
Shelf-life predictive models for Australian beef and lamb products in 1 

overwrap trays and modified atmosphere packs: development and 2 

evaluation  3 

 4 

Laura Rooda, John P. Bowmana, Tom Rossa, Chawalit Kocharunchitta 5 

 6 

aCentre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of 7 

Tasmanian, Private Bag 54, Sandy Bay, Tasmania, Australia  8 

 9 

*Corresponding author 10 

Chawalit Kocharunchitt 11 

 12 

Tasmanian Institute of Agriculture, 13 

University of Tasmania 14 

College Road, Sandy Bay, 15 

Hobart, Tasmania, 7005, Australia 16 

 17 

Phone +61 3 6226 2650; email: chawalit.kocharunchitt@utas.edu.au 18 

 19 

 20 



Abstract 21 

The Australian red meat industry has a reputation for producing meat with excellent shelf-22 

life, which services both domestic and export markets in the retail and further processing 23 

sectors. However, this reputation is constantly challenged throughout supply chains due to 24 

unexpected temperature fluctuations and transit delays. Such incidences can result in 25 

unnecessary product wastage or markdowns, or otherwise require timely and costly 26 

evaluation of its sensory and microbiological condition to decide its disposition. To address 27 

this challenge within export markets, shelf-life predictive models for vacuum-packed (VP) 28 

beef and lamb primals were previously developed and are being adopted as a rapid, reliable 29 

and cost-effective decision-support tool to predict the remaining shelf-life, providing 30 

enormous economic benefits to the industry. This tool has the potential to provide further 31 

benefits to the Australian meat industry by expanding its applicability to retail-ready 32 

products within domestic markets. To this end, we used the data generated previously 33 

(Rood et al., publication in preparation) to develop predictive models for the shelf-life 34 

remaining for Australian beef and lamb products (i.e., mince and steak) in overwrap (OW) 35 

trays and modified atmosphere packs (MAP, 20% CO2 and 80% O2). The remaining shelf-life 36 

is predicted based on the products initial total bacterial count or Pseudomonas numbers, 37 

and time:temperature parameters. The models were then validated using independent data 38 

and have bias and accuracy factors ranging from 0.93 to 1.03, and 1.10 to 1.11, respectively, 39 

when used for predicting the shelf-life of OW and MAP products. This indicates a good 40 

agreement between the observed and predicted shelf lives and generally underpredict the 41 

shelf-life of products with approximately ≤ 10% deviation, providing ‘fail-safe’ predictions. 42 

These new models together with the existing models for shelf-life prediction of VP red meat 43 

were incorporated into a ‘ready to use’ decision-making tool (known as ‘Shelf-life Calculator 44 

for Red Meat’) for the Australian red meat industry to effectively and reliably manage 45 

diverse supply chains to ensure high quality meat products with excellent shelf-life.46 



1. Introduction 47 

The Australian red meat industry has a reputation for producing meat with excellent shelf-48 

life, which services both domestic and export markets in the retail and further processing 49 

sectors (contributing $18.5 billion to Gross Domestic Product in 2017/2018) (Small et al., 50 

2012). This reputation is constantly challenged by the need to minimise the loss of product 51 

shelf-life along different supply chains through unexpected temperature fluctuations and 52 

transit delays, and to meet a wide range of shelf life-related specifications imposed by 53 

intended international markets.  54 

It is well established that the shelf-life of meat depends upon the degree of bacterial 55 

contamination obtained during processing and a range of intrinsic (meat biochemistry) and 56 

extrinsic (storage conditions) factors, of which temperature is considered the most 57 

important factor (Nychas et al., 2008). Chill storage temperature (-1.5 to 0°C) is the most 58 

common approach to maximise the shelf-life of fresh meat products by slowing bacterial 59 

growth rates (Borch et al., 1996; Doulgeraki et al., 2012). However, even small increases in 60 

storage temperature have been shown to significantly reduce the shelf-life, for instance, at 61 

temperatures of 0°, 2° or 5°C, the storage life was reduced by about 30, 50 or 70%, 62 

respectively, compared with storage at -1.5°C (Gill et al., 1988).  63 

Temperature abuse, defined by Mills et al., (2014) as higher than 5°C during any stage of the 64 

cold chain, is onerous for the supplier. It can result in unnecessary product wastage and 65 

markdowns or, otherwise requires evaluation of its sensory and microbiological condition to 66 

decide its disposition. In many instances, the time taken to conduct an evaluation (i.e., 67 

locate consignment, select and sample representative units, and await test results) increases 68 

the likelihood that the contents might be deemed sensorially unacceptable or do not comply 69 

with market specifications (Huynh et al., 2016). It is, therefore, critical for the success of the 70 

Australian red meat industry to be able to assure quality shelf-life remaining for products in 71 

diverse supply chains, and to improve the accuracy and timeliness with which a disposition 72 

decision can be made. 73 

To address this challenge, shelf-life predictive models for vacuum-packed (VP) beef and lamb 74 

primals were successfully developed to predict the remaining shelf-life rapidly and 75 

accurately. These models were developed based on the growth rate of microorganism`s 76 

present (total viable count, TVC) and processes of spoilage (based on odour) as a function of 77 

temperature (Huynh et al., 2016; Kaur et al. 2021). The models have been validated by 78 

independent data from commercially available products in both simulated and commercial 79 



cold chains, both within Australia and internationally, and are being adopted as a reliable 80 

and cost-effective decision-support tool, providing enormous economic benefits to the 81 

industry. However, the focus of this tool to date has been on the shelf-life prediction of 82 

Australian VP beef and lamb in supply chains, especially for distant markets. To provide 83 

additional benefits to the Australian meat industry, this tool has potential to be further 84 

developed for red meat in common retail packaging formats within domestic markets, such 85 

as modified atmosphere packs (MAP, 20% CO2 and 80% O2) and overwrap (OW) trays 86 

(aerobic conditions).  87 

Previously, we assessed the microbiological and sensorial qualities of beef and lamb 88 

products in MAP (i.e., mince) and OW trays (i.e., mince and steak) sourced from several 89 

Australian processors at different storage temperatures (ranging from 0°C to 12°C) (Rood et 90 

al., publication in preparation). These trials involved products with and without prior wet 91 

aging in VP at low temperatures (between 0°C and 4°C) for different durations (up to 35 days 92 

for beef and 14 days for lamb). In contrast to VP formats, it was found that colour quality 93 

was the most appropriate indicator for determining the shelf-life of all MAP and OW 94 

products, and the rate of colour quality loss was not affected by the wet aging durations 95 

tested, or product type (i.e., mince or steak for OW). Furthermore, the end of shelf-life of 96 

OW products corresponded to the time taken for Pseudomonas spp. to reach a certain 97 

population level of. This agrees well that this organism is a specific spoilage organism (SSO) 98 

for chilled foods under aerobic conditions (Gill et al., 1977). The findings of those trials 99 

indicated the feasibility of developing models for separately predicting the shelf-life of MAP 100 

and OW products based on the rate of colour quality loss and time taken to reach 101 

Pseudomonas numbers that correspond to spoilage, respectively, as functions of 102 

temperature. To this end, we used the data from Rood et al. (publication in preparation) to 103 

develop predictive models for the shelf-life of beef and lamb products in MAP (i.e., mince) 104 

and OW trays (i.e., mince and steak) with prior wet aging durations up to 35 days for beef 105 

and 14 days for lamb. This paper describes the development of these models and the 106 

evaluation of their performance in simulated supply chains, with the overall aim to 107 

incorporate these new models together with the existing models for shelf-life prediction of 108 

VP red meat into a ‘ready-to-use’ decision-making tool for the Australian red meat industry.  109 

 110 

 111 

 112 

 113 



2. Materials and methods 114 

2.1 Model development  115 

2.1.1 Model development for OW products based on pseudomonas levels  116 

Data for specific growth rates of Pseudomonas on OW beef and lamb steak and mince at 117 

different storage temperatures (ranging from -0.5°C to 12°C) were obtained from Rood et al. 118 

(publication in preparation). To describe the effects of storage temperature on the rates of 119 

Pseudomonas growth, linear regression analysis was performed for each meat type 120 

(Ratkowsky et al., 1982) and the following model derived:  121 

√𝜇𝑃𝑠𝑒𝑢𝑑𝑜𝑚𝑜𝑛𝑎𝑠 = (𝑎 × 𝑇) + 𝑏             (Eq. 1) 122 

where µPseudomonas is the specific growth rate of Pseudomonas (in days); a is the slope of the 123 

regression line; T is the temperature at which meat is stored (°C); and b is the regression 124 

coefficient.  125 

Given the observed lag phase of Pseudomonas growth and the consistent relative lag time 126 

(RLT) observed across all product types and storage temperature (Rood et al., manuscript in 127 

preparation), the increase in Pseudomonas numbers over a given period of time could be 128 

estimated based on the growth rate from Equation 1 and the average relative lag time (RLT) 129 

as follows: 130 

for: t≥ (RLT/GT):  Log10 Nt = Log10 No + 0.301 × [
(𝑡−(

𝑅𝐿𝑇

𝐺𝑇
))

𝐺𝑇
]  131 

else  Log10 Nt = Log10 No (Eq. 2) 132 

where Nt is the number of Pseudomonas spp. after a period of time (t); No is the starting 133 

number (CFU/cm2 or g); RLT is the observed relative lag time; GT (day) is generation time 134 

estimated based on the predicted growth rate from Equation 1 (i.e., GT = 0.301/ µPseudomonas); 135 

and t is time in day. 136 

Based on the growth data for Pseudomonas spp. (parameters obtained from Equation 1) and 137 

its levels at which the spoilage of beef and lamb products occurred (based on colour), the 138 

remaining shelf-life of a given OW product could be predicted using the following equation: 139 

𝑆𝐿𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 =  [
𝐿𝑜𝑔10  𝑁𝑠𝑝𝑜𝑖𝑙𝑎𝑔𝑒 − 𝐿𝑜𝑔10 𝑁𝑡 

0.301
] × 𝐺𝑇𝑇                        (Eq. 3)140 

        141 



where SLremaining is the remaining shelf-life of a given OW product at a given temperature (T); 142 

Nspoilage is the Pseudomonas numbers at the time of spoilage for OW products; Nt is the 143 

observed Pseudomonas numbers (log10 CFU/cm2 or g) of that product after lag time is 144 

considered; GTT (day) is estimated based on the predicted growth rate from Equation 1 (i.e., 145 

GT = 0.301/GR) at a given temperature (T); and T is the expected future storage temperature 146 

(˚C).   147 

2.1.2 Model development of MAP products based on rate of quality loss 148 

The shelf-life of MAP products could be predicted based on the rate of colour quality loss as 149 

a function of temperature (Rood et al., manuscript in preparation). Accordingly, Equation (4) 150 

can then be expressed as:     151 

 152 

𝑆𝐿 = [
1

𝑎 ×(𝑇−𝑇min)
]2                         (Eq. 4) 153 

 154 

where SL is the shelf-life of MAP products in (days); a is the slope of the regression line; T is 155 

the temperature at which meat is stored (°C); and Tmin is the minimum temperature where 156 

the rate of colour loss is zero.  157 

Equation (4) was further modified to predict remaining shelf-life by accounting for the 158 

observed initial TVC (at the time of packaging). This was achieved by calculating a correction 159 

factor that considers the initial TVC numbers and the calculated TVC numbers of a given 160 

product at the time of spoilage at a given temperature. This correction factor was then 161 

incorporated to Equation (4) to predict the remaining shelf-life (SLremaining; day).: 162 

 163 

𝑆𝐿remaining = [
𝑁0 −(𝑁obs)+ 𝑁s

𝑁s
] × [

1

𝑎 ×(𝑇−𝑇min)
]2                              (Eq. 5) 164 

 165 

where N0 is the initial TVC that was typically observed on MAP products based on the 166 

previous data of Rood et al. (publication in preparation) (log CFU/g); Nobs is the observed 167 

initial TVC (log CFU/g); and Ns is the nominal population level on MAP beef and lamb at the 168 

time of spoilage (log CFU/g). The Ns value was estimated by extrapolation of the regression 169 

line of TVC data to the time at which spoilage occurs at -0.5°C.  170 

 171 

2.1.3 Production of a model interface 172 



Based on the developed Equations (2) and (3) for OW, and (4) and (5) for MAP products  a 173 

model interface was produced in MS 365 ®Excel to predict the remaining shelf-life of beef 174 

and lamb products in OW (i.e., mince and steak) and MAP (i.e., mince) with or without prior 175 

wet aging for up to 35 days for beef and 14 days for lamb.  176 

 177 

2.2 Validation of the developed models in simulated supply chains 178 

2.2.1 Validation shelf-life trials  179 

Microbiological and sensorial assessments for MAP mince and OW mince and steak were 180 

conducted in accordance with Rood et al. (manuscript in preparation). Shelf-life trials were 181 

conducted at either constant (ranging from -0.5 to 12°C) or dynamic temperature profiles. 182 

The dynamic temperatures tested were representative of time:temperature profiles for 183 

domestic supply chains, which were obtained from industry partners (Table 1). This is with 184 

the exception of the final retail holding temperature, which was modified to represent 185 

different scenarios, including ‘worse case’.  186 

 187 

Table 1: Dynamic temperature profiles used for shelf-life validation trials simulating 188 

domestic supply chains.  189 

Supply chain phase 

Scenario 1 Scenario 2 Scenario 3 

Temperature (°C) Duration (h) Temperature (°C) Duration (h) Temperature (°C) Duration (h) 

Chiller storage 2.4 10 2.4 10 2 17.5 

Truck 0.3 1 0.3 1 1.5 1 

Warehouse storage 1.7 20 1.7 20 1.7 21.25 

Retail 8 Indefinitely 6 Indefinitely 4 Indefinitely 

 190 

2.2.2 Determination of the shelf-life 191 

The shelf-life of each product type was determined from colour assessments as described 192 

previously (Rood et al., manuscript in preparation). Specifically, products that were rated as 193 

‘marginal – colour off’ were considered as commercially unacceptable and the time taken to 194 

reach that endpoint was recorded as the shelf-life of the product. Due to the variability of 195 

product characteristics even within the same trial, the shelf-life was determined when at 196 

least one of the replicates were rated as unacceptable at any given time point and 197 

subsequent time points. 198 

 199 



2.2.3 Comparison between observed and predicted shelf-life  200 

The shelf-life of each product type was estimated using the developed predictive models 201 

based on initial TVC or Pseudomonas numbers, and time:temperature history. The 202 

performance of the developed models to predict the shelf-lives of different products was 203 

evaluated using the methods described by Ross (1996). Bias and accuracy factors for the 204 

models were calculated from observed and predicted shelf lives (days) of each packaging 205 

type.  206 

3. Results and Discussion 207 

Shelf-life predictive models for VP beef and lamb primals were previously developed based 208 

on the growth rate of TVC and processes of spoilage (based on odour) as a function of 209 

temperature (Huynh et al., 2016; Kaur et al. 2021). The models have been validated by 210 

independent data from commercially available products in both simulated and commercial 211 

cold chains and are being adopted as a reliable and cost-effective decision-support tool to 212 

predict the remaining shelf-life rapidly and accurately. To provide additional benefits to the 213 

Australian meat industry, this study developed shelf-life predictive models for red meat in 214 

common retail packaging formats, such as OW trays and MAP, to be incorporated into the 215 

decision-support tool. 216 

To develop shelf-life predictive models for OW and MAP beef and lamb products, a 217 

comprehensive study was conducted to determine the microbiological and sensory qualities 218 

of meat as they relate to spoilage (Rood et al., manuscript in preparation). That study, 219 

consistent with previous studies, indicated that the rate of quality loss could be predicted as 220 

a function of temperature (Gill et al., 1988; Kaur et al., 2021). It was also evident that the 221 

spoilage process was different between MAP and OW trays. These results were expected 222 

given the unique selection pressures created by the different gaseous atmospheres between 223 

MAP and OW packaging formats (Kameník et al., 2014; Kiermeier et al., 2013; Taylor et al., 224 

1990). Specifically, Pseudomonas spp. is a specific spoilage organism (SSO) for chilled foods 225 

under aerobic conditions, such as OW meat. However, its growth is suppressed by CO2 under 226 

MAP conditions (Gill et al., 1977). Accordingly, separate shelf-life predictive models were 227 

developed for each packaging format. 228 

 229 

3.1. Development of shelf-life predictive models for OW beef and lamb products 230 



Given that the growth rates of Pseudomonas were similar at a given temperature regardless 231 

of their source, type of product (mince or steak) and meat type (beef or lamb) (Rood et al., 232 

manuscript in preparation), the growth rate data generated was combined and was fitted 233 

with the square root model of Ratkowsky et al., (1982) to describe the effects of storage 234 

temperature on the growth rate of Pseudomonas on OW products. This was in accordance 235 

with Equation (1). However, the RLT and the Pseudomonas numbers at the time of spoilage 236 

were found to be different between meat type. Beef had a larger RLT and higher 237 

Pseudomonas spoilage threshold compared to lamb (Rood et al., manuscript in preparation). 238 

This indicated the need to develop two different models. Table 2 shows the model 239 

parameters for different meat types in accordance with Equations (1) and (2).  240 

 241 

Table 2.  242 

Estimated values of the parameters of Equation (1) and (2) for OW beef and lamb products 243 

(mince and steak), based growth rate of Pseudomonas.  244 

 245 

Product type a b Tmin (°C)a RLT 

OW beef 0.0145 0.1566  -10.8000 5.3406 

OW lamb 0.0145 0.1566 -10.8000 4.2066 

a Tmin is the theoretical minimum temperature and was estimated by extrapolation of the regression line to 246 

√𝜇quality loss/𝜇𝑃𝑠𝑒𝑢𝑑𝑜𝑚𝑜𝑛𝑎𝑠 =  0. 247 

 248 

With the parameters obtained above, models specifically to predict the remaining shelf-life 249 

of OW beef and lamb products were developed and can be defined by their respective 250 

Equations (6) and (7).  251 

 252 

𝑆𝐿𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 (𝑏𝑒𝑒𝑓) =  [
 6.933 − 𝐿𝑜𝑔10 𝑁𝑡  

0.301
] × 𝐺𝑇𝑇   (Eq. 253 

6) 254 

 255 

 256 

𝑆𝐿𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 (𝑙𝑎𝑚𝑏) =  [
 6.291− 𝐿𝑜𝑔10 𝑁𝑡 

0.301
] × 𝐺𝑇𝑇   (Eq. 257 

7) 258 

 259 



where SLremaining is the remaining shelf-life of a given OW product at a given temperature (T); 260 

Nspoilage is the Pseudomonas numbers at the time of spoilage for OW beef (6.933 log10 261 

CFU/cm2 or g) or lamb (6.291 log10 CFU/cm2 or g) (Rood et al., manuscript in preparation); Nt 262 

is the observed Pseudomonas numbers (log10 CFU/cm2 or g) after lag time is considered; GTT 263 

(h) is estimated based on the predicted growth rate from Equation 1 (i.e., GT = 264 

0.301/µPseudomonas) at a given temperature (T); and T is the expected future storage 265 

temperature (˚C).   266 

 267 

3.2 Development of shelf-life predictive models for MAP beef and lamb products 268 

Similar to Section 3.1, we applied the square root model of Ratkowsky et al., (1982) to the 269 

relevant data of Rood et al. (manuscript in preparation) to describe the effects of storage 270 

temperature on the rates of quality loss for MAP (based on colour scores) as described in 271 

Equation (4). Table 3 shows the model parameters (a and Tmin) for MAP products for 272 

different meat types. It was found that different meat types (beef and lamb) have different 273 

model parameters. This was likely due to differences in their biochemistry, particularly 274 

glycogen and lactic acid contents, as well as pH, where beef (pH 5.5-5.8) tends to be lower 275 

compared to lamb (pH 5.6-6.8) (Carse & Locker, 1974). Such differences can affect the 276 

growth of bacteria with consequential effects on shelf-life. Accordingly, two separate models 277 

were developed to predict the shelf-life of beef and lamb in MAP. A similar observation was 278 

also made for the development of shelf-life predictive models for VP beef and lamb primals 279 

(Huynh et al., 2016; and Kaur et al., 2021)   280 

 281 

Table 3.  282 

Estimated values of the parameters of Equation (4) for MAP beef and lamb mince based on 283 

rate of quality loss.  284 

 285 

Product type a Tmin (°C)a 

MAP beef 0.0059 -8.4641 

MAP lamb 0.0064 -7.6875 

 286 

a Tmin is the theoretical minimum temperature and was estimated by extrapolation of the regression line to 287 

√𝜇quality loss/𝜇𝑃𝑠𝑒𝑢𝑑𝑜𝑚𝑜𝑛𝑎𝑠 =  0. 288 

 289 



With the parameters (a and Tmin) obtained above, predictive models for the shelf-life of MAP 290 

products were developed in accordance with Equation (4). However, such models could not 291 

be used to specifically predict the remaining shelf-life. This requires a number of factors (i.e., 292 

N0, and Ns) to be determined based on previous data from Rood et al. (publication in 293 

preparation) for the shelf-life of MAP products (i.e., as defined in Equation (5)). Specifically, 294 

N0 is the initial TVC for MAP beef and lamb based on the experimental data for a given 295 

product stored at -0.5˚C ( 4.1 and 4.6 log CFU/g, respectively); Nobs is the observed initial 296 

TVC (log CFU/g) of the product in question; and Ns is the nominal population level of MAP 297 

beef and lamb at the time of spoilage (log CFU/g). The Ns value was estimated by 298 

extrapolation of the regression line of observed TVC data to the time at which spoilage 299 

occurs at -0.5˚C. The extrapolated Ns value was estimated to be 8.77 log CFU/g for beef and 300 

8.46 log CFU/g for lamb. These, taken together, were used to develop models to predict the 301 

remaining shelf-life of MAP beef (Equation (8)) and lamb (Equation (9)) as follows: 302 

 303 

𝑆𝐿remaining = [
4.10 −(𝑁𝑜𝑏𝑠)+ 8.77

8.77
] × [

1

0.059 ×(𝑇−−8.464)
]2    (Eq. 8) 304 

 305 

𝑆𝐿remaining = [
4.64 −(𝑁𝑜𝑏𝑠)+ 8.43

8.43
] × [

1

0.0064 ×(𝑇−−7.688)
]2    (Eq. 9) 306 

 307 

The developed models were incorporated into a software tool (implemented in MS 365 308 

®Excel) that allows prediction of remaining shelf-life of beef and lamb MAP (mince) and OW 309 

(steak and mince) reprocessed from VP primals aged up to 35 days for beef and 14 days for 310 

lamb. To use this tool, the user selects the meat type (beef or lamb), packaging format (OW 311 

or MAP), and product type (mince or steak), enters the starting bacterial numbers 312 

(Pseudomonas for OW or TVC for MAP), and a time:temperature profile, typically collected 313 

by a temperature logger. The tool then predicts the remaining shelf-life of the product based 314 

on assessment of predicted growth and colour kinetic responses.  315 

 316 

3.3 Shelf-life data for model validation 317 

The shelf-life validation data obtained for various OW (n=11) and MAP (n = 16) products at 318 

constant and simulated supply chains (i.e., at fluctuating temperatures) are summarise in 319 

Table 4 and 5, respectively. These include bacterial numbers at the start of the trial 320 

(Pseudomonas for OW and TVC for MAP), average storage temperatures, and observed shelf 321 

lives. The data was then used to evaluate the performance of the developed models.  322 



Table 4: Summary of the observed and predicted shelf-lives (based on colour score) of 323 

overwrapped beef and lamb products reprocessed from wet aged VP primals and stored at 324 

different temperatures. 325 

Packaging 

format and 

meat type 

Retail cut 

Wet aging 

duration 

(days)a 

 

Initial count 

(log10 

CFU/cm2 or 

g)b 

 

Average 

temperaturec 

Observed 

Shelf-life 

(days)d 

Predicted 

Shelf-life 

(days)e 

Model bias 

factorf 

Model 

accuracy 

factorf 

OW Beef 
Steak 

19 3.85 

5.76g 4 3 

0.94 1.11 

3.89 4 4 

-0.34 8 9 

35 4.12 
6.28 3 3 

2.29 5 5 

Mince Fresh 3.15 4.03h 5 4 

OW Lamb 
Steak 

Fresh 2.39 
1.94 7 6 

0.93 1.08 

-0.71 10 10 

14 3.93 
5.23g 3 3 

3.78 3 3 

Mince Fresh 3.26 4.62h 5 4 

 326 
a. Primals were aged in VP at 0-3°C for different durations before reprocessing into OW products. 327 
b. Initial Pseudomonas counts (upon the commencement of the trials, i.e., within 30 mins after 328 
reprocessing and packaging). 329 
c. Observed average temperature during trial. 330 
d. The time taken for OW products to reach end of shelf-life based on colour score (i.e., score of ≤4). 331 
e. The predicted shelf-life generated by the developed Shelf-life Calculator.  332 
f. Bias and accuracy factor indices of Ross (1996) to assess the performance of the model. 333 
g. Dynamic temperature profile (based on scenario 2 in Table 1). 334 

h. Dynamic temperature profile (based on scenario 3 in Table 1). 335 

 336 

 337 

  338 



Table 5: Summary of the observed and predicted shelf-lives (based on colour score) of 339 

modified atmosphere packed beef and lamb mince reprocessed from wet aged VP primals 340 

and stored at different temperatures. 341 

Meat type 

Wet aging 

duration 

(days)a 

 

Initial count 

(log10 

CFU/g)b 

 

Average 

temperaturec 

Observed 

Shelf-life 

(days)d 

Predicted 

Shelf-life 

(days)e 

Model bias 

factorf 

Model accuracy 

factorf 

Beef 

Fresh 4.93 

8.24 4 4 

0.93 1.07 

2.3 10 9 

-0.27 19 16 

12  5.54 
3.62 g 7 7 

-0.20 14 15 

21 5.95 
6.19 5 4 

2.01 9 9 

 Fresh 4.42 4.20 g 7 8   

Lamb 

Fresh 4.72 

8.22 4 4 

1.03 1.03 

5.62 6 6 

1.92 11 11 

0.11 16 17 

12 3.96 

8.36 4 4 

1.93 11 12 

0.1 18 18 

 12 4.60 11.98 2 3   

 342 
a. Primals were aged in VP at 0-3°C for different durations before reprocessing into MAP products. 343 
b. Initial counts (upon the commencement of the trials, i.e., within 3.5 hours after reprocessing and 344 
packaging). 345 
c. Observed average temperature during trial. 346 
d. The time taken for MAP products to reach end of shelf-life based on colour score (i.e., score of ≤4). 347 
e. The predicted shelf-life generated by the developed Shelf-life Calculator.  348 
f. Bias and accuracy factor indices of Ross (1996) to assess the performance of the model. 349 
g. Dynamic temperature profile (based on scenario 2 in Table 1). 350 

 351 

 352 

3.3 Performance of predictive models 353 

The shelf-life predictive models for OW and MAP beef and lamb products were evaluated for 354 

their performance by comparison with independent data not used to generate the models. 355 

The MS 365 ®Excel tool as described above (Section 2.1.3) was then used to predict the 356 

shelf-life of different meat products based on their time:temperature history and initial 357 



microbial counts. The observed vs. predicted shelf lives (days) of each product are shown in 358 

Tables 4 and 5.  359 

The bias and accuracy factor analyses of Ross (1996) were used to assess the performance of 360 

the predicted shelf-life generated by the model compared with the observed data. Ross 361 

(1996) reported that the bias factor serves as a measurement index for the average variation 362 

between the predicted and observed values, whereas the accuracy factor is used to estimate 363 

the accuracy of an established model. Bias and accuracy factor values of 1 indicate a perfect 364 

agreement between observed and predicted values. In this study, the models were found to 365 

have a bias factor of 0.94 and 0.93, and an accuracy factor of 1.11 and 1.08 when used for 366 

predicting the shelf-life of beef and lamb steak and mince in OW trays, respectively. Similar 367 

results were found for models used for predicting the shelf-life of beef and lamb mince in 368 

MAP which were found to have bias factor of 0.93 and 1.03, and an accuracy factor of 1.07 369 

and 1.03, respectively. These indices showed a good agreement between the observed and 370 

predicted shelf lives of OW and MAP beef and lamb products. The models generally 371 

underpredict the shelf-life of products with approximately ≤ 10% deviation, providing ‘fail-372 

safe’ predictions. These results are also in accordance with previous models developed for 373 

shelf-life prediction of beef and lamb in VP in which the bias factor of 1.02 and 0.90, and an 374 

accuracy factor of 1.10 and 1.11, respectively, indicating a ‘fail-safe’ predictions with 375 

approximately 10% deviation (Huynh et al., 2016). It should also be noted that an over-376 

prediction of time to spoilage was also observed by Albrecht et al., (2019), Bruckner et al., 377 

(2013) and Tang et al., (2013) for their shelf-life predictive models for poultry and pork meat. 378 

From the above, the developed models were successfully validated to provide an accurate 379 

and reliable prediction of the shelf-life of beef and lamb products stored under common 380 

retail ready packaging formats, such as OW and MAP. Such models, along with existing 381 

models for shelf-life prediction of VP red meat can be readily adopted as a reliable decision-382 

making tool in commercial supply chains. This tool will offer a cost-effective approach for 383 

meat processors to optimise and better understand their supply chains. Disposition of 384 

product affected by adverse events, such as unexpected temperature fluctuations or 385 

extended delivery times can be resolved speedily by using this tool.  386 

 387 

 388 

 389 

 390 



4. Conclusion 391 

This study describes the development of ‘ready-to-use’ shelf-life predictive models for OW 392 

and MAP beef and lamb products. The models were validated by independent data from 393 

commercially available products in simulated supply chains and were found to generally 394 

underpredict the shelf-life with approximately ≤ 10% deviation, providing ‘fail-safe’ 395 

predictions. The new models together with the existing models for shelf-life prediction of VP 396 

red meat can be incorporated into a ‘ready-to-use’ decision-making tool for the Australian 397 

red meat industry to optimise and monitor meat quality in diverse supply chains.  398 

 399 
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