♦ AGRISTA

PRODUCTIVITY & PROFITABILITY

Assessing and Managing Business Risk

Presenter: John Francis

Too busy to fix the problem?

Source: Mark Rober (<u>https://www.youtube.com/watch?v=hFZFjoX2cGg</u>)

To suggest future topics scan here:

PRODUCTIVITY& PROFITABILITY

Change - strong financial performance Scale 15,000 DSE at 80% equity

\$730,000 less cash now relative to 2021

PRODUCTIVITY& PROFITABILITY

Change in a livestock business with moderate financial performance Scale 15,000 DSE at 80% equity

Operating profit

\$105,000

2021

\$555,000

Profit after interest

Annual interest

PRODUCTIVITY& PROFITABILITY

0 response submitted

Do you keep an annual record of your cost of production?

Yes			
No			
Son Treemap	Bar	< 3 of 4 >	

₩AGRISTA

PRODUCTIVITY& PROFITABILITY

5

https://forms.office.com/r/i8u1RDLB5W

2 measures one means

Cost of production

Production

Optimise feed utilisation

PRODUCTIVITY&PROFITABILITY

Targets for >500mm rainfall - majority improved pasture base

Engineering a low-cost beef production system

- Production (kg lwt/ha/100mm)
- Rainfall (mm)
- Production (kg lwt/ha)
- Production (kg lwt/DSE)
- Stocking rate (DSE/ha)
- Cost of production (\$/kg lwt) Operating cost (\$/DSE) Overhead cost (% operating cost) Overhead costs (\$/DSE) Enterprise costs (\$/DSE)
 - 8 PI

- 13.5 Output of target production
- \$1.50 \(\Conv Target)
- \$31.50

\$25.20

\$6.30

80% <-> Production system

MEAT & LIVESTOC

Engineering a low-cost lamb production system

1

630

6.3

- Ewes joined/ha/100mm
- Rainfall (mm)
- Ewes joined/ha
- DSE/ewe joined
- Stocking rate (DSE/ha)
- Production (kg cwt/DSE)
- Production (kg cwt/ha)
- Production (kg cwt/ha/100mm)
- Cost of production (\$/kg lwt)
- Operating cost per DSE
- Sheep trading loss (\$/DSE)

- Production target
 - = 6.3 x 100mm increments $6 \wedge GRISTA$
- 15.75 Output of target production
- 173
- 27.5 Approx half beef target
- \$51.03 97% income lamb 3% wool
- \$10.00 Rams & ewe depreciation
- \$41.03

MEAT & LIVESTOCK AUSTRA

Getting it half right doesn't pay

₩ AGRISTA

PRODUCTIVITY&PROFITABILITY

How do I calculate production?

- Livestock inventory
- Livestock sales & purchases
- Livestock trading schedule

u are here: Home I	My Data / Cost of Prod	uction		
	Trading Details	Expenses Labour & Overhead	s Cost of Production	
11 71	Cattle			
		Opening ⑦	Closing 💿	Change
	# stock	0	0	0
Cows ③	kg/head lwt	0	0	0kg
	\$/head	0	0	\$0
	# stock	0	0	0
Calves ②	kg/head lwt	0	0	0kg
	\$/head	0	0	\$0
	# stock	0	0	0
Weaners ②	kg/head lwt	0	0	0kg
	\$/head	0	0	\$0
	# stock	0	0	0
Heifers 💿	kg/head lwt	0	0	Okg
	S/head	0	0	\$0

https://tools.mla.com.au/

System design considerations to drive a low cost of production

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

What are the tools? https://etools.mla.com.au/hub/

VGRISTA

	use asture types a	and the area (hectare	() of each type that i	e mogent	nonth	tine Unit-faity			
Select	use asture types a		() of each type that i		nonth	line Urshining			
				is available in each r	nosth				
				is available in each r	nonth				
ARE ALL									
-		c phase exchanges in the new field the proting in them to be able to		the server in the server stra	ongo of provided from a	metan perits, Itul, Quilly He	e to the second of	and the sould	in of particle
•	Platers, dee	er - Dolymer, Pert		O Role per	- 0	• 0 10000 0000			
-	1-m 300	10000 2	0.410 83	7 m - 500	1 40	in a second	100	28	
***		1000 10	there are a constructed and the construction of the construction o	540 540	inen. Si	100	1000		
	100	14-m 15	8.4 8.1	141	1-1-1-1 10	1.01	1000	38	
				1.00 500	22	5.00 77	1000		
Apr	240 300	11	18.2	248					
	1-m 500 1-m 500	17 17 15	16.2 16.2	144	Seat.	7,8	1008	12	
ABT	540	17 Koner	192				1000		-
-	101						1000		

Under maintenance

Feed demand calculator

This calculator allows producers to gain an appreciation of the pattern of feed supply and demand over a twelve-month period, the location of "feed gaps" and the ways in which modifying the livestock enterprise might help to close these gaps.

Pasture	Summer	Summer		Autumn		Winter			Total tonnes DM / year / ha	Total tonnes DM / year
Pasture	Tonnes DM/year/ha	Tonnes DM/year	Tonnes DM/year/ha	Tonnes DM/year	Tonnes DM/year/ha	Tonnes DM/year	Tonnes DM/year/ha	Tonnes DM/year	iotal tonnes DW / year / ha	Total tohines DW / year
Totals	0.7	705	1.5	1529	1.2	1210	3.5	3518	7	6962
Feed sup	ply available	over a 12 mo	onth period (St	art date: 1 Jan)						
Plot results as			Chart type						C	REFRESH CHART
onnes / ha			✓ Line			-				
					Sir	nulation 1				
0.0016					Fresh	ly grown supply				
0.0010									~	
0.0014 —										
0.0012 -										
Ê 0.0010 -										\sim
– 0.000.0 Junes DWMa) – 200000 – - 0.00000 –										
0.0008 -										
0.0008-										
4 0.0000										
0.0004										
0.0002	a									
0.0002 -										

Beef system design to deliver >50% feed utilisation **MEAT & LIVESTOCK AUSTRALI** Daily pasture growth rate (kg DM/ha/day) 15 months 450kg Feb Oct Nov Mar Sèp Jan Apr May Jun Jul Aug Deć Sales Calve **PRODUCTIVITY& PROFITABILITY**

*** (5)** iii (\$)

Prime lamb system design to deliver >50% feed utilisation

MGRISTA

Lamb system – feed demand curve

Beef system – feed demand curve

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Outputs of high feed utilisation

High feed utilisation Low feed utilisation

Greater stocking intensity

More production/unit area

Better labour efficiency

Lower cost of production

PRODUCTIVITY&PROFITABILITY

But Can you afford production discretion? Cows plus followers 469 Equity 75% +15% price Asset value \$15,736,301 from a low c100 200 $\overline{\mathbf{y}}$ pricing \$155,128 Profit after interest -\$110,317 base Production (kg lwt/ha) 187 Cost of production (\$/kg lwt) \$2.21

Steps to get back on track

- Engineer the production & cost targets
- Design a system that delivers
- Conduct a partial budget (existing vs potential)
- Assess capital requirements/perceived risk/skills required
- Calculate production & cost of production annually

PRODUCTIVITY& **PROFITABILITY** 1111111111111 series -11--1111-1-111-----

A HOME

To suggest future topics scan here:

