Leading Sheep MeatUp Forum

LONGREACH, FRIDAY 25 MARCH 2022

Combining subjective and objective measurements to make informed decisions when investing in genetics

Emma McCrabb Meat & Livestock Australia

What impacts performance?

How are breeding values calculated?

Sheep Genetics role

- Program of Meat & Livestock Australia (MLA)
- Deliver the national genetic evaluation for sheep and goats
 - The evaluation is run by AGBU (Animal Genetics and Breeding Unit) at UNE using OVIS Software
- Breeding values are delivered as:

Genetic benchmarking tool

- ASBVs (Sheep) and EBVs (Goats)
- Negative ASBVS are not always bad
- Accuracy is a reflection of the amount of info used
- ASBVS need to be compared to the current average (percentiles)

PCTL. TOP

25

50

75

BOTTOM

Selection indexes

Using ASBVs in selection

MERINOSELECT - Genetic Trends

Putting this in practice

Breeding objectives

- 1. What are your profit drivers or costs to your business?
- 2. Match these production traits to breeding value traits and indexes
- 3. Where do you currently sit?
- 4. Where do you want to get to?
- 5. When will you get there?

Matching profit drivers with traits

Live weight (WT)

meatup

Fleece weight (FW) Fibre Diameter (FD)

Number of Lambs Weaned (NLW) Worm Egg Count (WEC) Breech Wrinkle (BWR) Dag (DAG)

Eye muscle depth (EMD) Fat depth (FAT) Intramuscular fat (IMF)

Reproduction - now and into the future

Number of Lambs/Kids Weaned (NLW/NKW)

- There are a number of factors that influence how many lambs a ewe might rear
- New traits available for merino and maternal breeders

Reproduction - NLW

Two ewes

But how did they get there?

Both wean two lambs each

The component reproduction evaluation

- Conception (CON)
 - Did the ewe conceive?
- Litter size (LS)
 - How many lambs were born?
- Ewe rearing ability (ERA)
 - How successfully did the ewe rear her lamb(s)?
- And now... Weaning rate (WR)
 - Number of lambs weaned per ewe joined

Putting this in practice

MEAT & LIVESTOCK AUSTRALL

Flock profile

- Commercial merino producers
- DNA test 20 lambs
- Provides flock average ASBVs
- Industry recording and genotyping (reference populations) underpin Flock Profile

Flock profile outputs

Yearling Clean Fleece Weight Lighter (YCFW) Yearling Fibre Diameter (YFD) Broader Yearling Fibre Diameter Coefficient of Variation Higher (YFDCV) Yearling Curvature (YCURV) Less Yearling Staple Length (YSL) Shorter Post Weaning Weight (PWT) Lighter Yearling Weight (YWT) Lighter Yearling Fat Depth (YFAT) Leaner Yearling Eye Muscle Depth Smaller (YEMD) Early Breech Wrinkle (EBWR) More Dual Purpose Index (DP) Merino Production Index (MP) -Fibre Production Index (FP) _ Post Weaning Worm Egg Count More (PWEC) 100

Merino Select Percentile

Sire team tracking

- All breeds/species
- All traits
- For your breeding objective:
 - 1. Average the ASBVs of the sire team each year
 - 2. Track this overtime and use to inform selection decisions

Putting this in practice

Using breeding values in selection

	↓ MP+	YWT	YCFW	YEMD	YFAT	EBWR
RAM 1	168.80 ACC. 48	8.05 ACC. 94	32.55 ACC. 87	0.67 ACC. 93	0.14 ACC. 90	-0.87
	TOP 20%		TOP 5%			TOP 20%
RAM 2	168.78 ACC. 63	5.28 ACC. 97	30.19 ACC. 94	1.78 ACC. 92	0.75 ACC. 89	0.49 ACC. 93
	TOP 20%		TOP 10%	TOP 20%		

Take home messages

- Breeding values describe the genetic merit an animal will pass on to its progeny.
- New reproduction breeding values allow merino and maternal producers to target and improve specific areas of reproduction.
- Consider flock profile testing or sire team tracking to benchmark your genetics and inform sire selection decisions.

Tools and resources

- Sheep Genetics: (www.sheepgenetics.org.au)
- MLA Genetics Hub (<u>https://genetics.mla.com.au/)</u>
- <u>AWI Genetics</u>
- Bred Well, Fed Well Sheep workshop
- Sheep Reproduction Strategic Partnership

	MEN'S CHEVROLA							
'm a breeder, I want to sea	rch Merinos & I	'm interested	in Wool and m	eat productio	n.			
Filters SIRE 15 PROGEN	IN CURRENT DROP							EDIT SEARCH
ANIMAL ID	↓ DP+	YWT	YCFW	ACFW	YFD	YSS	MWWT	YEMD
WALLALOO PARK-170760	250.46	8.62	32.00	30.57	-0.69	4.91	-0.54	0.04
SEMEN GENOMICS	ADC. 77	ACC. 98	ACC. 97	ACC. 93	ACC. 98	ACC. 95	ACC. 92	ACC. 95
	TOP 5%	TOP 20%	TOP 5%	TOP 5%		TOP 10%		
		8.86	43.89	42.51	-1.61	-3.88	-2.58	0.00
P00GIN00K-180261	242.35							
POOGINOOK-180261	242.35 ACC. 63	ACC. 96	ACC. 93	ACC. 83	ACC. 97	ACC. 75	ACC. 65	ACC. 91

Links to all resources can be found in the Forum proceedings

Combining subjective and objective measurements to make informed decisions when investing in genetics

Emma McCrabb Meat & Livestock Australia

