Strategies to Improve Compliance to Weight Management in Young Women

Helen O'Connor PhD APD¹

Research Team

Hoi Lun Cheng APD¹, Hayley Griffin PhD APD¹,, Kieron Rooney PhD¹, Prof Kate Steinbeck MBBS FRACP² 1. Exercise & Sport Science, University of Sydney 2. Foundation Chair Adolescent Medicine, Sydney Medical School

Research Supported by a Grant from Meat & Livestock Australia

Weight Gain Greatest in Young Women

Australian Longitudinal Study of Women's Health Weight Gain (g/year) 1996-2003

Young Women	Mid-age Women	Older Women	
(n=5770)	(n=8942)	(n=6777)	
649	492	162	
(95% CI: 620-678)	(95% CI: 467-516)	(95% CI: 185-140)	

Popkin 2010 - review 1990-2000

http://www.alswh.org.au/

Weight Gain & Young Women

- Moving away from home
- >Busy with work and/or study
- > Eating out and alcohol
- >Limited shopping/cooking skills
- >Budget constraints
- > Decline in physical activity
- Cohabitation (friends or partner)
- Marriage & pregnancy

Risks of Weight Gain in Young Women

> Weight Tracks Upward

- Negative physical & mental health
- > Reproductive Health
 - Infertility
 - Obstetric complications
 - Epigenetic effects for off spring
- > Family & Future Health
 - Women decide family meals
 - Modelling health behaviour important
 - Vicious cycle for future generations

Young Women & Weight Management

> Limited research in young women & weight management

> Systematic review (Poobalan et al 2010)

- Studies in young women n=10
- Overweight or obese young women n=6
- Diet, exercise and behavior modification (n=1)

Studies report:

THE UNIVERSITY OF

- Difficult to recruit younger participants
- Higher rate of attrition
- Limited evaluation of effectiveness

> Weight Management

- Young women different to middle age
- Less co-morbidity at this life stage
- Need to find out what works metabolically & behavourally

Weight Loss in Young Women Study

THE UNIVERSITY OF SYDNEY

Macronutrients Study Diets & Exercise

Nutrient	HP Diet	HC Diet
Energy (kJ)	5615	5602
Protein (g)	107 (32% of E)	67 (20% of E)
Carbohydrate (g)	138 (41% of E)	191 (58% of E)
Sugars (g)	73	83
GI/GL	46/61	52/93
Dietary fibre (g)	23	24
Total fat (g)	38 (25% of E)	32 (21% of E)
Saturated fat (g)	11	10
Cholesterol (mg)	298	87

30 min accumulated physical activity daily (activity diary)

Weight Loss

Participants Losing > 5 & 10% Initial Weight

THE UNIVERSITY OF

Participants	<5%	≥ 5%	≥ 10%
HP (All Participants)	53.0	47.0	30.6
HC (All Participants)	62.8	37.2	14.3
HP (12 mo completers)	28.6	71.4	42.9
HC (12 mo completers)	53.5	46.5	26.7

Participant proportions losing ≥ 10% initial weight trend to be higher for HP at 6 months (p=0.053)

Systematic Review of Higher Protein Diets

Effect size at 6 (a) and 12 (b) months

Percentage attrition rate in low-carbohydrate and low-fat diets reported in the literature

n=13 studies (2000-2001) LCHP vs LFHC

~ -4 kg at 6 months
~ -1 kg at 12 months
Better at 6 months
As effective at 12 months

Hession et al 2009

Diogenes Study

- > Multicentre clinical trial
- > 772 European families (one healthy child 5-17 y)
- > 938 adults; 827 children
- > Adults 18-65 y; BMI 27-45 kgm⁻²;
- > Adults 800-1000 kcal/d for 8 weeks
- > VLED (Modifast) + low energy vegetables if desired
- > Participants needed to lose 8% initial weight over 8 weeks
- > Those losing > 8% initial weight randomised to next phase
- > Children did not do VLED just randomised diet of parents
- > Mean loss ~11 kg (n=773 completed) over 8 weeks

Diogenes Study

- Random assignment one of 5 diets (all <30% fat):
- Low Protein (13% of energy); High GI
- Low Protein (13% of energy); Low GI
- High Protein (25% of energy); High GI
- High Protein (25% of energy); Low GI
- Control: < 30% fat, diet guidelines, no macronutrient/GI plan</p>
- Diets ad libitum (not energy restricted)
 - Instructed to maintain weight loss
 - Additional loss permitted
- n=548 completed 6 mo; 29% attrition

Diogenes Weight Maintenance

THE UNIVERSITY OF

Diogenes - Children

Proportion (%) of Children Overweight/Obese Pre and Post Diogenes

Diet	Pre-Diogenes	Post-Diogenes
Low Protein/Low GI	36.9	36.6
Low Protein/High GI	44.7	45.2
High Protein/Low GI	46.2	39.6
High Protein/High GI	47.4	45.2
Control Diet	48.8	47.7
		Papadaki et al 2010

Protein Leverage & Obesity

Role of protein in human obesity

- Largely ignored until recently

> Energy from protein in human diets

- Remained static
- Protein not linked with obesity epidemic

> Protein leverage hypothesis

- Evidence in animals and insects
- Emerging evidence in humans

Protein & weight regulation

- Small proportion of diet energy
- Tight regulation
- Eating behaviour & appetite

Balanced diet for 45 year old moderately active male BMI 23.5 kgm⁻² Energy requirement 10,700 kJ/d 14% protein or 1,500 kJ protein Remainder 9,200 kJ CHO & fat

Simpson & Raubenheimer 2005

Unbalanced diet rail, higher proportion CHO/Fat.

THE UNIVERSITY OF

Range of possible diet rails to meet protein target

Protein Leverage Hypothesis

- > Lean humans n=22
- > Studied 3 x 4 day periods
- > Ad libitum energy intake
 - 10%, 15% & 25% protein
- > Fix menus similar in:
 - Palatability, variety & sensory
- > Lowering protein from 10-15%
 - ~12% increase in energy intake (savoury snacks)
 - If maintained = gain of 1 kg per month
 - Greater increase in hunger score 10 vs 25%

Below the 15% of E Protein Target 1 kJ decrease in protein resulted in a 4.5 kJ increase in non-protein energy

> More human studies are required but PLH offers a possible mechanism for satiating effects of protein

WOW Hunger & Desire to Eat VAS

Repeated Measures ANOVA: Diet: 0.184; Diet*Time: 0.229; Time: 0.459

Repeated Measures ANOVA: Diet: 0.138; Diet*Time: 0.337; Time: 0.203

Higher Protein Diet Other Benefits

> Nutrient density & adequacy on energy restriction

- Careful planning to meet nutrient requirements on energy restriction
- Higher protein diets tend to be more nutrient dense

> WOW study diets assessed by diet modelling

- Match fibre, fat, calcium
- Model the GI, GL and nutrient adequacy

Asia Pac J Clin Nutr 2011;20 (2):206-211

Original Article

206

THE UNIVERSITY OF

Nutritional adequacy of energy restricted diets for young obese women

Helen O'Connor PhD¹, Zahra Munas BSc Nutrition (Hons)¹, Hayley Griffin PhD¹, Kieron Rooney PhD¹, Hoi Lun Cheng BSc Nutrition (Hons)¹, Katharine Steinbeck PhD²

Micronutrients - Study Diets

Nutrient	EAR/AI	HP Diet	HC Diet	Red meat
Thiamin (mg)	0.9	1.6	1.8	4 times a
Riboflavin (mg)	0.9	2.5	2.5	nutrient
Niacin Equiv (mg)	11	47	32	still short
Vitamin C (mg)	30	156	160	(70%) of
Total Folate (μg)	320	332	355	the RDI.
Vitamin A Equiv (μg)	500	1058	1307	Haeme
Sodium (mg)	460-920	2186	1940	iron than
Potassium (mg)	2800	3554	30	HC
Magnesium (mg)	255	318	80	
Calcium (mg)	840	908	877	
Phosphorus (mg)	580	1725	1282	
lron (mg)	8.0	12.2	9.9	
Zinc (mg)	6.5	11.7	7.6	

Iron Deficiency in Overweight/Obese Young Women

Table 1: Prevalence of iron deficiency in Australian women

Study	Age (years)	Cut-off (Ferritin) µg⁄L	Preval- ence
AusDiab ¹	25-50	<12	10.6
Fayet ²	18-35	<15	34.0
O'Connor⁴	18-25	<15	16.9

Possibly higher prevalence in younger women?

- 1. Ahmed et al 2008
- 2. Fayet & Samman 2007
- 4. Manuscript in preparation

Micronutrient Status - Iron

Ferritin (15-165µgL ⁻¹)	Diet		P Value	
	HP	НС	Diet	D*T
6 month completers				
Ferritin at 6 months (µgL ⁻¹)	52.8 ± 6.2	45.9 ± 7.4		
Δ 6 months	14.4 ± 4.8	-3.2 ± 5.1	0.007	N/A
12 month completers				
Ferritin at 6 months (µgL ⁻¹)	53.8 ± 6.6	44.1 ± 6.2		
Ferritin at 12 months (µgL ⁻¹)	52.7 ± 6.6	38.0 ± 5.4		
Δ 6 months	14.0 ± 4.4	2.4 ± 5.0	0.02	0 38
Δ 12 months	13.0 ± 4.6	-3.7 ± 4.9	0.02	0.00

Iron Status & Obesity

Ganz & Nemeth 2006

Higher Protein Diets & Young Women

> Evidence HP works faster earlier

- Young women = 'works for me'

> Evidence HP low GI works longer

- Maintaining weight loss is most challenging
- Beneficial metabolic outcomes

> HP low GI approach

- Benefit to satiety
- Enhance 'control' of eating
- May benefit 'emotional eating'

> Microutrient needs

- HP energy restricted diets more nutrient dense
- Iron deficiency common at this age stage
- Red meat 3-4 times a week for iron and zinc (co-existing deficiencies)

More Research Gen Y Approaches Technology Social Network Support

Acknowledgements

Research Team

Dr Hayley Griffin APD

Hoi Lun (Helen) Cheng PhD Candidate, APD

Dr Kieron Rooney Biochemist

Prof Kate Steinbeck MBBS

Thanks to A/Prof Peter Petocz (Macquarie University) & Ms Bri-Ellen Claes for assistance with statistics

Metabolism & Obesity RPAH Janet Franklin PhD Elisia Manson RN