

For the latest in red meat R&D

Naracoorte, South Australia

MLA Welcome and market update

Dr. Michael Laurence

Meat & Livestock Australia

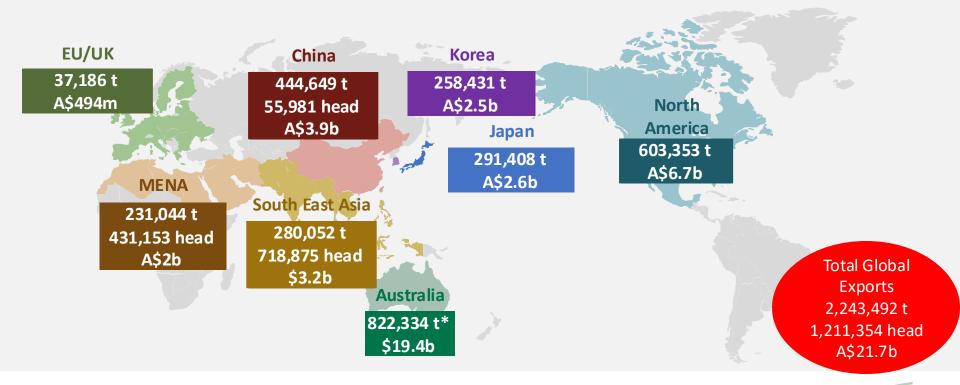
Overview

- 1. Market update
- 2. How to get involved with MLA RD&A
- 3. Updates in Animal Wellbeing

Overview

1. Market update

- 2. How to get involved with MLA RD&A
- 3. MLA role in live export transition

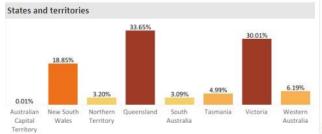


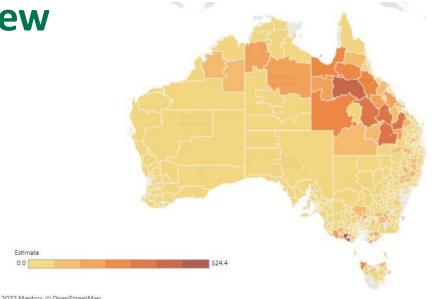
What MLA can and can't do

- Provide research, development, adoption and marketing services for industry.
- Fund and oversee NVDs, LPA, NLIS (through Integrity Systems Company).
- Provide **research** that can support the development of policy positions.
- Collaborate widely, and with partner RDCs AMPC and LiveCorp.
- Provide detailed and comprehensive market information to industry.
- Provide support to PICs with coordinating stakeholder engagement initiatives.

- Become involved in policy or agri-political issues.
- X Take direction from state farming organisations.
- Set industry policy or policy priorities or write policy submissions.
- Advocate or lobby government representatives.
- Influence processing capacity or labour supply issues.
- X Forecast saleyard and retail prices.

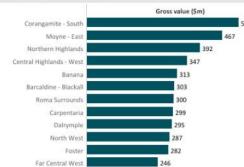
Australia exports red meat and livestock to over 100 countries

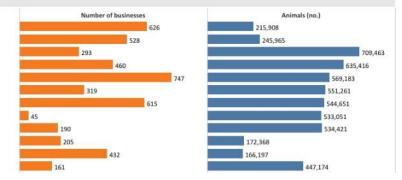

^{*} Australian volumes in carcase weight equivalent and retail prices, export volumes in shipped weight terms and wholesale prices


Cattle industry overview

Cattle and calves, Gross value (\$m)

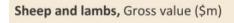
National


18,153 \$m

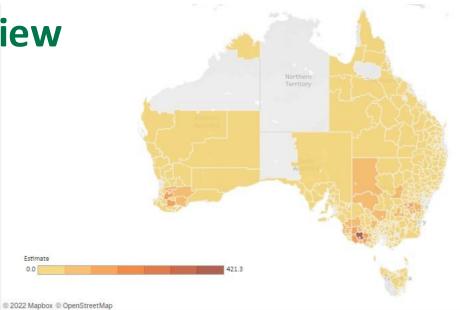


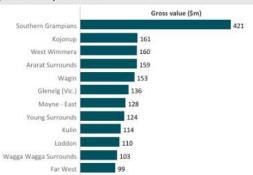
@ 2022 Mapbox @ OpenStreetMap

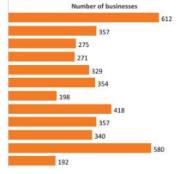
Top SA2 regions for Cattle and calves

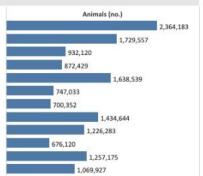





Sheep industry overview


National


6,977 \$m



Top SA2 regions for Sheep and lambs

Big opportunities ahead in trade agreements

Australia-UK FTA

Australia-India ECTA

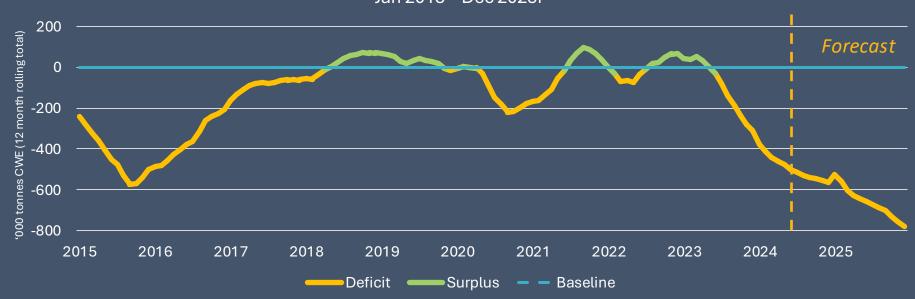
- 30% tariff on sheep meat eliminated
- Treaty-level interim outcome with more comprehensive FTA discussions continuing

Australia-UAE CEPA

- Negotiations concluded

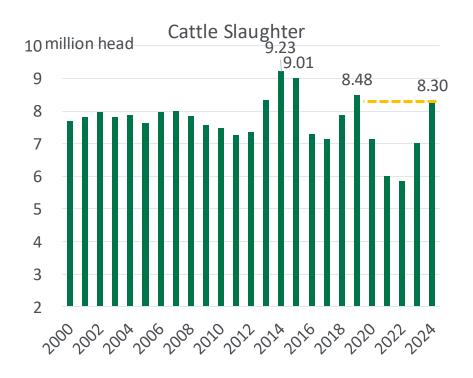
 likely to enter into

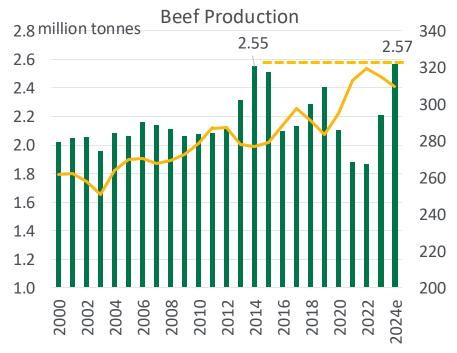
 force mid-2025
- 5% tariff on frozen beef and sheepmeat eliminated (chilled tariffs already 0%)



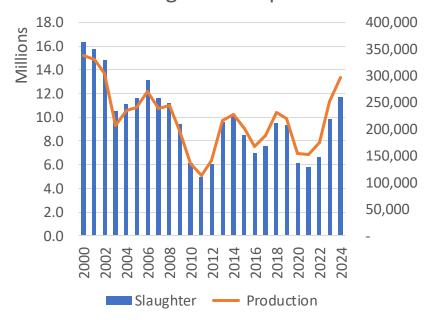
Big opportunities from US cattle herd destock

US beef net trade balance (exports minus imports)


Jan 2015 – Dec 2025f



2024 in review - one of the biggest years for Australian red meat.



2024 in review - one of the biggest years for Australian red meat.

Lamb slaughter and production

Mutton slaughter and production



Value Based Marketing

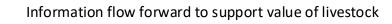
- Livestock bred with target market destination
- Genetic potential travels with animal
- Productivity driven sustainability

Production

- Livestock valued on yield & quality potential
- Optimising production, reducing CoP
- Credentials flow with animal

Finishing

Processing


- Efficiency
- Targeted compliance
 - Carcase quantity
 - Carcase quality
 - Brand Specs

Decisions informed through data and insights
Brand specs reflect customer needs
Marketing connects credentials with consumer expectations

Consumers

Seamless transfer of information back to breeder and to each owner

Overview

- Market update
- 2. How to get involved with MLA RD&A
- 3. Animal Wellbeing Update

MLA Producer Consultation Program

The partners involved in the producer network

Murdoch

Charles Sturt University

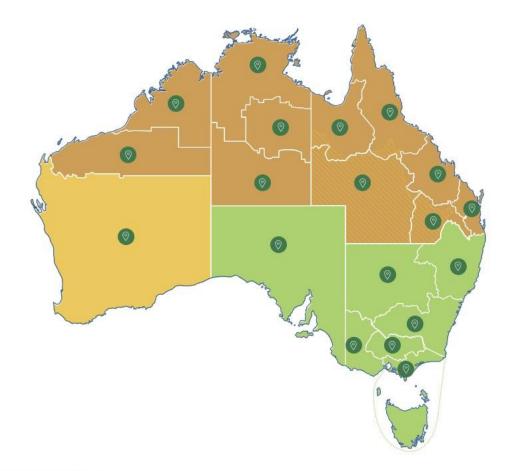
AGRICULTURE VICTORIA

Local Land Services

WESTERN AUSTRALIA

AWI Australian Wool Innovation Limited

UTS UNIVERSITY OF TECHNOLOGY SYDNEY



×

South Australia

Chair:

Elke Hocking Lucindale, SA 0427 667 081 elkehocking@gmail.com

Secretary:

Meridian Agriculture 03 5341 6100 info@salrc.com.au

The Adoption Challenge

- Approx. 100,000 red meat businesses* (20,200 producers in Nth Aus).
- 28 million cattle (57% of herd in Nth Aus).
- 78.8million sheep
- 1.2million goats slaughtered in 2021
- Ambition to be Carbon Neutral by 2030
- In 2021 30% of all beef producers are using regular pain relief
- Pain relief for Mulesing; 92% merino producers and 89% non-merino producers
- Pain relief for castration 25% national sheep producers
- Pain relief for tail-docking 44% national sheep producers

^{*}ABARES FY21 76,009 grazing businesses EVAO >\$40,000 pa.

MLA Adoption Program

Awareness Activities	Short-term training programs	Long-term practice change
BeefUp Forums (Nth Aus)	Edge Network e.g. Nutrition EDGE	Producer Demonstration Sites (PDS)
MeatUp Forums (Sth Aus)	Bred Well Fed Well (Sheep & Cattle)	Profitable Grazing Systems (PGS)
Webinars e.g. Profitability & Productivity and Websites resources e.g. FutureBeef, ParaBoss, Transport Hub	'The Toolbox' e-learning platform	-
Publications & resources e.g. case studies, videos, guidebooks, websites	-	-

FY24 Impact Summary

What's new

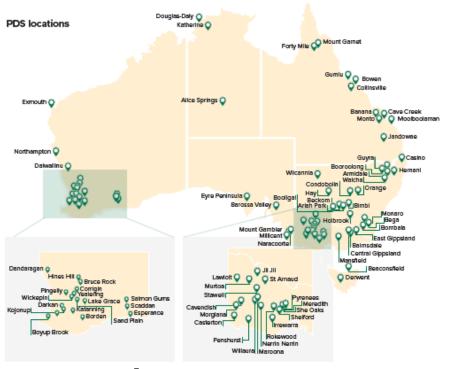
- BredWell FedWell
- Carbon EDGE

What do you learn in Carbon EDGE?

- Understand opportunities for reducing emissions and carbon storage
- Undertake a carbon account
- Develop an action plan for your business
- Modules include:
 - Greenhouse gases 101
 - Greenhouse gas accounting
 - On-farm emissions
 - On-farm sequestration
 - Carbon credits and carbon neutrality

Bred Well Fed Well

- 1-day workshops
- Putting theory into practice
- Genetics and nutrition focus for sheep & cattle
- Hosted on-property with access to stud stock with EBVs or ASBVs
- Participating cattle producers, on average, receive an annual net benefit of \$3/cow managed.
- Participating sheep producers, on average, receive an annual net benefit \$0.65/ewe managed



51 Active Levy & Cocontributor PDS projects nationally

14 Integrated R&D PDS projects nationally

Overview

- Market update
- 2. How to get involved with MLA RD&A

3. Animal Wellbeing Update

Generating supply chain value

Will Atkinson

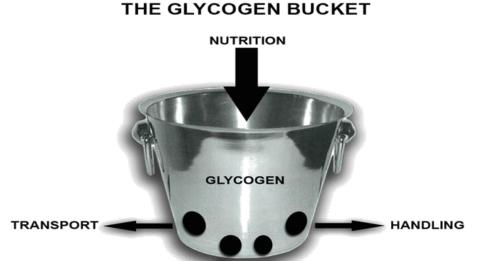
Meat & Livestock Australia

Overview

• Drivers of eating quality – Beef and Sheepmeat

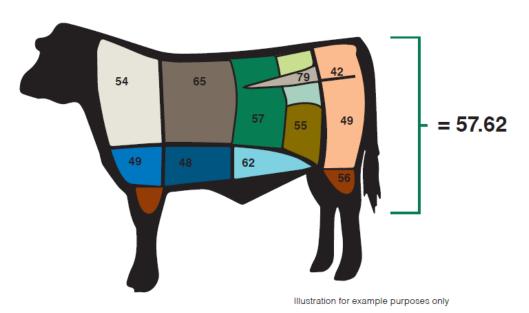
Performance benchmarking

What is your target market

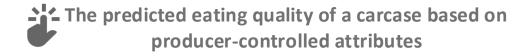

Drivers of eating quality

Maximise glycogen levels

- Nutrition
- Mixing, drafting
- Animal health
- Heifers in oestrus
- Weather events
- Loading/unloading



STRESS

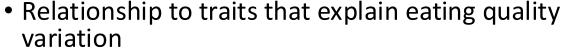


Beef - The MSA Index

- A single number to indicate the overall quality of a carcase
- A weighted average of 39 eating quality scores of the primals
- Benchmarking tool to measure performance.

Beef - Key drivers of the MSA Index

Carcase Input	Size of effect on the MSA Index (units)	Relative Importance
HGP Status	-5	Very High
Milk-fed Vealer	4	Very High
Saleyard	-5	Very High
MSA Marbling	0.15	High
Hump Height	-0.7	High
Ossification	- 0.6	High
Rib Fat	0.1	Medium
Hot Standard Carcase Weight	0.01	Low
Gender	0.3	Low


MSA Index quantifies the impact of production decisions

MSA Sheepmeat Model

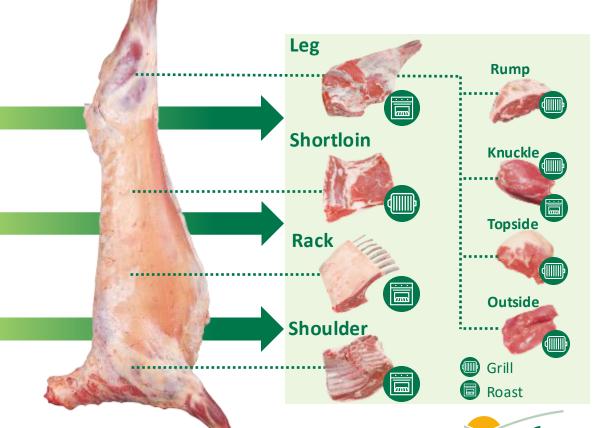
 Recent development based on over a decade of R&D

- Based on untrained consumer sensory scores (gold standard)
- Enabled by objective measurement technology
- variation

The MSA Sheepmeat Model Inputs

Hot standard carcase weight (HSCW)

Lean meat yield (LMY%)


Intramuscular fat (IMF%)

Electrical stimulation

Ageing

Modified atmospheric packaging

Performance benchmarking

How are you performing?

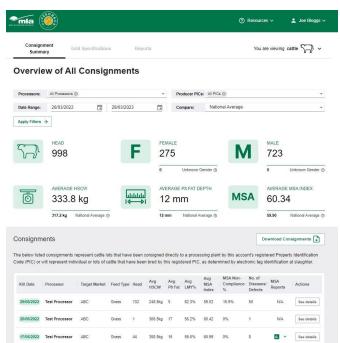
Finishers

- myMSA
- myFeedback all carcase data
 - Animal disease and defect

Breeder/Backgrounders

- Performance from the feedlot?
- Through myFeedback

What is myFeedback

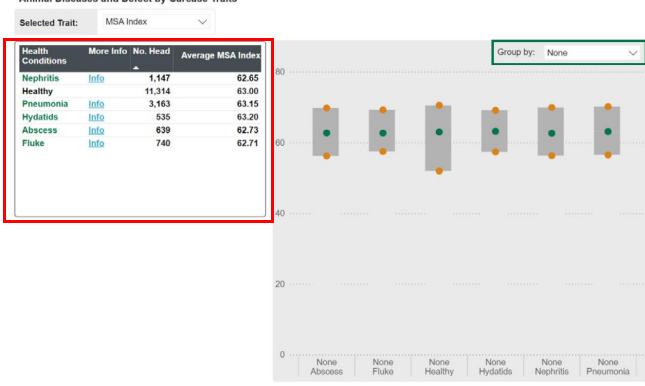

LE D & POOR

One system, more data, better insights

- Combining carcase, eating quality and disease & defect data in one single access point (NLIS, MSA, AHA, NLRS)
- System access will be available for all participating cattle and sheep producers, processors and brand owners.

Benefits for Producers

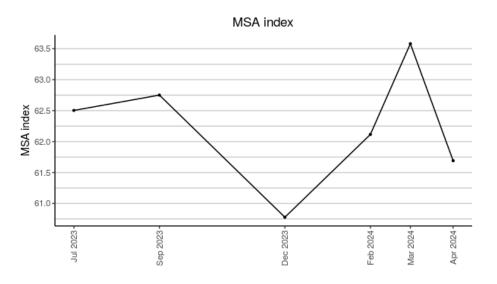
- Understand compliance to market specs and benchmark livestock performance
- Identify opportunities for proactive disease management & prevention
- Access to "Solutions to Feedback" to help improve performance

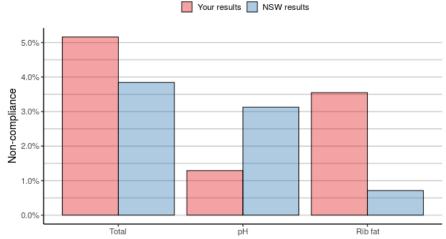


myFeedback

Consignment Summary	Grid Specifications	Reports	You are viewing cattle

Animal Diseases and Defect by Carcase Traits

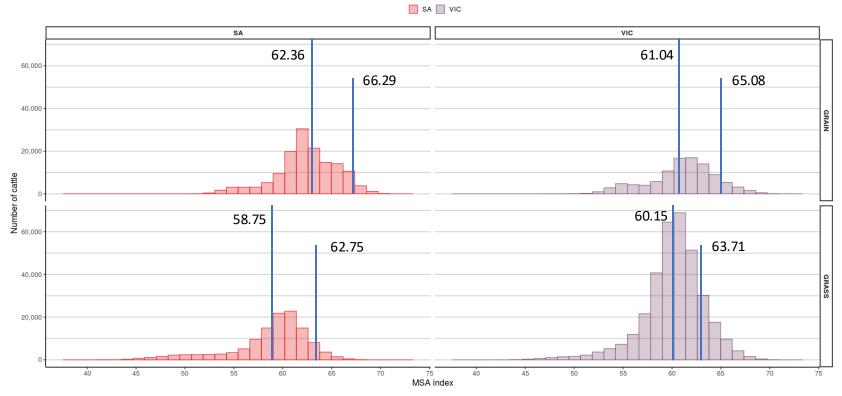



Benchmarking your performance

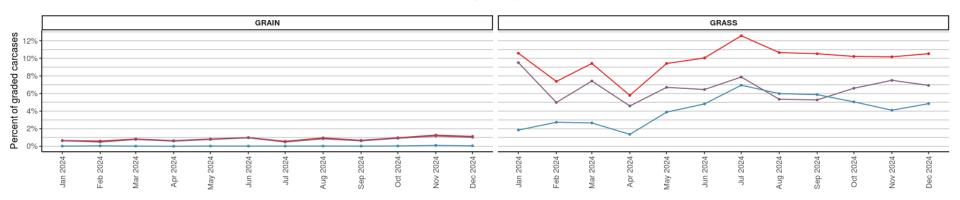
Access benchmarking data in myMSA

Compliance

	Your results (n)	Your results (%)	NSW (n)	NSW (%)
Total carcases	310		927957	
Non-compliant	16	5.2%	35673	3.8%
Non-compliant pH	4	1.3%	29008	3.1%
Non-compliant rib fat	11	3.5%	6613	0.7%


Benchmarking your performance

Benchmarking your performance


Reducing non-compliance

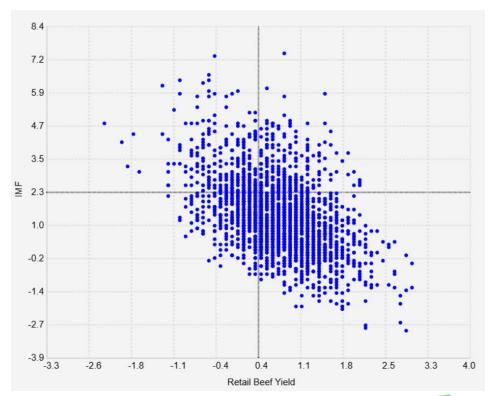
MSA compliance

- Pre-slaughter requirements
- pH < 5.71
- Rib Fat ≥ 3mm
- Adequate fat coverage across all primals

Monthly non-compliance by feed type

→ Non-compliant → pH → Rib fat

What is your target market?


What is your target market?

Align your breeding objective

- Bred Well, Fed Well
- Don't chase extremes or single traits
- Balance is key

Trading

- What do you know about your livestock?
- What information do you gather?

Traits driving the outcomes

Market	Domestic	Export
HGP	N	N
Sex	М	М
HSCW (kg)	240	320
TBC	N	N
Hump	60	80
Ossification	120	200
MSA Marb.	320	600
RF	6	12
MSA Index	62.24	62.53

CARCASE IMAGE

Understand the market requirements

MSA Specifications

- Compliance to pH and rib fat
- MSA Index or Boning group requirements

Company Specifications

- Meat colour
- Fat colour
- HSCW
- P8 Fat

Establish and maintain relationships

- Feedlots
- Processors
- Buyers/Agents

Take home messages

Drivers of eating quality

- Nutrition and stress management for glycogen reserves
- MSA Sheepmeat model for individual carcase grading of sheepmeat

Performance Benchmarking

- Understand your performance compared to where you want to be
- Utilise the tools available to help pull the right levers on farm

Target Maket

 Know the target market you are aiming for to get the most value out of your production system.

Tools and resources

Links

- myMLA
- myFeedback
- Solutions to Feedback Library
- myFeedback Video Guides

Resources

- Beef Eating Quality Insights
- Beef Tips and Tools
- MSA Sheepmeat Factsheet

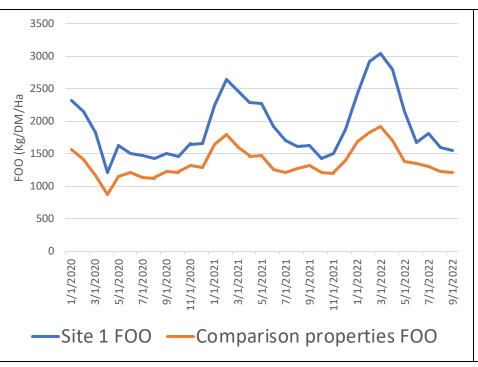
Containment feeding – The good, the bad and the ugly

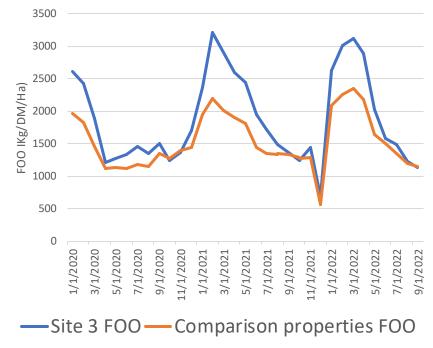
Deb Scammell

Talking Livestock

The Good.....

Ground Cover





Feed on Offer comparison

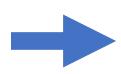
Individual management

Net Benefit = \$5.30 - \$8.00 / ewe

Jou Are Control

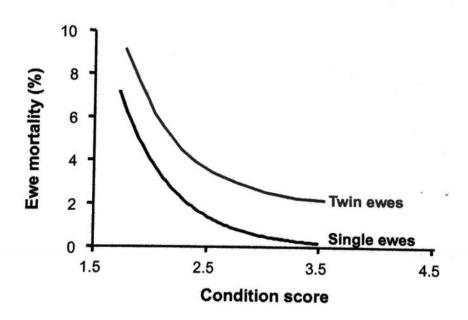
Setting up a system that works!!

Feeding Systems

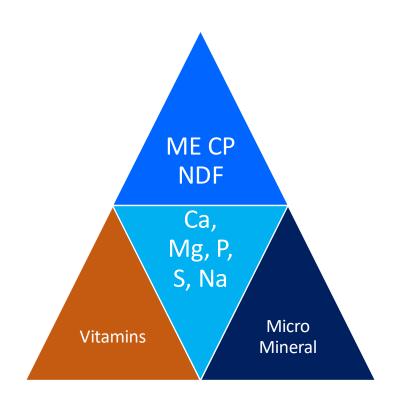


The Bad.....

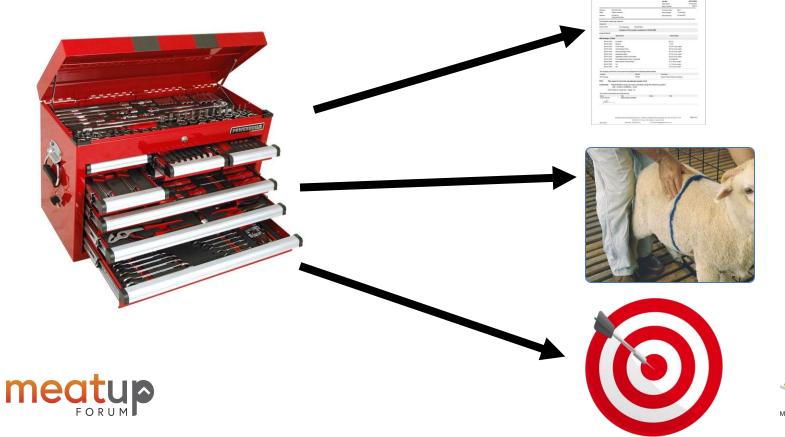
Condition Score Spread


Large mob sizes

Inadequate trough space


Mortality of Merino ewes in late pregnancy in relation to condition score

Livestock essential nutrients


Energy Requirements

Maintenance energy (MJ/d) for ewes under paddock conditions						Confinement Fed		
day of pregnancy	small fran mainta single	100	medium fra maintai single		large fran mainta single		medium fra mainta single	CONTRACTOR OF THE PARTY OF THE
dry	7.8	7.8	8.3 -	8.3	9.9	9.9	6.7	6.7
5Ó	8.1	8.2	8.6	8.7	10.1	10.3	6.9	7.2
70	8.3	8.7	9.1	9.4	10.5	10.9	7.4	7.7
100	9.3	10.3	10.3	11.5	11.8	13.2	8.3	9.6
130	11.6	14.4	12.8	15.9	14.8	17.9	10.9	11.7
days lactating	maintain CS 3 single twin		maintain CS 3 single twin		maintain CS 3 single twin		maintain CS 3 single twin	
10	17.7	22.0	19.2	24.0	21.9	28.7	A CANADA CONT.	A STORY OF THE STO
30	19.2	24.1	20.8	26.5	23.4	29.8	ask for advice on confinement feeding	
50	15.8	19.5	17.2	21.5	19.4	24.2		d lambs

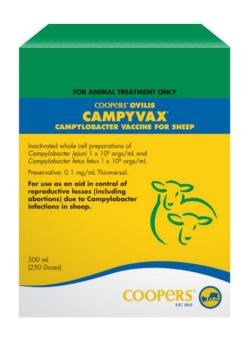
Tools in our Toolbox

Fibre

The Ugly.....

Fat Ewes

Metabolic issues



Campylobacter

Other health issues??

Take home messages

Containment is a great tool, for ewe and pasture management.

Success can be great but requires planning, correct nutrition and monitoring.

Manage mineral balance and potential health issues.

Tools and resources

MLA: https://www.mla.com.au/extension-training-and-tools/producer-demonstration-sites/containment-feeding/

Barossa Improved grazing group: https://biggroup.org.au/

Livestock SA - https://livestocksa.com.au/events/webinars

Morning tea

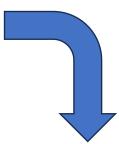
30 minutes

The power of on-farm data: What and when

Sally Martin
Sheep MetriX

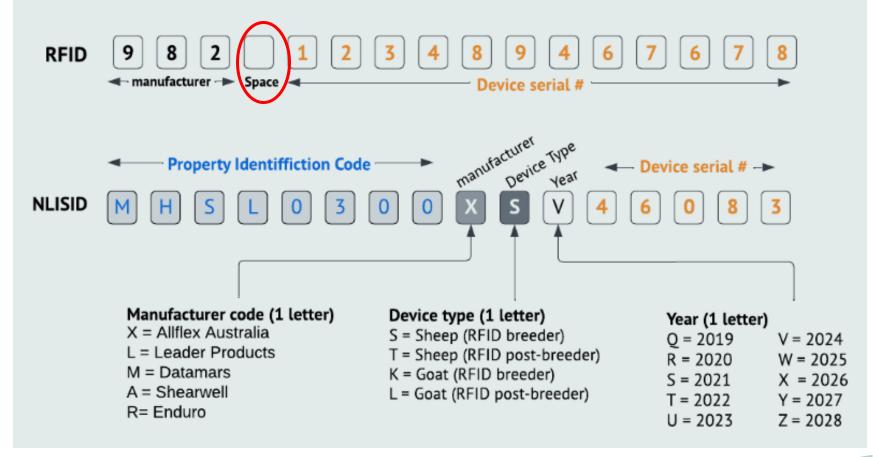
What is the power of on-farm data?

- What data will benefit your business / enterprise?
- What and when you collect data? Will influence how useful it is.
- How you use the data is where you will find the power.....
 - Finding the good and/or poor performers then what do we do with them?
 - The timing of our decisions.
- Can you use the data more than once?



RFID / EID

The eID tag is the enabler.


Some eID Terms

- NLIS National Livestock Identification
- VID Visual tag identification (tag number)
- eID Electronic Tag (RFID)
- Stick Reader
- Indicator scale head; weigh scale
- Panel reader
- Bucket file eID and VID paired in excel
- Connectivity do you need this?
- Digital literacy......

Tags



Purple Yell

- eID tags options
 - Allflex Rapid Tag
 - Datamars Zee Tag
 - Leader Multitronic
 - Shearwell eID
 - Enduro
- Tag placement super important
- Put your order in after pregnancy scanning
 - Tag numbering Year + Number eg 230001

Hardware

- Stick readers
- Panel readers
- Indicator
- Handlers/weigh crates

meatup

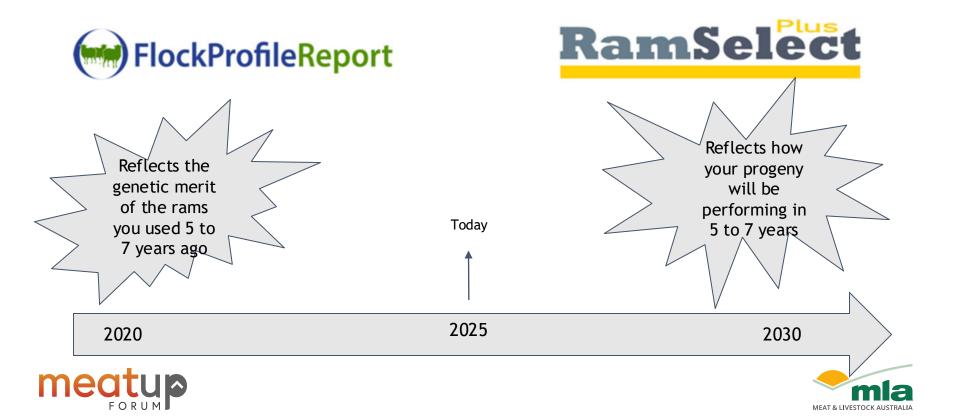
What data should you collect?

- Depends on your breeding or production objective
- What type of enterprise(s) are you running?
 - Meat Focused
 - Fibre Focused
- Only collect data you are going to use
- Be able to compare across years/seasons/enterprises/time
 - Per head
 - Per hectare
 - Per kg
 - g/head/day

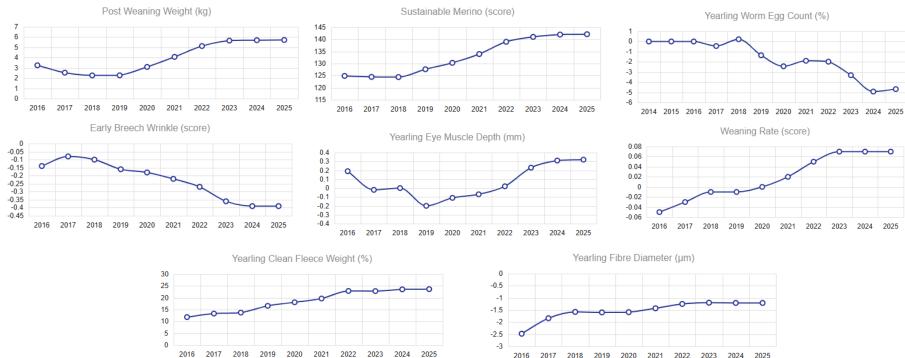
Breeding objective

• It is really important to capture your breeding objective and have a clear goal on how you are going to use your data.

SMART


- Specific
- Measurable
- Attainable
- Relevant
- Time Based

me	a	tι	
	F (D R U I	М


Breeding Objective							
Traits	Increase	Maintain	Decrease	Measure			
Fleece Weight		✓		Maidens			
Micron			$\checkmark\checkmark$	Maidens			
Growth Rates	$\boxed{\checkmark\checkmark\checkmark}$			All up to 300 days			
Mature Size		✓		Joining Wts			
Reproduction	$\sqrt{}$			Preg; Wet & Dry			
Muscle & Fat	✓	✓		Rams			
Worms			$\checkmark\checkmark$	Rams			
Wrinkle			$\langle \checkmark \checkmark \rangle$	Marking			

Ram Team Manager & Flock Profile

Ram Team Manager – genetic trends

When to collect data?

- When do you need data to make a decision
 - Classing/Selection
 - Joining; Pre lambing; Pre-sale

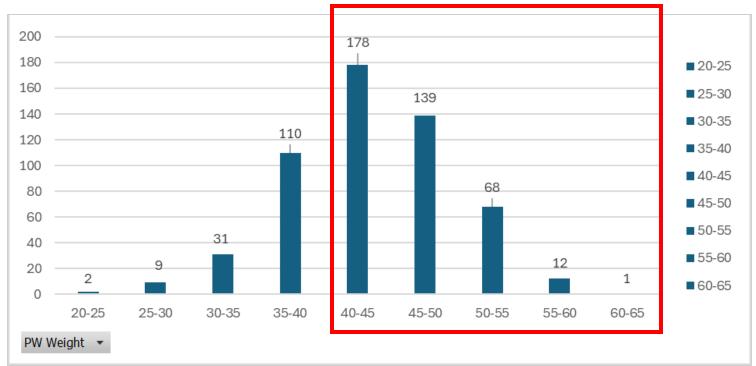
- What does your calendar look like normally?
- Can you fit data collection into your current program?
- Do you have the gear and capacity to DIY?
- Do you need to get someone in to do it for you?

Month	2024	2025	2026	2027
January	Joining (24 Drop)	Joining (2025 Drop)	Joining (26 Drop)	Joining (2027 Drop)
February				
March				
April	Main Shearing (Collect GFWs on 2023 drop) + Preg Scan	Main Shearing (Collect GFWs on 2024 Drop + Preg Scan	Main Shearing (Collect GFWs on 2025 drop) + Preg Scan	Main Shearing (Collect GFWs on 2026 Drop) + Preg Scan
May				
June	Lambing (24 Drop) + Marking (EBWR, Age, BCOV, Paddock)	Lambing (25 Drop) + Marking (EBWR, Age, BCOV, Paddock)	Lambing (26 Drop) + Marking (EBWR, Age, BCOV, Paddock)	Lambing (27 Drop) + Marking (EBWR, Age, BCOV, Paddock)
July				
August				
September	Weaning (2024 Drop) + Classing	Weaning (2025 Drop) + Classing	Weaning (2026 Drop) + Classing	Weaning (2027 Drop) + Classing
October				
November				
December				

Month	2023	2024	2025	2026	2027
January	Main Shearing (Tip shear on 22 drop)	Joining (24 Drop)	Main Shearing (Tip shear on 2024 Drop)	Joining (26 Drop)	Main Shearing (Tip shear on 2026 Drop)
February	Preg scan		Preg scan		Preg scan
March					
April	Lambing (23 Drop) + Marking (EBWR, Age, BCOV, Paddock)	Main Shearing (Collect GFWs on 2023 drop) + Preg Scan	Lambing (25 Drop) + Marking (EBWR, Age, BCOV, Paddock)	Main Shearing (Collect GFWs on 2025 drop) + Preg Scan	Lambing (27 Drop) + Marking (EBWR, Age, BCOV, Paddock)
May					
June		Lambing (24 Drop) + Marking (EBWR, Age, BCOV, Paddock)		Lambing (26 Drop) + Marking (EBWR, Age, BCOV, Paddock)	
July	Weaning (2023 Drop)		Weaning (2025 Drop)		Weaning (2027 Drop)
August	Main Shearing (Collect GFWs on 2022 Drop)		Main Shearing (Collect GFWs on 2024 Drop + Tip shear on 2025 Drop)		Main Shearing (Collect GFWs on 2026 Drop + Tip shear on 2027 Drop)
September	Classing	Weaning (2024 Drop) + Classing	Classing	Weaning (2026 Drop) + Classing	Classing
October					
November		Joining (2025 Drop)		Joining (2027 Drop)	
December					

When to collect data?

Ewe Lamb Group	Count	Ave. Body Weight (kg)	ADG Weaning to 28/02/2025 (kg/hd/day)
Ewe Lamb Lambs	39	37.2	0.175
Purchased in ewes	124	47.4	0.153
MA Dam Lambs	383	42.8	0.100
Total / Average	546	43.4	0.118


Example – Joining ewe lambs

- Look at your calendar what month will you join them?
- Weaning collect a weaning weight
- Growth rates set dates to weigh lambs and monitor growth rate
- Joining weight
- Preg scan weight
- Pre lambing weight

Are we meeting our targets?

Data collection timing and protocols

Based around your calendar of operations you should have

- When you carry out current management/husbandry
- This can then inform when you collect the data on the traits that are important to you breeding objective
- And when you need the data to make decisions eg classing/mating

Protocols

- Body weights 2 hours off feed, collect as quickly as possible
- Fleece min 9-10 months of age; 5 mths wool FD; 6 mths wool GFW
- Be consistent eg mid side sample pin bone or midside; condition scoring
- Visual Scores follow the score guide

Data capture without scanning a tag

- At lamb marking capture the tag number sequence for each mob
 - Example record birth type, dam age, paddock
 - Tags <u>24</u>0001 to <u>24</u>0250 Twins out of Maiden ewes; Hill Paddock
 - Tags <u>24</u>0251 to 240700 Single out of MA ewes; Dam Paddock
- Add these columns in your <u>bucket file</u> BT, Dam Age, Paddock

	А	В	С	D	E	F
1	EID	VID	YOB	BT	DAM AGE	BT PDK
2	940 110029951161	220001	2022	2	Maiden	HILL
3	940 110029951162	220002	2022	2	Maiden	HILL
4	940 110029951163	220003	2022	2	Maiden	HILL
5	940 110029951166	220251	2022	1	MA	DAM
6	940 110029951167	220252	2022	1	MA	DAM

Data capture example cont.

- The data captured at marking can be used later you can even draft on this information
 - Example
 - When you class the ewes you can draft and class them separately
 - Twins out of maidens, twins out of MA, single etc
 - Classing the twins first so they are not disadvantaged due to size
- Data that will require scanning a tag at marking
 - Collect the above +
 - Sex
 - Breech scores
 - Age score (eg 1 − 5)

Using the data

Class	Count	WT	CFW	FD	FLC Val	RP MP+ Index
Тор	112	62.1	5.1	17.2	\$104.59	110.4
2nd	112	58.9	4.8	17.6	\$92.29	105.6
3rd	261	56.2	4.6	17.8	\$85.89	100.7
4th	187	55.8	4.5	18.0	\$81.28	94.2
CULL	74	52.8	4.5	18.6	\$74.84	88.0
Total/Ave	746	57.0	4.7	17.8	\$87.41	100.0

Data use multiple times eg Preg Scanning

- Manage pre lambing; lambing paddock allocations
- Link across years
 - = Collate over time eg 0, 1, 2, 2, 001220
- How responsive is my flock (+ with condition score at joining)
- Birth type (on lambs)
 - Born in single or twin paddock
- Paddock analysis lambing and weaning %
- Cross reference to WET & DRY @ Marking

Financial benefits of scanning for multiples

- Selling the dry sheep
- Better allocation of feed
 - Less feed to singles
 - More feed to multiples
- Better paddock to twins
 - + ewes lambs
- Use birth type when selecting your replacement ewes
- ROI = 474%

Management options	Scanning for multiples	\$/ewe
Sell the passengers	✓	\$1.85
Feed allocation:		
✓ to pregnant ewes	✓	\$0.80
✓ to multiples	✓	\$1.00
Paddock allocation	✓	\$0.95
Replacement selection	✓	\$0.95
Total value per ewe	\$5.55	

Source: AWI & MLA(2014)

Questions from clients

- How to upload data
 - Minor details eg headings case sensitive
 - FD, fd, micron or BT, birth type, Birth Type
- Using the data
 - Pulling data together multiple sources
 - Reporting what format do you want it in?
- Essential
 - Have an idea of what you want to achieve or
 - What question(s) are you trying to answer
 - Then make a plan

Take home messages

- You don't have to do everything yourself.
- You do need to be clear why you want to collect data & when you need it.
- Keep it simple, start small and build confidence.
- Stage your approach, there are varying levels of Tech.
- Look for other ways to use the same data.
- Review progress over time.

Tools and resources

- SheepMetriX eID Implementation on Farm Workshop www.sheepmetrix.com.au/eid-courses
- Excel for eID Back to basics https://www.youtube.com/watch?v=zVZN0qfKiXs&t=157s
- Excel for eID using your data effectively
- https://www.youtube.com/watch?v=Fq5C0op6NKk
- Excel for eID building your data over time https://www.youtube.com/watch?v=70Jv5Fw0pHE

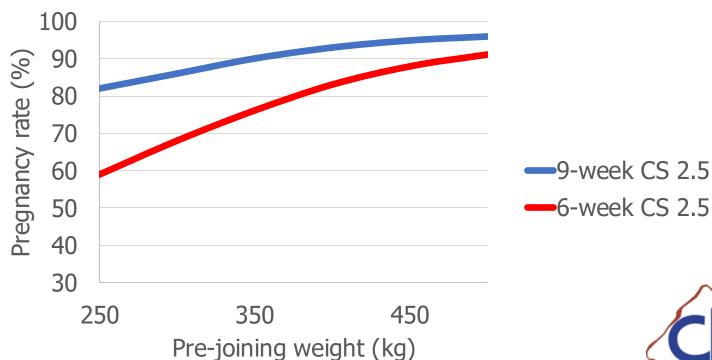
Mum's not angry, just disappointed

Prof. Wayne Pitchford

Davies Livestock Research Centre

University of Adelaide

Mum's not angry, just disappointed



Female slaughter rate hits lowest level since 1996

Beef CRC – pregnancy and weight

Target weight and condition at 400d

Rib Fat (mm) Weight (kg)

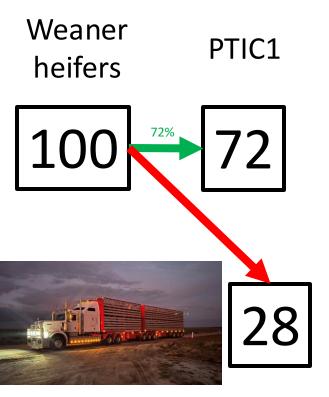
Pregnancy rates after 6 week joining

Female loss

Optimising heifer development and management to increase whole herd profit B.GBP.0038

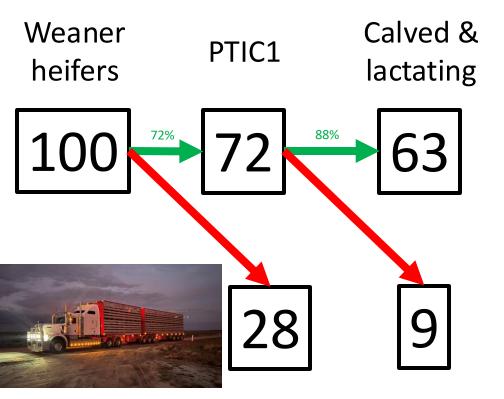
14,229 heifers

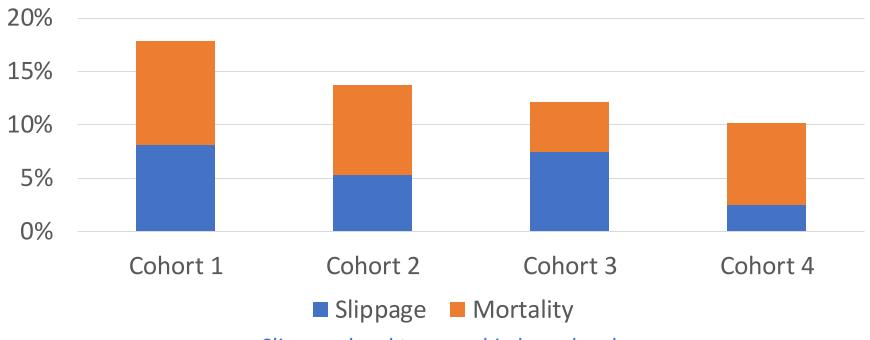
25 cohorts

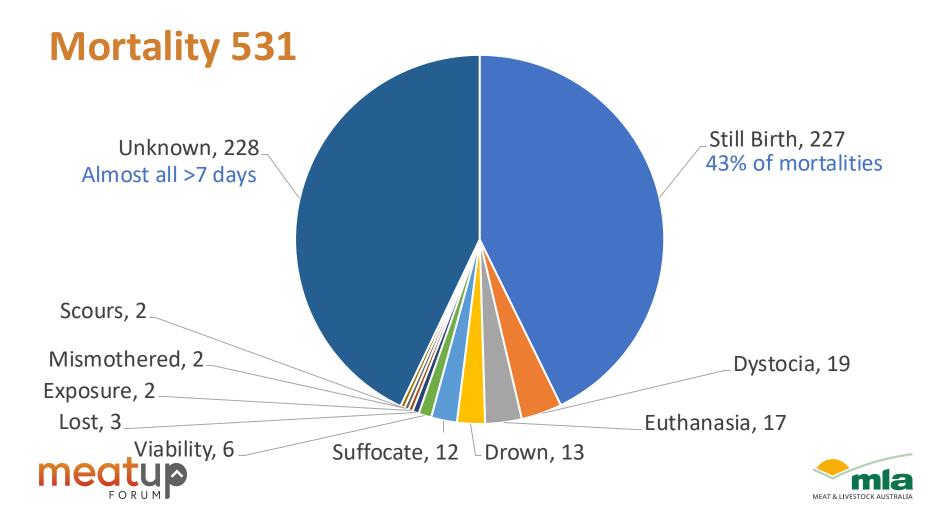

9 farms

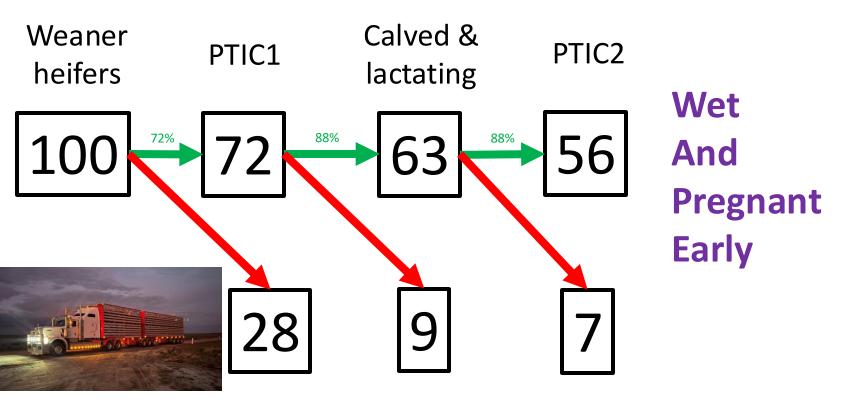
4 states (SA, Tas, Vic, NSW)

2 breeds (Angus, Hereford)

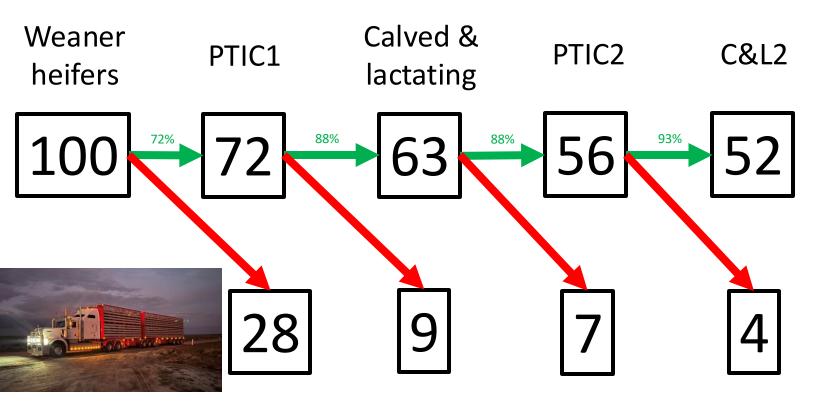


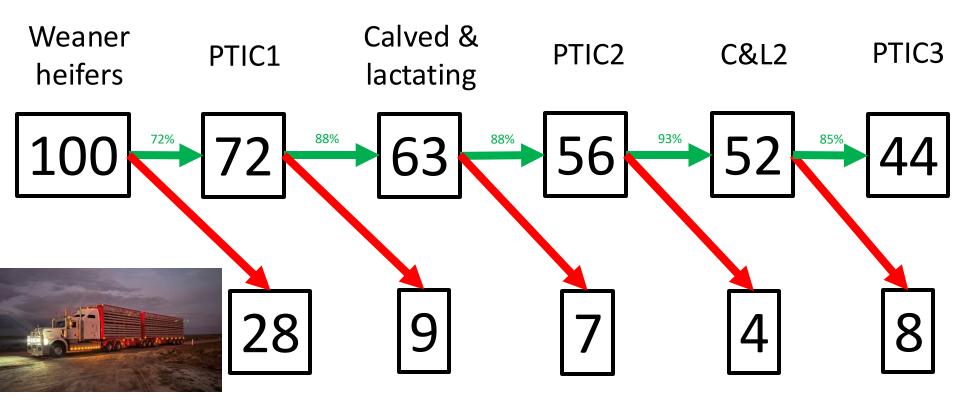


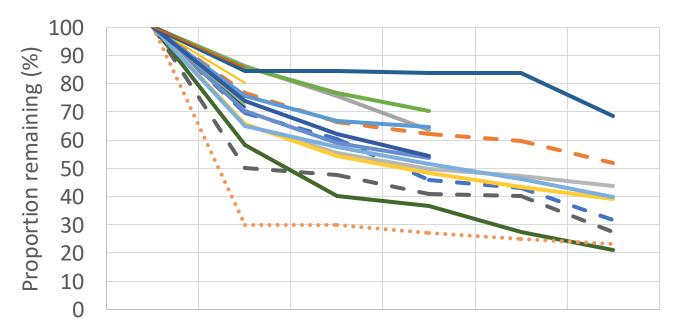

PTIC 6160, Slippage 344=5.6%, Mortality 531=7.1%



Slippage hard to record in large herd and likely more like Cohort 4



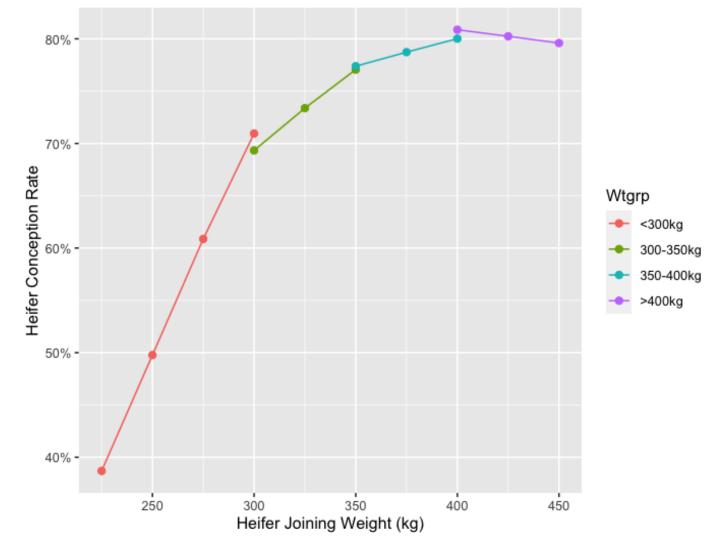




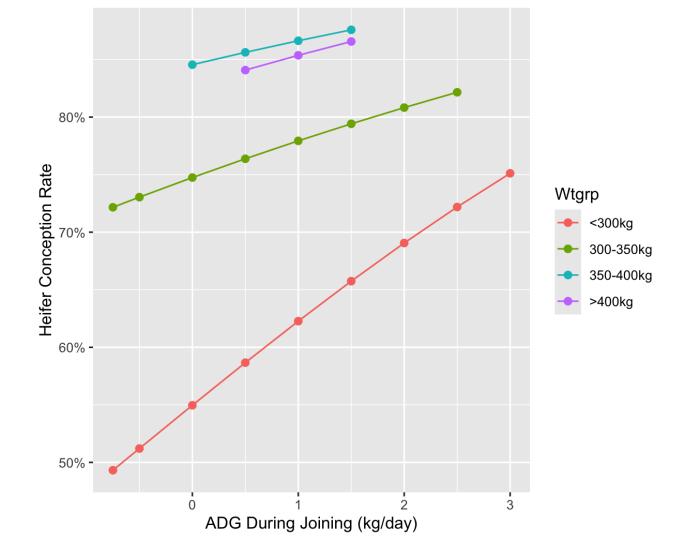
Drop out rates based on 6 week joining

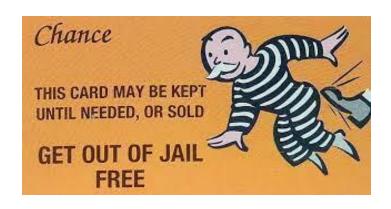
Weaning Pregnant Lactating Pregnant Lactating Pregnant

1


1

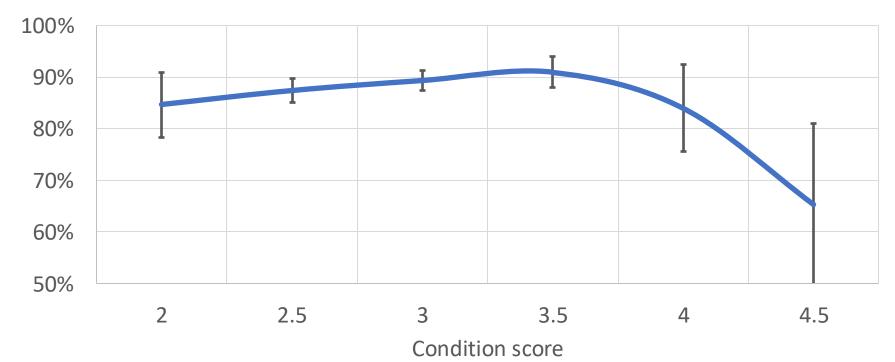
2


2


MEAT & LIVESTOCK AUSTRALIA

Weight

Gain

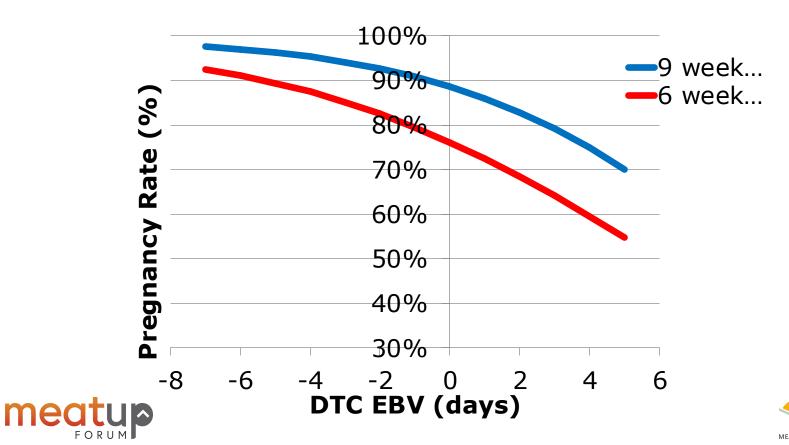

6 weeks later calves

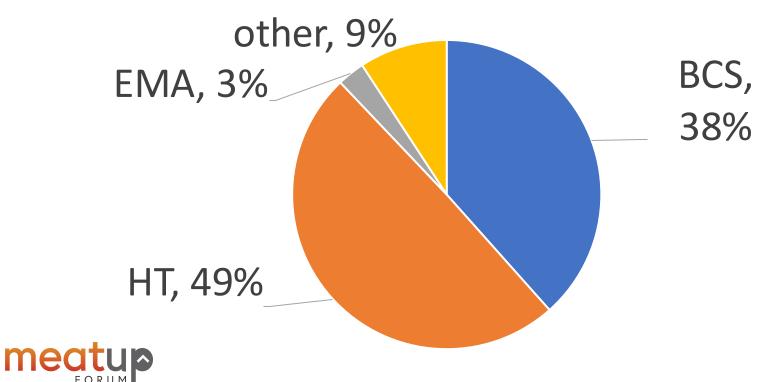
- > 30 kg lighter at weaning (155 vs 185 = 16%)
- > 20 kg lighter carcasses (@7.50 = \$150)

BCS effect on 6 week rebreeding preg. rates

Take home messages – cows

- ✓ Productivity losses significant
- ✓ Winter joining heifers >350kg
- ✓ Spring joining heifers >300kg
- ✓ Grow well, calve in BCS3
- ✓ Young herd more resilient
- ✓ Over-join, fetal aging, sell surplus PTIC





CRC – Relationship with Days to Calving EBV

Genetic variation in cow weight is associated with ...

Take home messages – bull EBVs

Primary

Calving ease

Carcass weight

Days to calving

Body condition score

Secondary

Scrotal size

Mature cow weight

Fat depth

Muscle depth

al EBV +1.5 +0.9 -10.0 +5.9 +57 +107 +147 +140 +0.42 +9.6 +21 -5.1 +4.3 +29 +0.44 +71 +12.8 -1.4 -1.6 +1.4 +3.6 +0.70 +0.72 +0.88 (Acc) (75%) (70%) (99%) (99%) (99%) (98%) (98%) (98%) (98%) (98%) (88%) (89%) (93%) (61%) (98%) (99%) (74%) (90%) (88%) (88%) (88%) (88%) (82%) (87%) (98%) (98%) (97%) Perc 62 75 2 88 27 16 8 8 8 15 23 23 43 4 21 72 45 4 80 73 6 23 22 6 13	g	EBV	11 CE Dir	↓↑ CE Dtrs	↓↑ GL	↓↑ BWT	↓↑ 200	↓↑ 400	↓ ↑	¶† MCW	↓↑ MBC	l↑ MCH	↓↑ Milk	↓↑ DTC	l† ss	↓↑ DOC	↓↑ NFI-F	↓↑ cwt	I↑ EMA	↓↑ RIB	↓↑ P8	↓↑ RBY	↓↑ IMF	↓↑ CLAW	↓↑ ANGLE	↓↑ LEG	↓↑ \$A
	al	EBV	+1.5	+0.9	-10.0	+5.9	+57	+107	+147	+140	+0.42	+9.6	+21	-5.1	+4.3	+29	+0.44	+71	+12.8	-1.4	-1.6	+1.4	+3.6	+0.70	+0.72	+0.88	\$244
Perc 62 75 2 88 27 16 8 8 15 23 23 43 4 21 72 45 4 80 73 6 23 22 6 13		(Acc)	(75%)	(70%)	(99%)	(99%)	(98%)	(98%)	(98%)	(96%)	(83%)	(89%)	(93%)	(61%)	(98%)	(99%)	(74%)	(90%)	(88%)	(88%)	(88%)	(82%)	(87%)	(98%)	(98%)	(97%)	(-)
		Perc	62	75	2	88	27	16	8	8	15	23	23	43	4	21	72	45	4	80	73	6	23	22	6	13	14

PDS Project – what did we do?

- 19 beef businesses (18,600 breeding cows) Limestone coast region of SA
- 2020 drop (R): monitored from weaning through to second calving in 2023.
- 11 property visits

Collaboration – technical expertise

- Research staff, Vets, Livestock consultants
- Access to up-to-date research and technical information

millicent veterinary clinic

Combined producer heifer data

Reference weight average 660kg

Year of drop	Joining year (join length)	Av. lwt 1st joining	% SRW	Heifer conception %	Calving month & year	% calves born alive to cows calved	% assisted at calving	Heifer mortality %	Weaning % (to joined)
2018 (P)	2019	349kg	53%	76%	2020	93%	6.4%	1.3%	68%
2019 (Q)	2020	353kg	53%	80%	2021	90%	6.6%	0.4%	59%
2020 (R)	2021	372kg BCS 3.3	56%	81%	2022	93%	8%	0.8%	67%
2021 (S)	2022	380kg	58%	84%	2023	94%	4%	0.6%	74%

Monitor mob 2020 drop (R) heifer preg rates

- ➤ Autumn calving 80%
- ➤ Winter calving 79%
- ➤ Spring calving 86%

2021 drop (S) heifers:

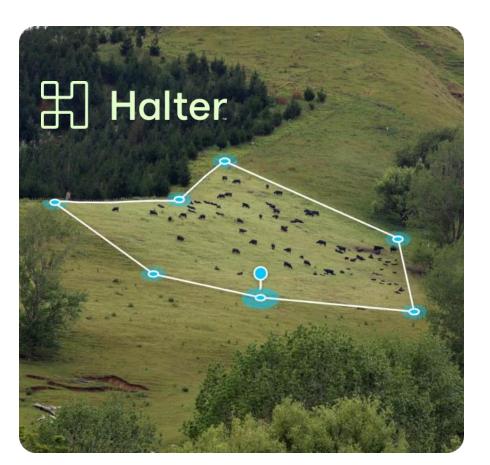
- ➤ Autumn calving **85**%
- ➤ Winter calving 80%
- ➤ Spring calving 86%

Combined producer second calving data

Reference weight average 660kg

Year of drop	Joining year (join length)	Av. lwt 2 nd joining & BCS	% SRW	Cow conception %	Calving month & year	% calves born alive to cows calved	% assisted at calving	Cow mortality %	Weaning % (to joined)
2017 (N)	2019	518kg	80%	88%	2020	96%	1%	1.3%	82%
2018 (P)	2020	534kg	82%	88%	2021	94%	1%	0.5%	85%
2019 (Q)	2021	550kg	85%	88%	2022	98%	0.7%	0%	85%
2020 (R)	2022	523kg	85%	92%	2023	98%	0%	0.6%	89%

- ➤ Despite most producers wanting to lift conception rates in second calving cows, baseline data indicates it was already good
- ➤ Calves born alive to cows was high PTIC 90-94% (heifers) and 94-98% (second calvers).


Profitable & Resilient Southern Beef Herds

- Long-term learning pathway for southern beef producers MBfP 2.0
- Upskill 200 producers and reach up to 100,000 breeding cows
- Stacked extension and adoption program that has a proven impact
- Cow health team focused on quantifying issues and lifting performance
- 20 livestock advisors upskilled (including new entrants)
- Greater capacity of producers and advisors to better manage risk and make more informed decisions
- Legacy supported learning package with a community of trained advisors


Profitable & Resilient Southern Beef Herds

WA Calving time and business planning

Virtual Farm Tour – Addressing the Autumn feed gap

John Kidman Nick Clarke Todd Woodard

Lunch

60 minutes

Moneyball for sheep

James Starling

Feeding through lambing

Sam Clothier

Toby Hassell

Deb Scammell

Sam Clothier

Business: GW & CJ Clothier and Son's

Farming: 800ha at Woolumbool

Enterprise: Sheep, trade cattle and laying hens

Toby Hassell

Business: Piccaninny

Farming: 1100ha near Beachport

Enterprise: Beef and Sheep

Questions?

Take home messages

- Prevent ewes being hungry
- Look at nutritional requirements
- Look at balance of nutrition

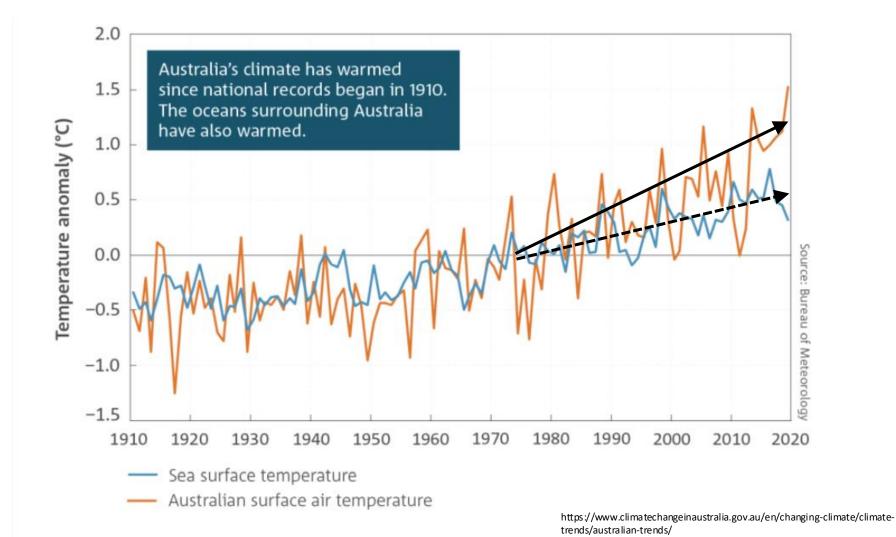
Different feeding methods work for different people

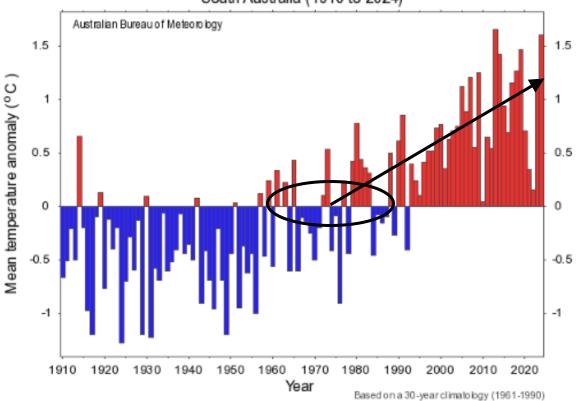
Pathways for on-farm reductions in carbon emissions

Dr. Karen Christie-Whitehead

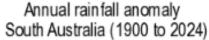
Why do we need to reduce GHG emissions?

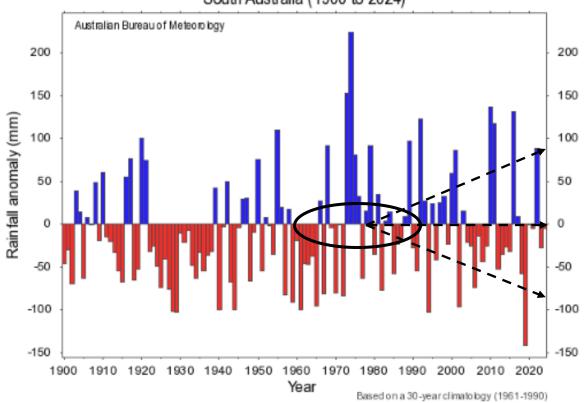
In 2023, we pumped nearly an extra 17 billion tonnes CO₂-e into the atmosphere


Average temperature anomaly, Global

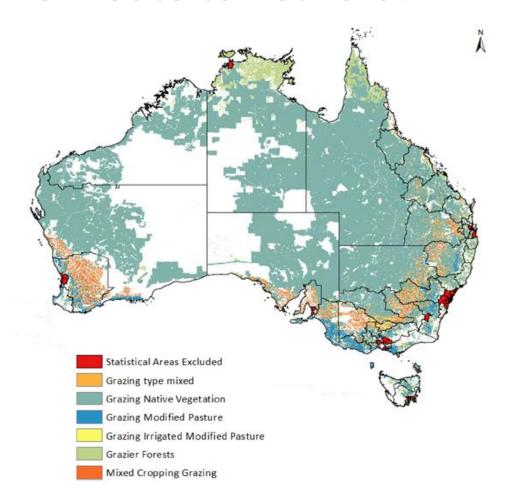

Global average land-sea temperature anomaly relative to the 1961-1990 average temperature baseline.

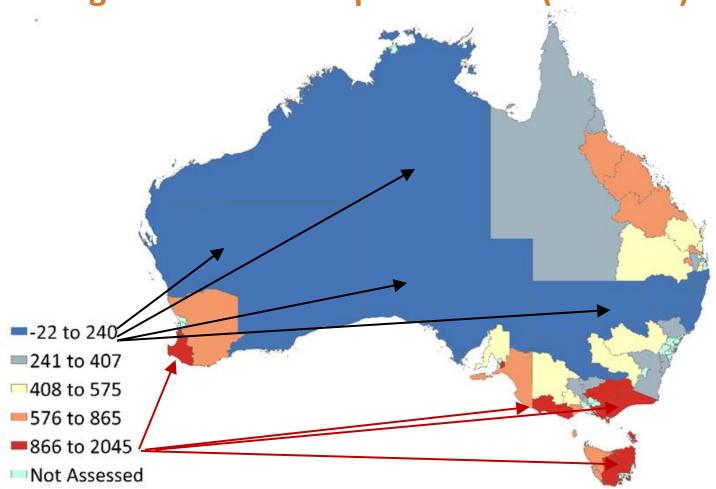
Data source: Met Office Hadley Centre (2024) OurWorldinData.org/co2-and-greenhouse-gas-emissions | CC BY **Note:** The gray lines represent the upper and lower bounds of the 95% confidence interval.

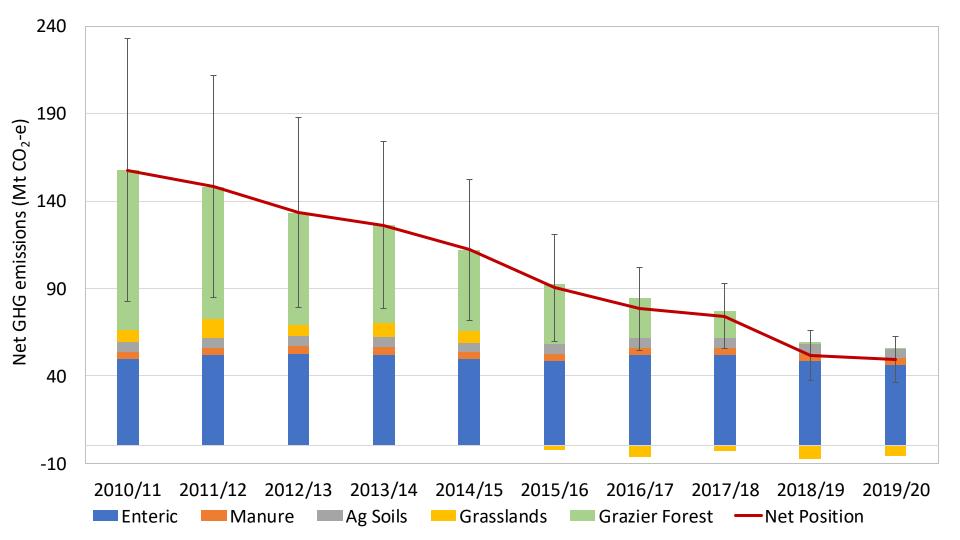


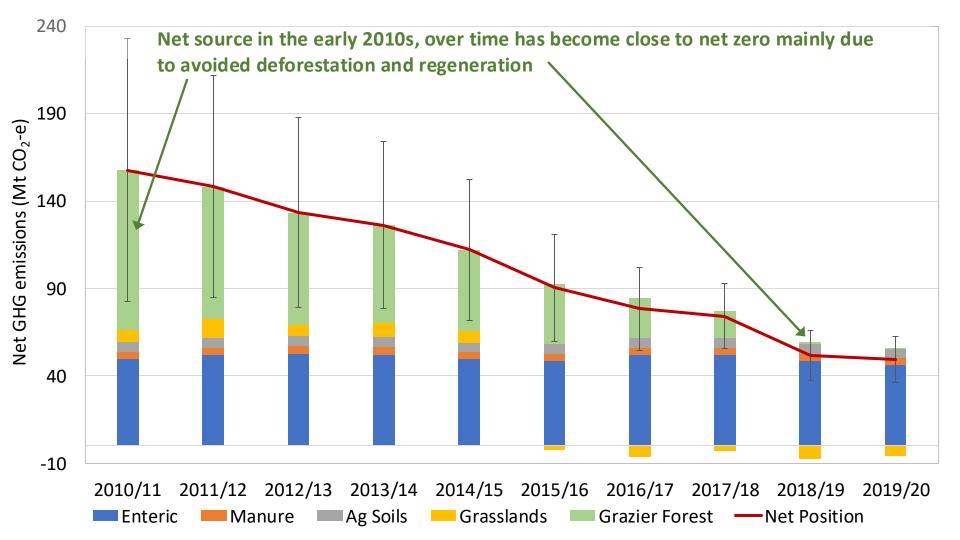

Annual mean temperature anomaly South Australia (1910 to 2024)

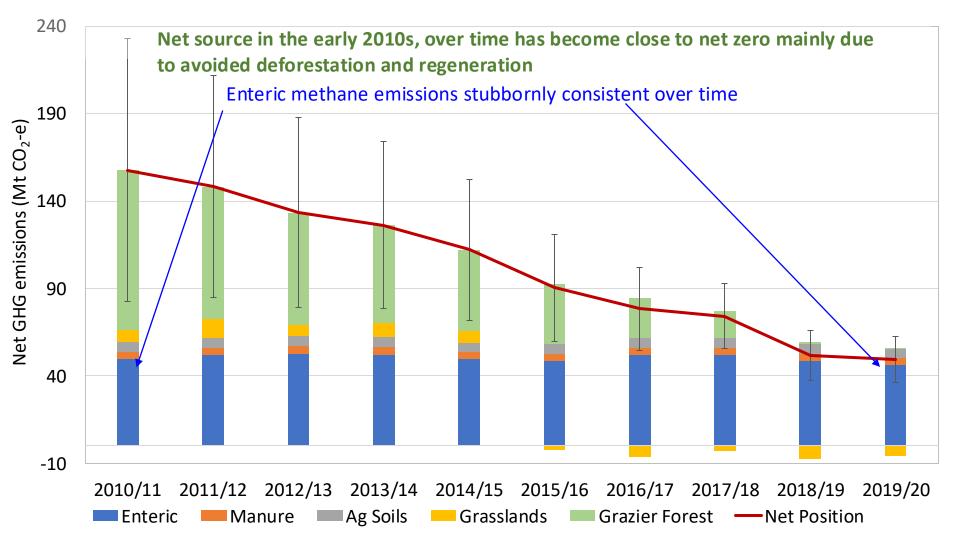
Why do we need to reduce GHG emissions?

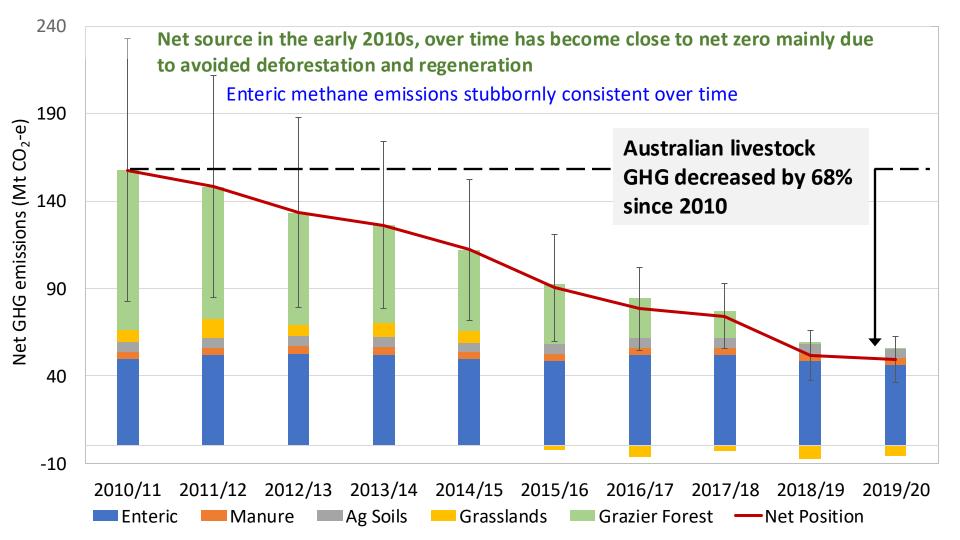

- Greenhouse gas emissions are lost "opportunities"
- Methane represents a lost energy source that could be rediverted into product
- Optimising key inputs such as nitrogen-based fertilisers to reduce nitrous oxide and carbon dioxide emissions
- Maximising stock productivity
- Loss of tree carbon -> animal welfare (shade/shelter) for your stock, habitat for native animals, vegetation biodiversity, aesthetics
- Loss of soil carbon -> lower nutrients, lower water-holding capacity
- Access to markets, social licence, risk of being 'taxed' for export products, price premiums, bank loans etc

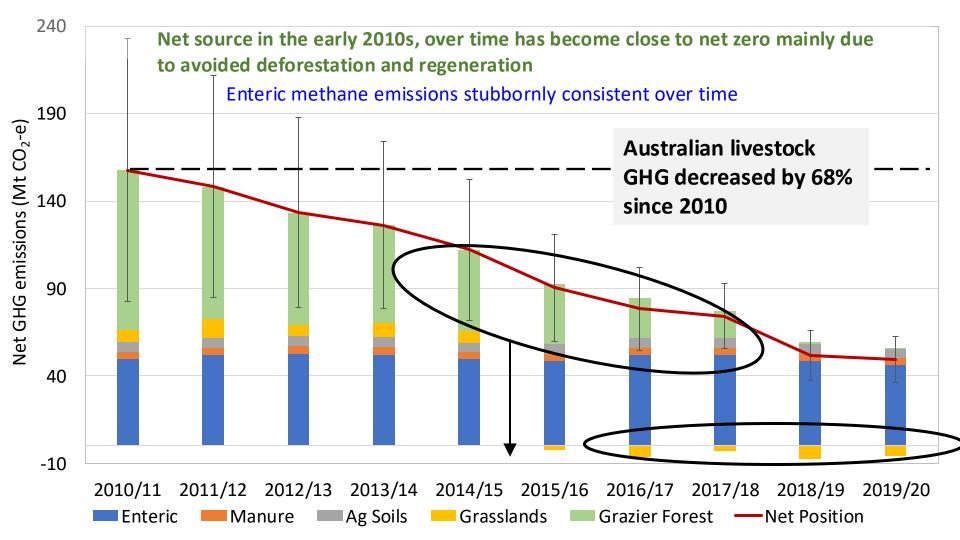


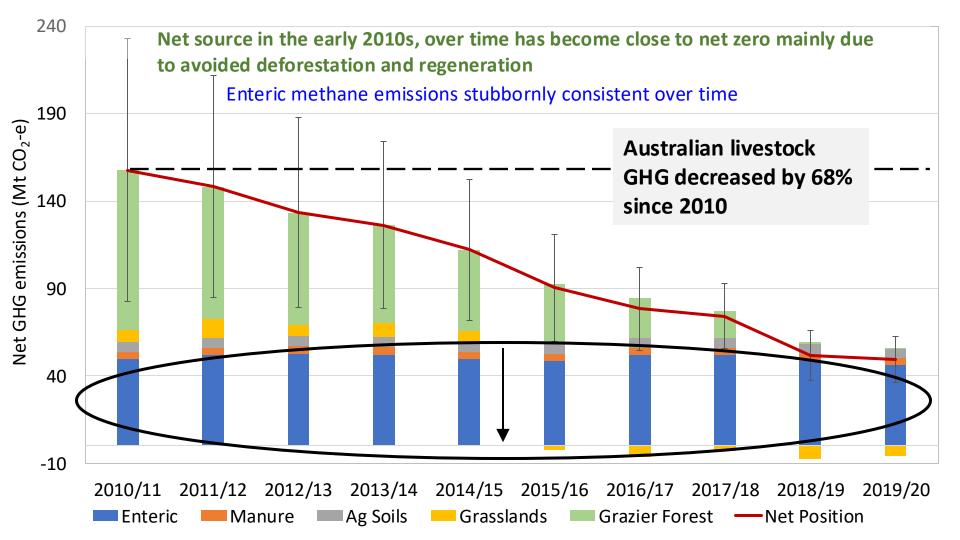

Is the livestock sector en route to net zero?


- 46 statistical (SLA4) areas examined
- 99.5% of Australia's red meat enteric methane emissions
- Estimated livestock/soils emissions and grasslands emissions/sinks from national inventory data (net source)
- Estimated changes in tree vegetation carbon sequestration using FLINTpro (net sink (or source if being lost))
- Difference is net emissions



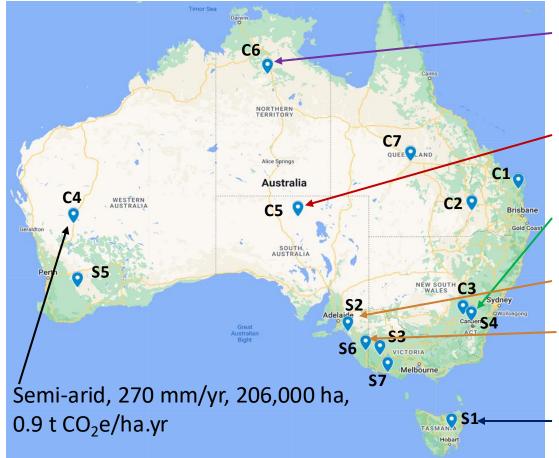

Average net emissions per hectare (2010-20)





Aim:

Explore a range of interventions to reduce net farm GHG emissions while improving production, profit and biodiversity relative to current baseline


Methods:

Long-term 30-year simulations; 6 cattle and 7 sheep farms
Biophysical models (GrassGro and CLEM)
Tree carbon sequestration (FLINTpro)
Biodiversity in tree vegetation (LOOC-B)
Greenhouse gas emissions (SB-GAF)
Simple pasture/carbon model- > ± 5% change in pasture production led to a soil carbon change
Economics (gross margin)
Low and high carbon ACCU prices (+ biodiversity \$)

Low and high meat prices for meat (10-yr 25th & 75th median \$) Single price for wool production (10-yr 50th median \$)

Common prices for some inputs (fertiliser, fuel, husbandry, levies), farm-specific for others (pasture management)

Bhattarai et al (2025)

Humid tropics, 670 mm/yr, 231,000 ha, 2.7 t CO₂e/ha.yr

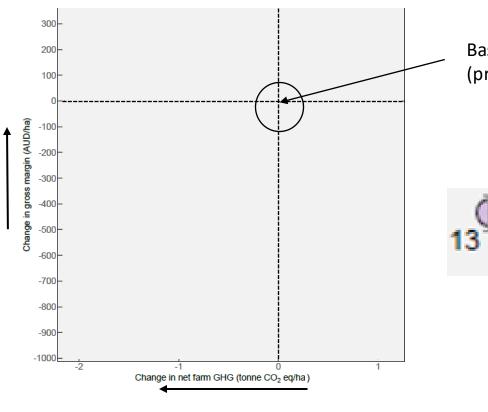
Arid, 150 mm/yr, 498,000 ha, 0.5 t CO₂e/ha.yr

Temperate, 800 mm/yr, 250 ha, 8.2 t CO₂e/ha.yr
Mediterranean, 470 mm/yr, 900 ha, 6.3 t CO₂e/ha.yr
Mediterranean, 630 mm/yr, 2,000 ha, 2.8 t CO₂e/ha.yr

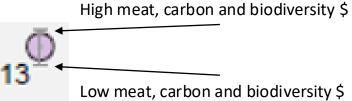
Cool temperate, 500 mm/yr, 7,777 ha, 7.8 t CO₂e/ha.yr

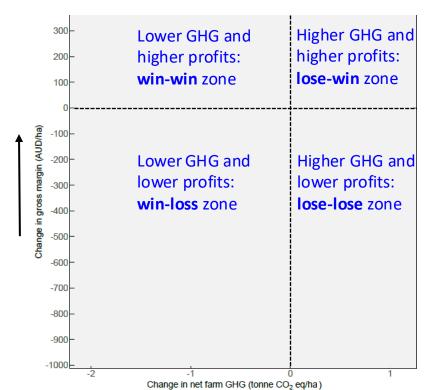
Common-themed across all farms

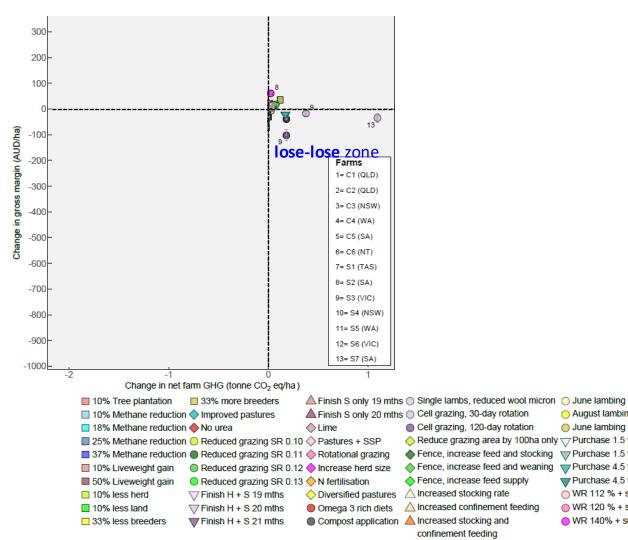
- 10% tree plantation: 10% grazing area removed and planted to environmental plantings, model decreased livestock numbers by ~ 10%
- 10% and 50% LWG: increased the daily LWG of non-replacement animals from birth to sell sooner but at same LW as baseline. 10% assumed through better grazing and genetics, 50% required additional supplementation
- 10% and 25% methane reduction: assumed all weaned stock consuming antimethanogenic pastures
- 18% and 37% methane reduction: assumed all weaned stock fed either 3NOP or Asparagopsis daily with a grain supplement



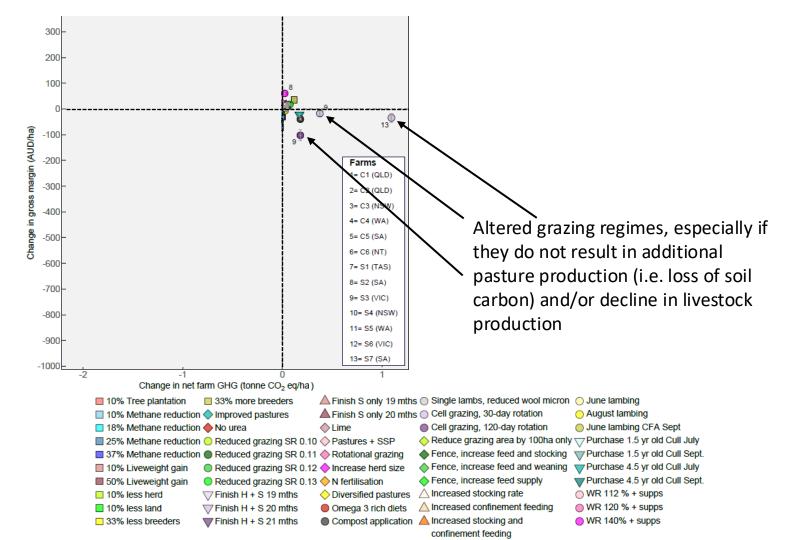
Farm-specific examples (generally only done on a single farm):

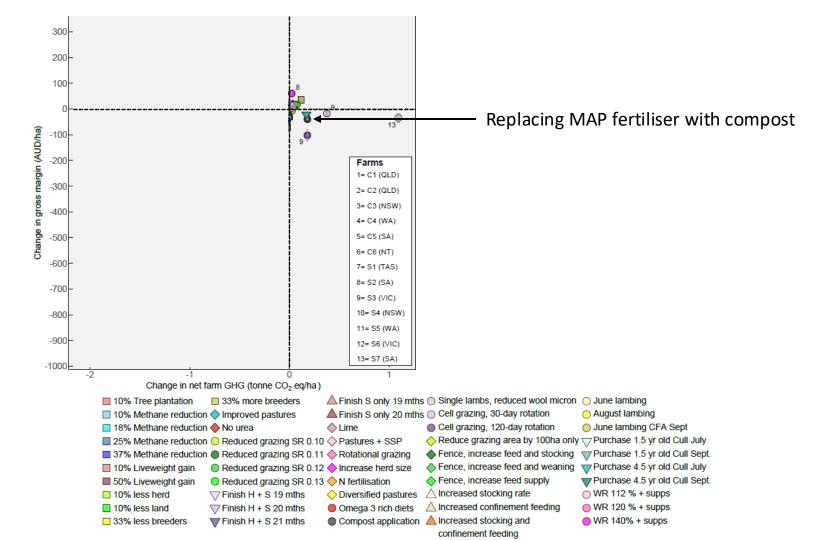

- Reduce to single-lambing ewes combined with decreasing wool micron
- Fencing off riverbanks or creek beds to allow natural regeneration of native tree species for carbon and biodiversity improvements
- Significant increase or decrease in herd size (rangeland cattle farms)
- Altering lambing dates
- Wildlife-proofing boundary paddocks to remove browsing pressure (deer, wallabies etc)- using this extra pasture to increase weaning rates or stocking rates
- Feedlotting longer over summer/autumn
- Altered grazing regimes (30-day or 120-day rotations)
- Replacing inorganic MAP fertiliser with compost
- Altering finishing ages/weights of young stock
- Altering purchase age/time for replacement ewes
- Alternative options to build soil carbon through pasture and grazing management

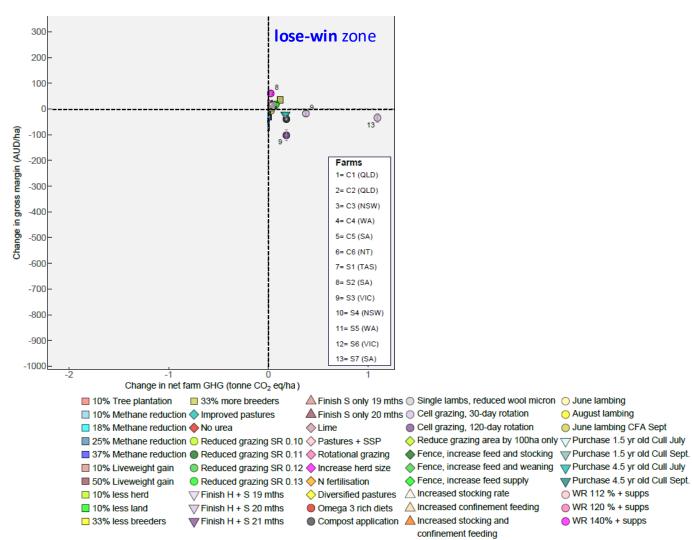




Baseline position of each farm (profit and net GHG emissions)





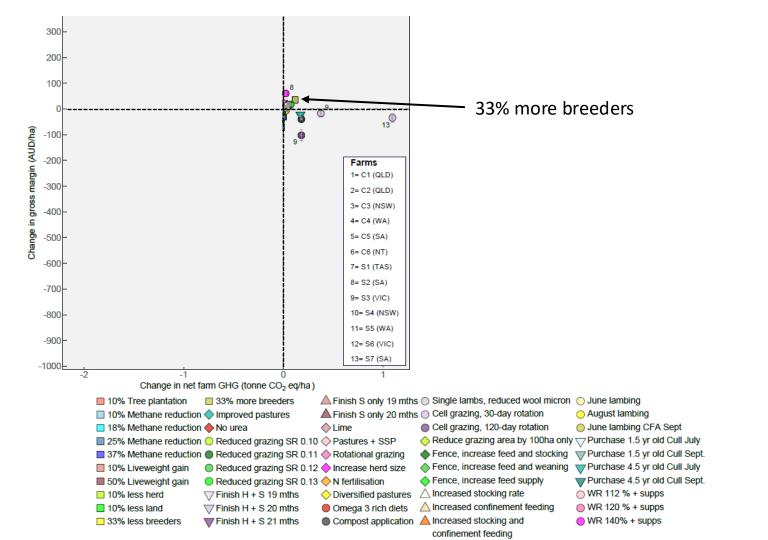


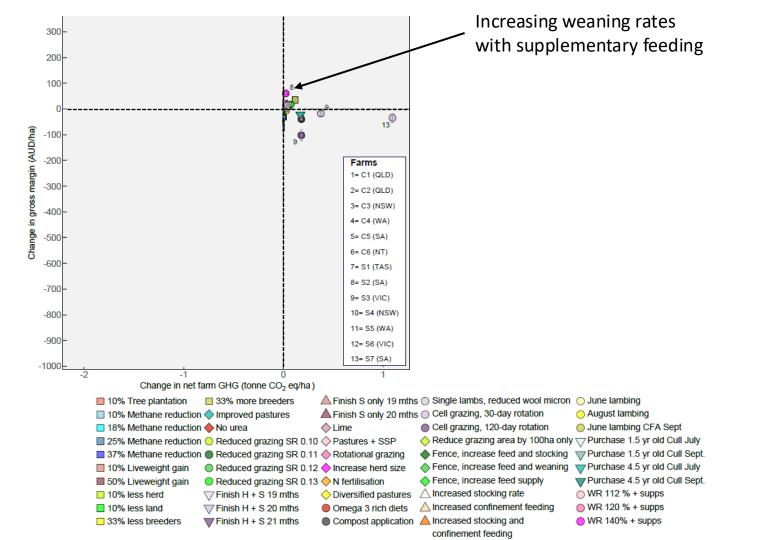
 June lambing CFA Sept ♦ Reduce grazing area by 100ha only
Purchase 1.5 yr old Cull July Purchase 1.5 yr old Cull Sept. Purchase 4.5 yr old Cull July Purchase 4.5 yr old Cull Sept. WR 112 % + supps WR 120 % + supps WR 140% + supps

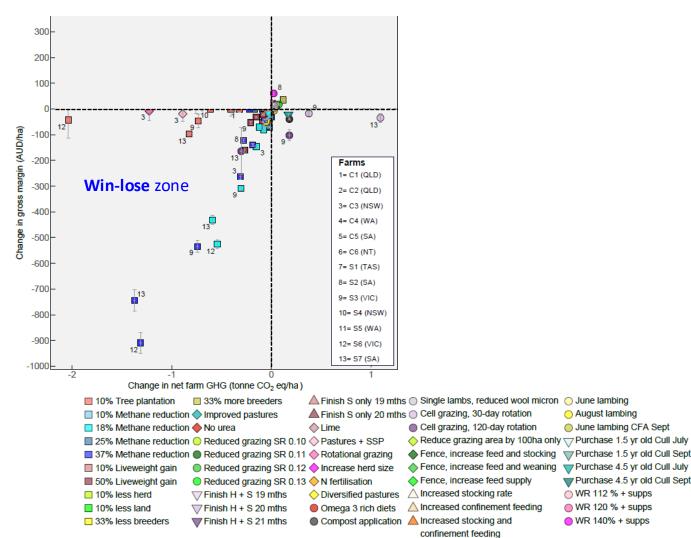
August lambing

August lambing

June lambing CFA Sept


WR 112 % + supps


WR 120 % + supps


WR 140% + supps

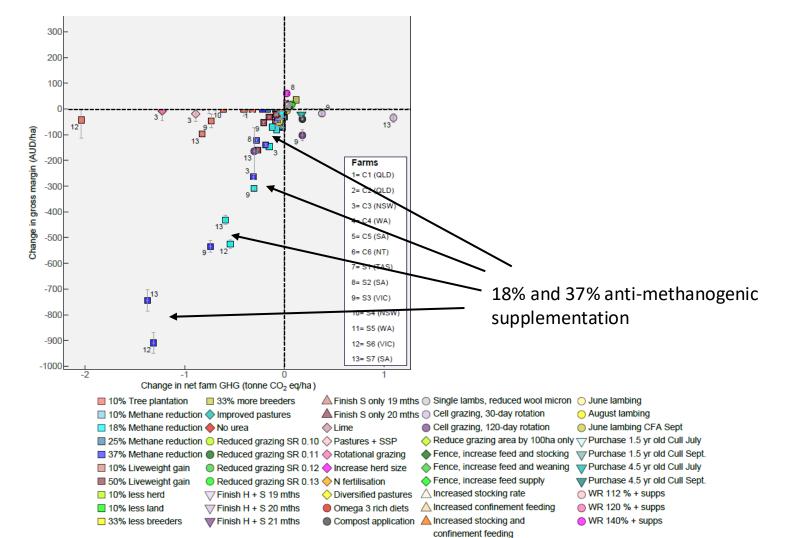
Purchase 4.5 yr old Cull July

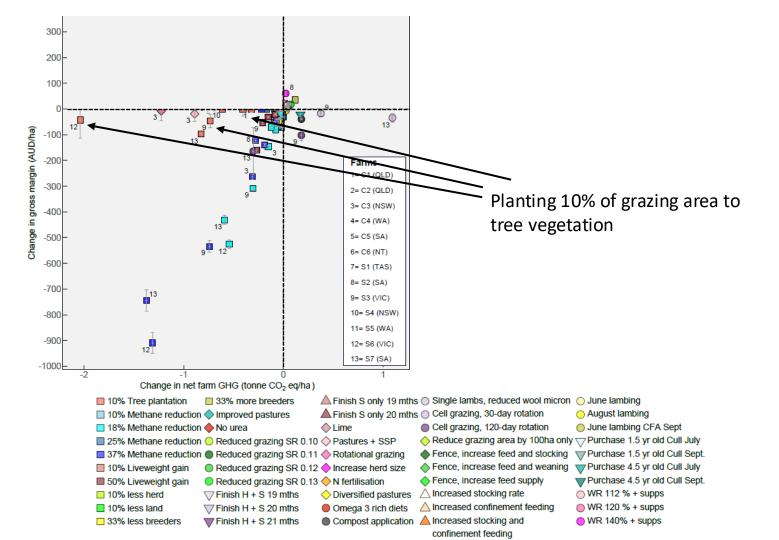
Purchase 4.5 yr old Cull Sept.

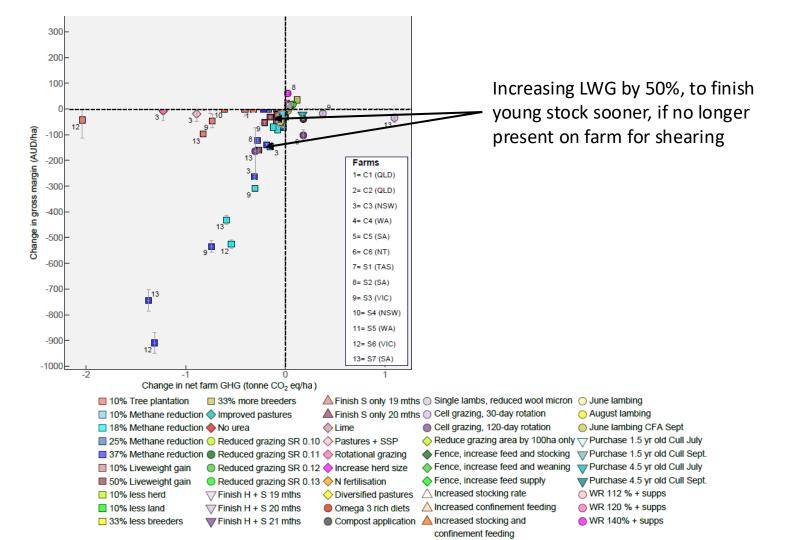
August lambing

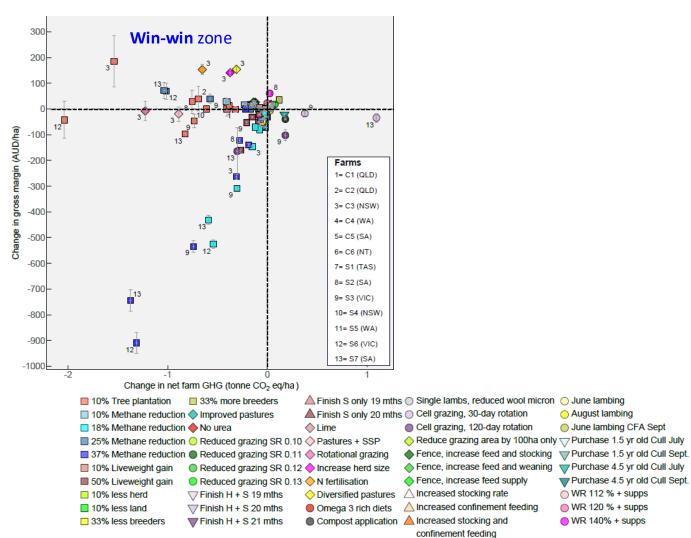
June lambing CFA Sept

WR 112 % + supps


WR 120 % + supps

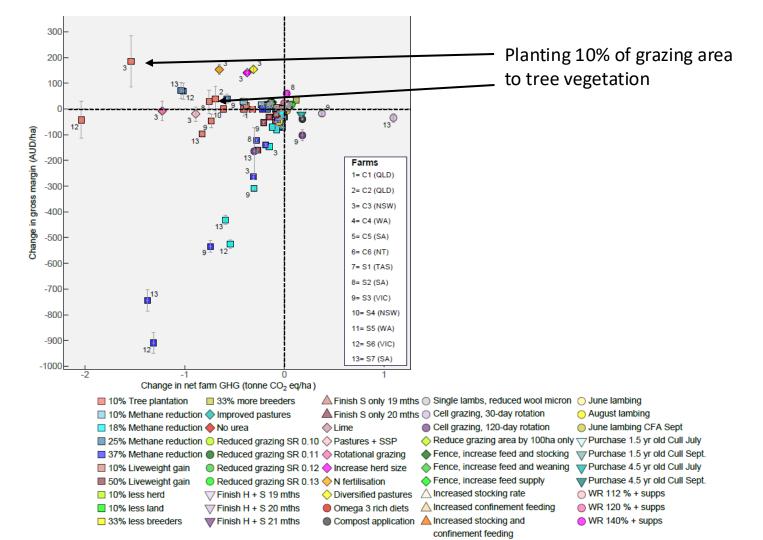

WR 140% + supps

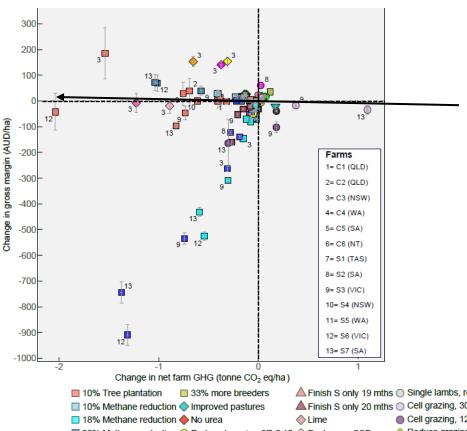

Purchase 1.5 yr old Cull Sept.


Purchase 4.5 yr old Cull July

Purchase 4.5 yr old Cull Sept.

 August lambing June lambing CFA Sept


Purchase 4.5 yr old Cull July


Purchase 4.5 yr old Cull Sept.

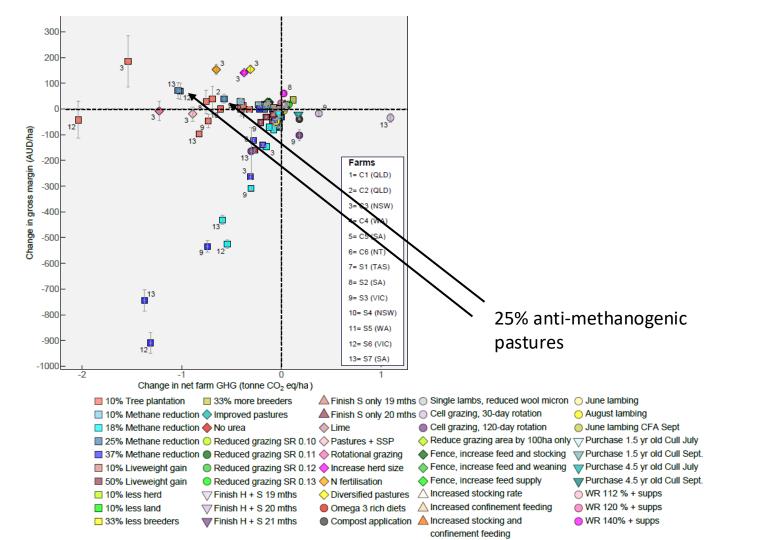
WR 112 % + supps

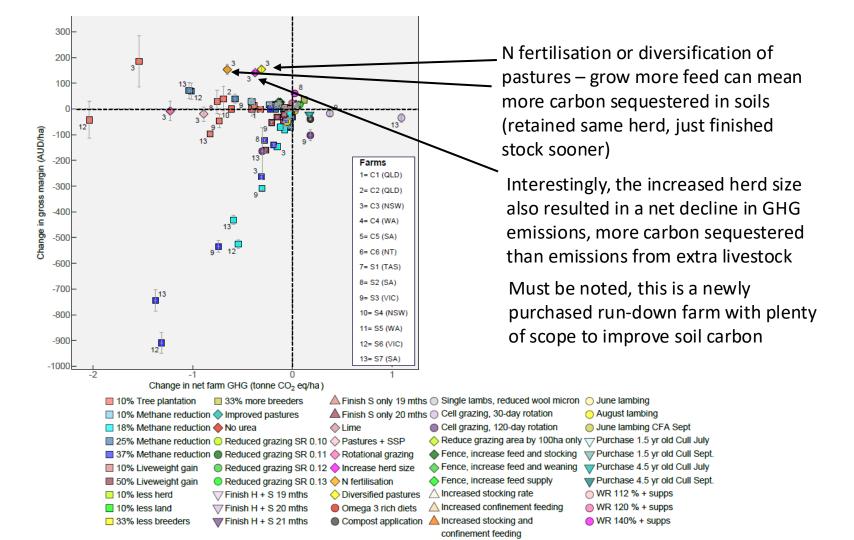
WR 120 % + supps

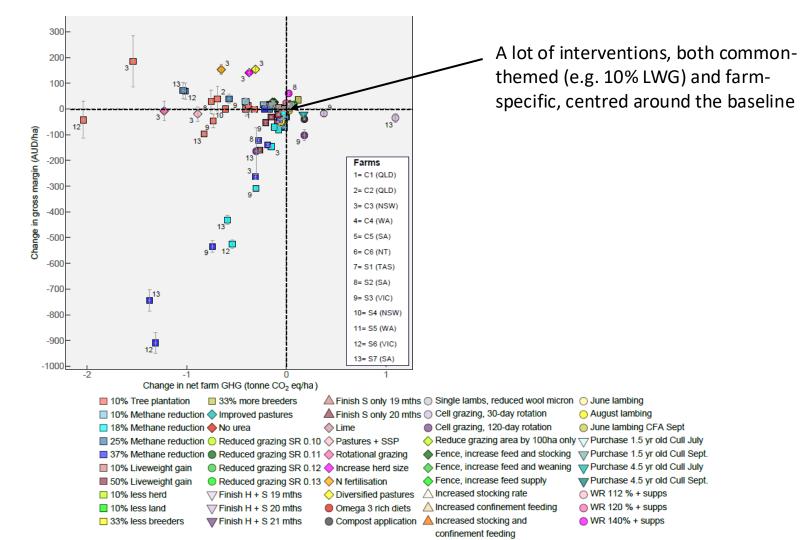
WR 140% + supps

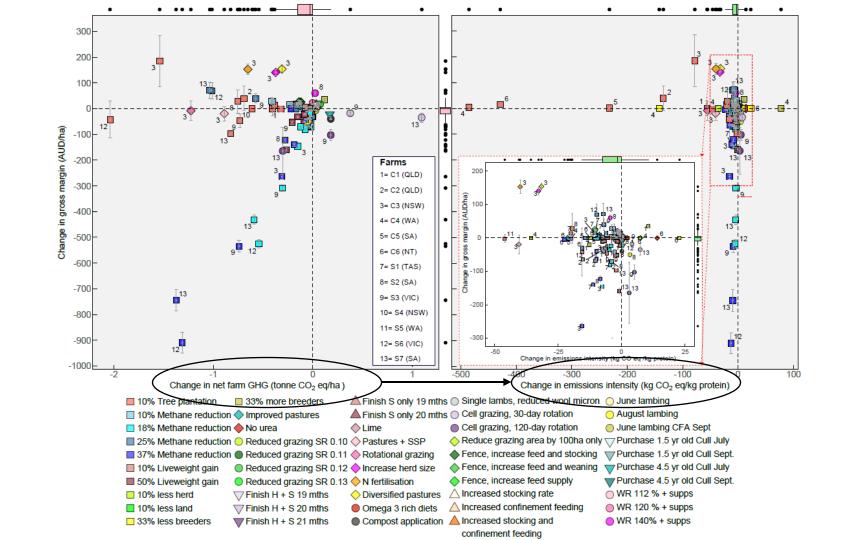
■ 10% Liveweight gain

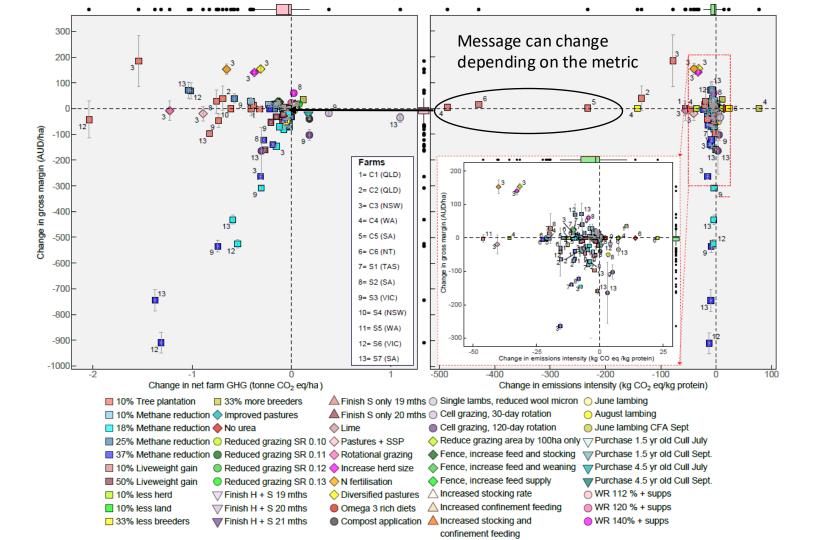
■ 50% Liveweight gain


33% less breeders


10% less herd


10% less land


Planting 10% of grazing area to tree vegetation can be profitable if the price of meat, carbon and biodiversity are high


Finish S only 19 mths Single lambs, reduced wool micron June lambing Finish S only 20 mths Cell grazing, 30-day rotation August lambing Cell grazing, 120-day rotation June lambing CFA Sept ■ 25% Methane reduction ○ Reduced grazing SR 0.10 ◇ Pastures + SSP ♦ Reduce grazing area by 100ha only
Purchase 1.5 yr old Cull July Purchase 1.5 yr old Cull Sept. ■ 37% Methane reduction ● Reduced grazing SR 0.11 ◆ Rotational grazing Fence, increase feed and stocking Purchase 4.5 yr old Cull July ■ Reduced grazing SR 0.12 ◆ Increase herd size Fence, increase feed and weaning Fence, increase feed supply Purchase 4.5 yr old Cull Sept. ■ Reduced grazing SR 0.13 ◆ N fertilisation WR 112 % + supps Finish H + S 19 mths Diversified pastures Increased stocking rate Increased confinement feeding WR 120 % + supps Finish H + S 20 mths Omega 3 rich diets A Increased stocking and WR 140% + supps Finish H + S 21 mths Compost application confinement feeding

Take home messages

- The Australian livestock sector has significantly reduced net GHG emissions, but mostly through avoided deforestation and building of soil carbon- this needs to continue
- Planting trees on farm is good for carbon sequestration, but it can also result in substantial benefits for biodiversity (turning around recent losses)
- Range of factors need to be considered if tree-plantings are profitable for your farm (i.e. ACCU/ biodiversity prices, can you retain similar stock numbers/production, co-benefits of trees etc.)
- Anti-methanogenic diet additives can reduce GHG emissions, but costs of implementation must be significantly lower than we modelled. We also didn't account for management/practicalities
- Anti-methanogenic pastures had good promise, especially if no additional cost and fit into your current feedbase
- Farm specific interventions were quite variable in terms of quadruple bottom line
- The greatest benefit may come from practice changes that address an underlying economic, environmental and/or production deficit

Tools and resources

- https://www.utas.edu.au/tia/research/research-projects/project/livestock-production/carbon-storage-partnership
- https://www.youtube.com/@matthewharrison6233
- https://looc-c.farm/ and https://looc-b.farm/
- Bowen Butchart et al (2024) https://doi.org/10.1016/j.agsy.2024.104168
- Harrison et al (2021) https://www.researchgate.net/publication/353367793
- McDonald et al (2023) https://www.sciencedirect.com/science/article/pii/S0301479723019345
- MLA's CarbonEDGE program
- MLA's Profitable Grazing Systems program (in development)

Quotes from case study farmers

- I could see how the modelling helps us determine **which options are really worth pursuing**. I see this as a decision-making tool for what we will do on farm
- Life is always about trade-offs. Nothing comes for free. Especially related to profit. That is something we think of everyday. Every decision comes at a cost. There is very rarely an optimum. It is about trading one thing for another
- It is nice to reduce GHG with trees but **main reason we plant is for livestock, biodiversity and looks better** although we know they are difficult to quantify
- This project has **contributed to my knowledge of carbon and biodiversity**. The results align with my intuition. In fact, we have **already made the some of the changes indicated by the modelling**. Very important to make decisions based on evidence
- I will use these **results as a stepping stone to another project**. Have learnt a lot but need it to sink in. How do we quantify what is going on on-farm now? **Cannot prosecute farmers for producing methane**

Soil and pasture investments in 2025 – Where do we start?

Felicity Turner
Mel Fraser

A bit about you...

• https://www.mentimeter.com/app/presentation/alho5mn2juq6oqi8thhh1 hj7pt5phecd/edit?question=52bz1nvuww38

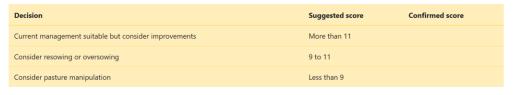
Where do we start?

- Assess the current pasture base
 & look for indicator species
- Understand current fertility levels
- Understand / identify any additional soil constraints

Assessing the pasture base - Perennial Grass Pastures

Critical factors (Pasture paramedic)

- Groundcover
- Dry Matter
- Live sown perennial grasses


Decision Matrix – Pasture paramedic

Do I need to manipulate this perennial pasture?

Trigger	Late summer, Early autumn		
Consideration	Condition when I would think differently	Value	Test Score
Ground cover	Greater than 70% on flats, 90% on slopes	3	
	Less than 70% groundcover, 90% on slopes	0	
Current level of Dry Matter	1000-2000 kg DM/ha	4	
	Greater than 2000 kg DM/ha	1	
	Less than 1000 kg DM/ha	0	
Presence of live sown perennial grasses	Greater than 2 phalaris, tall fescue or cocksfoot in square, 3 perennial ryegrass	7	
	1 or 2 phalaris, tall fescue or cocksfoot in square, 1-3 ryegrass plants	4	
	No live sown perennial grasses	0	
Max value	14		
Risk tolerance	moderate		

Assessing the pasture base - Perennial Lucerne pastures

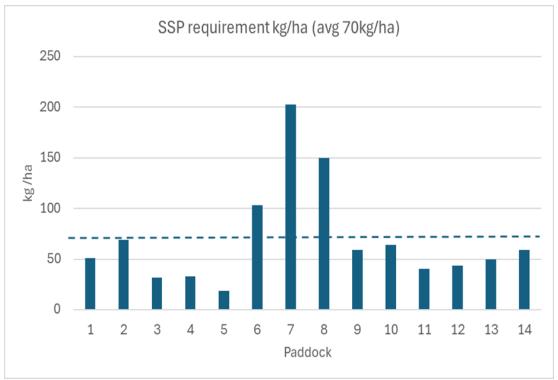
Critical factors

- Plant Density
- Groundcover
- 'Strength of stand'

Decision Matrix – Lucerne management

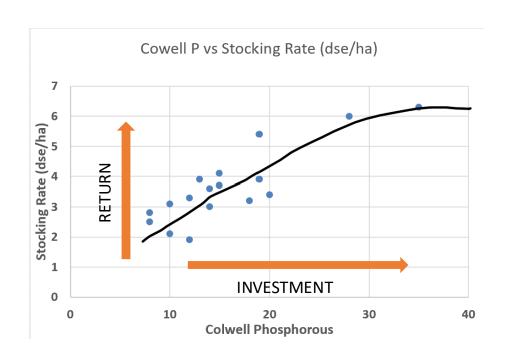
Do I need to manipulate this lucerne stand?

Trigger	Autumn	
Consideration	Condition when I would think differently	Value
Current plant density	Greater than 18 plants /m2	10
	12-18 plants / m2	5
	Less than 12 plants/m2	0
Current level of groundcover	Greater than 70% groundcover	6
	Less than 70% groundcover	0
'Strength' of stand	Stand is solid and can withstand cultivation	5
	Some plant losses may occur with cultivation	3
	Stand will not withstand cultivation	0
Max value	21	
Risk tolerance	moderate	


Decision	Suggested score	Confirmed score
Maintain existing stand	More than 16	More than 15
Consider oversowing with an annual / grazing cereal	14 to 16	8 to 15
Consider renovation or sowing an annual	Less than 14	Less than 8

Current production levels

Where are you getting your best return?



Current fertility levels

 Where are you going to get your best return?

Prioritising Investment...

Scoring paddocks

Lose the blanket approach

Consider oversowing with annuals for quick feed

When renovating pastures...

Don't miss the opportunity to treat:

- Acidity
- Water repellence
- Compaction
- Nutrient deficiencies

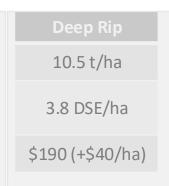
Deep sands

Acidity

Clays and loams

Treating Acidity – Incorporation counts

Water Repellence



Water Repellence

	Control
Cumulative DM	8.3 t/ha
Carrying Capacity @40% utilisation	3.0 DSE/ha
GM @ \$50/DSE	\$150

Inversion
11.6 t/ha
4.2 DSE/ha
\$210 (+\$60/ha)

Treating compaction – mixing matters?

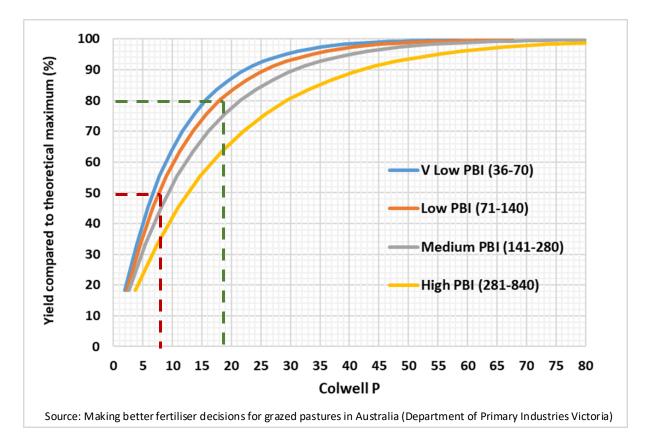
Treating compaction – mixing matters?

Deep rip avg 10.8 plants/m2

Treating compaction (mixing matters in perennial pastures!)

Nutrition counts

Nutrition counts



Nutrition counts

Thankyou

Dr. Melissa Fraser
Soil Function Consulting
mel@soilfunction.com.au
0407 773 369

Fast tracking genetic progress – The latest tools and technology to maximise gain

Peta Bradley

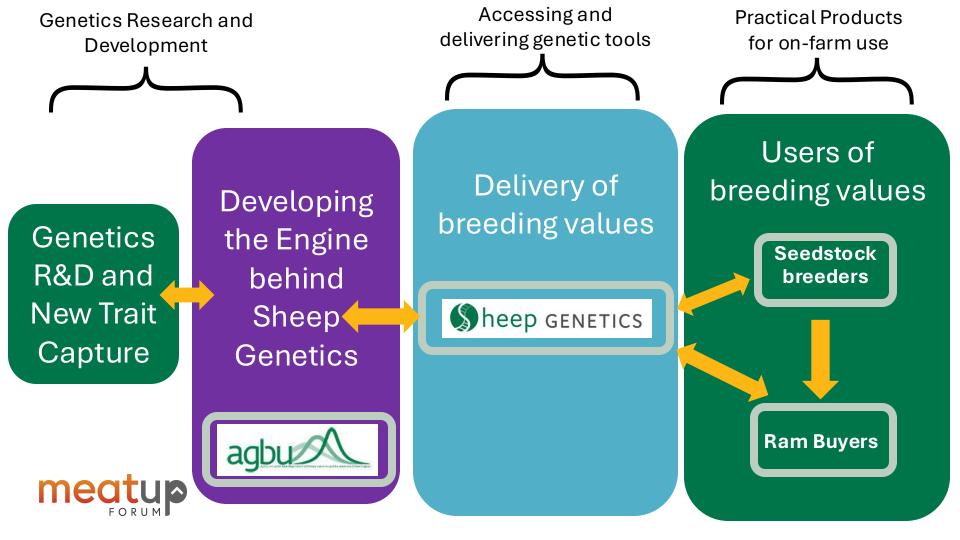
Meat & Livestock Australia

The 1955 Flood and how it relates to genetics



The 1955 Flood and how it relates to genetics

Today's Presentation - Fast-tracking genetic progress


1. Tomorrow's World of Genetics: A Preview

2. Genetics Research and Development: Building the Future Today

3. Genetic Products: From Theory to Practice

1. Tomorrow's World of Genetics: A Preview

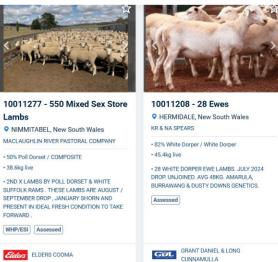
1.1. What does the future look like for sheep breeding

"To describe the genetic merit of ALL sheep using world-leading genetic products that facilitate genetic progress"

1.2 What does that mean: at a ram sale

What traits?

What animals can we compare?


What will our indexes look like?

1.3 What does that mean: on-line, in the saleyards, with processors?

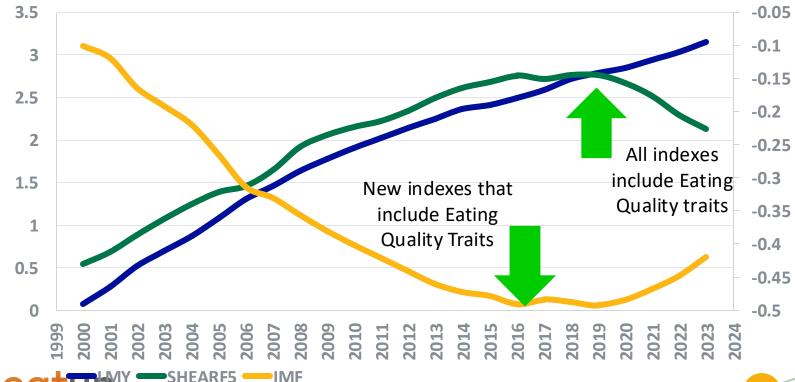
Animals sold with descriptions of genetic merit

...and valued accordingly

1.4 What does that mean: for individual animals

Within flock selection of future parents

Utilising data from onfarm collection to inform genetic decisions

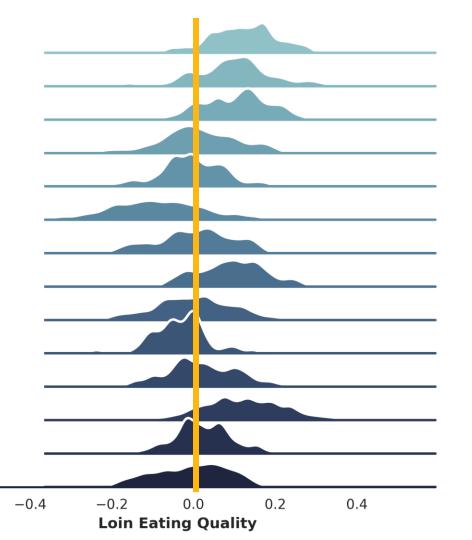


2. Genetics Research and Development: Building the Future Today

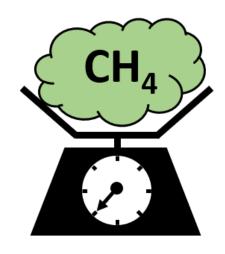
2.1 What have we been able to do with ASBVs for Eating Quality (EQ) Indicator Traits?

2.1 Future Eating Quality Traits

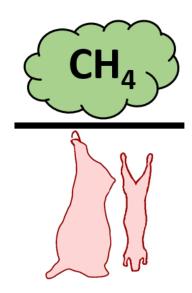
Intramuscular Fat (IMF)


Shear Force (SF5)

Consumer **Satisfaction Australian Sheep Breeding Value** (ASBV)


Myth: Some breed are much & treed X I have good eating quality.

-0.6

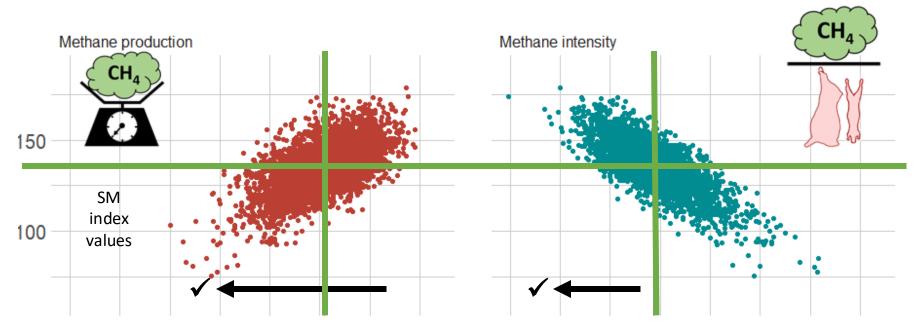


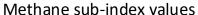
2.2 Breeding Efficient Animals

Methane
Production
neatup

Methane **Intensity**

2.2 The Journey to create a breeding value

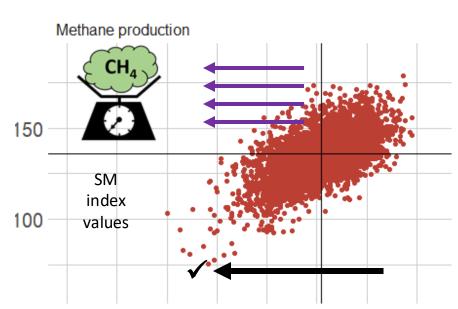


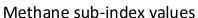


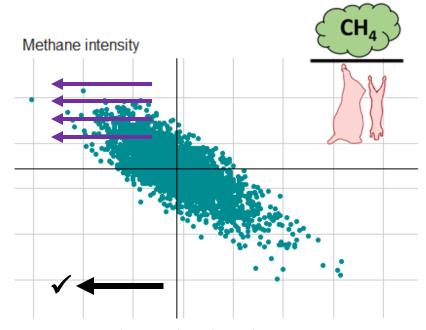
2.2 What are we doing now with our indexes?

Terminal Sire Breeds	Maternal Sire Breeds	Merinos
Faster growthImproved LeanMeat YieldBetter Quality	Faster growthLower mature sizeImproved reproduction	Faster growthImproved reproductionImproved wool
Meat	Teproduction CH ₄	quality and quantity • Mature size?

2.2 What are our new MERINOSELECT indexes doing?

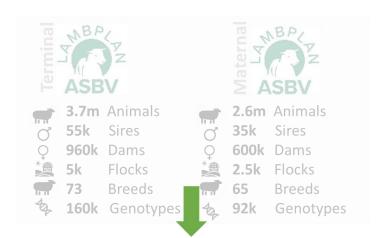



Methane sub-index values



2.2 What will we be able to do with methane breeding values?

Methane sub-index values



2.3 A Combined LAMBPLAN Analysis

- Completely comparable ASBVs for Terminals and Maternals
 - Simplify for commercial ram buyers
- Research results available in 2025

 2026 rams sales will be using the new analysis

3. Genetic Products: From Theory to Practice

3.1 The Sheep Genetics Offering is expanding

ASBVs and Indexes

- Across Flock Comparison
- Use to purchase rams/semen

Genomic Only Commercial Products (Merino)

- Within Flock Ranking Only
- Less information contributing
- Use to select rams (and potentially ewes)

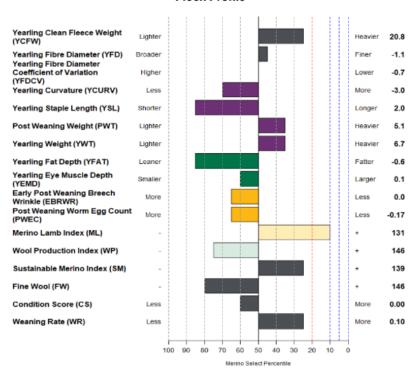
Flock Profile (Merino)

- Flock level snapshot
- Not individual animal
- Use to help select rams to bring in

3.2 Genomic Only Commercial Animal Products

C	D	E	F	G	H	- 1	J	K	L	M	N	0	Р	Q
/ID 🕝	ycfw 💌	ycuv 🔻	ysl 🔻	pwt 💌	ywt 💌	yfat 💌	yemd *	DP 🔻	MP 🔻	FP 🔻	yfd 🔻	ydcv 🕶	ebwr▼	pfec 🔻
220143	1	8	9	8	8	8	9	8	4	6	6	10	10	1
220178	10	8	7	10	10	1	2	10	10	10	10	8	4	7
220076	6	5	4	10	10	2	4	10	9	8	7	1	9	3
220224	10	1	9	4	5	3	3	4	7	7	3	8	7	3
220043	8	2	8	10	10	3	4	10	10	10	5	10	10	3
220054	4	9	1	7	7	1	1	8	7	8	9	6	1	6
220187	7	4	7	2	2	1	3	4	8	9	10	8	3	8
220217	5	7	10	6	8	7	3	6	5	4	6	7	6	10
220124	7	1	8	2	2	3	2	2	3	4	2	3	5	5
220077	5	2	8	10	9	5	2	10	8	8	3	9	10	4
220139	9	2	3	9	8	1	3	10	9	8	3	4	1	2
220211	4	4	1	4	4	4	3	7	9	10	10	4	3	10
220182	10	2	2	8	7	6	4	7	9	9	6	6	6	7
220221	8	4	6	7	8	1	2	9	9	9	7	7	7	6
220045	6	8	10	5	4	2	5	4	5	7	5	10		
220069	8	5	4	9	8	3	4	9	9	8	3	9	4	3
220205	10	2	7	7	7	8	1	9	10	8	2	4	10	4
220006	7	5	9	10	9	1	1	9	9	10	8	10	7	7
220193	5	6	7	9	8	2	3	8	6	6	7	2	4	8
220006	7	5	9	10	9	1	1	9	9	10	8	10	7	7
220002	7	3	5	4	5	5	5	7	8	9	7	9	5	10
220149	3	10	1	2	4	6	7	5	6	8	10	2	2	9
220133	5	7	2	3	5	4	3	5	6	8	8	8	4	6
220164	10	2	8	7	7	1	2	7	6	3	1	1	7	3
220056	5	8	2	7	7	1	3	8	9	10	8	10	1	8
220078	10	3	3	2	2	3	4	4	10	10	9	1	1	8
220158	7	9	2	10	10	5	3	10	10	9	5	4	3	2
220023	3	7	7	10	10	4	7	10	7	7	8	4	5	4

ID	Fleece Weight	Index
220143	1	8
220178	10	8
220076	6	5
220224	10	1
220043	8	2
220054	4	9
000107	_	


3.3 Merino Flock Profile

Client:

Date: 06/03/202 Flock Drop: 5 2022

Flock Profile

Your Flock Profile values are displayed in the far right hand column. The diagram shows how your the flock compares to flock averages in the MERINOSELECT database. Note that the 100th percentile is the bottom value, 50th percentile is the average and zero percentile is top value of flocks in MERINOSELECT. If you do not see a bar for a trait or index, your Flock Profile sits in the 50% percentile. To achieve gain in desired traits or indexes, select rams with ASBVs higher than your Flock Profile value. Results are subject to change slightly as predictions update over time.

3.4 How they all fit together

), ilk fat,		Per 100 g	*Reference Intakes
,	Energy	2196 kJ 525 kcal	8400 kJ 2000 kcal
ıt	Fat	29 g	70 g
	of which Saturates	16 g	20 g
ries	Carbohydrate	61 g	260 g
ium	of which Sugars	56 g	90 g
	Fibre	1.6 g	-
	Protein	3.8 g	50 g
M.	Salt	0.36 g	6 g

Flock Profile

3.4 What about the future of these products

ASBVs and Indexes

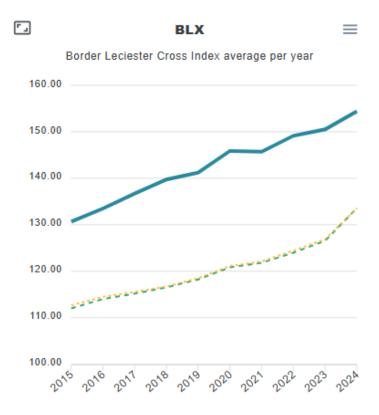
- 2027 there will be just 2 evaluations.
- Latest and new BVs

Genomic Only Products

Will be expanded to new breeds

Flock Profile

Will be expanded to new breeds



3.5 What can you do now!

1. Have a breeding objective

2. Purchase rams with a label (ASBVs and Indexes)

3. TRACK YOUR RAM TEAM!

Key Take Homes

1. Consider the future state and make selection decisions now that set your business up for

2. A combined LAMBPLAN evaluation is part of the journey to enable genetic products for all breeds for a range of traits

3. There are a suite of genetic products available for all businesses – ASBVs, Genomic Breeding Values, Flock Profile and ram team tracking

Reaching out and keeping up-to-date

Peta Bradley

pbradley@mla.com.au

0419 158 449

Sheep Genetics

info@sheepgenetics.org.au

02 8055 1818

Stay up to date: Sheep Genetics

Monthly Update

Email

Afternoon tea

30 minutes

Optimising ewe performance over the lambing period

Martin Beltrame
Zoetis

Zoetis at a Glance

70+

We provide:

Medicines, Vaccines, Diagnostics, Biodevices, Genetic tests & Precision animal health

100+

29

Major product categories

Core animal species

1,600

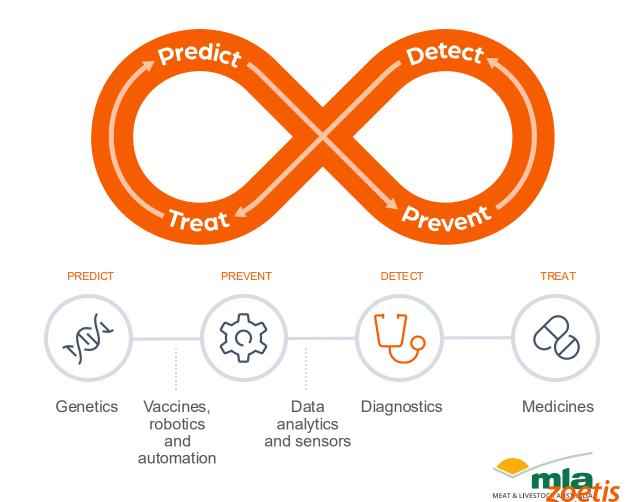
4,100

14,100

Kristin Peck

Note: Facts and figures shown are as of Dec. 31, 2023

Excludes revenue associated with Client Supply Services and Human Health, which represented 1% of total 2023 revenue.


Innovating Across the Continuum of Care

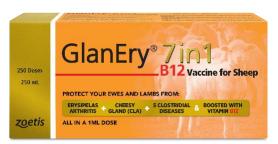
Globally, Zoetis invested

~AUD\$950m

in Research & Development in 2023

14% increase from 2022

How can producers optimise pre-lambing management?


- Provide adequate nutrition
- Use a pre-lambing booster to maximise colostrum.
- Vaccinate to protect the ewe
- Manage internal parasites carefully over the prelambing period
- Ensure trace mineral supplementation is adequate.

The importance of good colostrum and vaccination

GOOD ewe management

GOOD colostrum

GOOD lamb immunity

Passive transfer of immunity

Where does colostrum come from?

Getting the best out of pre-lambing vaccination

Colostrum is the first milk.

LIQUID GOLD; KEEPING LAMBS ALIVE.

- Ewe transfers the antibodies circulating in the blood to the first milk which can then be absorbed by the lamb shortly after birth.
- Usually, the lamb needs to drink in the first 12 hours of life with most of the absorption occurring in the first 6 hours post lambing.
- This provides transient disease protection from antigens that the ewe has recently been exposed to.

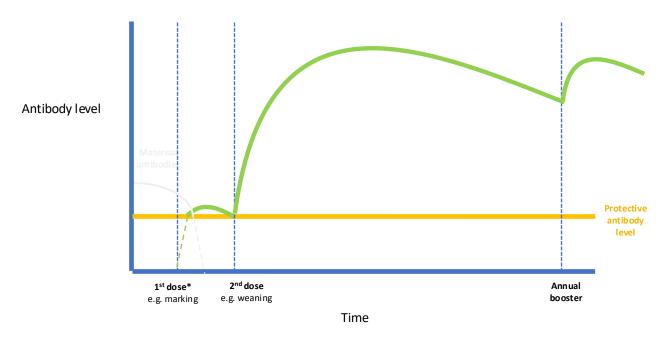
Understanding why colostrum is important

- The ruminant placenta does not allow the transfer of immune cells
- Lambs are unable to develop their own antibodies until one month of age.
- The lamb is essentially borrowing the mother's immune cells until their own immune system develops

Lambs that do not receive adequate colostrum are more likely to die

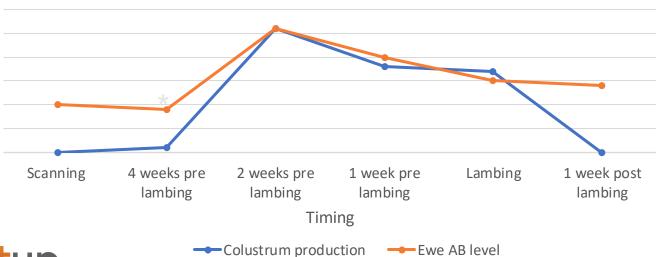
- Failure of passive transfer (FPT) i.e. not enough antibodies consumed via colostrum, is associated with lamb losses
- Failure of passive transfer occurs due to the ewe not producing enough antibodies and/or lambs not drinking adequate quantities of colostrum in the right timeframe

We can use vaccination to improve colostrum production in the ewe.


- •In sheep colostrum production begins 2–3-weeks pre-lambing.
- Stops abruptly at time of lambing to allow development of milk
- We can use vaccination at the right

VACCINATION =
SUPER CHARGED COLOSTRUM
= BETTER LAMB SURVIVAL

PRINCIPLES OF VACCINATION



This is a schematic representation to demonstrate the principles of vaccination. Actual levels of antibody following vaccination will vary from vaccine to vaccine and animal to animal. **Medtus**

Producers can utilise vaccination timing to help produce super-charged colostrum

Ewe antibodies vs colostrum production pre lambing

Beef cattle and colostrum

- Principles are the same in cattle as in sheep
- Bigger focus on Leptospirosis prevention in cattle than sheep
- Colostrogenesis starts slightly earlier in cattle than in sheep

What vaccines are important pre-lambing to both protect the ewe AND protect the lamb

Clostridial diseases

CLA (Caseous lymphadenitis or cheesy gland)

Erysipelas Arthritis

Clostridial diseases

- Bacterial spores abundant in the environment
- Marked lambs at high risk if unvaccinated – spores gain access through wounds
- Sudden death/stiff paralysis,

Pulpy kidney

- Bacteria in the environment and in the gut of healthy lambs
- Sudden death associated with changes in diet
- A booster vaccination is recommended prior to periods of risk

Clostridial diseases continued.

Blackleg

- Bacterial spores in the environment enter through cuts in mouth/wounds and lodge in muscles
- Bruising → spores germinate and produce toxins → death
- Dark red to black muscle (garge Using Ais)

Black disease

- Bacterial spores present in environment and body tissues of lambs, including liver
- Liver fluke associated due to migrating fluke allows spores to germinate, resulting in death
- Can also be associated with hydatids

Malignant oedema

- Introduction of the organism from the environment and the production of a small area of dead tissue
- Wounds, e.g. injuries, marking, fighting in rams (swelled head)

or Cheesy Gland

- Highly contagious bacteria that is widespread in sheep and goat herds (Corynebacterium pseudotuberculosis)
- Spread via respiratory exhalation or from ruptured superficial abscesses
- Spread primarily at shearing/yarding
- Bacteria can survive for months in environment contaminates yards and dips
- Often a hidden disease with abscesses affecting major internal body organs and lymph nodes –
 may be some coughing

The on-farm impact of CLA

Pus filled abscess forms at the infection site causing

- Ill-thrift, lethargy and weight loss in lambs and sheep
- Meat quality issues
- Infertility & ram sterility
- Reduction in clean wool cut
- Zoonotic disease (can infect humans)

The economic impact of CLA

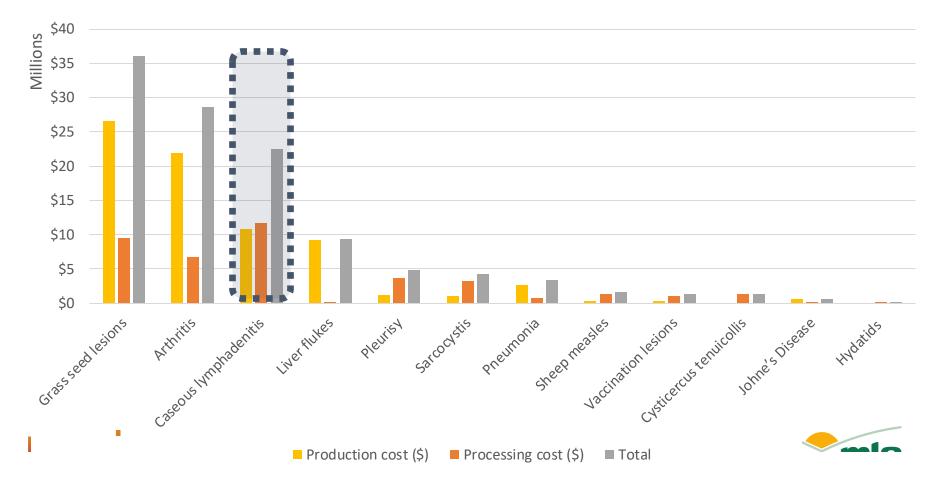
- Chronic losses on farm include reduced weight gain and reduced wool production.
- This disease accounts for almost half of all abattoir condemnations.

CLA infected sheep have a

70/0

reduction in clean wool cut in the first year of infection⁴

Cheesy Gland (CLA) costs the Australian sheep industry


518

each year'

Almost 50% of 2+ year old sheep lines in abattoirs are shown to be infected with CLA

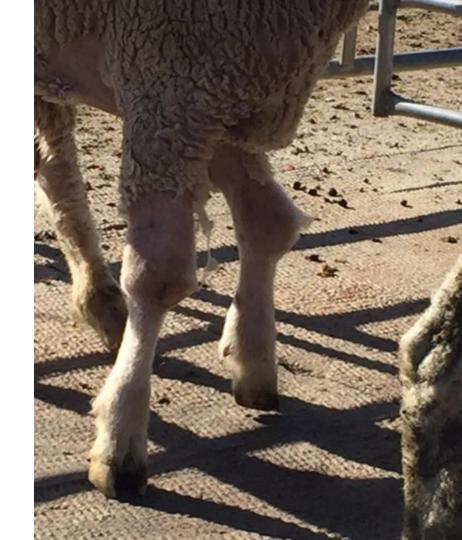
NSHMP Annual cost of disease

GlanEry 7in1 B12 efficacy against Cheesy Gland (CLA)

Field data:

- Looking at flocks in an Australia wide study, a compliant long term vaccination program for CLA using Zoetis vaccines will bring down the prevalence of disease to around 3% vs 29% in non-vaccinated flocks
- Data also shows that non-compliant vaccination program did not significantly reduce disease prevalence

Recent CLA challenge studies showed that GlanEry 7in1 B12 vaccine is highly efficacious against CLA infection



1

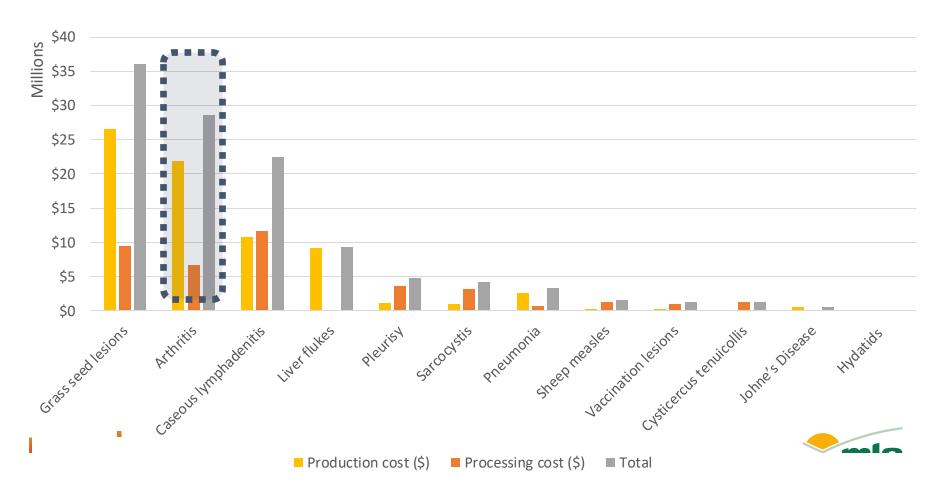
Erysipelas Arthritis

- Soil borne bacteria that infects many species, including sheep, pigs, kangaroos, rodents, insects and birds
- Zoonotic disease (can infect humans)
- Most common cause of arthritis in lambs
- Bacterium enters via the umbilical cord or wounds, then localises in leg joints causing inflammation and arthritis
- •Alege proponione asc are not obvious (sub-clinical)

Erysipelas Arthritis

- Infection occurs in the paddock through wounds at marking, mulesing, dipping, shearing/crutching, umbilical cord and from the ewe's throat when cleaning afterbirth
 - o Increased deaths and culls through ill thrift and lame lambs
 - Increased tail in the flock
 - Lambs that are unsalable or unfit to load (welfare

 - of lambs born, die before weaning or are culled due to arthritis¹


Managing erysipelas arthritis on farm requires a multifactorial approach

- Ensuring tails are docked at the correct length (3rd palpable joint)
- Good hygiene and pain relief at marking
- Avoid marking in muddy yards ideally put lambs straight back onto the paddock post mark
- Vaccination of ewes pre-lambing will prevent erysipelas arthritis in young lambs
- Vaccination of lambs at marking and weaning will prevent erysipelas arthritis in weaner lambs

NSHMP Annual cost of disease

Effective parasite management

Don't forget about worms!

Pre-lambing ewes have a reduced ability to fight parasites

Faecal counts pre lambing

Building a picture to implement a strategy

- Good practice
- 6-8 weeks pre lambing
- Larval differentiation often pays off
- One piece of a bigger puzzle

Shorting acting or long acting (LA)?

Short acting

- Greater range of actives and combination products available
- Reduces selection for resistance
- Requires low paddock contamination

Long acting

- Limited actives and single active products only
- More heavily selects for resistant parasites
- Requires combination drench therapy
- Gives persistence which can help reduce paddock contamination for lambs

How to effectively use a LA product

- $oldsymbol{\Im}$ Only readily available product on the market is moxidectin
- ♥ Considerable production benefits in the face of high paddock contamination
- Primer and tail cutter should be effective short acting products

Long acting moxidectin
Sheep guard LA

FECS 30 60 90 days

Tail cutter

LA Moxidectin use pre-lambing

Short acting drench selection

The most important drench decision you will make all year

- What works for you? Drench checks and FECRTs
- Use combination drenches
- Rotate between combination products

New active dual combination

Q-drench

Powerful 4-way combination drench

Dectomax V

Only dual active injectable drench avail

Drenching Beef Females

- 1st and 2nd Calvers in Autumn herd require a drench containing a ML in Dec/Jan
- Adult cattle have strong resistance to Ostertagia
- Pre-calving drench is not a routine treatment unless indicators for treatment are present
- Injectable formulations result in higher blood levels of the active ingredient and more reliable dosing

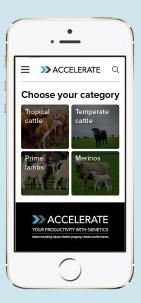
Summary

- Nutritional management is of vital importance to ewes around lambing
- Colostrum is a key component of lamb survival
- Sheep producers can utilize pre-lambing vaccinations to improve colostrum.
- Drench ewes prior to lambing
- Trace mineral supplementation can reduce morbidity around the lambing period.

Check out MLA's new genetics hub

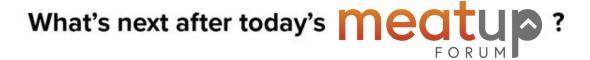
No jargon. No complexity. Just a clear look at how better breeding values can help you accelerate the productivity of your herd or flock

How-to videos to find sires on BREEDPLAN/ Sheep Genetics



How-to videos to get started with breeding values

How-to videos on shopping for a high-performing sire



genetics.mla.com.au

PRODUCER DEMONSTRATION SITES

allow producer groups to apply research on farm while at the same time grow their knowledge and skills. mla.com.au/pds

PROFITABLE GRAZING SYSTEMS

matches

Small groups of producers who want to improve their whole-farm performance

Coaches who share their knowledge, skills and experience

Practical and relevant courses including: feedbase, reproduction, business, people, value chain

mla.com.au/pgs

EDGE WORKSHOPS

help producers gain knowledge and skills to improve their livestock enterprises.

Which one will you try first?

Business EDGE

Breeding EDGE

Nutrition EDGE

Grazing Land Management

mla.com.au/edge

mla MEAT & LIVESTOCK AUSTRALIA

Join 50,000 livestock producers and sign up today.

MLA members receive:

- MLA's Feedback magazine delivered to your mailbox, five times a year
- weekly e-newsletters with latest market and industry news
- the opportunity to vote at MLA's Annual General Meeting
- ✓ invitations to events throughout Australia.

Sign up at mla.com.au/membership or call 1800 023 100

Networking drinks and canapes

60 minutes

