Containment feeding as a pasture management tool

Basil Doonan

Pinion Advisory

What I'm not covering!

- What cohorts enter confinement
 - Marginal cost versus marginal revenue
- Nutritional requirements of animals in confinement
- Feeding efficiency in confinement

Plant survival

- Plants will do what they car
 - Dry condition dormancy
 - Cold condition decrease gibt
 - Wet (waterlogged) they resp
- We can help!
 - Rest (go to confinement th

Plant survival

Rest for how long?

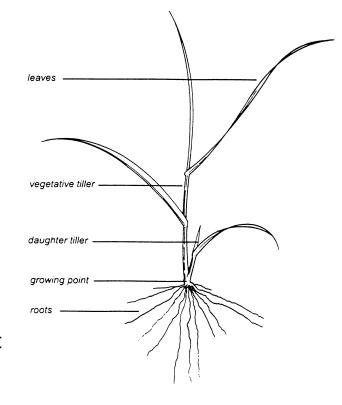
- Minimum time is associated with:
 - Tiller survival
 - Feed quality
- Maximum time is associate with:
 - Total pasture production (quantity)
 - Wastage

As an example!

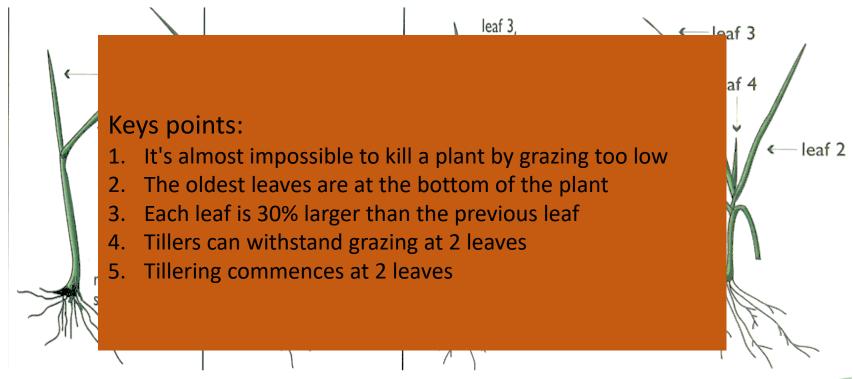
Ryegrass

• 2-3 leaves

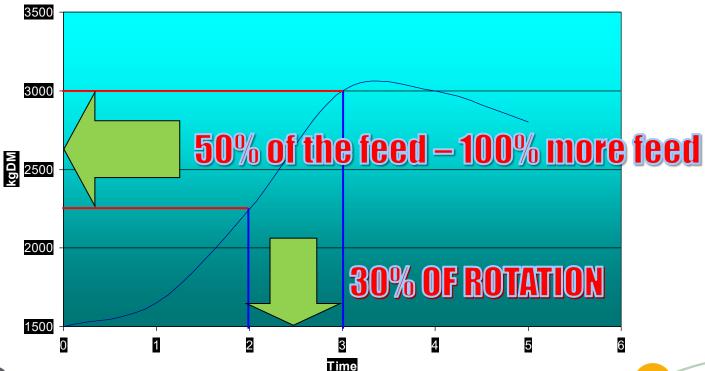
• But the princip


	Species	Grazing window
iţ	Ryegrass	2-3
	Cocksfoot	3-4
	Fescue	2-4
	Phalaris	2-4
	Kikuyu	2-5
	Setaria	2-6
	Brachiaria	2-6

How plants grow!


- Energy hierarchy in plant:
 - 1. Leaf growth
 - 2. Root growth
 - 3. Tillering/reproduction
- Grass plant is a collection of tillers
 - Each tiller has its own leaf and root system
 - Tiller lives for about a year
 - Perennial persistence is about tillering not seed-set

How plants grow – above ground


How plants grow – below ground

Quantity

Quality

Leaf Stage	NSC/DIP	RDN (%)	Ca:P	K/(Ca + Mg)	Energy (MJ)
1	1:2	35	1:1	8	20%
2	1:1	25	1.5:1	4	50%
3	2:1	24	2:1	2.5	100%
Optimal	2:1	19	2:1	2.2	100%

Survival/perenniality

- Tiller formation won't start until energy reserves ensure parent survival
- If grazing duration is longer than 2-3 consecutive days
 - Plant energy reserves depleted (less than 1 leaf)
 - About 20-30% less regrowth
- If greater than 5 days
 - Can lead to a 40-60% reduction in re-growth
 - And 40-50% tiller death

What plants need to grow

1. Temperature

2. Water

how **FAST**Leaves grow

3. Light

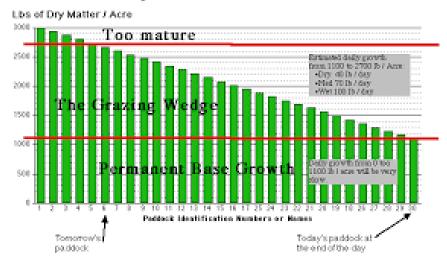
4. Nutrients

how **BIG**Leaves grow

We want to measure this to make grazing decisions

Entering confinement

- When there is no pasture left
 - 750-900 kg DM/ha (or 1-2 cm)
- Why
 - Plants will recover from this
 - You can't preserve the feed
 - Leaf material left will be the oldest leaves
 - Ground cover should be achieved with tiller density not leaf material and trash
 - You have maximised the time/chance of not having to go to confinement



Exiting confinement

- From our pasture knowledge
 - Optimse quality and survivability of tillers
 - Maximize feed accumulation Minimize waste
 - Acknowledge the feed will be a block rather than a wedge

Keep it between the Lines!!

Exiting onto low cover and slow growth rates

- Limitation to growth
 - LER
 - Leaf size
- Maintain the right rotation (rest period)
 - Add growth promotant's like Nitrogen and Gibb acid
 - Exit the right number of animals
 - Match supply and demand
- Don't wait
 - Waste feed

Exiting onto low cover and slow growth rates

- Say you have 1,200 ha
- A LER rate of 20 days/leaf
- Pregrazing cover of 1,300 kg DM/ha
- Happy to graze to 900 kg DM/ha
- Want to grow as much feed as possible
 - 1. Exit at 2-2.5 leaves (Quantity, Quality, Survival)
 - 2. Go on a 60-day rotation
 - 3. 20 ha/day at 400 kg DM/ha available = 8,000 kg DM
 - 4. Release 4,000 ewes rated at 2 DSE or 2 kg DM/ewe/day
- As pregrazing mass increases release more animals

Quantifying wastage

- Too late is dead/decayed leaves
- Too early missed opportunity to grow 100% more in 30% more time
- In our previous example
 - 1,200 ha at 400 kg DM/ha
 - Exit too late lose inimum 20% from plant death (wasting 1 leaf)
 - 400 kg DM/ha x 20% = 80 kg DM/ha
 - Exit too early lose 50% feed (not growing 1 leaf)
 - 400 kg DM/ha x 50% = 200 kg DM/ha

Quantifying wastage at 400 kg DM available

Leaves	Death (kg DM/ha)	Lost feed (1,200 ha)	Purchase cost (\$400/t)
1 (20%)	80	96 t	\$38,400
2 (30%)	120	144 t	\$57,600
3 (50%)	200	240 t	\$96,000
Total (100%)	400	480 t	\$192,000 (\$160/ha)

Quantifying lost opportunity at 400 kg DM available

Leaves	Not grown (kg DM/ha)	Lost feed (1,200 ha)	Purchase cost (\$400/t)
1 (50-20%)	120	144 t	\$57,600
2 (50-20%)	120	144 t	\$57,600
3 (50-20%)	120	144 t	\$57,600
Total (100%)	360	432 t	\$172,800 (144/ha)

Either or....?

	Species	Grazing window	
 Noyou can have any Exit too late with was Exit too late with was Exit too early and mis 	, ,	2-3	owth!! bate wastage!!
	Cocksfoot	3-4	
		2-4	feed!!
 Exit too early and mis So exit midway betwe 	Phalaris	2-4)wth!!
• Monitor – frequency	Kikuyu	2-5	
• Its easier to take mor		2-6	
 Unless you're a fantas Exit close to the top s 		2-6	ty then slow rapidly

• Exit close to the top ϵ

ty then slow rapidly!

Take home messages

- Understand how plants grow
 - Make regular observations
- Enter confinement when all the pasture is gone
 - Pasture has a limited shelf life
 - You won't kill pastures grazing too low
 - You will kill grazing too frequently
- Exit containment between the minimum and maximum leaf stage for the main species
 - Maximises the response to feeding
 - Maximises quantity, quality and persistence
- When exiting onto low covers and slow growth
 - Maintain the right rotation and feeding level by exiting the right number of animals

Tools and resources

- MLA Feed Demand Calculator
- More Beef from Pastures
- Pasture Principles
- Gass to Dollars

Thank You

Basil Doonan
bdoonan@pinionadvisory.com
Pinion Advisory

