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Executive summary 
Effective production of beef cattle requires consistency. Given the diversity of cattle that attend 
feedlots, there is a need for new tools to assist sorting cattle at arrival, reimplant, or terminus to 
support profit maximisation. To date, no commercial sorting solution with appropriate embedded 
intelligence is available to the Australian feedlot industry.  

An effective sorting system will require high-quality knowledge of feed intake, carcase growth, and 
composition of individuals, especially biometric measurements. Advancements in machine vision 
and learning technologies mean that it ought to be possible to predict growth and carcase 
composition accurately. 

Research into this opportunity is considered vital for Australian lotfeeders as accurate performance 
predictions may bring value through any one of several modes, namely, profit/loss modelling of 
cattle of different biological types at different carcase endpoints; categorisation of cattle into 
homogenous marketing groups (if critical mass of cattle present); optimising days on feed of the 
sorted group to maximise carcase value over production costs; accurate diet formulation to 
maximise performance of each pen; and/or most simply, improved eating quality of the produced 
beef for consumers. 

Against these considerations, the current investigation enabled the development and validation of a 
prototype biometric, gender, and breed identification system suitable for use within a feedlot 
operation. The system was developed against defined objectives focussed on autonomy, accuracy, 
precision, and update rate. After achievement of prototyping milestones, including development of 
an appropriate truthing strategy, performances were evaluated within a commercial feedlot 
environment. 

This report presents outcomes of these validation experiments. We have demonstrated that the 
prototype system provided very encouraging results, predicting biometric measurements accurately, 
repeatedly, and quickly. Gender was not assessed during the experiment as only steers were 
available at the experiment’s host site. Breed identification was only moderately accurate; however, 
this report also considers further improvements that can be explored to further enhance 
measurement outcomes against this criterion.  

We have delivered a very promising prototype autonomous biometric and breed identification 
system, providing significant potential benefits for the red meat industry. The ability to 
autonomously generate identifications on a large sample of diverse feedlot cattle should enable 
future R&D on the value proposition of the data, which in turn ought to represent a high-value 
outcome for the sector.  
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1 Introduction 
This final report describes the results of an experiment to evaluate a prototype autonomous system 
to estimate biometrics of feedlot cattle as they are inducted. 

1.1 Project intent 

Cattle feeders strive to produce beef that is consistent in cut size, has minimal waste fat, maximal 
red meat yield, and meets customer expectations (for example, tenderness, taste, and safety). This 
consistency is often challenging given the diversity of cattle that arrive at the feedlot, so tools are 
needed to assist sorting cattle for profit maximisation at arrival, reimplant, or terminus. 

With modern technologies it is possible that objective information collected on breed content, 
biometrics, and gender could benefit accurate predictions of growth, carcase composition, and 
eating quality prediction of individuals. For example, reliable knowledge of the empty body fat 
content of cattle is necessary to predict mature size and growth of feedlot cattle with the NRC 
(2016) and Cattle Value Discovery System models. Several recent studies have also reported the 
potential of manual biometrics to improve the precision of estimation of body fat depots in separate 
genetic populations of cattle (Fernandes et al. 2010; De Paula et al. 2013; Gomes et al. 2016; 
Fonseca et al. 2017). 

This project has developed a cost-effective autonomous system to generate biometrics on a large 
sample of diverse feedlot cattle, thereby enabling future R&D on the value proposition of the data. 

2 Project objectives 
The overall project objective that was agreed in the agreement is as follows, 

1. Develop a prototype automatic biometric measurement system to predict height at withers, 
rib depth, body diagonal length, body length, pelvic girdle length, rump depth, rump height, 
pin bone width, hook bone width, abdomen width, girth circumference, hump height and 
circumference as well as locations for point of shoulder, withers, hook bones, and pin bones 
(as per Fernandes et al., 2010). 

2. Determine the precision, accuracy, and speed of result of the prototype to predict biometric 
measurements for a sample of independent cattle from three breeds (British, European, and 
Brahman). 

3. Determine possible biometrics associated with gender and breed identification. 

3 Methodology 
Effectiveness of the prototype system was based on core technologies including, though not limited 
to, artificial intelligence, machine learning, distributed computing, and data generation and 
presentation to users. 

Achievement of project objectives benefitted from regular communications with MLA and the host 
site (Mort & Co’s Grassdale Feedlot, Cecil Plains, Qld) so that all stakeholders were always aware of 
project statuses and milestones. All project engineering and factory testing was completed at our 
base in Brisbane, Queensland. Field development, data collection, and experiments were 
undertaken at the host site. 



The following sub-sections include a high-level summary of the methodology to achieve the required 
experimental output. 

3.1 Apparatus 

In the early stages of the project, we investigated possible sensor and networking technologies and 
their arrangements. Based on our evaluations, and with project objectives in mind, we opted to 
provide an array of depth camera sensors (Microsoft Kinect 2.0, WA, USA) for the waiting bay (last 
bay upstream of crush): two side elevation cameras and one overhead camera for animal plan view. 

The cameras were installed on customised robust mounting adapters and were calibrated by 
exercising a standard protocol; this is freely available in the public domain. The protocol enabled an 
estimation of a camera scene's structure to be described in Euclidean space and removed factors 
such as lens distortion, which may have degraded measurement accuracy. In practice the calibration 
was performed by placing a special printed checkerboard target of known dimensions in each 
camera’s field-of-view, and then detecting corner points in the generated image. Automatically 
calculated parameters account for intrinsic factors (for example, focal length, skew, distortion, and 
image centre) and these were unique for each camera. Extrinsic parameters (relative positions and 
orientations in the world) for the cameras were configured in-situ after commissioning. 

On the physical layer, the side panel of the waiting bay on the non-working side was replaced with a 
custom designed gate to decrease vision-obscuring rails in sensors’ fields-of-view. Additional 
external illumination was provided with directional white-light LED lamps. The cameras’ data were 
networked in a distributed processing arrangement, before being integrated in a centralised 
processing platform (main processor, Intel i7, 16GB RAM), complete with GPU (NVIDIA GeForce RTX 
2080, Santa Clara, CA, USA) enabling parallel-processing optimisations. 

The main processor operated two convolutional neural networks (CNN) in parallel: pose estimation 
and breed identification. We trained each network on a labelled dataset of 400 images of cattle 
previously collected at the host site; these were based on multiple frames each for approximately 50 
cattle. Pose labelling involved manual identification of specific biometric points on each image 
accurately and consistently. Knowledge was then transferred from a free open-source animal pose 
model to the small application-specific dataset (400 images) with a view to improve CNN learning; 
the network was trained on approximately 200k iterations. As the breed dataset was composed of 
the same 400 images, its network also used transfer learning. Breed labelling required manual 
identification in each image (within the three nominal categories); personnel from the host site 
provided all labelling inputs for the breed dataset to improve likelihood of accuracy and consistency. 
The breed network’s training process required approximately only 100 iterations, due to the 
simplified architecture of the breed selection CNN (that is, selection of only one out of three 
options). 

During the training data collection and load experiment activities, animals were individualised with 
new slide gates (Thompson Longhorn, Goomburra, Qld) at entry and exit of the second-last bay 
upstream of the crush. This manual process reduced bunching of target animals in the waiting bay 
during measurements, and improved calming of animal/s upstream in race. 



Only steers were available within the three target breeds at the host site during the project’s 
programme, and so it was agreed with stakeholders that the gender identification requirement will 
be excluded from scope of this project’s activities. 

3.2 No-load truth validation 

With a view to validating accuracy and precision of cameras, outside of normal production, seven 
rectangular prisms of different sizes were observed in three dimensions in three nominal locations 
along waiting bay length. Prisms were elevated from bay’s floor level via an ad hoc shelf installed 
across side-panels’ horizontal rails. Observations were made with a flexible ruler and recorded 
digitally in a simple worksheet. Predictions were derived retrospectively back at our base from the 
recorded depth camera images. The prediction results were generated while blind to the 
observations and were also recorded digitally. 

3.3 Load experiment 

The following subsections describe the load experiment protocol. 

3.3.1 Biometrics reference schematic 

Measurements completed were consistent with Fernandes et al., 2010, and these are reproduced 
with brief labels in Fig. 1.  

 
Fig. 1: Reproduced from Fernandes et al., 2010. Schematic representation of A) lateral and B) posterior views of a steer 
showing the relative locations of biometric measurements, including 1) height at withers, 2) rib depth, 3) body diagonal 

length, 4) body length, 5) pelvic girdle length, 6) rump depth, 7) rump height, 8) pin bone width, 9) hook bone width, and 
10) abdomen width. The girth circumference (not shown in panel A) was taken as the smallest circumference just posterior 
to the anterior legs in the vertical plane. Points a, b, c, and d are relative locations of the point of shoulder, withers, hook 

bones, and pin bones, respectively. 

3.3.2 Target animals 

Load experiment measurements were undertaken on 293 randomly selected cattle during normal 
induction activities over a two-day period at the host site; 469 cattle in total were recorded. The 
animals were non-consecutive so a diverse range of breed and size compositions could be targeted 
across the required three broad breed groups: British, European, and Brahman. Animals accepted 
within the experimental results met the following requirements, 



• Timestamp: Cattle were selected within time periods when the system was fully functional, 
and confidence existed in the output measurements. 

• Valid measurements: While the system recorded cattle measurements even when the full 
set was not complete, we opted to reject individuals when all 10 measurements were not 
available. This consideration removed 31 cattle (6.6%) from the experiment dataset. 

• Tracked time in waiting bay: In general, the longer individuals were retained in the waiting 
bay, the more time the system had available to detect locating nodes on the live animals, 
and this in turn provided more accurate measurements. The prototype automatically 
tracked cattle in the waiting bay, producing measurement start and stop events. Simple 
machine vision algorithms were employed, however in practice they were susceptible to 
environmental conditions such as changes in ambient light. On failure events due to changes 
in lighting, the tracking algorithm was manually recalibrated to the new environmental 
conditions. It follows that this tracked time aspect was simply implemented on the recorded 
dataset by only including individuals that had at least 15 seconds within the waiting bay: this 
removed 145 cattle (31%) from the experiment dataset. 

• Breed: The project required 50 individuals from each of the three broad breed categories. 
On this basis we opted to include as many of each breed as possible during the experiment’s 
duration, especially while also considering the previous three qualifying criteria. 

At all stages experiment personnel were mindful of not overly interrupting operations or isolating 
animals displaying agitation or other aggressive behaviour/s. 

3.3.3 Predictions 

Data from depth cameras fed forward to the main processor, and this in turn output biometrics 
measurements and breed autonomously, as determined by the two neural networks. Data were 
presented live via a bespoke web application and results databased (complete with timestamps) on 
a local client laptop. 

3.3.4 Observations 

Back at base, images generated by the depth cameras for each assessed animal were manually post-
processed, and required measurements were recorded in a simple worksheet; this activity was 
undertaken while blind to predictions. 

The host site identified breeds of the assessed animals via simple image annotation. These were 
directly input to a bespoke web application, consistent with the software arrangement previously 
provided to the host site to generate dataset to train the breed CNN. 

4 Results 
The following section describes the statistical analyses employed to assess the outputs of the 
evaluations, followed by presentation of the experimental results. 

4.1 Statistical analyses 

Several statistical analyses have been undertaken with a view to assessing the performances of the 
prototype system objectively.  



Observed biometrics have been regressed on predicted measurements output by the prototype 
system. The coefficient of determination (r2) has been calculated on the line of regression as a 
measure of the observed and predicted measurements’ relationship strength.  

Evaluation of the model’s precision has been enabled through employment of several commonly 
used measures of deviance, including mean absolute error (MAE), mean square prediction error 
(MSPE), and root mean square error (RMSPE). Shah and Murphy (2006) defined MSPE as: Σ (Oi − 
Pi)2/n, where n = number of paired observed (O) and predicted (P) measurement values being 
compared. The MAE is defined as: (Σ|Oi − Pi|)/n.  

Furthermore, the MSPE can be decomposed to assess sources of variation, viz, (1) variation in 
central tendency (mean bias), (2) variation resulting from regression (systematic bias or line bias), 
and (3) random variation. 

Variation resulting from mean bias has been calculated by squaring the mean bias of the prediction. 
Systematic bias has been calculated as the product of predicted measurements’ variance and the 
square of the deviation from 1 of the regression of observed on predicted gradient. Random 
variation was calculated as the product of the variance of observed data and the deviation from 1 of 
the coefficient of determination of the regression of observed on predicted data. Shah and Murphy 
(2006) noted that mean bias is useful to test the robustness of the model, whereas line bias can be 
used to test inadequacy in model structure. Mean proportional bias has been calculated as the slope 
of the regression of the predicted data on observed data with an intercept of 0 (Shah and Murphy, 
2006). Over the range of observed values, a value of mean proportional bias less than one (< 1) 
denotes underprediction, whereas a value more than one (> 1) denotes overprediction. 

In addition, mean and linear biases were calculated by regression of residuals (observed minus 
predicted measurements) on mean-centred predicted measurements (St-Pierre, 2003). St-Pierre 
(2003) noted that by centring predictions to the mean value, the intercept of the linear model is 
estimated at the mean value of the independent variable rather than a value of zero. 

The intercept term at the mean value is a measure of the mean prediction bias, and a t-test on the 
estimate of the intercept has been used to determine the statistical significance of this bias. The 
slope of this mean-centred regression is an estimate of the linear prediction bias, and a t-test has 
been used again to test significance. When the linear prediction bias has been found to be significant 
(P < 0.10), the magnitude of the bias within the range of predicted values was determined by 
calculating the bias at the minimum and maximum data points of the predicted values (St-Pierre, 
2003). 

4.2 No-load truth results 

The following section contains a summary of no-load experimental data analyses for the prototype 
system. Graphical charts of the results have also been provided. 

4.2.1 Summary of regressions for biometrics measurements 

Results of the regression of observed on predicted biometric measurements are shown in Table 1. 
Mean and linear biases are also reported, determined from the regression of residuals on mean-
centred predicted measurements. 



Table 1: No load experiment evaluation statistics of known geometric predictions for prototype system, 63 observations for 
seven rectangular prisms (HxWxD) in three nominal positions along length of waiting bay. Mean and linear biases 
calculated using St-Pierre (2003) techniques. 

Item Prototype system 

Mean bias, mm -1.04 

P-value < 0.01 

Linear bias 0.00 

P-value 0.11 

r2 regression of observed on predictions 1.00 

RMSPE, mm 2.45 

MSPE, mm2 5.99 

MAE, mm 1.73 

Mean proportional bias 1.00 

Decomposition of MSPE  

Mean bias, % 15% 

Systematic bias, % 3% 

Random bias, % 82% 

Bias at min. prediction, mm - 

Bias at max. prediction, mm - 

Table 1 shows that the prototype system accurately and precisely predicted biometric 
measurements for the known geometric targets. The prototype system had an insignificant amount 
of mean bias (P-value <0.01), underpredicting dimensions by 1mm. The system had no linear bias to 
be tested with statistical significance, and this is reinforced by visual interpretation of its bias being 
consistent over the full range of measurements. Precision of the prototype was excellent during the 
experiment (r2 = 1.00). Mean absolute error and RMPSE for the prototype system’s measurements 
were both approximately two millimetres.  

4.2.2 Chart results for biometrics measurements 

The no-load experiment observed on predicted biometric measurements for the prototype system 
(machine) are represented graphically in Fig. 2 This figure also shares constituent mean and systemic 
sources of errors for this experiment; that is, the residuals (errors, observations minus predictions) 
over mean-centred predictions. 



  
Fig. 2: No load experiment observed on predicted biometric measurements for prototype system (left), and constituent 

sources of error (right). 

Based on these evaluations the prototype system has extremely high accuracy and precision.  

4.3 Load experiment results 

The following section contains a summary of load experiment data analyses for the prototype 
system. Graphical charts of the results have also been provided. 

4.3.1 Summary of regressions for biometric measurements 

Results of the regression of observed on predicted biometric measurements are shown in Table 2. 
Mean and linear biases are also reported, determined from the regression of residuals on mean-
centred predicted measurements. 

  



Table 2: Load experiment evaluation statistics of biometric measurement predictions for prototype system, 293 observed 
cattle across three breed categories. Mean and linear biases calculated using St-Pierre (2003) techniques. 

Item 
Biometric measurements by prototype system as per Fernandes et al., 2010* 

1 2 3 4 5 6 7 8 9 10 ALL 

Mean bias, mm 47.33 3.13 78.02 17.53 3.68 11.28 20.01 0.12 4.73 12.76 19.86 

P-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.88 < 0.01 < 0.01 < 0.01 

Linear bias 0.05 0.01 -0.36 0.03 -0.03 -0.03 -0.03 0.01 -0.06 0.05 -0.07 

P-value 0.13 0.50 < 0.01 0.12 0.04 0.13 0.21 0.78 < 0.01 0.05 < 0.01 

r2 regression of 
observed on 
predictions 

0.75 0.91 0.50 0.93 0.94 0.86 0.80 0.59 0.86 0.84 0.99 

RMSPE, mm 57.17 14.18 96.09 28.73 14.79 24.08 30.59 13.38 14.07 23.57 40.24 

MSPE, mm2 3,268 201 9,232 825 219 580 936 179 198 556 1,619 

MAE, mm 47.96 11.88 81.50 23.88 11.88 19.55 24.96 11.71 11.13 19.20 26.36 

Mean 
proportional bias 

0.96 0.99 0.93 0.97 0.99 0.98 0.98 0.99 0.99 0.97 0.97 

Decomposition of 
MSPE 

           

Mean bias, % 69% 5% 66% 37% 6% 22% 43% 0% 11% 29% 24% 

Systematic 
bias, % 

0% 0% 8% 1% 1% 1% 0% 0% 2% 1% 16% 

Random bias, % 31% 95% 26% 62% 92% 77% 57% 100% 86% 70% 59% 

Bias at min. 
prediction, mm 

- - 151.18 - 9.29 - - - 9.53 7.84 57.96 

Bias at max. 
prediction, mm 

- - -34.03 - -5.60 - - - -6.59 27.09 -29.20 

*1) height at withers, 2) rib depth, 3) body diagonal length, 4) body length, 5) pelvic girdle length, 6) rump depth, 7) rump height, 8) pin 
bone width, 9) hook bone width, and 10) abdomen width. 

Table 2 shows that the prototype system accurately and precisely predicted biometric 
measurements. Overall, the prototype system had a very small amount of mean bias (P-value <0.01), 
underpredicting measurements by approximately 20mm. The most significant contributors to mean 
bias were measurements 1 and 3, viz height at withers (47mm) and body diagonal length (78mm) 
respectively; four of the 10 measurements had a mean bias better than 5mm. 

The prototype had minimal linear bias (-0.07 with P-value <0.01), and this is reinforced by visual 
interpretation of its bias being consistent over the full range of biometric measurements. Minimum 
and maximum biases have been calculated for all contributing measurements with P-values less than 
0.10 including overall experiment result. Precision of the prototype system was excellent during the 
experiment (r2 = 0.99). Mean absolute error for the prototype was 26mm, and the RMSPE was 
40mm.  

4.3.2 Chart results for biometric measurements 

The load experiment observed on predicted biometric measurements are represented graphically in 
Fig. 3. This figure also shares constituent mean and systemic sources of errors for this experiment, 
and it is reinforced that a small mean bias exists (y-offset almost 20mm), with limited linear bias 
(gradient near zero), and generally low levels of variability (precision).  



The observed on predicted chart in Fig. 3 also demonstrates larger variabilities in measurements in 
the 1,000-2,000mm observed range, and these are attributable to the lower performing 
measurements previously identified. 

  
Fig. 3: Load experiment observed on predicted biometric measurements for prototype system (left), and constituent sources 

of error (right). 

4.3.3 Speed of result 

The pose prediction process recorded measurements approximately seven times per second (7Hz), 
and these measurements were stored in a buffer and averaged when the animal departed the 
waiting bay. The breed prediction process recorded classifications approximately 15 times per 
second (15Hz), and these predictions were stored in a buffer and averaged when the animal 
departed the waiting bay. In both cases the speed of result was less than normal operating protocols 
for the induction process, and as aforementioned, had a nominal minimum duration of 15 seconds. 

4.3.4 Breed identification 

Results of the breed identification function are summarised in Table 3. 

Table 3: Breed identification success by breed category and overall. 

Breed category Count Correct breed Correct breed % 

British 95 70 74% 

European 77 26 34% 

Brahman 121 72 60% 

Overall 293 168 57% 

Table 3 shows that the prototype system only had moderate accuracies for identifying British and 
Brahman breeds. Poorer performance when identifying European cattle subsequently also 
decreased the prototype’s overall accuracy. 
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5 Discussion 
The results achieved through this project and summarised in this report should be considered very 
encouraging. Implementation of two CNNs trained with limited site-specific datasets have yielded 
extremely high performing biometric measurements across at least eight out of 10 nominal 
dimensions and all inducted breeds. We expect the two identified dimensions with lower accuracy 
and precision performances may be improved with additional training. 

Moderate performances for breed identifications were achieved, and we expect that this network’s 
deficiencies may be attributed to at least one of several possible input factors. These may include 
sample size of training dataset, and accuracy of human input training and truth labels, especially 
given the broad spectrum of crossbreeds received at the experiment’s host site. 

To continue this thought process, an important feature of neural networks is that they are only as 
good as the data input for them to learn, so it follows that poor labelling will lead to poor accuracy 
and overall performance of outputs. Neural networks also generalise their environmental factors. 
This means that a change in environment, for example a different area within the host feedlot, or 
another feedlot all together, may require training on an extended dataset to allow the network to 
learn the features of the new environment.  

In future implementations, new training activities will be undertaken during commissioning. This in 
turn creates performance improvement opportunities, as each subsequent implementation of the 
training process increases the size of the input dataset, so every network will inherit improved 
handling of new environments; improvements will be most likely because the network’s learning 
should focus on the cattle inputs rather than the less-important surrounding environment. Extending 
the dataset also increases the accuracy and robustness of each network, especially when dealing 
with unique inputs to which the network has not previously been exposed, such as cattle of different 
colours, shapes, or patterns. 

The deficiencies tracking individuals in the waiting bay may also be improved with automatic 
ambient light calibration routines or algorithmic upgrades. The latter may be possible via a deep 
learning-based object tracker which will be able to track targets independent of changes in 
environmental conditions.  

Likely future improvements for the breed identification network would probably involve a custom 
neural network that does not focus on transfer learning, especially if the goal is to determine 
individual percentages of crossbred content in cattle. Instead, we would suggest a training set of 
10k+ images of truth breeds may be appropriate to produce a network with extremely high accuracy 
for crossbreeds. 

6 Conclusions/recommendations 
Against the results presented in this report, the prototype system provided highly accurate and 
repeatable (precise) biometric predictions during the validation experiment in a commercial feedlot 
environment under normal operating conditions. A statistical methodology has been exercised with 
a view to assess predictions provided by the prototype system, and the methodology has provided 
clear and objective support for measurement performances.  



Gender identification was not possible at the nominated host feedlot within the breeds available, 
and so this aspect was excluded from activities. 

Breed identification had mixed performances, with moderate accuracies identifying British and 
Brahman breeds, though poorer accuracy with European cattle.  

Our discussion section has introduced likely inputs which may have influenced prototype system 
performance. Most importantly, the results of the demonstrable system should be considered very 
favourably, and execution of the corrective actions ought to yield significant system improvements. 

7 Key messages 
We are excited about the potential benefits that the red meat industry should garner through our 
technology solutions partnership. We have been pleased with the relationship between ourselves 
and MLA, and our ability to respond effectively to this opportunity through the supply and validation 
of the working prototype system. 

With MLA’s support, we have delivered a prototype autonomous biometric and breed identification 
system that has demonstrated significant potential benefit to the red meat industry. Based on the 
successful outcomes of this project, we suggest that a research platform should be available in the 
near term with a view to further value proposition explorations. 
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