

FORUM

For the latest in red meat R&D

Technology – Easy to Use, Easy to Adopt

Philip Honey Stirlings to Coast Farmers

Technology summed up

Like I.T., AgTech implementation can be stressful for many:

- How do I choose a product?
- How do I get help? Who do I talk to?
- Do they understand my enterprise goals or aims?
- How do I guarantee my success?
- Is it going to cost an arm and a leg?

We want to avoid all of these challenges...and make it easy to use and adopt!

Smart Farms Technologies

SCF is road-testing a wide range of digital tools & connectivity solutions across multiple vendors:

- 77 environmental & infrastructure monitoring devices.
- 39 connectivity devices.
- 8 connectivity types.
- 13 device manufacturers.

How do I get started?

- 1. **Design** What problem are we trying to solve?
- 2. Sensor Choice What sensors can I use? What are their limitations?
- **3.** Connectivity Solutions what connectivity will I need to implement/improve for efficient use?
- **4. Data Management** how will I be able to access this data for meaningful decisions?

Step 1 - Design

- Identify what problems you are trying to solve?
 - How to minimise running out of water?
 - How do I detect a burst water pipe?
 - How do I improve my workforce efficiencies?
 - How can I get a better understanding of average daily weight gains in paddock?
- Identify where you want to go in the future.
- Identify potential installation locations & map these out!

Notes:

- Not all problems can be solved by technology.
- Identify the problem <u>before</u> selecting the sensor!

Step 2 – Sensor/Device Choices

FARMERS

- Identify which sensors are appropriate for the task.
- Select the sensor that is fit for the job & know its limitations:
 - Accuracy levels?
 - Expected lifetime?
 - Maintenance requirements?
 - What installation tricks are required to get it to optimally operate?
 - Communication protocols
 - Will it work with what I've already got?
 - Can it send email or SMS alerts?

Step 3 – Sensor Connectivity Solutions

There's a connectivity solution for every farm in Australia... even where traditional "coverage" doesn't exist.

	Mobile		Wi-Fi	Satellite	Radio
Туре	3G / 4G	NB-IoT or Cat-M1	Point to Point	Satellite	LoRaWAN & DigiMesh
Positives	 Good coverageif you're within range of a tower. Best for sending larger data packets 	 Best coverage - Increased range compared to mobile phone coverage. <120km on NB-IoT 3 – 4 million square kilometres covered 5G technology! Up to 10 year battery life 	 Allows higher bandwidth – great for cameras or extending internet coverage between or within farms. 	Works everywhere!!!!!	 Typically lower ongoing cost where mass device counts are installed. Can be implemented where phone/internet coverage doesn't exist.
Negatives	 Requires a 'decent' battery to operate the device. 3G is phasing out in 2024 4G is phasing out in ??? 	 Still relies on a Telstra tower within range Not suited for "large messages" Best adapted for climatic, tracking & water monitoring 	 Requires significant power supply. Not really suited for 'low-data usage' devices. Typically requires a "Registered Cabler" to install. 	 Limited update times (can be as bad as 1 message/day, but generally improving as more satellites are launched in due course). 	 Different devices can have different frequency channels, which means compatibility can be an issue. Requires good line of sight to sensor & radio tower.
Cost	Varies from \$75-350/device, per year.	Low cost per year (\$60-\$120/device)	Once off purchase, typically around \$170 per end plus cabling/install fees.	Varies depending on supplier. \$120/year rain gauge \$450/year for Farmbot 	 High initial upfront cost (\$500-3500 for radio network), and then either: a very low ongoing cost per device, or Minimal yearly fee for a dashboard with unlimited devices

*All pricing is indicative, may vary or fall under promotion & is subject to manufacturers changes.

Step 4 – Data Management

How will I be able to access this data for meaningful decisions?

- Mobile App? Text Message Alerts?
- Web Dashboards?
- Via external applications?

Select solution providers that allow you to have multiple options where possible:

- Weather Stations
- Rain gauges
- Soil Moisture Probes
- Tank Level Sensors
- Flow Sensors
- Pressure Sensors
- Safety check-in buttons

Iank 1 Water level above maximum limit Water Level : 190.8 cm http://www.farmbot.net.au/LRS-Web1/dbP?mh=513534

What to look out for & consider

- Build quality Will it handle the elements? Is it actually fit for purpose? Does it seal?
- Is there Australian support available? Local support?
- Can I share my data externally & implement it in other programs (livestock & farm management software)
- How does it connect? Will I need to implement radio networks?
- Does it meet Australian Standards?
- How can I protect it?

Protect it at all costs.....

Accidents happen.

Livestock certainly love scratching posts!

Install barriers!

Smart Farm Technologies

Weather Station (above) with Hyper Local Forecasting

meatup FORUM

Farm Security Camera (above)

and a stand

Rain Gauges (Satellite -Above, Cat-M1 Below)

SCF LoRaWAN Rain Gauge & 80cm Soil Moisture Probe

NB-IoT Water Level Sensor

4G Water Level Sensor

Water Monitoring Technologies – economics at Mount Barker Smart Farm

- 3 Tank Monitors
 - 2 Ellenex Tank Level Sensors
 - \$642 each + \$88/year connectivity/dashboard fee
 - 1 Farmbot Tank Level Sensor
 - \$1120 each + \$342/yr
- 35km round trip
- 1 hour to complete
- 1.4 trips per week (1 check, every 5 days)

When would the system pay itself off?

Water Monitoring Technologies – economics at Mount Barker Smart Farm

• 3 Tank Monitors

- 2 Ellenex Tank Level Sensors
 - \$642 each + \$88/yr
- 1 Farmbot Tank Level Sensor
 - \$1120 each + \$342/yr
- 35km round trip (@ \$0.72/km)
- 1 hour to complete (@ \$25/hr)
- 1.4 trips per week
 (1 check every 5 days)

The system "breaks-even" around the 292nd day of implementation.

	Year 1	Year 2	Year 3	Year 4	Year 5
Labour Cost	\$1,820	\$1,820	\$1,820	\$1,820	\$1,820
Travel Cost	\$1,834	\$1,834	\$1,834	\$1,834	\$1,834
Hardware Cost	\$2,523				
Yearly Ongoings	\$516	\$516	\$516	\$516	\$516
Cumulative Savings	\$615.56	\$3,754	\$6,892	\$10,031	\$13,169

Water Monitoring Technologies – economics at Mount Barker Smart Farm

• 3 Tank Monitors

- 2 Ellenex Tank Level Sensors
 - \$642 each + \$88/yr
- 1 Farmbot Tank Level Sensor
 - \$1120 each + \$342/yr
- 35km round trip (@ \$0.72/km)
- 1 hour to complete (@ \$25/hr)
- 1.4 trips per week
 (1 check every 5 days)

The system "breaks-even" around the 292nd day of implementation.

	Year 1	Year 2	Year 3	Year 4	Year 5
Labour Cost	\$1,820	\$1,820	\$1,820	\$1,820	\$1,820
Travel Cost	\$1,834	\$1,834	\$1,834	\$1,834	\$1,834
Hardware Cost	\$2,523				
Yearly Ongoings	\$516	\$516	\$516	\$516	\$516
Cumulative Savings	\$615.56	\$3,754	\$6,892	\$10,031	\$13,169

Other Savings/benefits:

- Reduced risk of welfare issues in summer months
- Increased animal insights
- Peace of mind
- Potential to mitigate water supply issues before they occur
- Ability to do other important things

Livestock Measurement - OptiWeigh

- Objective weight measurement in the field, without human interaction.
 - Minimises cattle movements to yards for weighing = more time grazing.
 - Minimises OHS risks in the field
- Requires an 'attractant' inside the cage to attract the cattle in to get weighed and individual EID.
- Easily movable between paddocks.
- Currently only suitable for cattle, however research is being undertaken for sheep applications.
- Approx. \$16,000 ex GST, with \$240/year data connection fee.

OptiWeigh in action – SCF MLA PDS - Alternative Forage Trials <MLA PDS project in progress>

- Pallaton Raphno[®] a cross between kale and radish.
 - Increased palatability relative to forage rape & leafy turnip brassicas.
 - High yielding, with a potential of 4 5 grazings per year.
 - Improved Water Use Efficiency (up-to 38%) & aphid tolerance (up-to 32%) than forage rapes.
 - Graze as early as 50 70 days after emergence.

A look towards the future – Pasture Prediction

SCF in conjunction with CSIRO are developing a Drought Resilience dashboard for the Great Southern of WA.

- An easy to read, 'go-to' point to see how the season is tracking for pasture production, against previous seasons.
- Weather information & forecasting
 - Hourly forecasts for next 36 hours.
 - Daily forecasts for next 15 days.
- Soil moisture status.
- Climate resilience information portal.

This program/project is jointly funded through Australian Government's Future Drought Fund and Stirlings to Coast Farmers inc.

Australian Government

Take home messages

- Always consider the long-term cost benefits of implementing digital technologies, rather than just the upfront price!
 - Your time & travel is <u>valuable</u>.
 - Consider the "<u>non-dollar benefits</u>" such as:
 - increased workforce efficiency gains,
 - improved animal welfare outcomes.
- Start simple with the basics & work your way up.
 - Water level monitoring equipment is the easiest to implement, often paying itself off within 12 months of implementation.
 - There are connectivity solutions available for <u>all</u> of Australia.
- Identify the problem before choosing the sensor
- Technology can objectively alert you to issues before it is too late...whilst helping give you peace of mind.

Tools and resources

A wide range of supporting resources are accessible via the SCF projects page:

- Smart Farms Initiative
 - Smart Farms Workshop Manual
 - Smart Farms Implementation Flow Chart
 - Smart Farms Calculator
- MLA Producer Demonstration Site
 - Trials Review Article 2021 Project result summaries

www.scfarmers.org.au/projects

Alternatively, there's also these great resources available:

- DPIRD IoT Case Studies accessible via <u>https://bit.ly/dpird_iot</u>
- WALRC Many Peaks Forum (Session 5) accessible via WALRC's YouTube Channel.
- MLA Romani Pastoral Co & Carwoola Pastoral Co Smart Farms accessible via YouTube and MLA R&D Reports.

Project Acknowledgements

The SCF Smart Farms Initiative has been supported & developed through individual farmer contributions and the following respective grant programs:

- WA IoT DecisionAg Grants Program

 Department of Primary Industries & Regional Development (WA Govt)
- National Landcare Program Smart Farms Small Grants – Department of Agriculture, Water & the Environment (Aus Govt)
- Future Drought Fund Drought Resilience Program - Department of Agriculture, Water & the Environment (Aus Govt)
- Producer Technology Uptake Program – AgriFutures Australia

SCF also greatly appreciates Meat & Livestock Australia in their support in our Producer Demonstration Site Program – Alternate forage crops for Southern WA.

Department of Primary Industries and Regional Development

GOVERNMENT OF WESTERN AUSTRALIA

Australian Government

