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Abstract 

A CT scanner was purchased and installed into a purpose-built room situated in a beef and lamb 

processing facility.  A range of red meat industry applications were then evaluated to understand 

how the technology fits into the industry’s automation and objective carcase measurement sensing 

framework.  CT technology offers an opportunity for tasks requiring the 3D information that can’t 

be found with standard x-ray imaging.  This involved initial trials of lamb, beef and viscera, before 

focussing on beef grading and automation.  Trials were conducted and algorithms written to predict 

the intramuscular fat content in beef striploins with high precision (R2 = 0.86, RMSE = 2.01).  

These trials investigated a number of different scanning protocols to understand what would be 

required from an industrial, on-line CT scanner.  There was no significant drop in precision 

between the ‘high-speed’ and ‘high-quality’ scan protocols used and between thin (0.6mm) and 

moderate (3mm) slice widths.  There was also a significant (p<0.05) difference in intramuscular fat 

content between the cranial and caudal ends of the striploins.  This presents a possible value 

proposition in CT’s ability to grade along the entire length of a muscle.  Algorithms were also 

written for a number of beef automation tasks, including rib 1 junction identification, spine cut 

location, chine removal and fat trim profiling.  The knowledge obtained in this project will now be 

used to inform the specifications for an on-line CT scanner capable of operating in an abattoir.  

The algorithms will also be further developed with such a scanner for commercially-installed 

projects.  CT presents a significant opportunity to the red meat industry and can be seen as a 

‘quantum leap’ improvement over currently available sensing technologies.  This project has 

demonstrated this and provided a key stepping stone towards commercial implementation.   
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Executive Summary 

A purpose-built CT scanning room was designed and constructed at a beef and lamb processing 

facility.  A helical CT scanner was then procured, installed and commissioned successfully.  

Following this, a set of initial trials were conducted investigating scans of lamb, beef and viscera.  

After evaluating the results of this work, a decision was made to focus efforts upon the applications 

of muscle isolation and composition analysis – both pivotal for enabling automation as well as 

objective carcase measurement.   

Some initial trials were conducted on bone-in and boneless ribsets and striploins to investigate 

these applications further.  Initial algorithms were written which were able to isolate the 

longissimus dorsi muscle automatically.  The factors influencing composition analysis were 

investigated, including effects such as partial voluming, the variability in HU ranges for different 

tissue types, and the effect of CT scanner hardware parameters.  Based on these findings, a 

focussed set of trials investigating the determination of intramuscular fat content in beef striploins 

was proposed.  A researcher from Murdoch University (Fiona Anderson) was then contracted to 

assist in the experimental design and data analysis for these trials as she had previously 

conducted similar work in lamb.  On top of modelling intramuscular fat content from CT data, a 

range of commercial factors were also to be investigated, including different scan settings and 

different points of the muscle.   

Fifty-two striploins were sourced for the trials.  Their lengths and MSA grading data were recorded 

before cutting a 6cm portion off each end.  These portions were then denuded of any fat and 

adjacent muscle groups, leaving the isolated longissimus lumborum muscle.  The striploins were 

then CT scanned with two different scan settings – a ‘high-quality’ and a ‘high-speed’.  The 6cm 

portions were then frozen and sent to Murdoch for chemical testing.  Models were then built 

predicting intramuscular fat content based on the average and standard deviation of the intensity 

values.  The effect on the accuracies of the models between the two scan settings was compared 

as well as the effect of using three different slice widths – 0.6mm, 3mm and 6mm.  Only moderate 

precision was achieved (R2 = 0.31, RMSE = 2.40).  Despite the best efforts to cover a wide range 

of marbling scores, there was a distinct lack of high-marbled samples in the trialling set.  Another 

twelve high-marbled striploins were then sourced and scanned with the same methodology to 

include in the dataset.  Furthermore, another modelling algorithm was trialled whereby pixel 

intensities were adjusted based on neighbourhood information.  These two factors resulted in a 

significant increase in precision (R2 = 0.86, RMSE = 2.01).  It was also found that there was little 

difference between the ‘high-quality’ and ‘high-speed’ scan settings.  There was little drop in 

precision between 0.6mm and 3mm slice widths, but a larger drop when using 6mm slices.  This 

information has direct positive implications for the requirements of a CT scanner for on-line beef 

IMF determination.  The caudal portion of the eye muscle was also shown to have significantly 

more (1.97%, p<0.05) intramuscular fat than the caudal portion.  Fiona’s paper on this work is 

attached to this report in its entirety as an appendix. 

Further to these trials, algorithms were written for various automation tasks which aren’t currently 

possible using DEXA.  Such tasks present a unique opportunity for CT technology and include 

chine removal, fat trim, rib 1 junction identification and spine cut location.  These were also 

assessed with both high-quality and high-speed scan data to again understand the requirements of 

an automation-focussed CT scanner.   
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The knowledge and algorithms developed throughout the course of this project will now be applied 

to direct commercial projects.  This involves evaluating and/or developing CT imaging technology 

which is able to meet the specifications defined in this project while operating reliably within an 

abattoir processing environment.  The algorithms and trialling methodologies developed in this 

project will feed into these directly. 

A key opportunity area for CT technology is with respect to eating quality grading.  Objective 

measurement of eating quality measures is vitally important to the industry, particularly with the 

advent of objective lean meat yield measurement systems.  Moving forward, this will involve re-

examining the modelling of intramuscular fat content in lambs using the learnings from this project.  

This is something of high-value to the lamb industry in particular given the current lack of eating 

quality metrics.   

CT presents a significant opportunity to the red meat industry and can be seen as a ‘quantum leap’ 

improvement over currently available sensing technologies.  This project has demonstrated this 

and provided a key stepping stone towards commercial implementation.  Work is now commencing 

towards translating these outcomes into real-life, production applications in beef and lamb. 
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1 Background 

Scott Technology has successfully developed single energy x‐ray (SEXA) and dual energy x‐ray 

(DEXA) full carcase systems for the meat processing sector. In addition to driving cost effective 

automation solutions, the x‐ray technology also is at the cusp of providing eating quality, food 

safety inspection and supply chain information for the Australian red meat sector. Parallel 

developments around DEXA to provide an entry point into objective carcase measurement uses 

CT images as the Gold Standard for developing and calibrating DEXA algorithms. Furthermore, 

the 3D information available from CT imaging enables automation and processing not currently 

achievable using x-ray absorptiometry.  

In this project Scott will continue to develop CT knowhow by moving the CT developments from a 

research/laboratory type setting to an in‐situ, at line, processor location. 

  

2 Project objectives 

2.1 Objective 1: 

Develop and demonstrate Australian CT algorithms for various supply chain objective 

measurement uses, including eating quality (MSA) food safety inspection, and advanced 

automation. 

2.2 Objective 2: 

For each of the Outcome 1 algorithms developed and proven, identify the required CT hardware 

specifications as well as a ‘measure everything’ CT scanner. 

2.3 Objective 3: 

Produce indicative 3D drawings of a proposed beef and lamb CT system(s) within a host site. 

 

3 CT Room Build and Installation 

The first task in the project was to source an appropriate second-hand CT scanner within budget, 

available for purchase and with a reasonable warranty.  A Siemen’s Sensation 64 CT scanner was 

found which met these conditions and was purchased (Figure 1).   

A host site was selected where the CT scanner would be installed.  This site possessed a number 

of favourable characteristics which underpinned its selection.  First and foremost, it is a large dual-

species (beef and lamb) processing plant meaning convenient access to meat samples at various 

stages of processing as required.  It was also located conveniently with respect to access by 

SCOTT personnel.     

A custom room was then designed to house the CT scanner.  This room had to be appropriately 

shielded and built from scratch (Figure 2 - Figure 5).  Appropriate radiation licenses and 

compliance also had to be arranged. 
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Figure 1 - The Siemens Sensation 64 CT Scanner - marketing image, previous installed location and stored in the 
Sydney warehouse (anticlockwise from top). 

  

Figure 2 - CT room location (left) and construction of panelling with lead shielding (right) 

   

Figure 3 - Inside CT room once panelling complete (left), entrance to control room (middle) and entrance to CT room 
(right) 
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Figure 4 - Installation of CT scanner (left, middle) and electrical rack in control room (right) 

   

Figure 5 - Completed CT room inside (left) and outside (right) 

 

 

4 Initial Trials 

With the CT scanner installed, a broad range of scans were completed to assess the technology at 

a high-level and help define particular areas of focus for the project moving forward.  These scans 

included scanning a whole lamb carcase, three beef sides (as intact as possible) and some viscera 

samples. 
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4.1 Lamb 

4.1.1 Overview 

 Lamb carcase grading currently occurs using dentition, hot standard carcase weight and 
subcutaneous fat depth at a grading site on the 12th rib - which was clearly visible in the 
scans observed. 
 

 While determination of marbling in lambs isn’t currently assessed, industry is investing in 
assessing its potential to add value and what technologies may enable this. From scans 
performed thus far, CT looks to be a viable technology in this space. 
 

 While the helical CT scanner used for the trials is unable to reach target scanning speeds 
required for single unit, 100% inspection, in-line lamb applications, the data may be 
artificially down-sampled.  This allows us to simulate faster scanning to identify the fastest 
speed allowable for any given application and provides data to design the required CT 
solution. 
 

 The sample was scanned at a number of different speeds and energies to identify the 
requirements for a given application. 
 

 Initial visual analysis suggests potential for CT to be used for cut placement, identification 
of muscle seams, identification of internal muscle contaminants and current grading 
measures.  There is also the potential to assess measures not currently performed by 
human operators but may benefit the industry in areas such as eating quality. 
 

 Image quality achieved with whole carcases enables the potential to perform multiple 
operations with one CT scan (e.g. cut placement, grading and identification of internal 
muscle contamination). 

 

4.1.2 Lamb Study 

Scanning of lamb carcasses was relatively simple as a complete carcass fits comfortably inside 

the field of view of the CT machine (Figure 6).  Scan quality achieved was excellent - most notably 

the smaller skeletal frame did not give any beam hardening artifacts as in some beef scans (this 

issue is explained in section 4.2.2 - Beef Study).  There was generally good definition between fat, 

muscle seams and skeletal features, with excellent results for the subcutaneous fat to bone area 

used for grading at the 12th rib. 
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Figure 6 - Lamb carcass prepared on Helical CT Scanner 

 

Eye-muscle size is currently identified indirectly through estimation using a number of grading 

indicators.  CT technology is able to measure this directly for any given carcase (see Figure 7).  

 

 

Figure 7 - Helical CT image of a Lamb Middle; clearly shows rib bones, the spine, the eye muscle as well as 
subcutaneous fat depth at rib 12. 

 

Marbling is not currently part of the manual grading process for lamb, although industry is investing 

quite heavily in investigating what technologies may be suitable for this (e.g. hyperspectral 

imaging) and the value-adding opportunities which exist.  The potential for characterising marbling 

using CT is quite promising and this project may present a valuable opportunity to investigate this 

further.  Given that lack of beam-hardening effects experienced, there’s a potential to couple 

grading measures, marbling and cut placement with one CT scan for an in-tact carcase. 
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Furthermore, the 3D structural information present can serve as an enabler for further primal 

processing of lamb.  The definition between fat and muscle (Figure 8Figure 11) may serve to drive 

boneless automation that is not currently possible using available sensing methods (e.g. DEXA). 

The system’s scan rates were also trialled, with the fastest scan achieved for a complete carcass 

at approximately 55mm/s.  If a typical ‘line speed’ for a lamb processing abattoir is 8 carcasses per 

minute, and a complete carcass scan length is 1500mm, the scan rate needs to be approximately 

200mm/s; almost four times the tested peak scan rate for this system.  It is possible to down-

sample the data to emulate faster scanning speeds however to still assess how fast we’d be able 

to scan and while retaining the required level of accuracy for a given application. 

 

 

Figure 8 - Helical CT images of a Lamb Boneless Chump.  The difference between the fat and lean is clearly visible. 

 

4.2 Beef  

4.2.1 Overview 

 As with lamb, initial trials aimed at keeping the carcase as ‘in-tact’ as possible to allow 
analysis of as many attributes and cut placements as possible.  Initially quarters were 
attempted, then with the forequarter split in half down the middle with a caudocranial cut to 
allow each piece to be completely within the CT scanner’s field of view.  An Ox, an old 
cow, and a bull were scanned in this manner. 
 

 Beam hardening – an effect which produces radial ‘streaks’ through an image – was 
encountered in samples containing ribs.  Samples containing only the spine however, 
appear to be free of this artefact.  
 

 Even with beam hardening effects, isolation of bone structure was still possible, notably at 
the rib 1 junction site which is a key point for scribing operations.   
 

 Beam hardening effects however did affect the visual presentation of the eye muscle with 
these scans. The magnitude of the effect of these artefacts in assessing carcase attributes 
though shall be investigated in the next milestone phase as it may be found that, while 
quite visible to the eye, it doesn’t impede calculations to a significant degree.  If this is the 
case, multiple operations may be possible from one CT scan for beef (e.g. cut placement, 
grading and internal muscle contamination). 
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 A set of scans were taken on short loin and rib set primals.  The carcase numbers for 
these samples was logged and their corresponding grading scores isolated.  They were 
scanned bone-in and boneless. 
 

 A number of different parameter configurations, including a ‘line speed’ one, were decided 
upon based on early trials and all samples were scanned with each configuration.  This 
allows us to identify how ‘fast’ we can/need to scan for a given application for designing a 
purpose-built system. 
 

 A number of third party software packages were trialled to enable manual analysis of the 
results.  Preliminary analysis with the selected piece of software suggests that 
bone:lean:fat composition and marbling is able to be calculated from the trial data. 

 

4.2.2 Beef Study 

As with the lamb scans, the initial plan was to keep the beef samples as intact as possible to 

maximise the number of attributes and cuts which could be evaluated.  Thus, quarters were first 

investigated (Figure 9).  

 

 

Figure 9 - Beef quarter prepared for Helical CT scanning. 

 

The scan range of the system, in both distance and time, is restricted by heat dissipation of the x-

ray tube.  Thus a trade-off must be made between duration of scan and energy levels (equating to 

image quality), a balance which is bounded by the machine firmware and software to prevent 

damage to the system.  Detailed understanding of these technology limitations will thus be applied 

in later milestones when specifying what an on-line CT scanning solution will look like for a given 

application. 

For the cow and bull sides, the forequarter was split in half to allow scanning as per Figure 10.  

This was done for efficiency purposes along with maintaining a craniocaudal scan direction, which 

would be the most likely orientation for an on-line system.   
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Figure 10 - Forequarter split into Dorsal (left) and Ventral samples for scanning.  Hindquarter scanned intact (right). 

 

One phenomenon of note was the occurrence of beam hardening in some of the scans (see Figure 

11).  When an x-ray beam encounters dense materials, in this case thick sections of rib bone, 

lower energy photons are absorbed by the material, resulting in a higher average energy for the 

transmitted beam at that point.  When the beam is measured by a detector, the effect is as if the 

beam had not encountered as much attenuation due to the higher average energy.  The beam 

hardening was prevalent in scans of any large or small sized beef product containing thick rib 

bones, regardless of scan times or energy levels used.  

This effect was found even with the slowest and highest energy scans possible with the machine.  

The degree to which this impairs the ability to perform certain applications (e.g. bone, meat and fat 

composition, marbling etc) is to be investigated in the next milestone.  The factors which 

characterise this effect (e.g. bone thickness, carcase age, ox vs bull vs cow etc) will also be 

investigated.  This will allow us to identify the practical significance of the effect and what post-

processing may be applied to counter it.  As later described, a number of physical aspects were 

also able to counter the effect. 

 

   

 

Figure 11 - Images above show difference with increasing mAs (eff. mAs) and rotation time (TI).  Note the hardened 
beams showing as radial lines from the edge of the rib and extending through the eye muscle. 



      

Page 15 of 116 
 

Figure 12 shows a number of different slices as the CT scanner moves from between ribs to the 

middle of a rib.  It can be seen that when no ribs are in the scan, there appears to be little 

presence of beam hardening.  As soon as the rib comes into the slice though, the effect is 

propagated through much of the adjacent muscle.   

 

 

 

Figure 12 - Presentation of beam hardening through different slices around a rib 

 

Scans of the hindquarters however seemed free of this effect (see Figure 13).  This confirmed that 

this issue seems to present only when the ribs are present and not with just the spine. 

 

 

Figure 13 - In hindquarter sections, the beam hardening was not present, even at ‘line speed’ trial scan rates (160 sides 
per hour at 1000mm scan length) 
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Even with the beam-hardening effects experienced, separation of bone from fat and lean was still 

possible, even with the ‘line-speed’ scan parameters.  The costochondral joint at rib 1 is a key 

point for scribing operations and can be challenging to isolate in DEXA images.  This was found to 

be visible even with the ‘line-speed’ scan parameters (see Figure 14 and Figure 15). 

 

 

Figure 14 - Isolation of bone around rib 1 costochondral joint for a 195kg bull with 'line-speed' scan parameters 

 

 

Figure 15 - By comparison, DEXA image around the rib 1 junction for a 187kg obtained at Swift Dinmore 

 

This suggests that even with beam-hardening effects, CT is still a viable option for determining cut 

placement in beef, as well as other primal processing tasks (e.g. automated deboning, fat trimming 

etc).   

Trials were then focussed on the eye muscle (longissimus dorsi), particularly around the grading 

site used for marbling determination.  To do this, the short loin and rib set for given carcase sides 

were chosen.  The carcase side identification numbers were logged and the complete grading data 
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for these sides were provided.  The samples were scanned both with bone-in and then boneless.  

This data potentially enables: 

 Quantifying of grading measures using the CT data and verification against the human 
grading results. 

 Quantifying the effect of beam hardening on data analysis. 

 Identifying the effects of different scanning parameters. 

 Identifying the effects of different post-processing kernels used to build the CT data. 

 Visualising the presentation of the entire length of the longissimus dorsi and how 
composition varies away from the current grading site. 

 

The scans on the bone-in rib set samples demonstrated significantly less beam-hardening effect 

due to the shorter rib length (see Figure 16). 

 

 

 

Figure 16 - a number of slices taken from a CT image of a bone-in rib set 

A series of scans were taken with the ribs at a 45o angle to the scanning axis to observe how 

beam hardening presented when the scan direction was out of alignment both with the ribs and 

with the spine.  The beam hardening in this case was reduced further (see Figure 17).   

 

 

Figure 17 - a number of slices taken from a CT image of a bone-in rib set oriented at 45o.  This is the same sample 
presented in Figure 16. 
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As aforementioned, each sample was first scanned bone-in before being boned out by a trained 

boning room operator and scanned again boneless.  This procedure will enable the quantification 

of the effect beam-hardening on actual calculated results. 

 

4.2.3 Intramuscular Fat Analysis 

Preliminary work was performed on characterising marbling in beef samples.  By performing this 

high-level analysis, an understanding was developed on how these characteristics are to be 

explored in the next stage of the project if stakeholders agree that this application warrants further, 

in-depth investigation.  

First, MSA grading cards for marbling were transformed into a numerical model to which the 

outputs of CT image analysis could be compared.  These MSA grading cards come in increments 

of 100, from 100 through to 1100.  When a grader assesses a carcase, the grade assigned is in 

increments of 10 (from 100 through to 1190).  Thus they interpolate the grades between cards for 

a given carcase.  For this stage of the project, the grading cards were analysed in vision 

processing software, converting each marbling score to a percentage of visible fat coverage.  The 

values between cards were then interpolated linearly (see Figure 18).   

 

  

   

Figure 18 - An example of two MSA grading cards and their masked images which were used for histogram data 
analysis, extracting the ratio of tissue to fat in the image and providing a percentage total fat in the isolated muscle 

cross-section.  The bottom-right image shows the boundaries for the intramuscular fat specks identified for the MSA 900 
card. 
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The results are shown in Table 1.  These values are the inferior limits – a result for a sample would 

be binned into the next lowest category (e.g. a sample calculated as possessing 11.10% 

intramuscular fat would be categorised as MSA720). 

 

Table 1 - The table shown below indicates a percentage fat total for each marbling score, as extracted from the MSA 
Grading Cards.  This was a quick calculation and will have some errors introduced, however it does provide some 
objective figures to a typically subjective grading process. 

MSA Grade 
Calculated 

% IMF 

Interpolated Values 

x10 x20 x30 x40 x50 x60 x70 x80 x90 

MSA100 0.33% 0.34% 0.35% 0.36% 0.38% 0.39% 0.40% 0.41% 0.42% 0.43% 

MSA200 0.44% 0.48% 0.52% 0.56% 0.60% 0.63% 0.67% 0.71% 0.75% 0.79% 

MSA300 0.82% 1.01% 1.20% 1.39% 1.58% 1.77% 1.96% 2.15% 2.34% 2.53% 

MSA400 2.71% 3.00% 3.29% 3.58% 3.87% 4.16% 4.45% 4.74% 5.03% 5.32% 

MSA500 5.61% 5.90% 6.18% 6.47% 6.76% 7.04% 7.33% 7.62% 7.90% 8.19% 

MSA600 8.48% 8.67% 8.87% 9.07% 9.27% 9.46% 9.66% 9.86% 10.06% 10.26% 

MSA700 10.45% 10.71% 10.97% 11.23% 11.49% 11.75% 12.01% 12.27% 12.53% 12.79% 

MSA800 13.05% 13.47% 13.89% 14.32% 14.74% 15.16% 15.58% 16.01% 16.43% 16.85% 

MSA900 17.27% 17.51% 17.74% 17.97% 18.21% 18.44% 18.67% 18.90% 19.14% 19.37% 

MSA1000 19.60% 19.72% 19.84% 19.95% 20.07% 20.18% 20.30% 20.42% 20.53% 20.65% 

MSA1100 20.76% 

          

 

Several approaches to the analysis of collected CT data were then explored.  There are two critical 

processes in this analysis; segmentation and histograms. 

Segmentation will place boundaries around parts of the image, ensure that the correct part of the 

product is being measured.  Several segmentation software solutions were evaluated which 

provide a number of tools to facilitate sample segmentation for further analysis. 

After an extensive search and trialling, the program selected to be most appropriate for analysing 

the Beef CT data from Brooklyn and determining the Beef Grade from the imaged 3D data is 

Seg3D. http://www.sci.utah.edu/cibc-software/seg3d.html. Figure 19 shows a typical example for 

analysing a CT data set. 

 

 

http://www.sci.utah.edu/cibc-software/seg3d.html
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Figure 19 - Example screenshot from Seg3D software during evaluation 

Seg3D has many automatic and manual tools for segmenting various regions from the 3D data 

sets. Following is a description (Table 2) of the methods used to determine the beef grade from 

two carcases, designated 850R and 766R, which were graded as 380 and 590, respectively, for 

marbling. The determination is done on 3D images from the short loin of these carcases. 

 

Table 2 - Intramuscular fat content vision processing 

850R 766R 

  

Step 1: Crop the 3D data into a smaller and more manageable 3D volume. In this case, both data 
sets were cropped to 238 x 147 x 43 voxels. 
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Step 2: Initialise the mask that represents the longissimus dorsi. The Confidence Connected 
feature is used to create a mask that at least overlaps the muscle in 3D. As can be seen, the 
muscle is not completely tagged and that other muscles have also been tagged by the mask.  

At this point it must be emphasised that there is the need for a registration approach in which a 
well-known muscle model is used as a seed for a Registration technique to help automate this 
step and step 3. Seg3D does have a feature called Point Set Registration that would be worth 
investigating once a model is made available.  

 

  

Step 3: Manually perform a sequence of Painting, Dilation and Erosion steps until the 
longissimus dorsi is uniquely tagged by the mask. The number and order of steps required is 
subjective and depends on the operators understanding of cattle anatomy. Seg3D efficiently and 
comfortable facilitates these steps, using the Paint Brush and Smooth Binary Dilate -> Erode 
features.  

By using the Mask Data feature, the longissimus dorsi is extracted into its own 3D data set. Note 
that the mask does not extend to the very edge of the muscle. The main purpose is to minimise 
any edge effects in the following calculations. 

 

  

Step 4: If there are no significant artefacts in the images, namely no Beam Hardening, then an 
automatic process can be used to segment the fat and muscle in the masked regions. The Otsu 
Threshold feature is used, typically with 2 thresholds. In this case three masks are generated but 
the first one is discarded since it only represents empty space. 

In the examples above, only carcase 766R was amenable to this process. The red represents 
meat and the green represents fat. The total voxel count for these two 3D regions is 304,117 
meat and 42,233 fat voxels. For the representative slice the voxel count is 14,473 meat and 
1,840 fat voxels. 

To segment carcase 850R, a sequence of manual steps is required. The best approach is to 
create a mask that tags only the fat voxels. The mask that tags the meat voxels is then created 
from the difference between the muscle mask and the fat mask. To create the fat mask, the 
Neighbourhood Connected, Paint Brush and Boolean OR features are used. Once again, the 
number and order of steps required is subjective and depends on the operators understanding of 
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how fat networks are distributed through meat. 

Again, red represents meat and the green represents fat. The total voxel count for these two 3D 
regions is 232,786 meat and 5,362 fat voxels. For the representative slice the voxel count is 
10,775 meat and 329 fat voxels. 

As above, this is a tedious task to complete manually. An alternative approach using histograms 
is proposed in Step 5. 

  

 

Step 5 (Alternative): Seg3D allows data sets to be exported in the nrrd format. The masked 3D 
image data set (end of Step 3) is saved to disk. Python is a very flexible programming language 
and has many packages. By using the numpy and scipy packages, histograms can be generated 
from the image data. Gaussian curves are then fitted to the histogram and the area under each 
curve represents the number of meat and fat voxels. Above are the histogram and the fitted 
Gaussians for the two carcases. 

However, as can be seen from the results, the histogram is not composed of ideal Gaussian 
curves – a more appropriate curve may be needed, such as a Poisson distribution. Nevertheless, 
data can be extracted if the correct curves are combined. 

For carcase 850R, the red and purple curves are combined to give 230,096 meat voxels and the 
aqua curve gives 8,118 fat voxels. For carcase 766R, the red and yellow curves are combined to 
give 287,311 meat voxels and the purple curve gives 59,927 fat voxels.  

This approach has the advantage that further segmentation between fat and meat voxels is not 
required. However, more work is required to more accurately decompose the histogram. If the 
values are sufficiently accurate to discriminate between the different Beef Grades, then this 
approach will be faster. 

 

The preliminary results obtained for each of the aforementioned segmentation methods are shown 

below (Table 3) for two bone-in rib set samples scanned. 

Table 3 – Fat-Muscle segmentation results for each of the segmentation methods discussed 

Method 

850R 766R 

Muscle 
(voxel 
count) 

Fat 
(voxel 
count) 

% Fat  
Muscle 
(voxel 
count) 

Fat 
(voxel 
count) 

% Fat  

3D Segmentation 232,786 5,362 2.3 304,117 42,233 12.2 

Representative 2D 10,775 329 3.0 14,473 1,840 11.3 

Histogram 230,096 8,118 3.4 287,311 59,927 17.3 
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Another important consideration is how to segment bone, lean and fat in a given CT image.  Each 

voxel is assigned a value in Hounsfield units (HU).  There are currently no agreed upon, definitive 

thresholds for composition analysis in beef, although current literature suggests a range of 

approximately -100HU to 0HU for fat, 30HU to 130HU for muscle, 200HU to 800HU for 

calcification and 700HU to 3000HU for bone.  There are a number of factors which make the 

determination of these thresholds, and thus the calculation of composition, non-trivial.  This is to be 

investigated further in the next milestone of the project. 

Figure 20 shows a histogram of HU values versus ln(Frequency) for the logissimus dorsi muscle in 

three different samples for a single CT slice.  It can be seen that in one sample there are three 

distinct peaks corresponding to fat, muscle and bone.  The other samples aren’t as clear but 

suggest similar HU thresholds.  This is promising as it suggests hard, universal thresholds may be 

applicable but further analysis would be required to ascertain this. 

 

 

Figure 20 - HU values for three different samples, single CT slice across the longissimus dorsi 

 

The calculated fat percentage results for the three segmentation methods (see Table 3) were then 

assigned an MSA grade using the transformed MSA grading scale (see Table 1).  The results of 

this are shown below in Table 4, along with the grade originally assigned to the sample by a 

grader.  The results obtained suggest viability in investigating this with more detail in the next 

milestone of the project. 

 

Table 4 - the comparison between the Host Site grading score, and the calculated grading score from three 
approaches of analysis taken with the Helical CT scan data. 

 
850R 766R 

% Fat Total Analysis % Fat Total Analysis 

3D Segmentation 2.3 370 12.2 760 

Representative 2D 3.0 410 11.3 730 

Histogram 3.4 420 17.3 900 

MSA Marbling Score 
assigned to sample 

 380  590 
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A number of opportunity areas were recognised for moving forward in this area: 

- Higher accuracy mapping of MSA grading cards into numerical thresholds and investigating 
structure characterisation 

- A focus first on ideal segmentation to characterise the effect of different factors including:  
o HU threshold values for lean vs fat;  
o compensation for partial volume effects (a phenomenon which occurs when voxels 

correspond to material in the sample which isn’t purely fat, lean or bone but a 
combination);  

o intramuscular fat structure characterisation 
o variation of marbling throughout the longissimus dorsi muscle 

- Numerically determining the effect of beam-hardening in samples 
- Comparing results obtained for different scanning parameters 
- Obtaining datasets for more samples, along with their grading data 
- Investigating requirements for fully automated segmentation and registration 

 

Keeping these considerations in mind, the preliminary results look promising.  Further analysis on 

captured data will allow further insight into the current discrepancy and provide direction for further 

data acquisition. 

 

4.3 Viscera Study 

In order to fully explore the capabilities of the Helical CT system, scanning of beef viscera was 

explored.  The exercise is primarily interested in the detection of contaminants, infection or disease 

which would lead to the viscera being condemned and therefore not adding value to the cattle 

beast as a whole. 

Availability of a range of condemned product was limited due to the stock processed the day 

before (grass-fed cattle have different susceptibilities to certain infections and parasites than grain-

fed cattle).  The viscera are also highly perishable and should be scanned as freshly as possible, 

which also increases the likelihood of seeing disease and parasites active in the fresh tissue. 

For the preliminary study, scanning was undertaken on hearts, livers and kidneys.  These were 

identified by the host site as the most common organs condemned.  The supplied product 

consisted of: 

- ‘Clean’ set of viscera from 2 animals; heart, kidneys, livers 
- ‘Condemned’ viscera; 1 x heart, 2 x kidneys, 2 x livers 

 

4.3.1 Liver 

Upon initial analysis, the scans of livers infested with liver fluke (Figure 21) did not clearly show the 

parasites on visual inspection of the CT images (Figure 22Figure 25).  It is believed this is due to 

the liver fluke being of a very similar structure to the liver tissue thus there is not adequate contrast 

to clearly identify them directly.  However, they may be able to be detected when augmented with 

another technology (e.g. MRI, ultrasound).  It may also be possible to identify indirectly by looking 

for abnormalities (e.g. in bile duct structure). 
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Figure 21 - Clean’ sample prepared for scanning (left), ‘Condemned’ sample (right) showing liver flukes removed from 
the bile duct area. 

 

Other contaminants to be investigated in the future include abscesses and cysts, which are both 

likely to be readily detected by x-rays due to their different density compared to surrounding tissue. 

 

 

Figure 22 - Helical CT slice images of Bovine Liver.  Note presence of bile ducts, and gall bladder on left of image (top 
left, bottom left), and inspection cuts from AQIS inspector as well as the gall bladder being visible also (top right). 
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4.3.2 Kidneys 

The white spots visible on the kidneys, indicative of subacute interstitial nephritis (Figure 23), do 

not represent a significant change in density and therefore contrast (Figure 24).  Again though, it 

may be possible to detect this condition indirectly by identifying abnormalities in the kidney tissue.  

Augmenting the CT technology with another (e.g. MRI, colour camera, ultrasound) may enable 

robust detection of such defects. 

 

 

Figure 23 - ‘Condemned’ kidney sample (left) with white spot highlighted.  In this sample the spots were very small; a 

more severe example is shown (right), image source: (http://www.cresa.cat/blogs/sesc/ronyo-de-taques-blanques-
en-un-bovi/?lang=en). 

 

  

  

Figure 24 - Helical CT slice images of Bovine Kidney.  Note differing image sharpness between top two slices, and 
bottom two slices.  The blurred lower two images show the visual side effect of increasing scan time. 

 

  

http://www.cresa.cat/blogs/sesc/ronyo-de-taques-blanques-en-un-bovi/?lang=en
http://www.cresa.cat/blogs/sesc/ronyo-de-taques-blanques-en-un-bovi/?lang=en
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4.3.3 Heart 

The heart showed no obvious signs of disease or parasite, even to the host site staff member 

assisting in the assessment (Figure 25).  This further illustrates the need for objective grading of 

offal contamination within industry.  A common cause for condemnation of hearts is presence of 

tapeworm (Taenia saginata) eggs both on the surface of the muscle and within the structure 

(Figure 26).  This was not the case in the sample provided, but this occurrence will be investigated 

under future studies. 

 

 

Figure 25 - Condemned’ heart sample (top), with knife cuts shown for inspection of the organ; no obvious evidence of 
contamination or disease in this sample. 

 

 

Figure 26 - Image above shows an example of a tapeworm infested heart, with egg sacs shown populating the organ 

surface and within the muscle, image source: (http://www.afrivip.org/sites/default/files/Helminths-
ruminants/musculature.html). 

 

Figure 27 - Helical CT slice image of Bovine Heart. Note cartilage piece in white at centre (bottom image), and also note 
additional cavities and openings from knife inspection by AQIS agent as shown in photos on previous page. 

http://www.afrivip.org/sites/default/files/Helminths-ruminants/musculature.html
http://www.afrivip.org/sites/default/files/Helminths-ruminants/musculature.html


      

Page 28 of 116 
 

While the provided sample set was quite limited, the scans taken do indicate what is observable in x-ray images, which 
does provide a likelihood of detecting some further contaminants. 

Table 5 contains a list of likely contaminants to be found in beef viscera.  Some of these are based 

on minor textural and colour changes in the organs, and it has been established from preliminary 

scans that these changes may not detectable with x-ray technology alone. In these cases, 

augmenting the CT scan with another sensing technology (e.g. MRI, ultrasound, colour imaging) 

would be beneficial in attempting to isolate such forms of contamination. 

Items such as cysts (especially those displaying some level of calcification), abscesses and 

parasite eggs typically have a higher water or fibre content than surrounding tissue and it is 

expected that these would be detectable. 

 

Table 5 - Summary of investigation of viscera features and contaminants.  Red = No, Orange = Maybe, Green = Yes. 

Contaminant 
CT Scan 

Completed 

Likelihood of 

Detection 

Further 

Testing 

Required 

Likelihood of 

Detection 

(MRI) 

Cysts         

Onchocerca         

Abscess         

Tape Worm (Taenia Saginata)         

Liver Cirrhosis        

Liver Carotenosis        

Liver Flukes (Distoma)        

Liver Melanoma        

Liver Sawdust (Nutritional Hepatic 

Necrosis) 
      

 

Liver Telangiectasia        

Kidney Subacute Interstitial Nephritis         

Kidney Petechiae        

Specified Risk Materials (SRMs)        

Parasites (cysticerosis, Sarcocystosis)        

Lymph Nodes        

TVC, E.Coli        
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5 Composition Analysis and Muscle Segmentation – Initial 

Analysis 

Upon completion of the initial trials, an internal review was conducted within Scott, discussing the 

high-level results and observations encountered.  It was decided that two attributes in particular 

should be examined with greater detail: calculation of composition and isolation of muscles.   

These attributes were chosen due to their potential relevance to a fairly broad range of 

applications (e.g. cut placement, saleable yield calculation, grading etc).  They were thought to 

have particular opportunity in the area of grading, especially given the MSA’s framework of grading 

based on cuts.  As a result, it was decided these applications would be investigated in the context 

of grading.  Detailed analysis would be done on the opportunities and challenges with respect to 

isolating the longissimus dorsi muscle and characterising the composition of intramuscular fat 

within it.   

 

5.1 Composition Analysis 

5.1.1 Overview 

 A number of practical considerations mean that simply calculating composition based on 
constant HU ranges may not be accurate enough for a commercial application.  This 
includes the partial volume effect; reference HU ranges for fat, lean and bone; and CT 
scanning configurations. 

 

 Histogram data of the striploin and ribset scans show variation in fat peaks presentation 
while the lean muscle peaks are fairly consistent both between scans and within scans 
(from slice to slice) although this variation might not have a practical effect. 

 

 There was little difference between moderate speed/power and low speed/high power 
scans.  There was a significant difference with the line-speed scans although the trend of 
the data was similar. 
 

 Reconstruction kernel used affected absolute results but showed little relative difference. 
 

 Intramuscular fat looks to vary along the longissimus dorsi. 
 

 Based on these, the following considerations should be factored into further trialling and 
analysis: 

o scans of just the longissimus dorsi along with chemical lean calculation as an 
objective comparison point 

o scans performed with 0.6mm slice widths 
o samples spanning entire range of marbling scores and of different breeds, genders 

etc should be obtained 
o scan with line-speed and moderate speed parameters only 
o obtain data for varying levels of intramuscular fat with chemical lean obtained as an 

objective comparison point 
o obtain scans of segments of the longissimus dorsi for each sample and obtain 

chemical lean as an objective comparison point 
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5.1.2 Introduction 

A CT scan produces of a collection of 2D ‘slice’ images along the length of the sample.  These 

slice images consist of an array of voxels (the equivalent of a pixel in a traditional image), each of 

which is assigned an intensity value in ‘Hounsfield Units’ (HUs).  Different materials tend to be 

associated with certain ranges of HU values which means, theoretically, the composition of a scan 

for a certain material can be identified by identifying the proportion of voxels in its associated HU 

range.  For example, if fat is believed to be represented uniquely by HU values greater than -100 

and less than 0, then the number of voxels within this range divided by the total number of voxels 

in the entire sample’s CT image will give the proportion of fat in the sample (by volume). 

In practical applications however there are a number of reasons why the aforementioned process 

doesn’t reliably hold; the key factors being:  

 the partial volume effect;  

 variability of reference HU ranges (both inter- and intra-species); and 

 variability between CT scanner hardware, scanning parameters and scanning protocols. 
(Bardera, Boada, Font-i-Furnols, & Gispert, 2014) 

 

The work in this milestone thus sought to provide more definition in these areas to identify the key 

areas that further trialling should address in developing algorithms for automated composition 

analysis of a given sample. 

 

5.1.3 Partial volume effect 

The partial volume effect is observed when a given voxel does not represent a volume of a ‘pure’ 

tissue, but rather a mix.  Consider the example shown in Figure 28.   

 In each of the panels (A, B and C), the outer square represents the field of view for the 
image and each square on the grid represents a ‘voxel’.   

 Panel A shows the physical setup of the example.  The field of view of the image contains 
two substances: a circular area of substance I which has a HU value of 10, and the 
remaining area of substance II which has a HU value of 0.   

 When an image is captured, the image is discretised into an array of square voxels based 
on the resolution of the system.  Each voxel is shown as a square on the overlayed grid.  It 
can be seen that the voxels at the centre of substance I appear as 10HU as expected.  
However, the voxels at the edges have a mixed proportion of substance I and substance II, 
which result in voxels of intensity 3HU and 8HU. 

 Panel C shows the CT image of the field of view.  Rather than containing only voxels of 
10HU (substance I) and 0HU (substance II), there are also voxels of 3HU and 8HU.  There 
is also no clear boundary between the two substances. 
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Figure 28 - Partial volume effect 

 

For the purposes of composition analysis, this effect has two main interactions.  Firstly, at 

boundaries between tissues, there will be voxels which can’t strictly be classed as fat or lean in the 

same way that, in the example above, the voxels with values of 3HU or 8HU can’t strictly be 

classed as substance I or substance II.   

Secondly, a layer of complexity is added when the tissues are characterised by HU ranges rather 

than exact values.  With the example above, consider that a pure sample of substance I, rather 

than presenting as 10HU presented over the range 8HU-10HU.  In this case, should voxels of 8HU 

be considered as pure substance I or a combination of substances I and II?  It is in this way that 

the partial volume effect can overlap the issue of variability of reference HU ranges for fat, lean 

muscle and bone. 

Considering these points from a practical perspective, this issue only needs to be catered for in an 

automated algorithm if its effect is significant relative to the application.  Thus, the following 

considerations should be applied to the next set of trials: 

 scans need to have corresponding objective data to quantify the effect (ie chemical 
lean determination for intramuscular fat composition vs lean muscle in the longissimus 
dorsi muscle) 

 scans should be taken with the smallest slice width possible (0.6mm) to minimise the 
effects. 

 

If the effect is shown to be significant, there are a number of methods presented in literature which 

may potentially be adapted for the specific application. 

 

5.1.4 Reference HU variability 

Research suggests that there isn’t one set of golden HU ranges for the different tissue types (fat, 

lean muscle and bone) (Bardera, Boada, Font-i-Furnols, & Gispert, 2014).  In the case of bone in 

particular, there is a large amount of variability due to differences between animals in terms of 

bone densities (similar to the differences experienced between humans) (Navajas, et al., 2010).  

There is a possibility for variation between different species, between breeds within the same 

species, as well as within different animals of the same breeds (Bardera, Boada, Font-i-Furnols, & 

Gispert, 2014). 



      

Page 32 of 116 
 

In investigating this effect and how significant it may be for the development of automated 

algorithms, it was decided to first analyse the scans taken of the ribset and short loin primals for 

four different bodies.  It was hypothesised that, by looking at the HU distribution of the samples, 

there should be clear and consistent peaks to identify the ‘pure fat’ and ‘pure lean’ HU values.   

Ribset and short loin primals were scanned for four different beef carcases.  These primals were 

scanned bone-in and boneless.  Furthermore, one of the samples was scanned at a 45o
 angle to 

the scanning axis. Thus, there were 17 scans in total which were analysed, as shown in Table 6. 

 

Table 6 - Scan summary 

    Bone-in BoneLess MSA Marbling Score 

764L 
RIBSET   

MSA430 
SLOIN   

766R 
RIBSET  

 
MSA590 

SLOIN   

849R 
RIBSET   

MSA240 
SLOIN   

850R 

RIBSET  

 

MSA380 
RIBSET 45o 

Same sample as ‘Ribset’ 
but oriented 45o to the 

scanning direction 
DATA 

NOT TAKEN 

SLOIN  

  

For each of the 17 scans, the HU-value histogram was taken for each slice and cumulatively 

added to give an overall HU-histogram for the scan.  The results for all scans are shown in the 

histograms in Figure 29 - Figure 32 below.  Green lines represent bone-in scans while blue lines 

represent boneless scans.  The x-axis indicates HU-value while the y-axis is the natural log of the 

frequency. 

The observations of note for these histograms are: 

 there are distinct peaks for fat (ca. -65HU) and lean (ca. 65HU) but not bone, which 
presents across the approximate range of >250HU; 

 fat and lean peaks seem fairly consistent across all scans; 

 the lean peaks however appear much more consistent, sharper and more distinct than the 
fat peaks 
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Figure 29 - Cumulative histograms for each scan 

 

Figure 30 - Cumulative histograms for each scan - zoomed into fat and lean peaks 

 

Figure 31 - Cumulative histograms for each scan - zoomed into fat peaks 
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Figure 32 - Cumulative histograms for each scan - zoomed into lean peaks 

 

Figure 33 to Figure 36 below show the histograms for each sample individually.  The ribset and 

short loin scans, boneless and bone-in, are plotted on top of each other for a given sample. The x-

axis indicates HU-value while the y-axis is the natural log of the frequency. 

 

 

Figure 33 - Cumulative histograms for sample 764 

 

 

Figure 34 - Cumulative histograms for sample 766 
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Figure 35 - Cumulative histograms for sample 849 

      

 

Figure 36 - Cumulative histograms for sample 850 

 

The same observations can be seen although it should also be noted that the fat peaks are 

particularly shallow for samples 849 and 850.  These samples are the lowest marbled, meaning 

they will also possess less fat in total compared to samples 764 and 766 (Font-i-Furnols, Čandek-

Potokar, Maltin, & Prevolnik Povše, 2015).   

The peaks for each scan were calculated numerically: 

 Fat peak = local maxima over range [-150,0]HU 

 Lean peak = local maxima over range [0,150]HU 
 

The results are shown in Table 7.  Also added are the MSA marbling score and rib fat 

measurement taken by the grader for each sample.  Observing these results, a number of 

observations were made.  With fat, the peaks aren’t as sharp compared to that corresponding to 

lean muscle.  It was expected that the peaks would be consistent across all scans but this wasn’t 

observed.  The difference between the bone-in and boneless scans may be attributed to the 

presence of bone marrow, which has a similar HU range to fat.  It’s also possible that beam 

hardening had some effect as well.  The difference between the boneless ribset and short loin 
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primals for samples 849 and 850 may be attributed to these samples having less fat in general.  

There is also the possibility that pure fat lies over a wider distribution.  Intra-species variations may 

also be having an effect regarding the differences between the samples. 

As aforementioned, the lean peaks appeared much sharper and more consistent across all scans.  

The values for the bone-in scans seem to be slightly lower than their corresponding boneless 

scans possibly due to the beam-hardening effect.   

 

Table 7 - Fat and Lean Peak Analysis Results 

    FAT LEAN GRADING DATA 

    Bone-in BoneLess Bone-in BoneLess 
MSA  Marb Rib Fat 

764L 
RIBSET -57 -61 59 64 

430 11 
SLOIN -58 -61 65 66 

766R 
RIBSET -60  -65 59 61  

590 6 
SLOIN -66 -67 62 64 

849R 
RIBSET -44 -55 58 60 

240 7 
SLOIN -53 -67 61 62 

850R 

RIBSET -44 -56 60 62 

380 7 
RIBSET 45o -41   59   

SLOIN -54 -64 62 64 

 

For each scan, the individual slices were then analysed and the fat and lean peaks identified.  

Figure 37 - Figure 40 below show the variation for the fat peaks.  The horizontal axis is the slice 

number and the vertical axis is the fat peak calculated for that slice Table 8 summarises the 

statistical data calculated. 

 

Figure 37 - Fat Peak for each CT slice image - Bone-In Scans 
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Figure 38 - Fat Peak for each CT slice image - Bone-In Scans (data sorted by increasing fat peak) 

 

Figure 39 - Fat Peak for each CT slice image - Boneless Scans 

 

Figure 40 - Fat Peak for each CT slice image - Boneless Scans (data sorted by increasing fat peak) 
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Table 8 - Summary Statistics of Fat Peak Variation 

    BONE-IN BONELESS 

    Mean StdDev Min Max Range Mean StdDev Min Max Range 

764L 

RIBSET -54.9 6.87 -69 -32 37 -60.6 4.9 -71 -45 26 

SLOIN -59.6 4.95 -72 -44 28 -62.5 4.6 -74 -48 26 

766R 
RIBSET -57.9 9.16 -70 0 70 -64.0 3.1 -71 -47 24 

SLOIN -65.7 4.68 -80 -51 29 -67.4 3.7 -79 -57 22 

849R 
RIBSET -43.3 9.67 -64 0 64 -52.6 6.1 -70 -32 38 

SLOIN -45.9 14.81 -71 0 71 -62.4 22.8 -138 0 138 

850R 

RIBSET -43.4 9.20 -63 -4 59 -48.9 13.0 -67 0 67 

RIBSET 

45o -40.1 9.02 -60 -1 59           

SLOIN -54.5 7.21 -72 -29 43 -66.7 10.8 -116 0 116 

 

Figure 41 to Figure 44 below show the variation for the lean peaks.  Table 9 summarises the 

statistical data calculated. 

 

 

Figure 41 - Lean Peak for each CT slice image - Bone-In Scans 
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Figure 42 - Lean Peak for each CT slice image - Bone-In Scans (data sorted by increasing lean peak) 

 

Figure 43 - Lean Peak for each CT slice image - Boneless Scans 

 

Figure 44 - Lean Peak for each CT slice image - Boneless Scans (data sorted by increasing lean peak) 
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Table 9 - Summary Statistics of Lean Peak Variation 

    BONE-IN BONELESS 

    Mean StdDev Min Max Range Mean StdDev Min Max Range 

764L 

RIBSET 61.1 3.74 52 74 22 63.5 2.91 55 72 17 

SLOIN 64.9 3.91 54 77 23 65.6 1.99 58 70 12 

766R 
RIBSET 59.9 3.88 51 72 21 61.2 2.71 54 69 15 

SLOIN 62.3 3.15 53 70 17 63.0 2.44 54 70 16 

849R 
RIBSET 58.8 2.45 49 66 17 60.3 1.73 55 64 9 

SLOIN 61.1 2.39 54 67 13 62.1 1.82 57 67 10 

850R 

RIBSET 60.4 2.39 54 70 16 61.3 2.01 56 66 10 

RIBSET 

45o 59.5 2.02 55 65 10           

SLOIN 61.5 2.15 55 68 13 64.1 1.90 55 69 14 

 

These findings suggest that the observations made between scans also hold within the same 

scan.  The fat peaks vary significantly more slice-by-slice within the same sample and over a much 

wider range.  The low fat samples also had a higher variation that the high fat samples.  One 

unexpected result is that, for the scans of 850R and the short loin scans of 849R, the variation in 

fat peak increased between the bone-in and boneless samples.  The lean peaks on the other 

hand were much more consistent, slightly more-so in the boneless samples. 

Summarising all the findings in this section, the primary questions looking to be answered with 

respect to the development of automated algorithms are: 

 should fat, lean and bone content be quantified using fixed or calculated HU thresholds and 
what is the practical effect? 

 do any other factors have a significant practical effect?  For example: partial volume effect, 
presence of bone, breed etc 

 

5.1.5 CT variations 

All trials for this project will be performed with the same unit which is calibrated each morning of 

trialling.  For each scan sample, three different scans were performed:  

 moderate speed/power (383mAs, 17.5mm/s); 

 high power/very slow speed (1100mAs, 7mm/s); and 

 line speed (157mAs, 54mm/s). 
 
These scans were performed one after another without moving the sample in between. 
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For a particular scan sample (766 boneless ribset), the longissimus dorsi region was manually 

drawn for the first 24 slices for each of the three sets of scan data.  The approximate IMF% was 

then calculated via thresholding.  The IMF% calculated for each slice is shown in Figure 45 for the 

three different scan settings. 

 

 

Figure 45 - IMF% for different CT scan settings 

 

It can be seen that the difference between the moderate and high power scans yielded very similar 

results.  The line-speed scans however were significantly different although did yield a similar 

trend.  This suggests that the high power data is likely not required for the next set of trials which is 

beneficial when considering tube life.  If scanning at closer to line-speed, extra data processing 

steps will need to be performed given the particular application, but the similar trend in data 

suggests faster scanning may still enable a commercially feasible solution. 

It was also found that, when comparing the scans together, there were slight differences in the 

images suggesting that some movement had occurred.  This means any manually drawn regions 

of interest must be redrawn for each set of scan data which introduces an inconsistency as well as 

inefficiency.  It also suggests there’s a possibility that there may have been some movement of the 

sample during the line-speed scans (although the movement most likely occurred when positioning 

the bed for a given scan). 

Another CT scanning parameter which was investigated was the reconstruction kernel used.  Four 

different kernels were tested: B20f – smooth; B31f – medium smooth +; B45f – medium; B75f – 

very sharp.  The different kernels were compared for the longissimus dorsi region for the same 

sample.  It can be seen in Figure 46 that there is a difference in absolute calculated value 

depending on the kernel used, although the trends are roughly the same.  This suggests that, 

when comparing calculated results to objective results (ie chemical lean), the kernel used may 

skew the results and this must be considered in analysis.  It will also affect the HU values selected 

for classification. 
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Figure 46 - IMF% for different reconstruction kernels 

 

Summarising all the findings in this section, the primary questions looking to be answered with 

respect to the development of automated algorithms are: 

 what is the fastest we can scan and still obtain results considered accurate enough for 
commercial feasibility? 

 what is the effect of reconstruction kernel used? 
 

Thus the following points should be taken into account for the next set of trials: 

 only scan samples with the line speed and moderate scan parameters 

 multiple samples containing varying levels of intramuscular fat should be scanned 
and analysed for chemical lean  

 

In conjunction with this extra data, additional analysis may need to be performed to characterise 

the effect of the reconstruction kernel on reference HU determination and composition calculation, 

especially in terms of linearity. 

 

5.1.6 Intramuscular Fat Variations 

While analysing the intramuscular fat throughout the samples, a variation was seen to occur.  

Figure 47 below demonstrates the calculated intramuscular fat percentage, along with associated 

MSA marbling grade moving away from the grading site in the ribset and short loin primals. 

 

2

3

4

5

6

7

8

1 3 5 7 9 11131517192123252729313335373941434547495153555759616365676971

B31f

B75f

B20f

B45f



      

Page 43 of 116 
 

 

Figure 47 - Variation of Intramuscular Fat either side of grading site 

 

Thus the following points should be taken into account for the next set of trials: 

 objective measurement (ie chemical lean) of intramuscular fat should be obtained at 
a number of different positions along the longissimus dorsi to verify this trend 

 points of separation of the longissimus dorsi for chemical lean testing should be 
visible on CT scans to match data  

 

 

5.2 Muscle segmentation 

5.2.1 Overview 

 A number of third party software solutions were trialled with little success in automatically 
isolating the longissimus dorsi from adjacent muscles. 

 

 Bodies with low levels of fat have low/no intermuscular fat between muscles. 
 

 A high-level, custom coded algorithm was able to be developed with promising results for 
longissimus dorsi isolation.  It was coded to two samples – 850-Ribset and 766-Ribset and 
verified across all boneless scans. 

 

 Based on these, the following considerations should be factored into further trialling and 
analysis: 

o samples spanning entire range of marbling scores and of different breeds, genders 
etc should be obtained 
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5.2.2 Introduction 

The isolation of soft tissue from bone is a relatively simple task due to the large difference in 

absorption characteristics.  Isolating fat from lean muscle however can be a more difficult task, but 

pure fat and pure lean muscle still have a fair difference between them.  Separating two muscles 

from each other when there isn’t a significant amount of other tissue (e.g. fat or bone) between 

them is quite challenging. 

The ability to isolate muscle groups is a task which potentially bears relevance to a number of 

applications, including cut placement, primal identification, grading etc.  In this section, muscle 

segmentation was investigated under the application of grading.  Thus, the longissimus dorsi was 

targeted to be isolated from the scans.   

The goal of this work was to investigate this task at a high level and understand the challenges 

and opportunities related to the development of automated algorithms for this task.  From this, any 

considerations for the next stage of trialling were to be identified to allow work to enable further 

development. 

Scans were taken on two primals (short loin and ribset) for four bodies, both boneless and bone-in.  

It was decided that in the high-level investigation for this milestone, work would be focussed on a 

subset of this data.  The bodies chosen were 766 and 850 – the highest and lowest marbled 

samples, respectively.  It was decided to focus efforts on the section of the primals closest to the 

grading site.  As can be seen in Appendix A – Beef Cross Sections, the longissimus dorsi is the 

largest muscle.  At the furthest points, the shape of the longissimus dorsi changes (especially with 

the short loin) and it becomes smaller and more crowded with other muscles).  For these initial 

investigations, the ribset primal was focussed upon, up to about 150mm from the grading site.   

Figure 48 and Figure 49 below show these primals under the bone-in and boneless conditions.  It 

can be seen that the presence of bone did not have much of an effect in terms of maintaining 

separation of the different muscles.   

  

 

 

Figure 48 - Ribset primal for 766: bone-in vs boneless 
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Figure 49 - Ribset primal for 850: bone-in vs boneless 

 

5.2.3 Third party software 

A number of third party software packages were first evaluated for this application.  These included 

software packages which feature amongst the literature: 

 Seg3D 

 Slicer 

 TurtleSeg 

 ITK-SNAP 

 Microview 
 

All of these software options struggled with isolating the longissimus dorsi automatically from 

adjacent muscle groups during initial evaluation.  It was then decided to focus some efforts on 

coding our own segmentation algorithms. 

 

5.2.4 Custom developed algorithms 

A number of approaches were trialled in attempting to isolate the longissimus dorsi from the 

adjacent muscles.  Initially we had little success, as eventually the isolation would completely 

degrade, either filtering out most of the longissimus dorsi or not removing any of the adjacent 

muscles.  Particular difficulty was met with the low marbled sample (850) which also had little 

intermuscular fat between the different muscles.  Figure 50 demonstrates the difficulty 

encountered.  The sample was thresholded manually with two regions – one just below the lean 

peak (shown in red, the first histogram) and just above (shown in green, the second histogram).  

Even manually setting these thresholds, the longissimus dorsi wasn’t able to be separated as its 

own distinct region.  There was simply nothing separating it from the adjacent muscles. 
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Figure 50 - 850 Longissimus Dorsi Isolation using thresholding.  ‘Fat’ highlighted in red and upper boundary border 
pixels highlighted in green (top).  Histograms showing the HU distribution in the image as well as threshold values for red 
(middle) and green (bottom) highlighting. 
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After a number of attempts, a promising approach was able to be developed.  The algorithm 

requires further development, but the high-level approach appears sound to build upon.  This 

algorithm was run on all boneless scans obtained (including bodies 849 and 764, and all the short 

loin scans) to verify the code wasn’t just suitable to the 850-ribset and 766-ribset scans which were 

used for development.  The results are shown in Table 10. 

 

Table 10 - Longissimus Dorsi Segmentation Results 

Slice 1 Slice 150 

850-Ribset 

  

766-Ribset 

 
 

849-Ribset 

  

764-Ribset 
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850-Short Loin 

 

 

766-Short Loin 

 

 

849-Short Loin 

 
 

764-Short Loin 
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6 Striploin Intramuscular Fat Determination 

6.1 Introduction 

The use of MSA grading system is important in beef to determine estimates of eating quality. 

Marbling score is determined manually in the plant and reflects intramuscular fat (IMF) %. The 

amount of IMF% is linked to eating quality assessment for tenderness, juiciness and flavour. 

Marbling score is currently assessed in a number of cuts to attain an MSA marbling score. Rapid 

and accurate in-plant assessment of IMF% would enable better input into the MSA grading 

system. A helical computed tomography (CT) scanner has been installed at JBS Brooklyn 

(Siemen’s Sensation 64). A model for determining chemical fat (IMF%) in beef using the Brooklyn 

CT scanner would allow rapid and accurate prediction of IMF% and therefore MSA marbling score. 

CT has been used to determine the IMF% content of muscle in beef, lamb and pork with varying 

degrees of precision. The use of CT scanning alone has been shown to have low to moderate 

precision for IMF% prediction. Techniques with higher precision generally rely on additional 

information such as carcase weight and measures of fatness, making independent and rapid 

analysis of muscle for IMF% generally poor.  This experiment has used the CT scanner in the 

Brooklyn plant to scan 52 beef longissimus lumborum samples using a number of different 

settings. A key aim was to determine if CT scanning can accurately determine IMF%, and what 

aspects of image quality can be eroded yet still achieve an adequate prediction.  

There is evidence to suggest that the IMF% changes along the length of the striploin (m. 

longissimus lumborum). This study determines the magnitude of this change in IMF%, with future 

analysis able to improve the description of these changes in IMF% along the m. longissimus 

lumborum. This would allow for adjustments to be made to the weighting of the MSA marbling 

scores taken along the length of this muscle to improve the accuracy of the eating quality 

assessment of this muscle. 

Work has been completed on the analysis of bone, fat and lean composition in beef.  This involved 

building information on the technological factors involved when using helical CT for the application 

of beef OCM.  The application of automated muscle isolation was also investigated using the 

longissimus lumborum, with promising results achieved. 

It was thus decided to take this analysis further by conducting a large-scale controlled experiment.  

This trial would involve analysing a significant number of striploin samples for IMF content in order 

to develop models and further understand the potential challenges associated with the application.  

A decision was made to engage Fiona Anderson from Murdoch University as a consulting party 

due to her expertise in this area – she has performed a similar study on lamb (Anderson, Pethick, 

& Gardner, 2015).  She assisted in the experimental design and performed the analysis on the 

data.   

One of the key novel characteristics of these trials however was the clear goal of defining 

commercial outcomes.  The aim of this milestone was to identify what commercial specifications 

would be required from a commercial helical scanning system to enable to perform IMF grading.  

Furthermore, the relationship between different hardware parameters and their effect upon 

accuracy was to be evaluated.  Other potential value propositions which the technology may be 

able to offer industry were to also be considered.  One side benefit from conducting this work 

however is that it does calibrate this machine to chemical lean for the purposes of evaluating other 

technologies for this application as well in the future. 
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The objectives of the work performed were thus defined as: 

 Determine a model for the Scott CT scanner to predict chemical lean. 

 Investigate the change in IMF between the anterior and posterior ends of a striploin as 

a potential unique value-proposition for CT technology in grading. 

 Characterise how slice width and scanning power affect IMF determination accuracy.  

That is, what specifications would a production CT scanner require to achieve 

acceptable results for beef IMF calculation? 

 Compare CT results with MSA grading results to evaluate value-proposition of the 

technology. 

 

6.2 Trial Design 

 52 striploins were provided for analysis, along with their MSA grading data. 

 For each striploin sample, approximately 6cm from the anterior and posterior ends of 

the striploin were removed and trimmed such that the longissimus lumborum muscle 

was isolated.  The middle portion of the striploin remained intact. 

 Samples were arranged with the anterior portion closest to the CT gantry, followed by 

the middle portion, and finally the posterior portion (Figure 51). 

 Samples were arranged on a bed and scanned two at a time (Figure 51). 

 A phantom was scanned with each set for future reference. 

 

  

Figure 51 - Sample setup in CT scanner 

 

Each set of samples were scanned at two settings – a ‘High Quality’ setting to serve as a 

reference for this project and in the future; and a ‘Line Speed’ setting – a fast scan with lower 

exposure. 
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 The effect of increasing slice width to increase cycle time will be evaluated by combining 

the data between for adjacent slices. 

 Immediately following scanning, the cranial and caudal samples were vacuum packed and 

frozen, before being sent to Murdoch University for IMF% determination.  Samples were 

freeze dried using a ScanVac CoolSafeTM freeze drier and IMF % of each muscle sample 

determined using a near infrared procedure (NIR).  NIR measurements were taken using a 

Spectro Star 2400 and all samples were subsequently calibrated against chloroform 

solvent extraction. 

 A detailed register of the MSA grading data for the samples which were provided by the 

processor.  Figure 52 is a graph showing the distribution of marbling scores that were 

obtained.  The vertical axis is the MSA marbling score and the horizontal axis is the sample 

number.  Of interest is the amount of coverage vertically in the graph. 

  

 

Figure 52 - MSA Marbling Score of Samples 

 

It can be seen that there was a lack of high-marbled samples in the dataset.  A specific effort was 

made to source high-marbled striploins and two more trials were conducted with the same 

methodology.  Figure 53 shows the final spread of the striploins with the new samples included.  It 

can be seen that the marbling range is covered much more effectively. 
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Figure 53 - MSA marbling scores for striploin samples trialled - final 

The data was then analysed using a number of different processing methods to build a number of 

models for the prediction of intramuscular fat content.  The analysis also examined: 

 Whether a difference existed between the anterior and posterior portions of the longissimus 

lumborum 

 How the ‘line-speed’ scan setting affected prediction compared to the ‘high-quality’ setting 
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 The impact of different acquisition slice widths to prediction 

 The effect of including additional information to the models 

Fiona’s paper on the trials and analysis is attached in its entirety in Appendix C – Striploin 

Intramuscular Fat Modelling Report (F. Anderson, Murdoch University). 

 

 

7 Assessing Beef Automation 

7.1 Introduction 

X-ray absorptiometry has been a significant enabler of automated cutting in the red meat industry 

through its single energy (SEXA) and dual energy (DEXA) modalities.  Due to natural variation 

which occurs across animals, to cut bones one must identify bones.  Modelling is often not able to 

give the accurate results required.  A multispectral version of the technology (MEXA) offers further 

opportunities in the area of automation although the opportunities and limitations it presents is yet 

to be examined fully. 

One drawback of these technologies however is that they distort the image data.  Firstly, the image 

formed is ‘flattened’.  A feature can be identified in an x-ray image but its location in 3D space can 

be at any point along a vector originating at the x-ray tube and terminating at the corresponding 

pixel on a detector.  This is shown in Figure 54 whereby the feature (point a on the carcase) 

identified in the x-ray image (represented by pixel a on the detector) could exist along the ray path 

(in pink) from the source to the detector. 

 

 

Figure 54 - Projection of a point onto an x-ray image pixel 

A number of strategies can be used to ascertain the 3D location of features from the 2D x-ray 

images, but they have varying levels of success and aren’t applicable for all applications. 

This flattening of the x-ray data also reduces the clarity of certain points of interest due to the 

geometry of the fan beam.  One example of this is the vertebrae.  Figure 55 shows a DEXA image 
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of a beef carcase.  It can be seen in the centre of the image some separation of the vertebrae is 

visible however this ability falls away as the beam starts to cut ‘across’ the vertebrae at an angle.  

In addition to this, the other features around the spine drastically compromise the presentation of 

the vertebrae.  Optimising DEXA hardware (including using more power) in this situation will only 

yield a certain level of benefit. 

 

 

Figure 55 - DEXA image of a beef carcase 

 

There are also features that aren’t able to be identified in DEXA images such as lymph nodes. 

A CT image provides the gold standard for such applications.  The inherent 3D nature of the data 

means that no extrapolation is required to obtain 3D information for features of interest.  The 

nature of CT also results in an undistorted view of the bone structure.  The limitation in identifying 

a feature is thus the resolution of the system without any influence of geometry.   

 

 

Figure 56 - CT image of a beef carcase with the spine isolated 

We investigated the ability of CT to identify cut paths currently deemed challenging to projective x-

ray absorptiometry images.  The cuts evaluated include: 

 A spine cut 
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 The rib 1 junction  

 A cut using a non-bone feature 

 Fat trim 

 Chine Removal 

 

7.2 Spine Cut 

 

In order to assess a spine cut, a CT scan of a beef forequarter was analysed (Figure 57).   

 

Figure 57 - Whole Beef (ox) Forequarter scanned in CT scanner 

 

The cut investigated will be at the vertebrae between ribs 3 and 4.  This was selected due to its 

challenging nature.  It’s a very thick part of the carcase and the scapular is in the way.  Both these 

factors would make this cut very difficult to detect using DEXA as seen in Figure 58.  If a cut can 

be placed here, it should be possible to place at any vertebrae using a similar methodology. 

 

 

Figure 58 - DEXA image of rib 1 junction 

 

First the bone structure was isolated for the forequarter and the rib and vertebrae structure isolated 

from the scapula, humerus and brisket as shown in Figure 59.   
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Figure 59 - Isolation of ribs and chine 

   

It can be noted that the lower ribs are washed out on this scan as a result of how the sample was 

scanned.  Realistically the sample was too large to scan with this CT scanner with ideal 

positioning.  Different scan parameters should have also been used but these would have limited 

the scan length.  The primary goal of this scan was to capture as much information as possible of 

the spine and rib 1 junction and this was still achieved.  A scan was also taken of a bull forequarter 

which was split down the middle caudocranially.  This scan did not exhibit the same issues with the 

rib ends despite the carcase being larger and thicker in this area (see Figure 60).   

 

 

Figure 60 - CT scan of the ventral half of a bull forequarter 

 

To process the data, the viewpoint was first adjusted to the chine bone and rendered by distance.  

It can be seen the separation between the vertebrae become quite visible.  A rib counting 

algorithm is then used to identify the ribs and thus, a region of interest for the spine cut.  This 

process is shown in Figure 61.  It can be seen in the last image however that cutting at this 
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junction would actually cut into the rib behind it.  The algorithm could thus be modified to adjust the 

placement of this cut relative to the joint of the rib to the spine as desired. 

 

 

 

 

 

Figure 61 - Isolation of cut path across spine between ribs 3 and 4 

It can be seen that the 3D data from the CT image drastically improves the accuracy and 

robustness of the application.  Having the internal structure means that regions of interest can be 

more tightly defined and artefacts removed.  A key example of this benefit is being able to remove 

the scapula to allow better presentation of the spine.  This is not something that can be done on a 

projective x-ray image.  Similarly, the ribs are able to be isolated more clearly.  Utilising CT for 
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spine cuts would thus enable a much more robust solution for the placement of spine cuts.  This 

can be seen at even the fastest scan speed available for this CT scanner.   

This result was then cross checked against the scan performed at the ‘fastest’ available settings 

for the scanner which equated to a scan speed of approximately 55mm/s with no issues (Figure 

62).  It is thus envisioned that a scanner designed to operate at line speeds (ca. 500 sides per 

hour+) would be capable of performing all spine cuts accurately and reliably. 

 

 

Figure 62 - Cut path with data obtained with 'fastest' scan speed 

 

7.3 Rib 1 Junction 

The rib 1 junction is one of the two points of interest which defines the brisket cut.  This point is in 

a particularly challenging part of the carcase to image due to the thickness of this tissue in this 

area.  This makes it challenging to obtain a clear image of the junction which is low in noise using 

projective x-ray technology.  This is made more challenging when some movement is present as 

this creates artefacts in the image. 

 

 

Figure 63 - Presentation of rib 1 junction in a DEXA image 

 

The presentation of the rib 1 junction also varies significantly between carcases, as shown in 

Figure 64.  For older carcases, the cartilage in the junction has essentially calcified meaning there 

is no ‘junction’ to detect strictly speaking.   
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Figure 64 - Differing presentations of the rib 1 junction 

 

One other issue which may present in certain plants is stringing up of the leg.  When this is done, 

the humerus can completely occlude the rib 1 junction, making direct identification impossible with 

a projective x-ray image.  Figure 65 shows an x-ray image of a carcase where the foreleg has 

been ‘strung up’.  It can be seen that this causes humerus to cover the rib 1 junction entirely.  As 

demonstrated in section 7.2, this wouldn’t be an issue with the 3D CT data as the humerus can be 

isolated from the rib structure. 

 

 

Figure 65 - Occlusion of the rib 1 junction caused by a 'strung leg' 

 

The scan of the forequarter for an ox (as per section 7.2) was first evaluated as it possessed the 

entire rib 1.  As above, the ribs were isolated from the humerus and any other surrounding features 

(Figure 66).  Rib 1 was then selected.   
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Figure 66 - isolation and identification of ribs and chine 

 

In this example, the rib 1 junction was clearly visible with the bone isolated from soft tissue (Figure 

67). 

 

 

 

 

Figure 67 - Identification of the rib 1 junction from the CT data 
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A CT scan was also taken of a cow.  Similar to the bull, the forequarter had to be divided in half to 

be able to fit inside the CT scanner.  Unfortunately, this sample was damaged in that a cut was 

placed in rib 1.  This hasn’t affected the ability to assess the cut.  The important thing is that this 

sample exhibited a much higher level of calcification of the rib 1 junction.  It was also more present 

in the brisket too which meant that rib 1 and its sternal segment weren’t easily separated from the 

brisket as with the ox sample above.  Thus, a two-stage filter was applied to get rid of other 

artefacts first.  Note how rib 1 has been split due to being cut in two.  These two segments were 

isolated and joined (Figure 68).  Unlike the ox sample however, the rib hasn’t been isolated from 

its sternal segment.  It is still visible however, just not as clearly separated. 

 

 

 

Figure 68 - Isolation of rib 1 and sternal segment for an old cow 

 

Both examples were processed using the fastest CT scanning parameters available.  It can be 

seen that, while more involved for the case of the cow which possessed a fairly high level of 

calcification in its joints, the rib 1 junction was still able to identified (Figure 69).  There is thus a 

high degree of confidence that this task would be able to be accomplished even with further image 

quality degradation resulting from scanning at line speeds.  Such a solution should be able to 

identify the rib 1 junction directly, even in the case of old cattle with calcified joints. 

 

 

 

Figure 69 - Identification of the rib 1 junction for an old cow 
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7.4 Cut using a non-bone feature 

There are a number of cuts which are performed on a carcase which are specified by non-bone 

features.  In some instances, this is to facilitate the use of a manual operator – cut reference points 

often need to be identifiable to a human operator.  The use of sensing technologies, particularly x-

ray which is capable of imaging subsurface features, can present an opportunity to identify 

features which are actually more ideal but are unable to be identified by a human.  The upshot of 

this is there are features which aren’t identifiable using projective x-ray.  Even features which are 

visible to the human eye can be extremely difficult to find automatically using cameras due to the 

immense amount of variation experienced – a human brain is the most efficient pattern matching 

machine in existence. 

An example of one of these cuts is shown in Figure 70.  This cut is used to separate the rump from 

the butt.  According to the AusMeat specification, this cut commences at the subiliac lymph node 

to a point cranial to the acetabulum to the ischiatic lymph node and the ventral portion of the flank.  

Visually, the cut passes between the last coccygeal vertebrae and hip bone, removing 

approximately 10mm off the tip of the femur. 

 

 

Figure 70 - Example cut in beef utilising a lymph node as a point of reference 

 

A lymph node should be identifiable in a CT image, with an approximate HU range of 0 to 100, a 

range which also contains skeletal muscle.  A CT scan of a hindquarter was analysed to see if the 

lymph node was visible.  CT technology is thus able to identify lymph nodes.  The application 

however would be challenging and sufficient image quality would be required to achieve 

automated isolation (at least in most slices) from adjacent tissue.  Trials would have to be 

conducted with a larger sample size to confirm presentation for the lymph nodes of interest for 



      

Page 63 of 116 
 

given applications.  Particularly of note would be the amount of fat around the lymph nodes to 

facilitate isolation.  For a scan of a beef hindquarter, this lymph node was able to be identified, but 

only manually (Figure 71, Figure 72, Figure 73). 

 

 

Figure 71 - Visual identification of lymph node in CT data 

 

Figure 72 - Presentation of lymph node in a number of slices 
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Figure 73 - Lymph node location in CT data 

 

7.5 Fat Trim 

When boneless primals are sold to a customer, a certain amount of subcutaneous fat may be 

specified.  The trimming of fat is currently done by an operator manually based on the fat-level 

visible at the two exposed faces.  It is impossible for them to know however how this is varying 

across the length of the primal.  This can result in claims from customers for excessive fat depth 

when primals are sliced (Figure 74). 

 

Figure 74 - Example issue of returned product due to excessive fat 

 

Such an application is not possible using DEXA, which is 2D.  As there are no distinct features to 

identify, using multiple points of view won’t work to recreate the 3D geometry.  It is also a surface 

which is of interest which requires a lot more 3D information to be calculated as opposed to a cut 

requiring two or so discrete points to be identified in 3D space.  A CT-based solution would offer a 

high level of accuracy and robustness. 

A scan of a beef short loin was analysed for this application (Figure 75).  The fat voxels were 

isolated using HU values and the subcutaneous fat was separated from the intermuscular and 

intramuscular fat (Figure 76).  With the subcutaneous fat layer isolated, excess fat was isolated to 

provide a final fat depth of 5mm (Figure 77).  The resulting ideal surface could then be defined as 

a complex cut for a robot with a knife to perform the trimming.  The compromise between accuracy 

and cycle time for the given application and processor would define the complexity of this cut path. 
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Figure 75 - CT scan of short loin 

 

 

Figure 76 - Isolation of subcutaneous fat layer for a short loin 

 

 

Figure 77 - Trimming result.  Trimmed fat shown in red 

 

It can be seen that this application lends itself readily to CT technology.  This application was able 

to be achieved using the ‘fastest’ scan available but this would need to be examined in further 

detail.  As the quality of the image degrades, the ability to differentiate between fat and lean also 

degrades.  It appears that this effect isn’t as severe for subcutaneous fat however, versus 

intramuscular fat, because of the larger volume.  This would be the primary consideration in 

specifying a system however. 
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7.6 Beef Chine Removal 

The chine removal process for beef currently occurs through the placement of a cut using a 

bandsaw across the chine bone to remove it from the rest of the primal (Figure 78).  Along this 

path, there are intermittent bulbous protrusions into the longissimus dorsi muscle (referred to as 

‘buttons’).  This is shown in the right hand slice of Figure 79.  The ideal cut path to perform is thus 

variable based on a trade-off between maximising yield and further processing of the primal by 

removing the ‘buttons’ left within the primal.  It is envisioned than an automated solution should 

allow for an adjustable parameter to define this. 

 

 

Figure 78 - Chine removal cut location 

 

 

Figure 79 - Protrusions from chine bone into longissimus dorsi muscle 

 

This application is challenging for DEXA as the cut is defined by the subsurface ‘buttons’ along 

with the chine bone.  CT would be the ideal sensing technology as it provides detailed and 

complete 3D information for the profile that is looking to be cut.  This complete information would 

enable a more robust solution, a higher level of accuracy as well as a greater level of 

customisation for defining the cut.  An algorithm was built characterising this cut by identifying 

these buttons (Figure 80).  The cutting plane can be adjusted by a user-customisable setting for 

how much ‘button’ to leave embedded in the loin (as indicated by the yellow and green cut planes 

in the last image). 
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Figure 80 - Identification of chine removal cut paths 

 

CT technology thus offers an opportunity to perform an accurate chine removal cut along with the 

ability to adjust it for maximal removal of the ‘buttons’, minimal loss of yield or somewhere in 

between.  This would be able to be done dynamically, based on the value of the primal.   
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7.7 Conclusion 

It can be seen that the 3D provided by the CT system makes it an extremely powerful enabler for 

beef automation.  Cuts involving bones in particular are able to cope easily with the degradation in 

data seen by scanning at the ‘fast’ setting.  Cuts involving non-bone features would have to be 

evaluated more closely as degradation of image quality affects the ability to differentiate between 

different soft tissues more noticeably.  Further degradation of noise can be introduced manually to 

investigate their effect on the ability to identify the features of note. 

This work forms a baseline for building the confidence that automation tasks which may not be 

able to be achieved using projective x-ray technology (e.g. DEXA or MEXA) would be achievable 

with the added data and 3D information presented by a CT system. 

 

 

8 Beam Hardening Evaluation 

8.1 Background 

Beam hardening is an effect encountered with CT imaging due to using polychromatic x-rays.  As 

these x-rays pass through an object, the lower energy photons are absorbed preferentially, 

increasing the net energy of the beam as it passes through.  This can result in ‘streaking’ artefacts 

around bone.  When scanning bone-in primals, streaking artefacts can often be visually 

recognised, particularly in areas adjacent to ribs (Figure 81). 

 

 

Figure 81 – CT slices of a striploin sample with bone-in (left) and boneless (right) 

 

Work has been completed in this project to predict the intramuscular fat content of the longissimus 

lumborum muscle within boneless striploins.  This model was able to achieve an R2 of 0.82 with an 

RMSE of 2.01% IMF.  This section of the report aims to investigate the effect beam hardening may 

have on such models to ascertain its effect on intramuscular fat calculation. 

 

8.2 Method 

The bone-in ribsets and striploins of four carcases were obtained.  They were then CT-scanned 

with two different scan settings – a ‘high-quality’ and a ‘high-speed’ setting.  These are the same 

settings as used during the striploin scanning trials. 
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The ribsets and striploins were first scanned bone-in.  The primals were then boned out and 

rescanned.  Unlike the striploin scanning trials, no portion of the longissimus thoracis et lumborum 

was separated and denuded.  Similarly, no chemical testing was performed on these samples.  A 

CT slice for a bone-in versus a boneless scan of the same striploin is shown in Figure 81.  Figure 

82 and Figure 83 show the striploin being CT scanned before and after boning out. 

 

 

Figure 82 - CT scan of a bone-in striploin 

 

 

Figure 83 - CT scan of the same striploin as Figure 82 after being boned out 

 

From the CT data acquired, 100 slices were selected from the grading site for each scan.  This 

equates to approximately 6cm.  As the product wasn’t denuded, the longissimus thoracis et 

lumborum muscle was manually isolated from each slice as carefully as possible (Figure 84).  

Grey-level histograms were then compiled for each of the samples.  The average and standard 

deviation of the intensity values were also calculated.  These data were then compared and 

contrasted to ascertain what effect, if any, beam hardening caused as a result of scanning bone-in 

versus boneless.   

 

 

Figure 84 – Isolation of longissimus dorsi from CT images for a striploin bone-in (left) and boneless (right). 
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8.3 Results 

Histogram data were obtained for each of the scans, focussing on the soft tissue range (-300HU to 

300HU).  This data was then normalised and plotted for each of the four carcase samples to 

visually compare the difference between the intensity distribution between the ribset and striploin 

for each sample as well as bone-in versus boneless for each.  Figure 85, Figure 86, Figure 87, and 

Figure 88 show these histograms for the high-quality scan data obtained.  The histograms for the 

corresponding high-speed scans can be seen in Figure 88.  Statistics describing these data are 

summarised in  

Table 11. 

 

 

 

Figure 85 - Normalised Histogram of High-quality CT Scan Intensity Values of a bone-in and boneless ribset and striploin 
for sample 764L 
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Figure 86 - Normalised Histogram of High-quality CT Scan Intensity Values of a bone-in and boneless ribset and striploin 
for sample 766R 

 

 

Figure 87 - Normalised Histogram of High-quality CT Scan Intensity Values of a bone-in and boneless ribset and striploin 
for sample 849R 
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Figure 88 - Normalised Histogram of High-quality CT Scan Intensity Values of a bone-in and boneless ribset and striploin 
for sample 850R 

 

Table 11 - Mean and standard deviation of intensity values for bone-in vs boneless samples and the difference between 
the two for each for the high-quality scans. 

  Average 

Standard 

Deviation 

Difference 

Average 

Difference 

Std. Dev. 

p764L_14-RIBSET_BONEIN 63.5 18.44     

p764L_16-RIBSET_BONELESS 62.8 17.00 -0.7 -1.44 

p764L_15-SLOIN_BONEIN 62.1 20.68     

p764L_17-SLOIN_BONELESS 60.6 21.02 -1.5 0.34 

p766R_10-RIBSET_BONEIN 56.4 24.20     

p766R_12-RIBSET_BONELESS 56.3 22.70 -0.1 -1.50 

p766R_11-SLOIN_BONEIN 56.9 24.47     

p766R_13-SLOIN_BONELESS 54.3 29.27 -2.6 4.79 

p849R_06-RIBSET_BONEIN 60.2 12.31     

p849R_09-RIBSET_BONELESS 60.4 10.82 0.2 -1.49 

p849R_07-SLOIN_BONEIN 59.7 12.91     

p849R_08-SLOIN_BONELESS 60.2 13.77 0.6 0.85 

p850R_02-RIBSET_BONEIN 62.6 12.44     

p850R_04-RIBSET_BONELESS 62.7 10.87 0.1 -1.57 

p850R_01-SLOIN_BONEIN 61.0 12.65     

p850R_05-SLOIN_BONELESS 63.5 11.54 0.8 0.68 
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8.4 Discussion 

Observing the histogram data, it appears as though there is a flattening of the curves for all 

samples when comparing the bone-in data to boneless data.  This is supported by the consistent 

lowering of the standard deviation for the ribset scans for each of the samples, albeit by a very 

small amount (approximately -1.5HU).  Interestingly, this trend doesn’t seem to be apparent for the 

striploin scans.  In fact, a slight very increase in standard deviation is seen across all samples.  

The average HU of the scans hasn’t changed significantly for either primal. 

The one sample which seems to have exhibited a significant change between the bone-in and 

boneless scans is the striploin for 766R.  The reason for this isn’t immediately clear, especially 

given the equivalent ribset scan doesn’t exhibit the same behaviour.  Looking at the scans, it 

doesn’t appear that there’s any more streaking present than the other samples.  It’s possible that 

this stems from an artefact that may have been created from the manual selection of the eye 

muscle.   

Ideally, the data would have been taken using a similar methodology to the striploin trials whereby 

portions of the striploins were denuded.  These portions could then have been placed amongst a 

rib and the chine to simulate bone-in scanning.  This would ensure that the data used is exactly the 

same for the bone-in and boneless scan data. 

It therefore appears as though beam hardening has had minimal effect on the scan data for the 

eye muscle suggesting that IMF determination on bone-in primals is feasible.  As these scans 

were performed on a commercial helical CT scanner with specialised software, it can be assumed 

that the beam hardening correction algorithms used by the system are quite advanced.  These 

results serve as a target for IMF determination with an industrial CT scanner which is capable of 

running in full production.  Beam hardening investigation trials should therefore be repeated when 

assessing such a machine.  These can be included with the trials performed to create the IMF 

determination models. 

 

8.5 Conclusion 

The presence of beam hardening doesn’t appear to significantly affect the intensity values of the 

CT images.  Being a commercial helical system with specialised software, the beam hardening 

correction on this machine is likely to be quite complex.  Considering this, beam hardening should 

be investigated again when trialling with an industrial-focussed CT scanner suitable for on-line 

applications.   

 

 

9 Attenuation Artefact 

9.1 Background 

As aforementioned, a study has been performed within this project modelling intramuscular fat 

content within the eye muscle for beef striploins.  For these trials, striploins were placed in a frame 

and scanned two at a time (Figure 89). 
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Figure 89 - Scanning arrangement for striploins 

 

While analysing the CT slice images, it was noticed that there appeared to be a consistent 

attenuation of HU values towards the centre of the CT scanner’s field of view.  This meant the 

lower portions of the ‘top’ samples, and the upper portions of the ‘bottom’ samples seemed lower 

than would be expected.  In Figure 90, the CT slice for two denuded striploin portions is shown on 

the left.  Pixels with lower HU values were then identified and highlighted in red as shown on the 

right.  Normally these pixels would be identified as fat.  It can be seen however that significant 

regions are highlighted towards the centre of the CT’s field of view.  This is not due to fat coverage 

as the anterior and posterior portions of the striploin were denuded.  The magnitude of this effect 

varied across samples. 

 

 

Figure 90 - CT scan image with two denuded striploins (left).  HU values lower than a certain value were then highlighted 
(right).  It can be seen that the bottom part of the top sample and the top part of the bottom sample are lower than would 
be expected. 
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Trials were therefore conducted in an attempt to quantify the effect of this artefact and how it may 

have influenced the intramuscular fat modelling. 

9.2 Method 

In the last round of intramuscular fat modelling trials, eight striploins were scanned.  This time 

however each sample was scanned in both positions – ‘top’ and ‘bottom’.  Normalised histograms 

of these scans were built to compare and contrast between the different scan positions for both the 

high-quality and high-speed scans.  The pixel neighbourhood processing and intramuscular fat 

algorithm was also applied for comparison. 

 

9.3 Results 

Normalised histograms of top and bottom scans for each sample with high-quality and high-speed 

scan settings are shown in Figure 91 to Figure 98.   

Table 12 summarises the mean and standard deviation of the intensity values for each scan. 

 

  

Figure 91 - Normalised Histogram of High-quality and High-speed CT Scan Intensity Values of the anterior portion of 
sample 61 at two different heights in the CT’s field of view. 
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Figure 92 - Normalised Histogram of High-quality and High-speed CT Scan Intensity Values of the anterior portion of 
sample 62 at two different heights in the CT’s field of view. 

 

 

Figure 93 - Normalised Histogram of High-quality and High-speed CT Scan Intensity Values of the anterior portion of 
sample 63 at two different heights in the CT’s field of view. 
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Figure 94 - Normalised Histogram of High-quality and High-speed CT Scan Intensity Values of the anterior portion of 
sample 64 at two different heights in the CT’s field of view. 

  

Figure 95 - Normalised Histogram of High-quality and High-speed CT Scan Intensity Values of the anterior portion of 
sample 65 at two different heights in the CT’s field of view. 
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Figure 96 - Normalised Histogram of High-quality and High-speed CT Scan Intensity Values of the anterior portion of 
sample 66 at two different heights in the CT’s field of view. 

 

 

Figure 97 - Normalised Histogram of High-quality and High-speed CT Scan Intensity Values of the anterior portion of 
sample 67 at two different heights in the CT’s field of view. 
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Figure 98 - Normalised Histogram of High-quality and High-speed CT Scan Intensity Values of the anterior portion of 
sample 68 at two different heights in the CT’s field of view. 

 

Table 12 - Mean and standard deviation of intensity values for the anterior portion of eight striploin samples at two 
different heights within the CT’s field of view, and the difference between these values. 

  Scan Scan     Difference 

Sample Setting Position Portion Average StdDev Ave StdDev 

61 HiQ BOT ANT 38.8 52.35     

61 HiQ TOP ANT 36.8 54.25 2.0 -1.90 

62 HiQ BOT ANT 34.0 47.56     

62 HiQ TOP ANT 29.1 49.53 5.0 -1.97 

63 HiQ BOT ANT 38.6 48.31 

 

  

63 HiQ TOP ANT 34.9 50.07 3.8 -1.76 

64 HiQ BOT ANT 43.0 52.47     

64 HiQ TOP ANT 37.9 54.91 5.1 -2.44 

65 HiQ BOT ANT 38.2 55.66 

 

  

65 HiQ TOP ANT 37.0 53.05 1.2 2.61 

66 HiQ BOT ANT 39.1 49.63     

66 HiQ TOP ANT 33.5 52.39 5.6 -2.76 

67 HiQ BOT ANT 40.9 52.39     

67 HiQ TOP ANT 37.2 53.91 3.7 -1.52 

68 HiQ BOT ANT 38.2 50.50 

 

  

68 HiQ TOP ANT 32.9 53.94 5.3 -3.44 

 

Data for the high-quality scans of the anterior portions of the striploins were then reprocessed 

using pixel neighbourhood information.  The average and standard deviation of the intensities for 
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these reprocessed images was then calculated for scans in both ‘top’ and ‘bottom’ orientations.  

The difference in intramuscular fat content as per the derived model between the two cases was 

also calculated.  This data is summarised in Table 13. 

 

Table 13 - Mean and standard deviation of intensity values for the anterior portion of eight striploin samples at two 
different heights within the CT’s field of view, and the difference between these values after pixel neighbourhood 
masking has been applied.  The difference in IMF% is also calculated. 

  Scan Scan     Difference IMF% 

diff Sample Setting Position Portion Average StdDev Ave StdDev 

61 HiQ BOT ANT 48.0 23.43       

61 HiQ TOP ANT 46.6 24.95 1.4 -1.53 0.66 

62 HiQ BOT ANT 39.7 25.36       

62 HiQ TOP ANT 35.3 28.61 4.4 -3.25 0.67 

63 HiQ BOT ANT 45.5 23.48 

  

  

63 HiQ TOP ANT 42.5 25.50 3.0 -2.02 0.25 

64 HiQ BOT ANT 52.0 23.73       

64 HiQ TOP ANT 47.5 27.60 4.6 -3.87 1.14 

65 HiQ BOT ANT 46.5 31.07 

  

  

65 HiQ TOP ANT 45.0 29.56 1.5 1.51 -2.22 

66 HiQ BOT ANT 45.3 28.13       

66 HiQ TOP ANT 40.5 30.93 4.8 -2.79 -0.02 

67 HiQ BOT ANT 48.5 28.10       

67 HiQ TOP ANT 45.4 29.92 3.1 -1.82 0.01 

68 HiQ BOT ANT 45.1 27.33 

  

  

68 HiQ TOP ANT 40.8 30.73 4.2 -3.40 0.87 

 

9.4 Discussion 

Observing the histograms, it appears as though the curves seem fairly consistent between the ‘top’ 

and ‘bottom’ scans for both the high-quality and high-speed scans.  An exceptions to this is sample 

68.  The difference in average HU value between the ‘top’ and ‘bottom’ scans appears to show a 

trend towards a slight increase, by up to 5.3HU.  The standard deviation seems to generally drop 

slightly. 

When the pixel masking is applied and the new averages and standard deviations are calculated, 

a similar trend exists.  When the difference in IMF is calculated between the ‘top’ scan and the 

‘bottom’ scan, it can be seen that the difference is small and well within one RMSE for the model.  

It does appear as though the bottom scan does consistently result in slightly higher IMF though.  

The exception to this is sample 65, which exhibits a much higher error. 

While the existence of this artefact is not ideal, it doesn’t appear to have compromised the data 

taken during the striploin trials too drastically.  Thus it is not recommended to perform any further 

trialling with this CT scanner.  The next set of trials in this area will likely be performed with a CT 

scanner which is capable of operating on-line in an abattoir.  It will therefore be important when 

assessing this scanner to first demonstrate homogeneity throughout the scanner’s imaging field-of-

view.  This may require a specialised phantom to verify this and/or correct for any imperfections. 
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9.5 Conclusion 

It doesn’t appear as if the HU attenuation artefact identified has affected the data too heavily.  

However, it does still present an opportunity area for improving the IMF model’s performance. 

Considering the next step is to investigate CT-technology which is capable of running on-line in an 

abattoir, no further work needs to be done in examining the effect of this artefact on the beef 

striploin intramuscular fat modelling trials.  However, when a suitable industrial CT machine is 

tested, homogeneity throughout the CT scanner’s entire imaging field-of-view should be assessed 

with the use of a phantom or similar. 

 

 

10 Ossification 

10.1 Background 

It is known that maturity correlates with eating quality (Bonny, et al., 2016).  Currently this is 

graded manually by an operator who assesses each carcase individually to assign an ossification 

score.  A grading card for this process is shown in Figure 99.  Recent work has indicated that 

ossification score is actually a better indicator for eating quality than age (Bonny et al, 2016).  This 

is presumably because ossification better reflects physiological age (i.e. maturity) as opposed to 

chronological age, the former of which is heavily influenced by nutritional factors and is more 

influential on eating quality.   

While a better measure than age, ossification is still a subjective score delivered by a human 

operator.  Finding an objective means of measuring maturity is therefore desirable to industry.  

Such measures may be possible using x-ray imaging, including CT. 

Currently, bone mineral content (BMC) and bone mineral density (BMD) are measured in humans 

using DEXA imaging, mainly for the purposes of diagnosing and monitoring health issues relating 

to bone, such as osteoporosis.  Such data also correlates with a person’s age (van der Sluis, de 

Ridder, Boot, Krenning, & de Muinck Keizer-Schrama, 2002).  No research appears to be done 

however specifically investigating how carcase maturity can be measured using CT technology.  

There is also no published work specifically investigating how BMC or BMD directly correlate with 

maturity in beef or sheep although (Cake, Boyce, Gardner, Hopkins, & Pethick, 2007) suggest that 

bone mineral profile, particularly magnesium content, may serve as an indicator for maturity.  

(Tomkins, Harper, Bruce, & Hunter, 2006) found a significant effect by growth path on bone 

mineral content in steers, with rapid growing steers having greater bone mineral content (P<0.05) 

than those on a weight loss feeding arrangement.  This suggests a positive correlation between 

BMC and maturity.  Work is currently being performed assessing the relationship between DEXA 

values for bone and maturity in sheep (Anderson, Williams, Boyce, Cook, & Gardner, 2017).   
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Figure 99 - MSA ossification grading card (reference: Meat Standards Australia, 2004) 

 

A lot of research has also been performed around using CT data to calculate BMD and BMC rather 

than DEXA imaging (Cann, 1988; Lang, Harris, & Genant, 1999; Link, Koppers, Bauer, Lu, & 

Rummeny, 2004; Schreiber, Anderson, & Hsu, 2014).  Such a technique is referred to as 

quantitative CT (QCT) and is widely available.   

This report outlines a high-level investigation into the use of CT data for determining ossification 

score. 

 

10.2 Methods 

A previous trial performed on another project involved breaking down whole beef sides into a 

number of smaller primals which were then CT scanned.  The MSA grading data for these sides 

was also recorded, including ossification score.  Scans were conducted with the following settings: 

exposure 150mAs, Voltage 100kV,Current 180 mA, pitch 0.6, slice width 5mm. 

The CT data of 12 carcases was collected whose ossification scores ranged from 160 to 590.  The 

scans of the bone-in primals were selected in particular – Ribset, Rib Plate, Chuck, Chuck Ribs, 

Rump and Loin.  Histograms were built from these CT images in order to try and identify any 

obvious relationships. 

 

10.3 Results 

Histograms were first built for each of the primals.  Data was limited to HU>175 in an attempt to 

isolate cartilage and bone.  Six primals are displayed in Figure 100 to Figure 105 for the purpose 
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of clarity – two ‘low oss’, two ‘mid oss’, and two ‘high oss’.  Histograms were also built for each of 

the samples (Figure 106 to Figure 111).  The mean and standard deviation of the intensity values 

for the scans was then calculated ( 

Table 14). 

 

 

Figure 100 - Histogram for the Ribset in a number of carcases with varying ossification scores 
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Figure 101 - Histogram for the Rib Plate in a number of carcases with varying ossification scores 

 

Figure 102 - Histogram for the Chuck in a number of carcases with varying ossification scores 

 

 

Figure 103 - Histogram for the Chuck Ribs in a number of carcases with varying ossification scores 
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Figure 104 - Histogram for the Loin in a number of carcases with varying ossification scores 

 

 

Figure 105 - Histogram for the Rump in a number of carcases with varying ossification scores 
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Figure 106 - Histogram for a number of bone-in primals for sample 01L, ossification score 200 

 

 

Figure 107 - Histogram for a number of bone-in primals for sample 02L, ossification score 400 
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Figure 108 - Histogram for a number of bone-in primals for sample 07L, ossification score 160 

 

 

Figure 109 - Histogram for a number of bone-in primals for sample 09L, ossification score 180 
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Figure 110 - Histogram for a number of bone-in primals for sample 12L, ossification score 590 

 

 

Figure 111 - Histogram for a number of bone-in primals for sample 13L, ossification score 590 
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Table 14 - Mean and Standard Deviation of HU values for each carcase for each of the different primals 

Carc 

ID 

OSS 

Score Cut 

Mean 

HU 

Standard 

Deviation 

 

Carc 

ID 

OSS 

Score Cut 

Mean 

HU 

Standard 

Deviation 

07L 160 Ribset 663.2 327.65 

 

07L 160 Chuck Ribs 687.3 408.33 

08L 180 Ribset 623.0 309.98 

 

08L 180 Chuck Ribs 704.8 361.31 

09L 180 Ribset 637.7 312.00 

 

09L 180 Chuck Ribs 751.9 398.78 

06L 190 Ribset 614.8 311.87 

 

06L 190 Chuck Ribs 700.5 376.44 

01L 200 Ribset 777.6 363.74 

 

01L 200 Chuck Ribs 855.3 398.68 

05L 200 Ribset 679.8 343.35 

 

05L 200 Chuck Ribs 677.5 350.97 

04L 250 Ribset 736.5 388.58 

 

04L 250 Chuck Ribs 878.9 419.71 

02L 400 Ribset 702.9 334.21 

 

02L 400 Chuck Ribs 964.5 437.97 

03L 400 Ribset 671.3 337.82 

 

03L 400 Chuck Ribs 828.1 406.78 

12L 590 Ribset 643.7 326.68 

 

12L 590 Chuck Ribs 786.9 382.48 

13L 590 Ribset 643.1 341.53 

 

13L 590 Chuck Ribs 677.2 336.62 

14L 590 Ribset 657.0 340.09 

 

14L 590 Chuck Ribs 825.3 490.77 

07L 160 Rib Plate 726.3 349.97 

 

07L 160 Loin 749.0 354.28 

08L 180 Rib Plate 751.1 364.73 

 

08L 180 Loin 648.4 307.66 

09L 180 Rib Plate 753.2 379.19 

 

09L 180 Loin 713.4 333.00 

06L 190 Rib Plate 690.8 352.31 

 

06L 190 Loin 658.4 329.78 

01L 200 Rib Plate 828.6 355.46 

 

01L 200 Loin 828.7 368.24 

05L 200 Rib Plate 776.2 348.24 

 

05L 200 Loin 736.2 330.06 

04L 250 Rib Plate 849.3 394.91 

 

04L 250 Loin 832.0 397.72 

02L 400 Rib Plate 896.0 383.27 

 

02L 400 Loin 802.2 333.18 

03L 400 Rib Plate 769.2 363.55 

 

03L 400 Loin 760.7 352.06 

12L 590 Rib Plate 724.1 326.35 

 

12L 590 Loin 740.6 348.96 

13L 590 Rib Plate 707.5 351.26 

 

13L 590 Loin 792.8 382.86 

14L 590 Rib Plate 1056.4 541.64 

 

14L 590 Loin 742.7 368.69 

07L 160 Chuck 615.7 319.19 

 

07L 160 Rump 604.3 350.04 

08L 180 Chuck 582.2 298.43 

 

08L 180 Rump 573.5 344.25 

09L 180 Chuck 594.4 292.04 

 

09L 180 Rump 559.2 329.04 

06L 190 Chuck 609.9 312.23 

 

06L 190 Rump 569.3 352.52 

01L 200 Chuck 743.8 353.41 

 

01L 200 Rump 673.2 355.93 

05L 200 Chuck 642.8 312.92 

 

05L 200 Rump 614.6 351.82 

04L 250 Chuck 697.7 352.67 

 

04L 250 Rump 678.3 427.81 

02L 400 Chuck 643.6 316.34 

 

02L 400 Rump 689.6 360.20 

03L 400 Chuck 639.8 318.72 

 

03L 400 Rump 673.6 363.93 

12L 590 Chuck 588.2 294.69 

 

12L 590 Rump 574.2 342.44 

13L 590 Chuck 586.9 298.87 

 

13L 590 Rump 640.9 380.31 

14L 590 Chuck 639.0 404.49 

 

14L 590 Rump 595.1 391.98 
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10.4 Discussion 

None of the primals demonstrate an obvious trend for ossification score across the different 

carcase samples.  There is also a lack of an obvious relationship when observing the data when 

grouped into carcases.  Analysing the average and standard deviation metrics also fails to yield an 

obvious pattern across the 12 samples for all six primals investigated. 

As aforementioned, in the medical industry CT-derived BMD and BMC measurements are 

obtained using a procedure known as QCT.  This remains a viable option but requires special 

knowledge of the area.  These methods also generally involve calibrating to a special phantom.  

Such a phantom may be required to progress with data analysis.  Similarly, it’s possible that an 

underlying relationship may be found in the existing data by applying more complex mathematical 

tools. 

One other possible issue may be the CT scanning parameters used.  For example, with 

intramuscular fat determination using CT, it’s critical to keep the slice width around 3mm or less.  

These scans were performed with 5mm wide slices. 

 

10.5 Conclusion 

It is known that CT can be used for bone mineral composition and density analysis. This study was 

unable to demonstrate any obvious trends that may be apparent in the CT data for carcases 

covering a range of ossification scores.  More complex analysis such as that used in the medical 

industry for QCT may be required.  This should be researched further for consideration before 

designing further trials in this space.  As aforementioned, there is currently work being performed 

around a DEXA-derived indicator for maturity in lambs.  Involving CT scanning in future trials 

presents a worthwhile opportunity. 
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11 Conclusions and Recommendations 

In this project, a CT scanner was successfully installed into a purpose-built room at a dual-species 

abattoir.  A number of red meat industry applications were successfully investigated to assess how 

CT technology fits into the red meat automation vision and its value proposition.  This included 

building initial algorithms for the following applications: 

 Counting of ribs and identification of the rib 1 junction directly; 

 Placement of dynamic cutting path for chine removal, allowing for user-adjustable amounts 

of residual ‘buttons’ left in the loin; 

 Identification of fat trim profile for entire striploins;  

 Isolation of the longissimus thoracis et lumborum in beef cube rolls and striploins; and 

 Calculation of intramuscular fat content in the longissimus lumborum muscle within beef 

striploins; 

These applications present a unique value-proposition for CT technology as they cannot be 

achieved using standard x-ray imaging.  Most significantly, commercial factors influencing these 

algorithms were assessed.  This involved taking data and analysing it using different scan settings.  

The result of this is a set of specifications required of a helical CT scanner to perform these 

operations.  Important lessons were also learnt regarding the nature of the CT data and practical 

implications associated with the technology. 

The knowledge and algorithms developed throughout the course of this project will now be applied 

directly to commercial projects.  This involves evaluating and/or developing CT imaging technology 

which is able to meet these specifications while operating reliably within an abattoir processing 

environment.  The technology will then be applied in a commercial application, one example being 

a beef striploin processing machine capable of performing chine removal, fat trim and 

intramuscular fat grading.  The algorithms and trialling methodologies developed in this project will 

feed into this directly. 

A key opportunity area for CT technology is with respect to eating quality grading.  Objective 

measurement of eating quality measures is vitally important to the industry, particularly with the 

advent of objective yield measurement systems.  Moving forward, this will involve re-examining the 

modelling of intramuscular fat in lambs, something of high-value to the lamb industry in particular 

given the current lack of eating quality metrics.  CT technology may also be assessed for grading 

of carcase maturity. 

CT presents a significant opportunity to the red meat industry and can be seen as a ‘quantum leap’ 

improvement over currently available sensing technologies.  This project has demonstrated this 

and provided a key stepping stone towards commercial implementation.  Work is now commencing 

towards translating these outcomes into real-life, production applications in beef and lamb. 
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Appendix A – Beef Cross Sections 

Source: 2006, Handbook of Australian Meat 7th Edition, AUS-MEAT Limited 

 



  

 
 

Appendix B – Histograms for high-speed CT scans 

 

 

 

 



  

 
 

 

 

 

 

  



  

 
 

Appendix C – Striploin Intramuscular Fat Modelling 

Report (F. Anderson, Murdoch University) 
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Executive Summary 

The average pixel density from the computed tomography scans of the M. longissimus lumborum 

samples varied inversely to the intramuscular fat % of the muscle. Across a relatively small range of 

IMF% (1.8% to 14.0%), the use of the mean of all image pixels and their standard deviations provided 

moderate precision (High Speed: R2 = 0.31, RMSE = 3.41 and High Quality: R2 = 0.31, RMSE = 3.40). 

Using this method, there was very little difference between the High Quality and the High Speed 

settings. This is useful information as it will allow the CT scanning of samples at a faster rate without 

any loss in precision for predicting IMF%.  When the slice width was increased to 3mm there was 

minimal change in the prediction of IMF%, however at widths above 3mm there was a more 

substantial loss in precision, as well as when only one slice was used. Therefore, scanning speed can 

be increased by using the High Speed settings, potentially with a slice width of up to 3mm. Using the 

High Quality scan settings across an extended range of IMF% (1.8 to 30.0%) the precision using pixel 

density and standard deviation was improved in both cranial (R2 = 0.79, RMSE = 2.45) and caudal 

samples (R2 = 0.61, RMSE = 4.65). 

 

The use of pixel density information from surrounding pixels, in combination with the pixel density 

of a central pixel (nearest neighbour technique) improved the ability of CT to predict IMF%. The best 

prediction was achieved in the extended range of IMF% (1.8-30%) in the cranial samples, when the 

central pixel information was weighted at 10%, with surrounding pixel information weighted at 90% 

(High Quality settings: R2=0.86, RMSE=2.01). 

 

The nearest neighbour technique (10% weighting of central pixel) was superior to the visual scoring 

of marbling using MSA Marbling Score (R2 = 0.77, RMSE = 2.52). The addition of carcass information 

such as HSCW in both the average of all pixels and the ‘nearest neighbour technique’ improved the 

ability of the CT to predict IMF% (R2 = 0.88, RMSE = 1.87). 

 

The intramuscular fat (IMF) % has been shown to vary along the length of the M. longissimus 

lumborum with the caudal sample 1.97 IMF% greater (P<0.05) than the cranial sample. Future 

analysis of the CT images will yield a better understanding of the variation in IMF% along the entire 

length of the M. longissimus lumborum. 

 

  



  

 
 

Background 

The use of MSA grading system is important in beef to determine estimates of eating quality. 

Marbling score is determined manually in the plant and reflects intramuscular fat (IMF) %. The 

amount of IMF% is linked to eating quality assessment for tenderness, juiciness and flavour. 

Marbling score is currently assessed in a number of cuts to attain an MSA marbling score. Rapid and 

accurate in plant assessment of IMF% would enable better input into the MSA grading system. A 

helical computed tomography (CT) scanner has been installed at JBS Brooklyn (Siemen’s Sensation 

64). A model for determining chemical fat (IMF%) in beef using the Brooklyn CT scanner would allow 

rapid and accurate prediction of IMF% and therefore MSA marbling score. 

 

CT has been used to determine the IMF% content of muscle in beef, lamb and pork with varying 

degrees of precision. The use of CT scanning alone has been shown to have low to moderate 

precision for IMF% prediction. Techniques with higher precision generally rely on additional 

information such as carcass weight and measures of fatness, making independent and rapid analysis 

of muscle for IMF% generally poor.   This experiment has used the CT scanner in the Brooklyn plant 

to scan 64 beef M. longissimus lumborum samples using a number of different settings. A key aim 

was to determine if CT scanning can accurately determine IMF%, and what aspects of image quality 

can be eroded yet still achieve an adequate prediction.  

 

There is evidence to suggest that the IMF% changes along the length of the striploin (M. longissimus 

lumborum). This study determines the magnitude of this change in IMF%, with future analysis able 

to improve the description of these changes in IMF% along the M. longissimus lumborum. This would 

allow for adjustments to be made to the weighting of the MSA marbling scores taken along the 

length of this muscle to improve the accuracy of the eating quality assessment of this muscle. 

 

A CT scanner at the Brooklyn plant was used to scan 64 striploin samples. A 6cm section at the 

cranial and caudal ends of these striploins was then removed, the M. longissimus lumborum isolated 

and the IMF% chemically determined. The ability of the CT scanner to predict IMF% was determined, 

with the impact that scanner specifications have on prediction precision also investigated. The 

specific aim was to determine the most appropriate scan settings and slice width to accurately 

predict IMF% at an acceptable speed.  This study describes the potential for determining the IMF% 

of beef using computed tomography. It also assesses the most rapid and precise methods for 

determining IMF%. It also investigates and determines how the IMF% of the striploin alters from the 

cranial to the caudal ends.  

 

Method 

Striploins were obtained from 32 steers and 32 cows processed at the Brooklyn plant across a range 

of Meat Standards Australia (MSA) marbling scores, hot carcass weights (HSCW) and ossification 

scores. The hot standard carcass weight (HSCW), striploin lengths, ossification score, and MSA 

Marbling Scores are reported in Table 1. Following slaughter, striploins were dissected to remove 

the M. longissimus lumborum in isolation and the length of this muscle was measured.  

 



  

 
 

Table 1. Carcass data including mean ± standard deviation, minimum and maximum values for 
shortloin length, hot standard carcass weight (kg), hump height (mm), eye muscle area (cm2), 
ossification score, and Meat Standards Australia (MSA) marbling score. 

 
Shortloin 

length (mm) 

Hot standard 
carcass 

weight (kg) 

Hump 
height 
(mm) 

Eye muscle 
area (cm2) 

Ossification 
score 

MSA Marbling 
Score 

Mean ±SD 452 ± 31.9 318.6 ± 56.3 50.2 ± 14.4 73.5 ± 10.1 259.1 ± 172.2 425.5 ± 253.7 

Min, Max 390, 555 224.0, 443.0 20.0, 85.0 40.0, 94.0 130.0, 590.0 253.7, 1120.0 

 
 
Prior to CT scanning the cranial and caudal 6 centimetres of the M. longissimus lumborum were 

removed and trimmed of fat. The samples were then placed on the scanning table as shown in  

Figure 1. The scan settings used were chosen to represent settings compatible with either fast 

processing speed and therefore lower image quality (High Speed) or slower processing speed but 

higher image quality (High Quality).  

 

 
Figure 1. Beef striploin, and the sample prepared for computed tomography scanning adjacent to it.  
 
 

Immediately following scanning the cranial and caudal samples were vacuum packed and frozen, 

before being sent to Murdoch University for IMF% determination. Samples were freeze dried using a 

ScanVac CoolSafeTM freeze drier (LabogeneTM, Vassinerod, Denmark) and IMF % of each muscle 

sample determined using a near infrared procedure (NIR).  NIR measurements were taken using a 

Spectro Star 2400 and all samples were subsequently calibrated against chloroform solvent 

extraction as detailed by (Perry et al. 2001).  

 

Image J was used to process the images with pixel information obtained from all slices. CT images 

were captured consecutively along the length of the muscle sample with a voxel depth of 0.6mm. 

The CT image information was used in a variety of ways to determine the impact of image analysis 

on IMF% prediction: 

1. The impact of voxel depth using mean and standard deviation of all pixels. 
2. The use of thresholding techniques. 



  

 
 

3. The impact of using surrounding pixel information at various weightings (nearest neighbour 
technique). 

 

Methods 1 and 3 also determined the impact htat using high speed and high quality setting had on 

IMF% prediction. 

 

Voxel depth 

To determine the impact that voxel depth had on IMF% prediction, for each muscle sample (both 

cranial and caudal ends) the image sets were reconstructed to obtain equivalent images with voxel 

depth of 3mm or 6mm. This was done by taking the mean of 5 (for a 3mm reconstruction) or 10 (for 

a 6mm reconstruction) matching voxels within adjacent images which were originally captured at 

0.6mm voxel depths. This resulted in 3 separate image-sets for each muscle sample, one at 0.6mm, 

one at 3mm, and one at 6mm voxel depth. Within each image-set the mean voxel density and 

standard deviation of voxel densities was then calculated using all images with that image-set. Lastly 

a single image was selected from each of the 0.6mm image-sets that corresponded to the mid-point 

of the muscle sample. The mean voxel density and standard deviation of voxel densities was 

calculated for this single image. Thus mean voxel density and standard deviation of voxel densities 

was available for each muscle sample for a variety of different image acquisition methods, including 

high speed or high quality scanning. 

 

The pixel density information and standard deviation of pixel density from the different image 

acquisition methods was used to predict chemical IMF% in a general linear model (SAS Version 9.1, 

SAS Institute, Cary, NC, USA).  Within each model, the mean voxel density and standard deviation of 

voxel densities was used as a covariate. Each model was then tested with hot carcass weight (HCWT) 

as an additional covariate. Thus separate models were constructed for a variety of different image 

acquisition methods, including high speed or high quality scanning, with multiple consecutive images 

of voxel depths of 0.6, 3, or 6mm, or a single image captured at 0.6mm.  

 

Thresholding 

Using thresholding to determine the number of fat and lean pixels, other parameters were 

established to investigate techniques for predicting IMF%. A pixel was defined as being fat if its 

density was less than 970 units which is the average pixel density of fat in the samples. Based on the 

number of fat and lean pixels determined by thresholding the following were parameters were 

calculated: 

 Ratio of number of fat:lean pixels. 

 Average density of fat pixels.  

 Average density of fat pixels.  

 Percentage weight of fat in the sample – calculated by multiplying the pixels categorised as 
fat or lean by the density of each tissue, summing and dividing by the calculated total tissue 
weight. 

A correlation matrix was constructed between the above variables and the average and standard 

deviation of all pixels within a sample. The variables with lower correlations with average and 

standard deviation of pixel density were include in a general linear model to determine if they 

offered improved precision of IMF% prediction. Additionally these variables were included 

individually in a general linear model to determine their precision of prediction. 



  

 
 

Nearest neighbour technique 

A third method was used to calculate pixel density values based on the weighted impact of the 

surrounding pixel densities (nearest neighbour technique). For example if the pixel was weighted at 

100%, then only the pixel information was used, compared to a weighting of 50% where the original 

pixel information was weighted at 50%, with the surrounding pixel information weighted at 50% to 

calculate a new pixel density. A range of weightings were used to calculate pixel density: 75, 50, 25 

and 10%. The mean and standard deviation of all calculated pixel densities from every slice for each 

sample was then used in general linear models as previously described to predict IMF%. This was 

repeated for both the High Speed and High Quality CT scan settings. 

 

A general linear model used MSA grading score as a covariate to predict IMF% enabling the 

comparison of the CT analysis methods with the current industry method. 

 

Results 

Raw data distribution 

Initially, a total 125 samples were analysed for IMF% with the raw mean ± SD of IMF% being 8.4 ± 6.3 

(see Table 2). The mean±SD, minimum, and maximum for pixel average density and pixel standard 

deviation for the 101 images are shown in Table 3. The average pixel density for each sample, and 

the standard deviation of the pixels in these samples are shown in Figure 2 and Figure 3. 

 

Table 2. Intramuscular fat % of the cranial and caudal 6 centimetre sections of the M. longissimus 
lumborum in beef.  

  

Number of 
samples  

mean ± SD min max 

Cranial samples 51 5.19 ± 2.68 1.77 14.1 

Caudal samples 50 6.45 ± 2.90 2.4 14. 

All samples 101 5.82 ± 2.85 1.77 14.12 

 

 

  



  

 
 

Table 3. Mean ± SD, maximum and minimum of sample average pixel density and their standard 

deviations for CT images using all slices (0.6mm voxels), all slices with 3mm reconstructed voxels, all 

slices 6 mm reconstructed voxels and 1 slice (0.6mm voxels). 

  
Pixel density   Standard deviation of pixels 

  Mean ± SD Min, Max   Mean ± SD Max, Min 

All slices: 0.6 mm 
voxels 

1039.6 ± 11.88 1006.8, 1062.7 
 

103.6  ±  8.9 82.8, 130.6 

All slices: 3mm 
reconstructed voxels 

1034.2  ±  10.6 1014.7, 1055.7 
 

113.2  ±  6.1 97.8, 128.5 

All slices: 6mm 
reconstructed voxels 

1021.7  ±  11.0 998.4, 1046.7 
 

128.0  ±  6.3 108.3, 146.5 

1 slice; 0.6 mm voxels 1046.1  ±  17.5 876.5, 1071.6   96.7  ±  13.1 74.3, 163.7 

 

 

 

 

 
Figure 2. Raw data of the intramuscular fat % in beef of the M. longissimus lumborum as it relates to 
average computed tomography pixel density of all samples pixels from all slices at 0.6mm voxels. 
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Figure 3. Intramuscular fat % in beef of the M. longissimus lumborum as it relates to standard 
deviation of pixel density of all sample pixels from all slices at 0.6mm voxels. 
 
 

IMF% positional analysis 

The IMF% varied between the cranial and caudal ends (P<0.05), with the average IMF% of the caudal 

end 1.97 IMF% greater than the cranial sample in the extended range of IMF samples (Table 7). The 

IMF % of the cranial and caudal samples were highly correlated (correlation coefficient 0.96) 

 

Prediction of IMF% 

This analysis was initially performed on 52 samples with an IMF % range of 1.8% to 14.1%, with the 

results reported in parts 1 to 4 of “Prediction of IMF%” below. After obtaining the new samples that 

extended the data range we then repeated this analysis with the results reported in part 5 below. 

 

Part 1: Use of all pixels and carcass information 

There was a negative linear relationship (P<0.01) between IMF% and CT pixel density. The IMF% was 

initially predicted using all pixels from all slices and the standard deviation of these pixels. The ability 

of CT to predict IMF% was moderate and similar for both High Quality (Model  4, Table 4: R2 = 0.31, 

RMSE = 2.40) and High Speed (Model 5, Table 4: R2 = 0.31, RMSE = 2.41).  The inclusion of hot 

standard carcass weight (HSCW) in the model improved the ability to predict IMF% in both High 

Speed and Quality scans (Table 4, Models 6 and 7). However, this was still not as high as the ability 

of MSA Marbling Score to predict IMF%, with R2 = 0.50, RMSE = 2.0 (Table 4, Model  1). The use of 

HSCW alone offers relatively poor prediction of IMF% , with R2 = 0.19, RMSE = 2.56 (Table 4, Model  

2).  The inclusion of other parameters such as ossification score and eye muscle area did not improve 

the ability to predict IMF% in either the High Speed or High or High Quality Scans. 

 

Part 2: Slice reconstruction 

When slices were reconstructed at 3mm voxels the ability to predict IMF% was very similar to when 

every slice was used (0.6mm voxel widths) for both High Speed (Model 8, Table 4: R2 = 0.31, RMSE = 

2.42)  and High Quality (Model 9, Table 4: R2 = 0.32, RMSE = 2.39).  This was moderately reduced 
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when the slice widths were 6mm, with the High Speed settings resulting in the greatest decrease in 

the ability to predict IMF% (Model 11, Table 4: R2=0.24, RMSE =  2.5) compared to the High quality 

settings (Model 10, Table 4: R2=0.27, RMSE =  2.47).  As would be expected the ability to predict 

IMF% was further reduced when the information from only one slice was included in the model  and 

was poor for both High Quality (Model 12, Table 4: R2=0.21, RMSE =  2.57) and High Speed settings 

(Model 13, Table 4: R2=0.17, RMSE =  2.62). 

 

 



  

 
 

Table 4. F-values, coefficient, intercept, coefficient of determination (R-square), and root mean square error (RMSE) for models predicting intramuscular fat % in beef using 
average computed tomography pixel density, standard deviation, hot carcass weight, and Meat Standards of Australia Marbling Score (IMF range 1.77% to 14.1%). 

  
Model 1 Model 2 Model 3   Model 4 Model 5 Model 6 Model 7 

  
Model 8 Model 9   Model 10 Model 11   Model 12 Model 13 

 

        All slices: 0.6mm voxels 
  

All slices: 3mm 
reconstructed voxels 

  
All slices: 6mm 

reconstructed voxels 
  

One slice: 0.6mm 
voxel 

Scan Type NA NA NA   
High 

Quality 
High 

Speed 
High 

Quality 
High 

Speed   

High 
Quality 

High 
Speed 

  
High 

Quality 
High 

Speed 
  

High 
Quality 

High 
Speed 

 
        

 
  

 
F Values   

                

Average pixel density - - - 
 

42.29* 39.71* 46.75* 43.27* 

 

40.2* 42.82* 
 

35.76* 30.99* 
 

25.67* 20.02* 

Standard Deviation  - - - 
 

24.78* 24.17* 20.89* 19.85* 

 

21.14* 24.39* 
 

18.42* 15.81* 
 

18.86* 14.01* 

HCWT - 47.25* 1.69 
 

- - 32.29* 31.1* 

 

- - 
 

- - 
 

- - 

MSA Marbling Score 100.36* - 123.3* 
 

- - - - 

 

- - 
 

- - 
 

- - 

 
        

 
  

 Coefficients 
and intercept   

                

Average pixel density - - - 
 

-0.28 -0.28 -0.26 -0.26 

 

-0.25 -0.27 
 

-0.2 -0.19 
 

-0.2 -0.17 

Standard Deviation  - - - 
 

-0.29 -0.27 -0.24 -0.22 

 

-0.32 -0.36 
 

-0.27 -0.238 
 

-0.17 -0.14 

HSCW - 0.03 0.004 
 

- - 0.024 0.024 

 

- - 
 

- - 
 

- - 

MSA Marbling score 0.01 - 0.01 
 

- - - - 

 

- - 
 

- - 
 

- - 

Intercept 1.7 -1.65 0.62 
 

326.9 327.2 290.86 289.86 

 

305.94 326.69 
 

246.39 227.86 
 

230.82 198.28 

 

        
 

 Precision estimates                   

R2 0.50 0.19 0.50 
 

0.31 0.31 0.48 0.47 

 

0.30 0.31 
 

0.27 0.24 
 

0.21 0.17 

RMSE 2.02 2.56 2.02   2.40 2.41 2.09 2.1   2.42 2.39   2.47 2.5   2.57 2.62 

* P<0.01 

MSA: Meat Standards Australia; HSCW: Hot Standard Carcass Weight 



  

 
 

Part 3: Use of surrounding pixels 

When pixel density was calculated using the nearest neighbour technique (use of surrounding pixel information) the 

prediction of IMF% varied depending on the original pixel weighting.  As the weighing of the central pixel was 

reduced, the prediction of IMF% improved (see Figure 4). Hence the best prediction of IMF% were those achieved at 

the High Quality scan settings with a 10% central-pixel weighting (Model 26, Table 5: R2=0.44, RMSE=2.15). 

 

There was a difference between the ability of High Quality and High Speed scan settings to predict IMF%, with High 

Quality scan settings having a small advantage over the High Speed settings (Table 5). The difference in R2 remained 

relatively constant, with the High quality settings 0.01 greater than the High Speed settings.  

 

When HSCW was included in the model along with mean pixel density and standard deviation, the prediction of 

IMF% improved. For example, at the High Quality settings at 10% pixel weighting the R2 was greater with inclusion of 

HSCW (Model 28, Table 5: R2=0.56, RMSE=1.95) compared to without (Model 26, Table 5: R2=0.34, RMSE=2.35). 

 

 
Figure 4. R squared of CT prediction of beef IMF% as it related to the weighting of the density of the central pixel at 
High Quality and High Speed settings, with and without inclusion of hot standard carcass weight in the model. 
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Table 5. F-values, coefficient, intercept, coefficient of determination (R-square), and root mean square error (RMSE) for models predicting intramuscular fat % in beef using 
average computed tomography pixel density, standard deviation, hot carcass weight with 75, 50, 25 and 10% weighting of the central pixel. (IMF range 1.77% to 14.1%) 

  

Model 
14  

Model 
15 

Model 
16 

Model 
17 

  
Model 

18 
Model 

19 
Model 

20 
Model 

21 
  

Model 
22 

Model 
23 

Model 
24 

Model 
25 

  

Model 
26 

Model 
27 

Model 
28 

Model 
29 

 

75% weighing of central pixel 
 

50% weighing of central pixel 
 

25% weighing of central pixel 

 

10% weighing of central pixel 

Scan Type 
High 

Quality 
High 

Speed 
High 

Quality 
High 

Speed 
  

High 
Quality 

High 
Speed 

High 
Quality 

High 
Speed 

  
High 

Quality 
High 

Speed 
High 

Quality 
High 

Speed 
  

High 
Quality 

High 
Speed 

High 
Quality 

High 
Speed 

 
F Values 

Average pixel density 49.1* 47.0* 53.03* 48.63* 

 

59.06* 55.93* 60.8* 55.48* 

 

73.45* 67.47* 71.77* 64.03* 

 

78.22* 73.7* 75.4* 68.97* 

Standard Deviation  31.31* 31.3* 26.1* 24.65* 

 

42.01* 39.47* 34.1* 30.24* 

 

54.81* 50.73* 42.5* 37.76* 

 

63.08* 57.07* 48.26* 42.24* 

HCWT - - 31.17* 28.8* 

 

- - 25.58* 26.81* 

 

- - 25.98* 24.11* 

 

- - 24.48 22.91 

 
Coefficients and intercept 

Average pixel density -0.29 -0.30 -0.27 -0.27 

 

-0.25 -0.31 -0.28 -0.28 

 

-0.33 -0.33 -0.3 -0.3 

 

-0.34 -0.34 -0.3 -0.3 

Standard Deviation  -0.34 -0.33 -0.28 -0.26 

 

-0.32 -0.39 -0.34 -0.31 

 

-0.48 -0.45 -0.4 -0.36 

 

-0.52 -0.47 -0.43 -0.38 

HSCW - - 0.02 0.02 

 

- - 0.02 0.02 

 

- - 0.02 0.02 

 

- - 0.02 0.02 

Intercept 344.5 349.1 305.14 305.84 

 

375.3 373.8 330.1 325.2 

 

405.7 398 354.4 345.3 

 

413.7 406.5 361.8 353.2 

 
Precision estimates 

R2 0.34 0.33 0.5 0.49 

 

0.38 0.37 0.52 0.51 

 

0.43 0.41 0.54 0.53 

 

0.44 0.43 0.56 0.55 

RMSE 2.35 2.35 2.05 2.07   2.28 2.28 2.01 2.03   2.18 2.21 1.95 1.98   2.15 2.17 1.93 1.95 

* P<0.01 

HSCW: Hot Standard Carcass Weight



  

 
 

Part 4: Thresholding techniques 

Pixels were categorised as being fat or lean as previously described in the methods, with a number 

of parameters used to describe proportions of fat and lean or weight of fat and lean in each sample. 

A correlation matrix (Table 6) was used to highlight which of these calculated measures were highly 

correlated with the average and standard deviation of all pixel densities and therefore would offer 

little extra precision when predicting IMF% beyond that already described. Importantly, those that 

had low correlations were more likely to provide independent description of the variance in IMF%. 

These variables were therefore tested in general linear models predicting IMF% along with the mean 

and standard deviation of all pixel values. In this case average lean pixel density was used, however 

it added no further improvement to the model and on its own had very poor precision for predicting 

IMF% (R2= 0.14, RMSE =2.66). 

 

Table 6. Simple correlation coefficients of the computer tomography derived parameters used to 
determine IMF% in beef: mean and standard deviation of all pixel densities, ratio of fat:lean pixels, 
average density of fat pixels, average density of lean pixels and percentage weight of fat. 

  

Mean of all 
pixel 

densities 

Standard 
deviation 
of all pixel 
densities 

Ratio of 
number 
fat:lean 
pixels 

Average 
density of 
fat pixels 

Average 
density of 
lean pixels 

Percentage 
weight of 

fat 

Mean of all pixel 
densities 

1 -0.87 0.945 0.93 -0.54 0.93 

Standard deviation of 
all pixel densities 

- 1 -0.89 -0.64 0.28 -0.87 

Ratio of number 
fat:lean pixels 

- - 1 0.79 -0.66 0.99 

Average density of 
fat pixels 

- - - 1 -0.56 0.79 

Average density of 
lean pixels 

- - - - 1 -0.68 

Percentage weight of 
fat 

- - - - - 1 

 

 

  



  

 
 

Part 5. Extended IMF% range. 

After analysing  the initial samples with a more limited IMF% range, additional IMF% samples were 

obtained and included (IMF% 1.8% to 31%), with mean, standard deviation, maximum and minimum 

reported in Table 7.   

 

  
Table 7. Intramuscular fat % of the cranial and caudal 6 centimetre sections of the M. longissimus 
lumborum in beef for the extended range of intramuscular fat % (1.8 to 31%).   

  

Number of 
samples  

mean ± SD min max 

Cranial samples 63 7.32 ± 5.2 1.8 21.1 

Caudal samples 62 9.46 ± 7.1 2.4 31.0 

All samples 125 8.40 ± 6.3 1.8 31.0 



  

 
 

 

 

Table 8. F-values, coefficient, intercept, coefficient of determination (R-square), and root mean square error (RMSE) for models predicting intramuscular fat 
% in beef using the High Quality settings and MSA marbling score, average computed tomography pixel density, standard deviation, hot carcass weight with 
100 and 10% weighting of the central pixel in cranial and caudal end of the M.Longissiums lumborum (IMF% range 1.8% to 30.0%). 

  Model 30 Model 31 Model 32   Model 33 Model 34 Model 35 Model 36   Model 37 Model 38 Model 39 Model 40 

 

  
 

100% weighing of original pixel 
 

10% weighing of original pixel 

Cranial v caudal sample 

from  M.longissimus 

lumborum 

Cranial Cranial Cranial   Cranial Caudal Cranial Caudal   Cranial Caudal Cranial Caudal 

 
F Values 

Average pixel density - - - 

 

160.5* 75.9* 140* 76.9* 

 

197.2* 108.5* 185* 105.5* 

Standard Deviation  - - - 

 

1176.4* 45.2* 102.6* 31.6* 

 

356* 148.8* 217.2* 90.7* 

HCWT - 56.66* 1.0 

 

- - 14.3* 20.7* 

 

- - 10.4* 8.59* 

MSA marbling score 208.9* - 107.1* 

 

- - - - 

 

- - - - 

 
Coefficients and intercepts 

Average pixel density - - - 

 

-0.7 -0.67 -0.63 -0.60 

 

-0.54 -0.58 -0.51 -0.55 

Standard Deviation  - - - 

 

-0.98 -0.69 -0.81 -0.53 

 

-0.93 -1.17 -0.82 -1.00 

HSCW - 0.06 0.01 

 

- - 0.023 0.04 

 

- - 0.02 0.03 

MSA marbling score 0.018 - 0.02 

 

- - - - 

 

- - - - 

Intercept -0.33 -11.79 -2.23 

 

832.2 774.4 735.96 670.8 

 

674.1 738.7 622.2 679.3 

 
Precision estimates 

R2 0.77 0.32 0.78 

 

0.79 0.61 0.83 0.71 

 

0.86 0.77 0.88 0.80 

RMSE 2.52 5.34 2.52   2.45 4.65 2.22 4.02   2.01 3.56 1.87 3.35 

* P<0.01 

HSCW: Hot Standard Carcass Weight
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Using pixel density and standard deviation from the CT images, the nearest neighbour method (10% 

weighting on the central pixel) yielded the greatest precision in both the cranial (Model 37, Table 8: 

R2=0.86, RMSE=2.01) and caudal (Model 38, Table 8: R2=0.77, RMSE=3.56) samples compared to using only 

the central pixel information (i.e the equivalent of 100% central pixel weighting). The nearest neighbour 

method within the cranial samples had superior precision to using MSA marbling score (Model 30, Table 8: 

R2=0.77, RMSE=2.52) to predict IMF.   

 

 
Figure 5. The prediction of intramuscular fat % in the cranial 6cm samples of beef M. longissimus lumborum 
using computed tomography and the nearest neighbour technique (10% weighting of central pixel) and hot 
standard carcass weight. Solid line represents perfect prediction, with red dots representing residuals to 
this relationship.   
 

 
Figure 6. The prediction of intramuscular fat % in the caudal 6cm samples of beef M. longissimus lumborum 
using computed tomography and nearest neighbour technique (10% weighting of central pixel) and hot 
standard carcass weight. Solid line represents perfect prediction, with blue dots representing residuals to 
this relationship.   
  

The best precision was achieved by inclusion of HCWT to the nearest neighbour models for both cranial 

(Model 39, Table 8; Figure 5: R2=0.88, RMSE=1.87) and caudal samples (Model 40, Table 8; Figure 6: 

R2=0.80, RMSE=3.35).  
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Discussion and conclusions 

Intramuscular fat %. 

The cranial portion of the M. longissimus lumborum was significantly lower in IMF% than the caudal 

portion: 5.19 ± 2.68 compared to 6.45 ± 2.90. Given the two points sampled we cannot determine whether 

this change occurs in a linear fashion along the length of the M. longissimus lumborum, however further 

analysis of changing CT density across consecutive images may provide some indication. This lower IMF% in 

the cranial region of the muscle is in contrast to the predicted eating quality scores of this region using the 

MSA model, which are consistently higher than the caudal region. Intramuscular fat% is of course only one 

of multiple components that contribute to the eating quality of a muscle.  

 

The ability to predict intramuscular fat % 

High v low scan settings: 

The ability of the CT scanner to predict IMF% in the M. longissimus lumborum using average pixel density 

and standard deviation of all pixels at 0.6mm slices was moderate (see Table 4, Models 4 & 5) and similar 

for both the High Speed and High quality Scan protocols. The lack of improvement in the ability to predict 

IMF using the high quality settings suggests that future scanning protocols can make use of the high speed 

settings to reduce scanning times. This will be further investigated under scenarios where greater voxel 

depths are employed, however this may imply that similar accuracies can be achieved by further lowering 

the exposure time enabling greater product through-put in future commercial prototypes. 

 

The impact of voxel width on the ability to predict IMF%. 

When using computed tomography to predict IMF%, the best prediction was obtained when using average 

pixel density and standard deviation from all slices (voxel width 0.6mm). When images were reconstructed 

into voxel widths of 6mm the prediction of IMF% using average pixel density and standard deviation was 

reduced, however at voxel widths of 3mm this reduction in precision was only small. This indicates that 

image capture using larger voxels will still provide good prediction of IMF%, an advantage due to decreased 

image processing times. 

 

Using other data  

In contrast to the CT methods the industry standard MSA Marbling score provided the most precise 

prediction of IMF%. However if data such as HSCW was included in the CT pixel density/standard deviation 

models then the ability to predict IMF improved markedly, approaching similar levels of precision to the 

visual scoring system. By contrast when HSCW was included with MSA marbling score there was no further 

improvement in the prediction of IMF%. 

 

Therefore it appears that a combination of CT scanning and HSCW could be used to predict IMF%, with 

levels of precision approaching that of the visual MSA Marbling score. However the advantage is that the 

CT method is likely to be more repeatable compared to a human grader, and could probably be used on 

“Hot” carcasses and therefore employed sooner after processing. Both of these factors require further 

investigation in future experiments.  

 

One factor worth noting is the processing time taken to determine average pixel values and pixel standard 

deviations for each muscle sampled. Conversion of the 100 sets of images into the corresponding numbers 

currently takes several hours. Carefully written Fortran code is likely to overcome this issue, but it will be 

required prior to delivery of a commercial prototype. 



  

 
 

 

The inclusion of surrounding pixels to calculate adjusted pixel density and the impact on IMF% prediction. 

The use of information from surrounding pixels in an image, ‘nearest neighbour technique’, improved the 

ability of CT to predict IMF%. As the weighting of the central pixel was reduced from 100% down to 10% 

the R2 increased from 0.31 (High Speed and High Quality) to 0.44 (High Quality settings) and 0.43 (High 

Speed settings). Across the data range in this study, and when using the nearest neighbour technique to 

predict IMF%, there was little difference between the High and Low Quality settings. Therefore as a ‘stand-

alone’ technique for predicting IMF% from CT images, the nearest neighbour method has a significant 

advantage over using only the raw pixel values (i.e 100% weighting on the central pixel), and the scanning 

settings (High Speed versus High Quality) make little difference. 

 

When this same method was applied to the larger dataset containing samples that extended across the 

range of IMF%, the nearest neighbour (10% weighting on the central pixel) prediction of IMF was still the 

best performed method. Furthermore, the precision of the IMF% prediction in cranial samples using the 

nearest neighbour technique (10% central pixel weighting) was superior when compared to the visual MSA 

marbling score. Across all image analysis techniques the precision of prediction in the cranial samples was 

better than in the caudal samples. Given the small size of the data set, this could well be a reflection of 

random sampling error as opposed to some systematic increase in variance in the caudal region, therefore 

we will not over-interpret this result at this point. 

 

When HCWT was included in the models, the accuracy of IMF% prediction was improved. Using the nearest 

neighbour technique in the extended range of IMF% was superior to using MSA marbling score. However, 

ideally the IMF% method should rely on direct information, rather than phenotypically correlated 

information from other traits such as carcase weight. This is because future breeding values need to 

control these traits independently, thus predicting IMF% using carcase weight limits the capacity to select 

for a high carcase weight and high IMF% animal independently. None-the-less, as the level of paying 

producers for the phenotype delivered, HCWT is likely to be useful for further improving the precision of 

this feedback.  

 

These results indicate the potential for CT technology to be used to predict IMF% and therefore eating 

quality in the MSA grading system.  We can speculate that the use of CT will provide a more repeatable and 

accurate result in a commercial setting than the visual MSA marble score which is likely to vary between 

graders and within graders between days due to human error. Thus in a commercial setting where MSA 

marbling score is assessed by a range of graders of varied skill levels and at greater speed, the accuracy of 

IMF% prediction using MSA marbling score may diminish. Furthermore, there is anecdotal evidence that 

the visual grading system loses precision/accuracy at lower IMF% levels, a limitation which may be less 

likely to be encountered by using CT. To evaluate this in more detail a greater number of samples across a 

large range in IMF% need to be analysed by a range of graders in a commercial setting.  

 

  



  

 
 

Image acquisition issues. 

One peripheral observation was that there appears to be an image defect in the images acquired, whereby 

the bottom portion of the images on the upper shelf and the upper portion of the images on the bottom 

shelf of the CT scanning frame had lower densities, as depicted in Figure 7. This phenomenon was not due 

to fat being present on the outside of the samples as they were trimmed of subcutaneous and 

intermuscular fat. The reason for this irregularity and the potential impact on the results is difficult to 

ascertain. At a population level, the effect is likely to be structured across all samples scanned, thus 

producing a fixed effect across all samples. However, within an image this may have affected the 

association with chemical IMF% thus influencing precision. Simple thresholding of the lower density pixels 

is not a suitable solution as the variation in pixels density required to determine IMF% in the remainder of 

the image will be lost. Further investigation is required to understand this effect. 

  

 
Figure 7. Computer tomography images showing low density pixels (<1077 units) in white. 
  
Conclusions and future analysis 

The use of CT to determine IMF% in a commercial setting is a realistic proposition for the future. The 

precision to which CT predicts IMF% in this data set is better than the current industry standard which 

utilises MSA marbling score.  CT offers a rapid and moderately precise method for prediction of IMF%. The 

use of CT with the settings described in this report predict IMF% in the M. longissimus lumborum with 

moderate to high precision, with the ‘nearest neighbour technique’ using the High Quality settings offering 

the best prediction. Future investigations may involve alternative methods of data analysis such as a 3 

dimensional nearest neighbour calculation or the use of alternative scan settings to improve precision and 

or speed of scanning.  

 

The precision and accuracy of IMF% prediction under commercial grading conditions, where grading is 

performed at higher speeds and the technique may be affected by variation is grader accuracy. Future 

work could focus on extending the range of IMF/MSA marbling score of samples to determine the precision 

of IMF% prediction across this extended range in a commercial setting for both CT and MSA marbling score.  

 



  

 
 

The methods used to predict IMF% needs validation in hot samples, and transportability within a larger 

data set also requires investigation.  

 

Future work will need to establish whether adjustments to pixel density information is necessary due to 

the image acquisition irregularities previously described. This may require the scanning of a phantom in 

various locations within the CT scanner to determine the impact that sample placement in the CT machine 

has on image acquisition.  

 

 

 

 

 


