _{etd}	0.384	dscm
Standard Meter Volume - referriced	at 7%O2	0.202	dscm
Standard Meter Volume - referriced	at 10%O2	0.257	dscm
Standard Meter Volume - referriced	at 12%CO2	0.231	dscm
Mol	isture Content Dat	a	
Impingers 1-3 Water Volume Gain	(V _n)	20.0	mi
Impinger 4 Silica Gei Weight Gain	(W _n)	3.0	g
Total Water Volume Collected	(Vk)	23	mi
Calculated Stack Moisture	(B _{en(calci})	6.93	%
G	as Analysis Data		
Carbon Dioxide Percentage	(%CO ₂)	7.21	%
Oxygen Percentage	(%O ₂)	13.6	%
Carbon Monoxide Percentage	(%CO)	0.00	%
Nitrogen Percentage	(%N ₂)	79.2	%
Dry Gas Molecular Weight	(M _d)	1.33	kg/Nm3
Dry Gas Molecular Weight	(M _d)	28.94	g/g-mole
Wet Stack Gas Molecular Weight	(Ma)	28.94	g/g-mole
Volun	netric Flow Rate D	ata	
Average Stack Gas Velocity	(V _n)	6.95	m/sec
Stack Diameter	Ds	1.28	m
Stack Cross-Sectional Area	(A,)	1.29	m ²
Actual Stack Flow Rate	(Q.,.)	537	Am ³ /min
Wet Standard Stack Flow Rate	(Q)	303	Nm ³ /min-we
Dry Standard Stack Flow Rate	(Q)	282	Nm ³ /min-dry
Percent of Isokinetic Rate	(1)	103	%
Partie	culate Concentrati	00	
Total Mass of Particulates	(m.)	0.10	a
	(C.)	0.27	a/Nm ³
Stack PM Concentration	~a/	0.00	ma/blm ³
Stack PM Concentration		28-8	
Stack PM Concentration	(E)	200	almin
Stack PM Concentration	(E)	268 75	g/min
Stack PM Concentration Particulate Emission Rate Particulate Emission Rate	(E) (E)	200 75 1.3	g/min g/sec
Stack PM Concentration Stack PM Concentration Particulate Emission Rate Particulate Emission Rate Particulate Uncertainty expressed at 96% Cf	(E) (E) e Uncertainty Calo	200 75 1.3 sulation	g/min g/sec

IAT/

Page 7 of 10

This document is issued in accordance with N4TA's accreditation requirements. Accredited for compliance with IBOV IEC 17025. NATA accredited laboratory 15438. This report must not be reproduced except in full. New Environmental Quality Pty Ltd

report to HiTech Pty Ltd

newEQ Project ID: 00250 issue number:1

APPENDIX 1:

CALIBRATION AND UNCERTAINTY CERTIFICATE.

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/ IEC 17025. NATA accredited laboratory 15438. This report must not be reproduced except in full.

New Environmental Quality Pty Ltd

report t	o Hil	fech	Pty	Ltd
----------	-------	------	-----	-----

newEQ Project ID: 00250

New Environmental Quality Calibration and Uncertainty Certificate

Calibrations are performed according to ISO/ EEC 17025 Appendix A: Calibration intervals for commonly used chemical testing equipment, equipment specific manuals and external laboratory procedures. Uncertainties are obtained from external calibrations from the corresponding laboratories and quoted verbatim. All certificates can be provided upon request.

ltem	Manufacturer	Туре	newEQ ID	Last Calibration	Uncertainty	Internal/ External	Certificate Number
Reference gas meter	American Meter	Dry gas meter	SN069	30.08.05	±0.3%	External: Gas Technology Services Pty Ltd	30M-05-0093- TRP-001-01
						NATA: 14344	
Console	Actraris	Gallus 2000 G4	SN003	Each use	±0.3%	Internal	N/A
Console	Actraris	Gallus 2000 G4	SN028	Each use	±0.3%	Internal	N/A
Console	Actraris	Gallus 2000 G4	SN127	Each use	±0.3%	Internal	N/A
Portable gas	Testo	350	SN027	Each use	O ₂ : ± 1% rel	Internal	N/A
anaiyser					CO ₂ : : ± 1% rel		
					CO: : ± 2% rel		
					NO: ± 2% rel		
					SO ₂ : : ± 2% rel		
Portable gas	Testo	350	SN034	Each use	O ₂ : ± 1% rel	Internal	N/A
anaiyser					CO ₂ : : ± 1% rel		
					CO: : ± 2% rel		
					NO: ± 2% rel		
					SO ₂ : : ± 2% rel		
Inclined manometer	Airflow	MK5 P	SN119	09.03.06	±0.1cm H ₂ O	External: Gas Technology Services Pty Ltd	30M-06-0035- TRP-001-01
						NATA: 799	
Thermometer	Brannan	No806	SN135	03.05.06	±0.2°C	External: WIKA	496/ 06
						NATA: 410	
Balance	Ohaus	E12140	SN002	29.10.04	Max ± 0.00032g	External:	Q.AC/ 636-A-3
					(at 199.99990g loading)	Australian Calibrating Services Pty Ltd	
						NATA: 1239	
Oxygen, carbon	Linde	N/A	N/A	02.11.05	O ₂ : ± 1% rel	External: Linde	QCSPC000413
monoxide and	nt is issued in accordance				CO ₂ : : ± 1% rel	NATA:12803	~
Accredited fe NATA accred	or compliance with ISO/ IE dited laboratory 15438. nust not be reproduced ex	C 17025. cept in full.					

ltem	Manufacturer	Туре	newEQ ID	Last Calibration	Uncertainty	Internal/ External	Certificate Number
gases					CO: : ± 2% rel		
Nitrogen oxide and sulphur dioxide calibration gases	Linde	N/A	N/A	16.11.05	NO: ± 2% rel	External: Linde	QCSPC000463
					SO ₂ : : ± 2% rel	NATA: 12803	
Digital calipers	Guogen	N/A	SN033	19.09.06	± 0.18µm	Internal	N/A
Digital calipers	Guogen	N/A	SN121	25.07.06	± 0.18µm	Internal	N/A
Digital calipers	Guogen	N/A	SN143	16.10.06	± 0.18µm	Internal	N/A
Gauge block	Mitutoyo	N/A	SN148	26.06.06	±0.18µm	External: A.C.M. Laboratory	723 1244/06
						NATA: 723	
Gauge block	Mitutoyo	N/A	SN149	26.06.06	±0.18µm	External: A.C.M. Laboratory	723 1244/06
						NATA: 723	
Gauge block	Mitutoyo	N/A	SN150	26.06.06	±0.18µm	External: A.C.M. Laboratory	723 1244/06
						NATA: 723	
Gauge block	Mitutoyo	N/A	SN151	26.06.06	±0.18µm	External: A.C.M. Laboratory	723 1244/06
						NATA: 723	
Thermocouple Simulator	PIE	521	N/A	21.08.08	±0.3°C	External: VMS International NATA: 116	NC 06.32279
Mass flow controllers	Sierra Instruments Inc	C100L-LE-NR- 2-OV1-SV1- PV2-V1-S1-CO	N/A	28.10.06	±1%	Sierra Instruments Inc	R79722 ^a
Pump	TCR Tecora	Bravo-R-Basic	128	07.07.05	Not quoted	External: TCR Tecora	P-527498RB
Pump	TCR Tecora	Bravo-R-Basic	129	07.07.05	Not quoted	External: TCR Tecora	P-527499RB

^a Sales order number – no certificate number provided.

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/ IEC 17025. NATA accredited laboratory 15438. This report must not be reproduced except in full. NATZ

Page 10 of 10

New Environmental Quality Pty Ltd