



# final report

| Project code:   | B.AHE.0232                 |
|-----------------|----------------------------|
| Prepared by:    | W.D. Smith                 |
|                 | Moredun Research Institute |
| Date published: | November 2014              |
| ISBN:           | 9781741918977              |

PUBLISHED BY

Meat & Livestock Australia Limited Locked Bag 991 NORTH SYDNEY NSW 2059

## Development of a commercial vaccine for *Haemonchus contortus*, the Barber's Pole Worm

Meat & Livestock Australia acknowledges the matching funds provided by the Australian Government to support the research and development detailed in this publication.

This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA.

## Abstract

Barbervax, a vaccine for Barber's Pole worm, was registered for use in Australian lambs in October 2014. The main object of the present project was to evaluate the efficacy and safety of the vaccine for ewes, with a view to extending registration across the whole flock. Three field trials conducted in the Northern Tablelands of NSW showed that Barbervax could curb Haemonchus egg counts in ewes both before and after weaning, especially if they had been vaccinated in a previous season. Reducing egg output during lactation is important because this is the main source of infection for the next generation of sheep, while lower egg counts post weaning will reduce anaemia and deaths in ewes during late summer and autumn, the peak season for Barber's Pole worm disease. A large scale safety trial with some 600 ewes was favourable in that it confirmed that any adverse effects of using Barbervax were mild and transient. A secondary objective was to determine whether Barbervax could be useful for producers in the Northern Slopes of NSW. Graziers in this region would be reluctant to adopt the 5 vaccination schedule recommended for Barbervax in the Northern Tablelands because the effort and expense of mustering on their more extensively grazed properties would be prohibitive. The trial was encouraging, because a strong antibody response was detected post weaning, but unfortunately inconclusive, because drought prevented any significant challenge. This information together with earlier results from trials with yearling sheep has been compiled and submitted to the APVMA in order that authority for using Barbervax across entire flocks can be obtained.

## **Executive summary**

The Barber's Pole worm, *Haemonchus contortus*, is an important gastrointestinal parasite of sheep and goats in Australia and overseas. Because the parasite prefers warm moist conditions, Haemonchosis is particularly common in the summer rainfall zone especially in North Eastern NSW and Southern Qld, but the disease can occur sporadically in any State. *Haemonchus* is usually controlled by anthelmintic drugs, but strains resistant to these chemicals are common and widespread in endemic areas. Alternative methods for control are required. Barbervax, a vaccine for *H.contortus*, has recently been approved for sale in Australian lambs, the main objective of the present work was to determine whether it was also effective in ewes.

The present project was the third part of a three stage objective where the overall aim is to make an effective Barber's Pole worm vaccine commercially available for Australian sheep producers. This vaccine has been developed at the Moredun Research Institute in Scotland following some 20 years work and is manufactured by one of its subsidiaries, Wormvax Australia, at the Department of Food and Agriculture, Western Australia laboratory in Albany WA in collaboration with local parasitologists.

This first part (Project B.AHE.0068) of the overall objective was concerned with obtaining a Good Manufacturing Practice (GMP) licence for the vaccine and with determining vaccine efficacy and safety for lambs in field trials. Most of the trials were done in New England, NSW where *Haemonchus* is endemic and a serious problem (two trials not funded by MLA were also done in WA). The results were successful and culminated in the registration of Barbervax for use in lambs by the Australian Pesticide and Veterinary Medicines Authority (APVMA) on 1<sup>st</sup> October 2014.

The second part (Project B.AHE.0214) of the overall objective showed that the vaccine afforded lambs an epidemiological benefit by reducing pasture contamination with infective worm larvae. In addition, it showed that the vaccine was effective in yearling sheep

The main aim of the present project (B.AHE.0232), the third part of the overall objective, was to determine the ability of the vaccine to confer protection on ewes, both in terms of suppressing their increased susceptibility to infection around lambing and during lactation, an important source of infection for their lambs, but also during the high risk period in late summer when ewe deaths due to Barber's Pole worm are not uncommon.

The results have been favourable and a second dossier containing the data from B.AHE.0232 and B.AHE.0214 was submitted to the APVMA in December 2014. Therefore, if approval of the second dossier is obtained, farmers will be able to use the vaccine in lambs, yearlings and ewes. By this means it is hoped that Australian farmers will have a new tool to combat Barber's Pole worm across their entire flock.

## Contents

| 1. | Background5                              |                                              |     |  |  |  |  |
|----|------------------------------------------|----------------------------------------------|-----|--|--|--|--|
| 2. | Obj                                      | Objectives5                                  |     |  |  |  |  |
| 3. | Met                                      | hodology                                     | 5   |  |  |  |  |
| 4. | Res                                      | ults                                         | 6   |  |  |  |  |
|    | 4.1                                      | Vaccine efficacy trials with ewes            | 6   |  |  |  |  |
|    | 4.2                                      | Large scale safety trial with ewes           | 8   |  |  |  |  |
|    | 4.3                                      | Efficacy trial with extensively raised lambs | 8   |  |  |  |  |
| 5. | Disc                                     | cussion / conclusions                        | 9   |  |  |  |  |
| 6. | Арр                                      | endices                                      | .10 |  |  |  |  |
|    | Арр                                      | endix 6.1. CSIRO ewe efficacy trial report   | .10 |  |  |  |  |
|    | Appendix 6.2 Dundee ewe efficacy trial58 |                                              |     |  |  |  |  |
|    | Арр                                      | endix 6.3 Kingstown ewe efficacy trial       | 110 |  |  |  |  |
|    | Арр                                      | endix 6.4 Large scale safety trial           | 149 |  |  |  |  |
|    | Арр                                      | endix 6.5. Extensively raised lamb trial     | 177 |  |  |  |  |

## 1. Background

The Barber's Pole worm, *Haemonchus contortus*, is an important gastrointestinal parasite of sheep and goats both in Australia and overseas. Because the parasite prefers warm moist conditions, Haemonchosis is particularly common in the summer rainfall zone especially in North Eastern NSW and Southern Qld, but fatal disease can occur in any State. *Haemonchus* is usually controlled by anthelmintic drugs, but strains resistant to these chemicals are common and widespread in endemic areas. Alternative methods for control are required, vaccination being one possibility. After some 20 years of work, a promising *Haemonchus* vaccine called "Barbervax" has been developed at the Moredun Research Institute in Scotland. Important questions to answer were whether Barbervax would work under Australian conditions and, if so, whether it could be successfully commercialised for use in Australia and other countries.

## 2. Objectives

This report describes the third of three projects aimed at making an effective Barber's Pole worm vaccine commercially available for Australian sheep producers. The first (B.AHE.0068) and second (B.AHE.0214) projects have been reported separately already.

This project was mainly concerned with determining whether the vaccine could confer protection on ewes, both in terms of suppressing their increased susceptibility to infection around lambing and during lactation, an important source of infection for their lambs, but also during the high risk period in late summer when ewe deaths due to Barber's Pole worm are not uncommon. A large scale safety trial with ewes was also conducted.

A secondary objective was to determine whether Barbervax could be useful for producers in the Northern Slopes of NSW. Graziers in this region would be reluctant to adopt the 5 vaccination schedule recommended for Barbervax in the Northern Tablelands because the effort and expense of mustering on their more extensively grazed properties would be prohibitive.

Last but by no means least, the third objective was to compile the findings from this and the previous (B.AHE.0214) into a dossier for submission to the APVMA. This was achieved in December 2014.

## 3. Methodology

The methods used to conduct the various sheep trials are detailed in their specific reports as described in Appendices 6.1, 6.2, 6.3, 6.4 and 6.5. These reports are truncated versions of the those submitted to the APVMA.

MLA is committed to investing in top quality scientific research, performed by suitably qualified, experienced and registered researchers and organisations. In experiments that involve livestock, MLA acknowledges that such research will first need to be assessed, and if deemed relevant, approved by a recognised Animal Care and Ethics Committee (AEC). The responsibility for obtaining AEC approval lies with the researcher. MLA has in the past not specifically asked for evidence that such AEC approval had indeed been obtained.

## 4. Results

### 4.1 Vaccine efficacy trials with ewes

Pregnant ewes lose their naturally acquired immunity to worms around lambing time, shedding eggs which become the main source of pasture contamination for their offspring. Therefore it was of particular interest to know whether Barbervax could curb *Haemonchus* egg output from the ewes before weaning and, if so, what effect would it be predicted to have on the build-up of infection in their lambs

Three trials were conducted, each on a different property. On two of these a group of pregnant ewes was available which had received two courses of Barbervax previously, the first when they were lambs, the second when they were hoggets. The effect of giving Barbervax to these Previously Vaccinated animals was compared with that of agematched pregnant ewes vaccinated for the first time, the so-called First Vaccinated group. The detailed methods and results of these trials are presented in Appendices 6.1, 6.2 and 6.3.

In an attempt to ensure high levels of circulating vaccine antibodies during the periparturient period, the First Vaccinated group was injected twice with Barbervax approximately one month apart before lambing. Because the serology from preceding yearling trials had predicted that the Previously Vaccinated group would mount a secondary response, these ewes were given the second of these injections only. Further boosting of all the vaccinates occurred at lamb marking time, at weaning and at six week intervals thereafter till the end of the season. For simplicity and to ensure equal exposure to natural infection vaccinated and control ewes grazed the same paddock. Worm control in the lambs was attained by repeated drenching.

Barbervax did reduce ewe egg output both during lactation and the trial as a whole, but the effect was superior in the sheep which had received previous courses of the vaccine (Table 2). On the two properties where significant precautionary drenching was required for the control sheep, significantly less was needed for the vaccinates, especially those which had received Barbervax when younger. In other words Barbervax had an impact both on the potential build-up of *Haemonchus* on the paddock but also on the health of the ewes themselves.

|           |        | Period    |       |  |
|-----------|--------|-----------|-------|--|
| Trial     | Group* | Lactation | Whole |  |
| Site      |        | only      | trial |  |
| Kingstown | FV     | 50        | 61    |  |
| Dundee    | FV     | 18        | 32    |  |
|           | PV     | 55        | 55    |  |
| CSIRO     | FV     | 29        | 21    |  |
|           | PV     | 71        | 73    |  |

Table 2. Percent reduction in Haemonchus egg counts of vaccinated ewes

\*FV = First Vaccinated

\*PV= Previously Vaccinated

The downstream benefit of using Barbervax in both ewes and their lambs was predicted by computer modeling done by Dr Robert Dobson in a parallel project funded by the European Union. When the scenario of 50-70% reduction in egg output of the previously vaccinated sheep ewes (Table 2 above) combined with an 80% reduction in lamb egg output (the average obtained in the previously reported field trials) was simulated, the overall benefit was substantial (see Tables 3 and 4 below). Table 3 shows the benefit of vaccination by comparison with unvaccinated lambs and ewes that received a persistent anthelmintic treatment regimen.

| Vaccination Protection |                 |      |     | haemonchosis |  |
|------------------------|-----------------|------|-----|--------------|--|
| Ewe                    | Ewe Lamb        |      | epg | years/20     |  |
| 50-80%                 | 50-80% 70-80%   |      | 142 | 1.6          |  |
| Un-vacc                | Un-vacc Un-vacc |      | 561 | 12.5         |  |
| vaccir                 | ne benefit      | 20.2 | 419 | 10.9         |  |

Table 4 shows the benefit of vaccination by comparison with unvaccinated lambs and ewes that received a short acting anthelmintic treatment regimen.

| Vaccination Protection |               | Animal | mean Hc | haemonchosis |
|------------------------|---------------|--------|---------|--------------|
| Ewe                    | Ewe Lamb      |        | epg     | years/20     |
| 50-80%                 | 50-80% 70-80% |        | 142     | 1.6          |
| Un-vacc Un-vacc        |               | 29.3   | 924     | 13.5         |
| vaccir                 | ne benefit    | 27.5   | 783     | 11.9         |

It was concluded that a course of Barbervax could aid in the control of *Haemonchus* in adult ewes especially if they had received a course of vaccine in an earlier season. More importantly perhaps, the combined effect gained by vaccinating both ewes and their lambs was likely to provide substantial benefit to the flock as a whole.

#### 4.2 Large scale safety trial with ewes

The results detailed in Appendix 6. 4 showed that apart from a mild rise in rectal temperature one to 3 days after administration Barbevax provoked no detectable adverse reactions.

### 4.3 Efficacy trial with extensively raised lambs

Here a vaccination regime consisting of injections at marking and at weaning 10 weeks later, stimulated a strong post weaning secondary antibody response which was on a par with protective levels observed in New England lambs during 2011-12. Unfortunately a natural challenge infection failed to develop because of the drought conditions and so it is uncertain how protective the observed response would have been.

## 5. Discussion/conclusions

The efficacy trial with extensively raised lambs near Narrabri was encouraging from a serological perspective, but inconclusive thanks to the lack of worm challenge. Fortunately however, there was sufficient rain in the New England district to provide an adequate challenge to test Babervax efficacy in the three trials with ewes. These trials showed that a course of Barbervax significantly reduced ewe egg counts both before and after weaning, but the effect was stronger and more reliable if the animals had been immunised in a previous season. The efficacy observed would probably have been increased if the vaccinates had grazed separately from the unvaccinated control ewes, as users of the vaccine would be strongly advised to do.

Computer simulations indicated that when the reduction in egg count observed in ewes which had been vaccinated in an earlier season was combined with that previously observed in lambs, the epidemiological benefit to the flock was substantial.

Meanwhile a large scale safety study indicated negligible adverse reaction to the vaccine.

It is suggested from the results reported from the three MLA Barbervax projects (B.AHE.0068, 0214 and 0232) completed to date that adopters should phase the vaccine in to their flocks over consecutive years as follows:-

Year 1 – vaccinate lambs only;

Year 2 – vaccinate lambs and replacement hoggets which had been immunised in Year 1 when lambs;

Year 3, vaccinate lambs, replacement hoggets (immunised in Year 2 when lambs) and maiden ewes ((immunised in Year 1 as lambs and Year 2 as hoggets). This progression would continue so that after a few years all ewes in the flock would be immunised.

As for wool growing wethers and rams, following their first course of Barbervax as lambs, four injections given annually 6 weeks apart starting just before the high risk *Haemonchus* period (similar to that given to the yearlings in Project B.AHE.0214) should provide adequate cover.

## 6. Appendices

## Appendix 6.1. CSIRO ewe efficacy trial report

#### **CSIRO Livestock Industries**

#### Field test of Moredun Haemonchus vaccine efficacy in Merino ewes.

| Sponsor:            | Name:    | Julie Fitzpatrick                                                                                  |
|---------------------|----------|----------------------------------------------------------------------------------------------------|
|                     |          | Moredun Group Director                                                                             |
|                     | Address: | Moredun Institute                                                                                  |
|                     |          | The Moredun Group<br>Pentlands Science Park<br>Bush Loan<br>Penicuik<br>Midlothian<br>Scotland, UK |
| Sponsor Monitor and | Name:    | David Smith                                                                                        |
| Representative:     | Quals:   | BVMS, PhD                                                                                          |
|                     | Address: | The Moredun Group<br>Pentlands Science Park<br>Bush Loan<br>Penicuik<br>Midlothian<br>Scotland, UK |
|                     | Phone:   | +44 (0)131 445 6131                                                                                |
|                     | E-mail:  | David.Smith@moredun.ac.uk                                                                          |
| Investigator:       | Name:    | Peter Hunt                                                                                         |
|                     | Quals:   | BSc(Hons), MSc, PhD                                                                                |
|                     | Address: | CSIRO Livestock Industries                                                                         |
|                     |          | F.D. McMaster Laboratory-Chiswick                                                                  |
|                     |          | Armidale NSW 2350                                                                                  |
|                     | Phone:   | 02 6776 1321                                                                                       |
|                     | E-mail:  | Peter.Hunt@csiro.au                                                                                |

#### Field test of Barbervax in lambing and lactating Merino ewes.

#### Background to earlier Barbervax trials conducted at CSIRO Chiswick/Arding

Haemonchus contortus is the major nematode pathogen in high rainfall areas where small ruminants are produced. An effective vaccine against this pathogen is highly desirable. During the summer of 2011-2012 the efficacy of Barbervax was assessed in 40 young "Elite" Merino lambs in the field during the period post weaning. The results were highly encouraging because over the course of the trial the vaccine reduced *Haemonchus* egg output by 82% on average. See Field trial 2 report in the original dossier for full details

During the 2012-2013 summer, a second trial with weaner lambs was conducted, but this time vaccinates and controls grazed apart on adjacent replicated paddocks. The protective effect of the vaccine was greater under these circumstances.

A third trial was run over the 2012-2013 summer using some of the 2011-2012 trial sheep which were now yearlings. Thirty of these animals (20 female and 10 castrate male) were run with 30 sex and age-matched previously unvaccinated controls so that all experienced the same natural challenge. Because they had been vaccinated before, an anamnestic response was observed after the vaccinates received their first immunisation and the interval between each boost was fixed at 6 weeks. Compared to the controls, this vaccine regime successfully reduced egg counts as well as the consequent degree of anaemia and the number of precautionary drenches needed, indicating that a course of 4 injections was sufficient to substantially protect yearlings (which had previously been vaccinated as lambs) against Haemonchosis.

#### The present trial of Barbervax in breeding ewes.

The performance of three groups of age matched breeding ewes grazing the same pasture was compared. Two groups were vaccinated whereas the third were unvaccinated control animals. One vaccinated group had received earlier courses of Barbervax as lambs and yearlings, the other was vaccinated for the first time. Those vaccinated for the first time were injected some 6-8 weeks (39 to 53 days) before lambing, 4 weeks later (11-25 days pre-lambing), at marking (when 26-40 days old) and at weaning, followed by two more boosts 6 weeks apart. Those previously vaccinated were given the same Barbervax regime, except that the first injection was omitted.

It was very clear that the Previously Vaccinated ewes were significantly protected against *Haemonchus* compared to the Control animals, measured in terms of reduced egg output and anaemia both before and after weaning. Their degree of protection was superior to that observed in the ewes vaccinated for the first time.

#### Field test of MRI Haemonchus vaccine efficacy in Merino ewes.

#### 1. Objective

To assess the efficacy of "Barbervax", the Moredun Research Institute *Haemonchus* vaccine, for Merino ewes over the high risk period of exposure to this parasite including during the periparturient and lactating periods. If favourable, the results will extend the scope of the registration package for this commercial product to breeding ewes.

#### 2. Justification

Haemonchus contortus is the major nematode pathogen in high summer rainfall areas of Australia where small ruminants are produced. An effective vaccine against this pathogen is highly desirable. Previous work established that Barbervax induced high levels of protection in grazing lambs and yearlings during the summers of 2011-2013, but its protective ability for breeding ewes remained untested.

#### 3. Compliance

This study was conducted in accordance with the approved protocol and with CSIRO Standard Operating Procedures, unless otherwise stated, and the study objectives were achieved.

#### 4. Test Site

| Animal phase               | Laboratory phase                   |
|----------------------------|------------------------------------|
| CSIRO Livestock Industries | CSIRO Livestock Industries         |
| Arding Field Station       | F.D. McMaster Laboratory- Chiswick |
| Armidale NSW 2350          | Armidale NSW 2350                  |

#### Antibody analyses

Moredun Research Institute

Edinburgh, UK

#### 5. Study Dates

| Start date (Animal Phase):      | 4 September 2013 |
|---------------------------------|------------------|
| Finish date (Animal phase):     | 9 April 2014     |
| Finish date (laboratory phase): | 12 May 2014      |

#### 6. <u>Study Design</u>

The trial contained 66 age matched two year old Merino ewes from the same Elite CSIRO line. All had been synchronised and were due to lamb over a two week period in October 2013. They were allocated to 3 treatment groups named Previously Vaccinated, First Vaccinated and Control.

The Previously Vaccinated group consisting of 16 ewes which had been vaccinated with Barbervax during the 2011-2012 and 2012-2013 summers when they were lambs and yearlings, respectively.

The First Vaccinated and Control groups contained 25 sheep each. The Control group was not vaccinated with Barbervax. The First Vaccinated group received their first dose of Barbervax approximately 5 to 7 weeks before lambing and a second injection four weeks later when the Previously Vaccinated group were also vaccinated. Thereafter both vaccinated groups were boosted together three more times at 6 to 7 week intervals.

All trial animals were run together as a single mob with their lambs. The lambs were marked when they were 3 to 6 weeks old and weaned when aged approximately 14 weeks, so that the ewes remained on the paddock till the end of the trial. The lambs were drenched 5 times between marking and weaning to ensure that only ewes contributed to the larval challenge on the paddock.

A group of 6 yearling tracer sheep also co-grazed the paddock. These animals were given a short acting anthelmintic at approximately 6 week intervals during the trial. Their purpose was to monitor pasture infectivity, evident if their faecal egg counts became positive between the drenches they received.

Individual faecal samples were collected from all ewes and the tracers at 2 week intervals throughout the trial for faecal worm egg count (FEC) estimation. On the same days, blood was collected by jugular venepuncture into 6 mL sodium heparin vacutainers (BD Ltd, Australia) for haemoglobin concentration estimation (using the Haemocue method) and for plasma and serology. Ewe liveweights were recorded on Day 28 of the trial and at marking, weaning and trial end. Lambs were weighed at birth, marking and weaning. Laboratory personnel performing FEC and haemoglobin analysis were blinded as to treatment groups.

If at any time during the trial, the blood haemoglobin concentration of any ewe was <7.5 g/100mL (equivalent PCV 22%) or the FEC was >10,000, that sheep was treated immediately with a short-acting anthelmintic effective against *Haemonchus* at the manufacturer's recommended dose rate. The animal remained with the trial flock after such treatment.

#### 7. INVESTIGATIONAL & CONTROL PRODUCTS

#### a. Investigational Veterinary Product (IVP):

| Name:        | BarberVax                                      | Batch No .:  | HCD220311C-009 |
|--------------|------------------------------------------------|--------------|----------------|
| Composition: | <i>Haemonchus</i> antigen and saponin adjuvant | Expiry Date: | April 2015     |
| Dose Rate:   | 5µg antigen and 1mg saponin                    | WHP:         | 12 months      |

#### **b.** Source:

WormVax Laboratory

Animal Health Laboratory

DAFWA

444 Albany Highway

Albany, W.A. 6330

c. Storage: Refrigerated at 4°C until use.

**d. Safety:** A MSDS was not provided by the Sponsor. The IVP was administered using a specially designed safety vaccine gun to protect against accidental injection.

e. Assays: A Certificate of Analysis for the IVP is attached.

**f. Drug Disposal:** All remaining IVP was retained at CSIRO pending disposal advice from the Sponsor.

#### 8. Treatment

- a. Treatment administration: Vaccinations were delivered sub-cutaneously into the neck of the lambs using a 1 mL Simcro Securus Veterinary Injector (Simcro Animal Health Delivery Systems, New Zealand).
- b. Treatment frequency: On five occasions on Days 0, 28, 77, 133 and 161.
- c. Dose: 1 mL per ewe.

#### 9. Schedule of events

| Date       | Activities                                                                                                                                                                                                                                                                                                   | Days after V1 |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 15/05/2013 | Sponges out, rams IN                                                                                                                                                                                                                                                                                         | -112          |
| 27/05/2013 | Rams OUT                                                                                                                                                                                                                                                                                                     | -100          |
| 22/07/2013 | All ewes vaccinated against Clostridia (6-in-1)                                                                                                                                                                                                                                                              | -44           |
| 31/07/2013 | Scan for pregnancy                                                                                                                                                                                                                                                                                           | -35           |
| 19/08/2013 | Tracers drenched 3 mLs Zolvix                                                                                                                                                                                                                                                                                | -16           |
| 21/08/2013 | Moved Tracers to trial area                                                                                                                                                                                                                                                                                  | -14           |
| 04/09/2013 | Vaccinated 25 Group 2 ewes, blood & faecal samples taken                                                                                                                                                                                                                                                     | 0             |
| 02/10/2013 | Vaccinated Group 1 and Group 2 ewes, blood & faecal samples taken, Drenched Tracers. Ewes given side brands for identification and split into 3 groups for lambing. Divided tracers into 3 groups as well (4 with group 1, 3 each in other two groups). All animals moved to H lane. Commenced hand feeding. | 28            |
| 10/10/2013 | First lamb born - see detailed records in Lambing sheet.                                                                                                                                                                                                                                                     | 36            |
| 27/10/2013 | Finished lambing                                                                                                                                                                                                                                                                                             | 53            |
| 28/10/2013 | Ewes and lambs combined into one grazing group (plot 6 + laneway).                                                                                                                                                                                                                                           | 54            |
| 31/10/2013 | Ewes and lambs moved to plots 2 and 3                                                                                                                                                                                                                                                                        | 57            |
| 06/11/2013 | Blood & faecal samples taken from ewes, faeces from tracers                                                                                                                                                                                                                                                  | 63            |
| 20/11/2013 | Marked lambs, blood & faecal samples taken from ewes, faecal samples from Tracers. Vaccinated Groups 1 and 2 Ewes, Drenched Tracers Triguard                                                                                                                                                                 | 77            |
| 21/11/2014 | Weighed ewes and lambs, lambs drenched with Rycazole and Cydectin                                                                                                                                                                                                                                            | 78            |

| Date       | Activities                                                                                                                                                                                      | Days after V1 |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 04/12/2013 | blood & faecal samples taken from ewes, faecal samples from Tracers, drenched lambs Rycazole and Triguard                                                                                       | 91            |
| 18/12/2013 | blood & faecal samples taken from ewes, faecal samples from Tracers, drenched lambs with Zolvix                                                                                                 | 105           |
| 03/01/2014 | Blood & faecal samples taken from ewes, faecal samples from<br>Tracers,Vaccinated Group 1 and 2 Ewes, Drenched tracers<br>(Zolvix) & lambs (Rycazole and Cydectin)                              | 121           |
| 15/01/2014 | Blood & faecal samples taken from ewes, faecal samples from Tracers, Vaccinated Group 1 and 2 Ewes, Drenched lambs (Rycozole)                                                                   | 133           |
| 16/01/2014 | Drenched 3 ewes (Triguard)                                                                                                                                                                      | 134           |
| 29/01/2014 | Blood & faecal samples taken from ewes, faecal samples from<br>Tracers, Weaned and Drenched lambs (Rycozole & Zolvix),<br>weighed ewes and lambs. Drenched 7 ewes. Lambs removed from<br>trial. | 147           |
| 12/02/2014 | Blood & faecal samples taken from ewes, faecal samples from Tracers, Vaccinated Group 1 and 2 Ewes, Tracers drenched (Rycozole & Triguard). 5 ewes drenched (Triguard)                          | 161           |
| 26/02/2014 | Blood & faecal samples taken from ewes, faecal samples from Tracers.                                                                                                                            | 175           |
| 12/03/2014 | Blood & faecal samples taken from ewes, faecal samples from Tracers.                                                                                                                            | 189           |
| 26/03/2014 | Blood & faecal samples taken from ewes, faecal samples from Tracers. 2 ewes drenched (Triguard)                                                                                                 | 203           |
| 09/04/2014 | Blood & faecal samples taken from ewes, faecal samples from Tracers. All ewes and tracers drenched (Triguard, Rametin and Flukazole). Ewes weighed.                                             | 217           |

#### 10. Animal Management

- a. Animal Welfare: Study animals were managed similarly and with due regard for their welfare. Animals were observed at least twice weekly for health problems according to AEC requirements. Animals were handled in compliance with CSIRO AEC 12/25 approved 18/10/12, and any applicable local regulations.
- **b.** Health Management: Any health problems or adverse events that occurred during the study were recorded (see Study schedule above).
- **c.** Housing: Routine management practices were followed. All trial animals had *ad-lib* access to pasture consisting of rye, phalaris, clover and native grass species. Potable water was supplied *ad-lib*.

**d.** Animal disposal: All remaining animals were returned to the CSIRO flocks on Arding at the conclusion of the study.

#### 11. Study Procedures

- a. Trial Log: All scheduled and unscheduled events during the study were recorded.
- b. Plasma Sample Storage, Transfer and Disposal: Replicate 1 and 2 samples were stored in separate temperature logged freezers at approximately -20°C until delivery on ice-bricks to Veterinary Health Research, Armidale for onward dispatch to the Moredun Research Institute, Edinburgh. Replicate 2 plasma samples will be held in frozen storage (-20°C) at CSIRO until disposal is approved by the study sponsor.

#### 12. Assessment of Effects

- a. Sheep liveweights: Ewe weights were recorded on Day 28 of the trial and at marking, weaning and trial end. Lambs were weighed at birth, marking and weaning Animal weigh scales were checked pre- and post-weighing with calibrated test weights. Liveweights were compared between groups to determine treatment effects, if any, and are detailed in the results section of this report.
- **b.** Haemoglobin concentration: Blood haemoglobin concentration from individual lamb whole blood was measured using the Hemocue 201 Hb Analyser. Changes during the study were compared between groups to determine treatment effects, if any, and are detailed in the results section of this report.

**Note**: where an animal received a salvage drench at any point throughout the study, the subsequent haemoglobin sample collected within 14 days of the salvage drench was excluded from group mean haemoglobin calculations.

**c.** Faecal worm egg counts and larval differentiations: Faecal samples were collected at intervals outlined above. Faecal samples were individually labelled with the animal ID. Individual faecal worm egg counts and group bulk larval differentiation were performed. Faecal worm egg counts and larval differentiation were compared to determine treatment effects, if any, and are detailed in the results section of this report.

*Note*: where an animal received a salvage drench at any point throughout the study, the subsequent FEC sample collected within 14 days of the salvage drench was excluded from group mean FEC calculations.

**d. Blood antibody analyses**: Blood samples were processed for collection of plasma samples on the day of collection. Samples were individually labelled with the study number, animal number, study date and day, sample type. Frozen (-20°C) plasma samples were forwarded to Moredun for anti-vaccine antibody titre analysis at completion of the study. Results of analyses were compared to determine treatment effects, if any, and are detailed in the results section of this report.

#### 13. Statistical Analyses

Faecal egg counts, blood haemoglobin concentrations and bodyweights were compared between groups by analysis of variance, whereas the number of precautionary drenches was compared by Fisher's exact test. The faecal egg counts were cube root transformed prior to analysis.

#### 14. Results

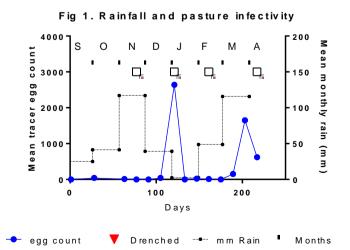
#### a. Deaths

One ewe from the first vaccinated group (#7430) died before day 63 of the trial due to accidental suffocation in an over-packed race. Its data was excluded from the analysis.

#### b. Lambing success and number of ewes used in the study

There were 66 ewes at the start of the trial but 8 did not raise a lamb (2 in the Previously Vaccinated group and 3 in each of the First Vaccinated and Control groups), either because they were not pregnant, or because their lamb was born dead or died soon after birth. These 8 sheep remained with the rest of the flock throughout the trial but their data was excluded from the analysis.

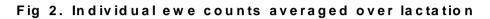
Of the 57 surviving ewes which raised a lamb (all singles), 14 had been previously vaccinated, 22 were vaccinated for the first time and 21 were in the Control group.

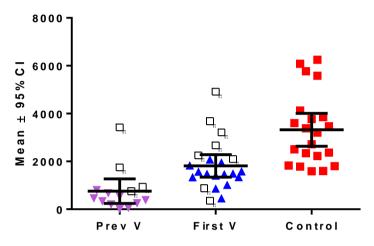

#### c. Types of comparison made

It was of particular interest to know how well the vaccine performed during the "periparturient" phase of the trial because worm eggs shed during lactation are an important source of infection for the next generation of lambs and hence the general epidemiology of Haemonchosis in a flock. Therefore the degree of protection attained from lambing to weaning is presented in addition to that calculated for the whole duration of the trial.

#### d. Rainfall and pasture infectivity

The 2013-2014 summer was exceptionally dry in New England. Table A6 compares the monthly rainfall recorded at Armidale Airport (a few Km from the trial site) during the trial with the historical monthly average.


The mean egg counts of the tracer lambs are plotted in Fig 1 relative to rainfall. If infective larvae had been available continuously, positive egg counts would be expected at or just before each drench, but this was not the case at the November or February drench points, indicating that insufficient rain for egg to worm larval development had fallen since the previous dose of anthelmintic.

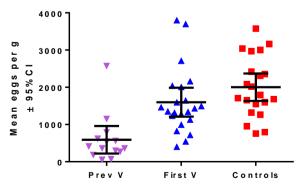



#### 15. Haemonchus Egg Counts

#### i) From lambing to weaning

During lactation *Haemonchus* egg counts were significantly reduced in both groups of vaccinated sheep compared to controls (Fig 2) although the protective effect was significantly better in the Previously Vaccinated group.






#### ii) Over the whole trial

Haemonchus egg counts were significantly reduced in the Previously Vaccinated sheep compared to those vaccinated for the first time and the controls (Fig 3). However, over the duration of the trial, no significant difference was detected between the counts of the First Vaccinated group and the Controls.

A single "non-responder" (defined as a vaccinated animal with a mean egg count greater than the 95% lower confidence limit of the control group) was identified in the Previously Vaccinated group.

#### Fig 3. Individual ewe counts averaged over the trial

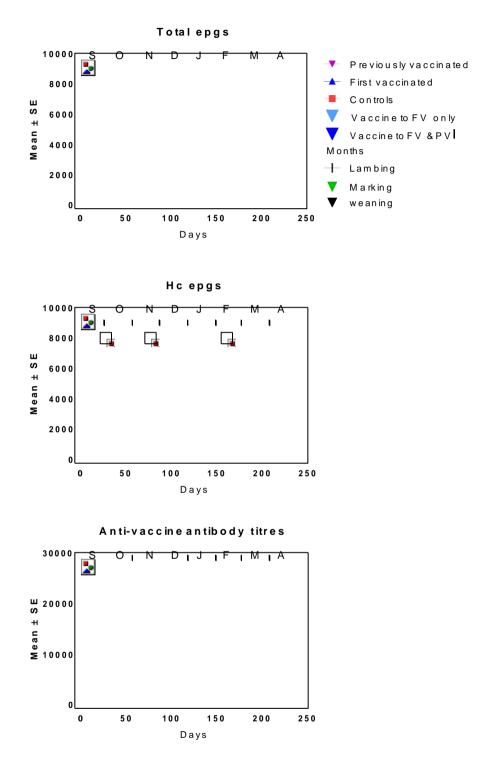


| Table 1 |     | PV   | %Prot- | FV   | %Prot  | control P value after A |          | ANOVA      |            |
|---------|-----|------|--------|------|--------|-------------------------|----------|------------|------------|
| Event   | Day | Mean | ection | Mean | ection | Mean                    | PV vs FV | PV vs Cont | FV vs Cont |
|         |     |      |        |      |        |                         |          |            |            |
| V1      | 1   | 41   |        | 71   |        | 24                      | n/a      | n/a        | n/a        |
| V2      | 28  | 35   |        | 170  |        | 56                      | n/a      | n/a        | n/a        |
|         | 63  | 411  | 59.0   | 1010 | -0.6   | 1004                    | ***      | ***        | ns         |
| V3      | 77  | 547  | 66.8   | 1671 | -1.4   | 1648                    | ***      | ***        | ns         |
|         | 91  | 381  | 74.1   | 800  | 45.6   | 1471                    | ns       | ***        | *          |
|         | 105 | 187  | 85.8   | 603  | 54.1   | 1314                    | **       | ****       | *          |
| V4      | 121 | 1449 | 77.3   | 4729 | 26.0   | 6390                    | ****     | ****       | ns         |
|         | 133 | 1112 | 82.9   | 2502 | 61.5   | 6499                    | *        | ****       | *          |
| weaning | 147 | 1945 | 51.7   | 3182 | 21.0   | 4027                    | ns       | ns         | ns         |
| V5      | 161 | 274  | 85.7   | 1259 | 34.2   | 1915                    | ns       | ns         | ns         |
|         | 175 | 280  | 61.3   | 775  | -7.0   | 724                     | ns       | ns         | ns         |
|         | 189 | 71   | 84.5   | 298  | 34.4   | 455                     | *        | *          | ns         |
|         | 203 | 565  | 73.3   | 2853 | -34.9  | 2114                    | **       | *          | ns         |
|         | 217 | 236  | 72.0   | 731  | 13.2   | 842                     | *        | *          | ns         |

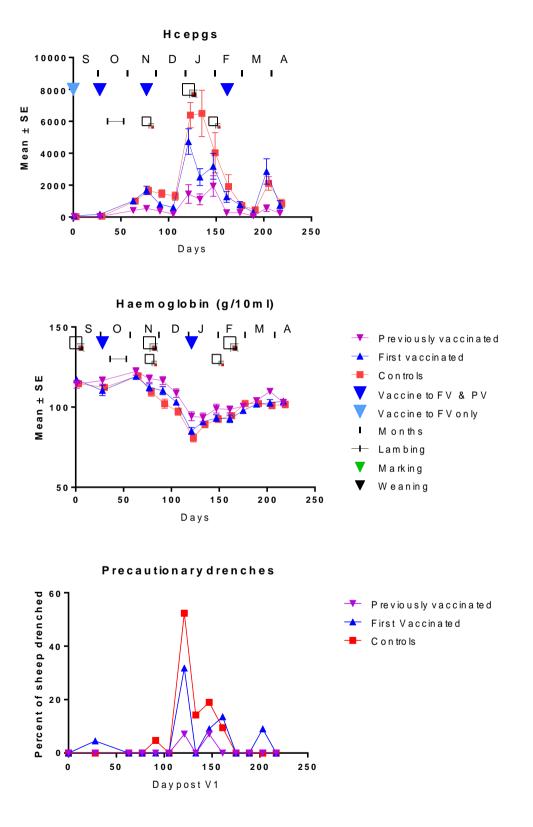
(the earliest the vaccine could have an effect is from day 56)

## c. Kinetics of and relationships between the parameters studied over the course of the trial.

Antibody titres in the unvaccinated control ewes remained at background levels close to zero throughout the trial (Fig 4). In contrast, group mean titres in the Previously Vaccinated group fluctuated around the 10,000 mark from the trial start until their second boost given at marking time. Meanwhile, titres in the First Vaccinated ewes rose slowly to reach a mean of about 2,400 at marking time. Thereafter both vaccinated groups responded to each vaccine boost with a temporary spike in titre observed at the next sampling. Mean titres in the Previously Vaccinated ewes always exceeded those of the First Vaccinates by at least two-fold (Fig 4).


Total and *Haemonchus* specific group mean faecal egg counts were quite similar and followed very similar patterns in all groups, reflecting the fact that *Haemonchus* was usually the dominant gastrointestinal nematode genus infecting the ewes (Fig 4, Table A3).

Mean Control egg counts were negligible at the start of the trial, rising slowly to about 1,400 during November and December, before increasing sharply to peak at 6,499 epg during January (Fig 4, Table 1). Control counts fell away rapidly during February (Fig 4, Table 1), probably as a consequence of the low pasture infectivity brought about by the January drought (Fig 1), because the onset of rain in March resulted in another surge of egg output (Fig 4, Table 1) later in that month.


Mean *Haemonchus* egg counts were nearly always lower in both vaccinated groups compared to the controls. This was especially in the case of the Previously Vaccinated group where the difference was highly significant, statistically, at every sampling during lactation bar one (Table 1). Barbervax did provide some limited protection to the First Vaccine group, but this was only statistically significant on three occasions during the trial (Table 1) and the egg counts of this group were usually significantly higher than those of the Previously Vaccinated ewes.

These kinetics and group differences in *Haemonchus* specific egg counts were inversely reflected in the degree of anaemia and precautionary drenching (Fig 5). Thus, peak egg counts in January coincided with the lowest blood haemoglobin concentrations and when most precautionary drenching was required (Fig 5) and the Previously Infected group was significantly (P<0.05) less anaemic than the controls around this time (Table 4).

## Fig 4. Kinetics of interventions, group mean total egg counts, *Haemonchus* specific egg counts and the anti vaccine antibody response.



## Fig 5. Kinetics of the *Haemonchus* specific egg counts in relation to blood haemoglobin concentrations and to precautionary drenching.



| Event   | Day | PV    | FV    | Cont  | P value by | nsnsnsnsnsnsnsns<0.01ns<0.001ns<0.001ns |            |  |  |  |  |
|---------|-----|-------|-------|-------|------------|-----------------------------------------|------------|--|--|--|--|
|         |     | Mean  | Mean  | Mean  | PV vs FV   | PV vs Cont                              | FV vs Cont |  |  |  |  |
| V1      | 0   | 114.6 | 117.0 | 115.2 | ns         | ns                                      | ns         |  |  |  |  |
| V2      | 28  | 116.4 | 109.9 | 112.3 | ns         | ns                                      | ns         |  |  |  |  |
|         | 63  | 122.4 | 119.6 | 120.1 | ns         | ns                                      | ns         |  |  |  |  |
| V3      | 77  | 117.4 | 112.4 | 108.6 | ns         | ns                                      | ns         |  |  |  |  |
|         | 91  | 116.5 | 110.3 | 100.8 | ns         | ns                                      | ns         |  |  |  |  |
|         | 105 | 107.1 | 102.8 | 95.9  | ns         | <0.01                                   | ns         |  |  |  |  |
| V4      | 121 | 92.7  | 84.1  | 77.8  | <0.05      | <0.01                                   | ns         |  |  |  |  |
|         | 133 | 91.5  | 90.5  | 82.2  | ns         | <0.001                                  | ns         |  |  |  |  |
| weaning | 147 | 97.4  | 92.7  | 92.3  | ns         | <0.05                                   | ns         |  |  |  |  |
| V5      | 161 | 96.3  | 90.9  | 94.5  | ns         | ns                                      | ns         |  |  |  |  |
|         | 175 | 99.5  | 97.6  | 102.9 | ns         | ns                                      | ns         |  |  |  |  |
|         | 189 | 104.3 | 101.5 | 101.9 | ns         | ns                                      | ns         |  |  |  |  |
|         | 203 | 108.8 | 102.1 | 99.3  | ns         | <0.05                                   | ns         |  |  |  |  |
|         | 217 | 103.5 | 102.7 | 100.2 | ns         | ns                                      | ns         |  |  |  |  |

### Table 2. Mean blood haemoglobin concentration at each sampling (g/10ml)

|             | Numl | ber of | sheep treated | Fishers ex | cact test  |            |
|-------------|------|--------|---------------|------------|------------|------------|
|             | PV   | FV     | Controls      | PV vs FV   | PV vs Cont | FV vs Cont |
| No of sheep |      |        |               |            |            |            |
| per group   | 14   | 22     | 21            |            |            |            |
| Day         |      |        |               |            |            |            |
| 28          | 0    | 1      | 0             |            |            |            |
| 91          | 0    | 0      | 1             |            |            |            |
| 121         | 1    | 7      | 11            | ns         | <0.05      | ns         |
| 133         | 0    | 0      | 3             |            |            |            |
| 147         | 1    | 2      | 4             |            | ns         |            |
| 161         | 0    | 3      | 2             |            |            |            |
| 203         | 0    | 2      | 0             |            |            |            |
| Tatal       | 0    | 45     | 04            | 0.01       | 0.004      | .0.01      |
| Total       | 2    | 15     | 21            | <0.01      | <0.001     | <0.01      |

#### Table 3. Number of precautionary drenches given per group.

#### d. Bodyweights.

The ewes were weighed pre-lambing, at the time the First Vaccinates received their first boost, at marking, at weaning and at the end of the trial. Group mean bodyweights are presented in Fig 6 below. No significant differences (p> 0.05 by ANOVA) were detected between the groups at any stage of trial.

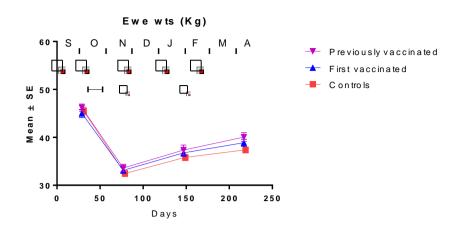
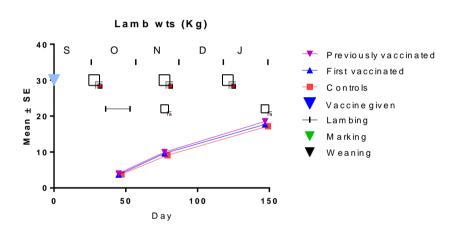




Fig 6. Ewe weights during the course of the trial



#### Fig 7. Lamb weights at birth, marking and weaning.

The lambs were weighed at birth, marking and weaning. Group mean liveweights are plotted in Fig 7. No significant differences (p> 0.05 by ANOVA) were detected between the groups at any stage of trial.

It would appear that the benefit of improved *Haemonchus* control in the vaccinated ewes, did not translate into better lamb growth rates, by means of improved milk production. It should be borne in mind however, that nearly all the Control ewes required a precautionary anthelmintic during lactation which is likely to have confounded the true result.

#### e. Discussion/Conclusions

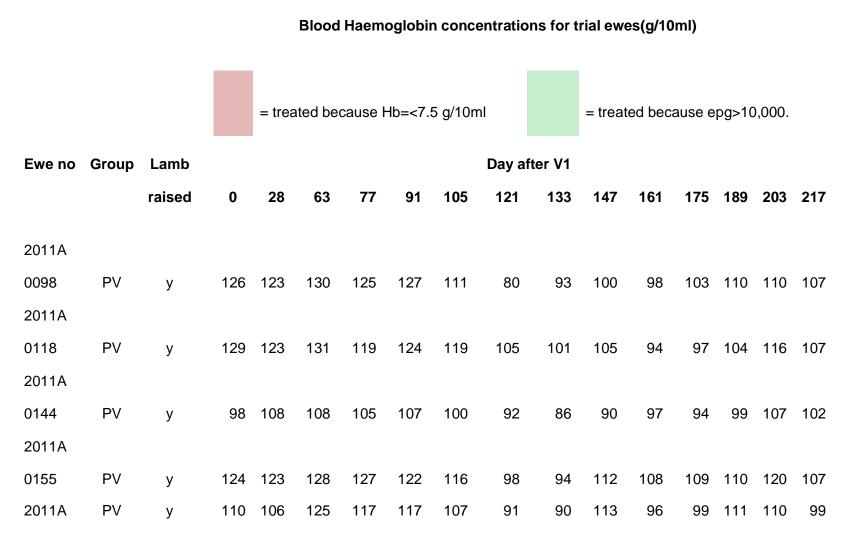
In this study Barbervax was evaluated in Merino ewes around lambing time, during lactation and after weaning. One group had received two courses of Barbervax as lambs and yearlings in previous summers and a second was immunised for the first time, their initial injection being given some 6-8 weeks before lambing. The faecal egg counts, blood haemoglobin concentrations and serology of these vaccinates were compared with those of age matched unvaccinated controls. For simplicity, and to ensure equal exposure of the groups to the natural challenge infection, all sheep grazed together throughout the trial. To avoid the complication of the lamb egg output adding to the *Haemonchus* epidemiology, their lambs were treated regularly with anthelmintic.

As it turned out the summer of 2013-2014 was exceptionally dry in northern NSW, with hardly any rain falling in January, for example. The consequence was that pasture larval infectivity was very low in mid November and early February as demonstrated by the tracer sheep (Fig 1). Fortunately however, the natural larval challenge was still adequate to provide *Haemonchus* egg counts and associated anaemia in the controls sufficient to make comparison with the vaccinates scientifically valid.

The results clearly showed that ewes which had been vaccinated in an earlier season were significantly protected against the challenge as measured by reduced *Haemonchus* egg output and blood loss compared to the unvaccinated control ewes. These differences were evident during lactation as well as post weaning.

Interestingly, these Previously Vaccinated sheep were much better protected than ewes vaccinated for the first time, despite the fact that the latter received an additional immunisation before lambing. The First Vaccinated group developed much weaker antibody titres than the Previously Vaccinated animals, such that they were barely protected relative to the Controls.

Perhaps it takes more nutritional resource for a naive sheep to mount a primary immune response, compared to that required for a secondary response in an animal primed by a previous course of vaccine. In heavily pregnant and or lactating ewes protein and energy resources are particularly limited, which is likely to be responsible for the well-known periparturient relaxation of immunity to gastro-intestinal nematode parasites in sheep (e.g. Kahn, L. http://www.wormboss.com.au/news/articles/nonchemical-management/why-are-lambing-ewes-susceptible-to-worm-infection.php).


Whatever the mechanism, the observation that the Previously Vaccinated ewes had greatly reduced egg counts during lactation was important because the egg output of ewes at this time is considered to be the main source of infection for the next generation of lambs. Curbing ewe egg output during lactation by use of Barbervax should retard and reduce the build up of pasture infectivity which usually peaks in late summer.

It was interesting to note that the Previously Vaccinated ewes possessed substantial anti-vaccine antibody titres even before they were given their first boost in the current trial. The same observation was made with previously vaccinated yearlings in the spring of 2012. It was not clear whether these antibodies would have been protective in either trial, though correlations derived from pen trials conducted at Moredun and described in the first registration dossier suggest that they should have been. Nor is it known how long such titres and potentially protection would have persisted, or whether the first boost to Previously Vaccinated ewes could have been delayed to a subsequent muster, e.g. marking or weaning. If so, producers could use fewer doses of vaccine to maintain *Haemonchus* control. These important practical questions can only be addressed by running further trials.

No adverse effects of the vaccine were observed. Vaccination did not lead to statistically superior weight gains in the ewes or their lambs. However, this data was confounded because almost all the control ewes also required anthelmintic support, without which some may have succumbed to fatal Haemonchosis.

#### Appendix 1 Tabulated and raw data.

Table A.1



| 7113  |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |
|-------|----|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|
| 2011A |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |
| 7115  | PV | У | 114 | 122 | 107 | 107 | 120 | 107 | 90  | 98  | 99  | 91  | 90  | 103 | 102 | 98  |  |
| 2011A |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |
| 7116  | PV | У | 109 | 117 | 123 | 125 | 118 | 116 | 99  | 96  | 100 | 95  | 107 | 113 | 110 | 114 |  |
| 2011A |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |
| 7126  | PV | n | 119 | 126 | 122 | 124 | 118 | 123 | 102 | 111 | 115 | 107 | 109 | 97  | 118 | 105 |  |
| 2011A |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |
| 7127  | PV | У | 103 | 112 | 120 | 114 | 111 | 93  | 75  | 89  | 95  | 96  | 103 | 95  | 101 | 98  |  |
| 2011A |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |
| 7137  | PV | n | 107 | 110 | 121 | 117 | 116 | 116 | 109 | 102 | 106 | 106 | 107 | 108 | 115 | 92  |  |
| 2011A |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |
| 7163  | PV | У | 126 | 136 | 145 | 134 | 135 | 125 | 116 | 115 | 115 | 114 | 105 | 108 | 118 | 115 |  |
| 2011A |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |
| 7165  | PV | У | 105 | 102 | 113 | 113 | 104 | 90  | 86  | 84  | 86  | 87  | 95  | 97  | 97  | 89  |  |
| 2011A |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |
| 7168  | PV | У | 126 | 118 | 115 | 96  | 92  | 100 | 90  | 86  | 88  | 111 | 110 | 116 | 114 | 98  |  |
| 2011A | PV | У | 117 | 121 | 119 | 122 | 116 | 113 | 100 | 89  | 91  | 95  | 89  | 106 | 114 | 113 |  |

| 7178  |    |   |     |     |     |     |     |     |    |     |     |     |     |     |     |     |
|-------|----|---|-----|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|
| 2011A |    |   |     |     |     |     |     |     |    |     |     |     |     |     |     |     |
| 7180  | PV | у | 101 | 106 | 123 | 117 | 112 | 93  | 80 | 78  | 83  | 82  | 87  | 88  | 97  | 93  |
| 2011A |    |   |     |     |     |     |     |     |    |     |     |     |     |     |     |     |
| 7186  | PV | у | 116 | 113 | 127 | 122 | 126 | 110 | 96 | 80  | 86  | 99  | 105 | 100 | 107 | 109 |
| 2011A |    |   |     |     |     |     |     |     |    |     |     |     |     |     |     |     |
| 7075  | FV | у | 115 | 124 | 126 | 123 | 123 | 101 | 93 | 96  | 86  | 75  | 94  | 98  | 100 | 102 |
| 2011A |    |   |     |     |     |     |     |     |    |     |     |     |     |     |     |     |
| 7102  | FV | у | 116 | 107 | 129 | 119 | 114 | 118 | 88 | 80  | 80  | 76  | 89  | 102 | 100 | 99  |
| 2011A |    |   |     |     |     |     |     |     |    |     |     |     |     |     |     |     |
| 7125  | FV | у | 129 | 117 | 123 | 114 | 112 | 98  | 79 | 93  | 105 | 104 | 100 | 109 | 109 | 113 |
| 2011A |    |   |     |     |     |     |     |     |    |     |     |     |     |     |     |     |
| 7144  | FV | у | 115 | 108 | 126 | 116 | 104 | 106 | 74 | 104 | 112 | 99  | 104 | 110 | 111 | 117 |
| 2011A |    |   |     |     |     |     |     |     |    |     |     |     |     |     |     |     |
| 7145  | FV | у | 117 | 103 | 119 | 138 | 128 | 106 | 72 | 88  | 89  | 90  | 100 | 95  | 85  | 105 |
| 2011A |    |   |     |     |     |     |     |     |    |     |     |     |     |     |     |     |
| 7172  | FV | у | 118 | 124 | 124 | 119 | 121 | 110 | 94 | 89  | 78  | 74  | 101 | 102 | 111 | 97  |
| 2011A | FV | У | 118 | 115 | 120 | 97  | 99  | 98  | 72 | 94  | 113 | 110 | 113 | 97  | 90  | 103 |
|       |    |   |     |     |     |     |     |     |    |     |     |     |     |     |     |     |

| 7179  |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-------|----|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 2011A |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 7187  | FV | у | 128 | 117 | 134 | 119 | 114 | 109 | 81  | 86  | 78  | 110 | 104 | 110 | 111 | 103 |
| 2011A |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 7189  | FV | у | 117 | 116 | 128 | 126 | 130 | 106 | 80  | 91  | 88  | 92  | 92  | 101 | 109 | 109 |
| 2011A |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 7387  | FV | у | 119 | 117 | 115 | 102 | 106 | 92  | 72  | 84  | 95  | 95  | 102 | 97  | 102 | 95  |
| 2011A |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 7396  | FV | n | 132 | 121 | 110 | 110 | 110 | 111 | 109 | 96  | 104 | 100 | 106 | 111 | 114 | 124 |
| 2011A |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 7407  | FV | У | 115 | 114 | 127 | 115 | 112 | 112 | 86  | 86  | 90  | 88  | 92  | 94  | 94  | 104 |
| 2011A |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 7425  | FV | У | 120 | 115 | 130 | 122 | 127 | 106 | 82  | 104 | 106 | 90  | 101 | 106 | 115 | 105 |
| 2011A |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 7430  | FV | n | 104 | *   | *   | *   | *   | *   | *   | *   | *   | *   | *   | *   | *   | *   |
| 2011A |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 7446  | FV | у | 111 | 105 | 105 | 100 | 90  | 97  | 94  | 92  | 79  | 107 | 105 | 104 | 88  | 101 |
| 2011A | FV | У | 125 | 113 | 115 | 101 | 104 | 91  | 87  | 93  | 91  | 96  | 93  | 76  | 94  | 97  |

| 7453  |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-------|----|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 2011A |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 7463  | FV | n | 120 | 49  | 117 | 108 | 127 | 112 | 95  | 85  | 85  | 70  | 98  | 104 | 113 | 104 |
| 2011A |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 7465  | FV | У | 102 | 103 | 100 | 96  | 95  | 91  | 84  | 80  | 85  | 85  | 84  | 92  | 104 | 95  |
| 2011A |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 7624  | FV | У | 105 | 102 | 114 | 104 | 104 | 95  | 88  | 92  | 95  | 92  | 97  | 105 | 92  | 99  |
| 2011A |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 7656  | FV | у | 120 | 118 | 123 | 113 | 105 | 114 | 101 | 104 | 99  | 109 | 97  | 108 | 118 | 116 |
| 2011A |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 7658  | FV | У | 136 | 128 | 123 | 127 | 121 | 121 | 97  | 91  | 101 | 100 | 105 | 116 | 119 | 115 |
| 2011A |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 7665  | FV | У | 127 | 114 | 119 | 101 | 107 | 98  | 91  | 89  | 100 | 96  | 101 | 102 | 104 | 100 |
| 2011A |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 7667  | FV | У | 104 | 96  | 103 | 94  | 85  | 82  | 67  | 82  | 90  | 86  | 85  | 97  | 91  | 83  |
| 2011A |    |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 7696  | FV | у | 102 | 102 | 109 | 116 | 93  | 95  | 75  | 91  | 92  | 91  | 88  | 97  | 89  | 98  |
| 2011A | FV | у | 112 | 121 | 120 | 115 | 115 | 107 | 82  | 90  | 94  | 90  | 99  | 113 | 100 | 105 |

| 7702  |      |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-------|------|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 2011A |      |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 7106  | Cont | n | 124 | 114 | 114 | 111 | 101 | 105 | 95  | 105 | 102 | 91  | 101 | 105 | 100 | 107 |
| 2011A |      |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 7112  | Cont | У | 106 | 99  | 107 | 113 | 108 | 86  | 84  | 78  | 68  | 90  | 103 | 96  | 96  | 98  |
| 2011A |      |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 7129  | Cont | у | 128 | 111 | 129 | 110 | 102 | 96  | 76  | 94  | 90  | 87  | 92  | 104 | 116 | 106 |
| 2011A |      |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 7157  | Cont | n | 101 | 108 | 113 | 110 | 113 | 108 | 106 | 98  | 85  | 80  | 83  | 94  | 105 | 102 |
| 2011A |      |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 7183  | Cont | У | 133 | 130 | 140 | 130 | 117 | 110 | 86  | 94  | 81  | 86  | 107 | 119 | 125 | 113 |
| 2011A |      |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 7185  | Cont | У | 116 | 114 | 122 | 98  | 94  | 90  | 80  | 60  | 90  | 93  | 100 | 95  | 92  | 106 |
| 2011A |      |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 7203  | Cont | У | 98  | 110 | 115 | 112 | 112 | 110 | 72  | 99  | 105 | 105 | 105 | 107 | 110 | 109 |
| 2011A |      |   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| 7384  | Cont | У | 125 | 123 | 124 | 117 | 107 | 101 | 85  | 105 | 112 | 105 | 111 | 103 | 97  | 97  |
| 2011A | Cont | n | 115 | 120 | 127 | 127 | 125 | 119 | 94  | 98  | 91  | 99  | 115 | 112 | 125 | 114 |

| 7390  |      |   |     |     |     |     |     |     |     |    |     |     |     |     |     |     |  |
|-------|------|---|-----|-----|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|-----|-----|--|
| 2011A |      |   |     |     |     |     |     |     |     |    |     |     |     |     |     |     |  |
| 7400  | Cont | n | 107 | 107 | 112 | 105 | 99  | 88  | 91  | 84 | 84  | 98  | 106 | 104 | 97  | 114 |  |
| 2011A |      |   |     |     |     |     |     |     |     |    |     |     |     |     |     |     |  |
| 7414  | Cont | У | 109 | 111 | 117 | 122 | 117 | 101 | 75  | 92 | 105 | 93  | 101 | 101 | 88  | 88  |  |
| 2011A |      |   |     |     |     |     |     |     |     |    |     |     |     |     |     |     |  |
| 7442  | Cont | У | 116 | 116 | 123 | 113 | 101 | 84  | 79  | 91 | 97  | 98  | 101 | 97  | 106 | 105 |  |
| 2011A |      |   |     |     |     |     |     |     |     |    |     |     |     |     |     |     |  |
| 7447  | Cont | У | 115 | 107 | 122 | 110 | 96  | 98  | 71  | 93 | 102 | 92  | 94  | 107 | 100 | 88  |  |
| 2011A |      |   |     |     |     |     |     |     |     |    |     |     |     |     |     |     |  |
| 7452  | Cont | у | 115 | 113 | 120 | 113 | 111 | 96  | 75  | 93 | 96  | 95  | 103 | 96  | 96  | 102 |  |
| 2011A |      |   |     |     |     |     |     |     |     |    |     |     |     |     |     |     |  |
| 7454  | Cont | У | 126 | 121 | 124 | 117 | 104 | 102 | 90  | 84 | 80  | 85  | 100 | 98  | 104 | 114 |  |
| 2011A |      |   |     |     |     |     |     |     |     |    |     |     |     |     |     |     |  |
| 7458  | Cont | у | 109 | 117 | 123 | 121 | 115 | 101 | 82  | 75 | 98  | 106 | 106 | 103 | 91  | 87  |  |
| 2011A |      |   |     |     |     |     |     |     |     |    |     |     |     |     |     |     |  |
| 7488  | Cont | у | 122 | 119 | 135 | 128 | 119 | 115 | 109 | 86 | 78  | 70  | 90  | 104 | 115 | 112 |  |
| 2011A | Cont | у | 111 | 116 | 128 | 105 | 96  | 83  | 64  | 95 | 109 | 105 | 106 | 105 | 101 | 108 |  |
|       |      |   |     |     |     |     |     |     |     |    |     |     |     |     |     |     |  |

| 7497  |      |   |     |     |     |     |     |     |    |    |     |     |     |     |     |     |
|-------|------|---|-----|-----|-----|-----|-----|-----|----|----|-----|-----|-----|-----|-----|-----|
| 2011A |      |   |     |     |     |     |     |     |    |    |     |     |     |     |     |     |
| 7498  | Cont | У | 109 | 111 | 100 | 94  | 87  | 88  | 71 | 89 | 92  | 93  | 96  | 100 | 99  | 100 |
| 2011A |      |   |     |     |     |     |     |     |    |    |     |     |     |     |     |     |
| 7626  | Cont | у | 111 | 97  | 105 | 89  | 84  | 83  | 73 | 91 | 99  | 102 | 110 | 97  | 83  | 89  |
| 2011A |      |   |     |     |     |     |     | l   |    |    |     |     |     |     |     |     |
| 7632  | Cont | У | 104 | 97  | 116 | 78  | 63  | 93  | 79 | 75 | 102 | 101 | 109 | 102 | 100 | 96  |
| 2011A |      |   |     |     |     |     |     |     |    |    |     |     |     |     |     |     |
| 7650  | Cont | У | 113 | 111 | 112 | 92  | 86  | 82  | 68 | 86 | 86  | 90  | 89  | 89  | 93  | 98  |
| 2011A |      |   |     |     |     |     |     |     |    |    |     |     |     |     |     |     |
| 7662  | Cont | У | 116 | 108 | 124 | 116 | 117 | 103 | 74 | 87 | 89  | 93  | 98  | 96  | 96  | 103 |
| 2011A |      |   |     |     |     |     |     |     |    |    |     |     |     |     |     |     |
| 7678  | Cont | У | 122 | 106 | 116 | 94  | 81  | 80  | 55 | 91 | 94  | 96  | 105 | 95  | 90  | 73  |
| 2011A |      |   |     |     |     |     |     |     |    |    |     |     |     |     |     |     |
| 7706  | Cont | У | 115 | 121 | 121 | 109 | 99  | 108 | 86 | 85 | 78  | 113 | 127 | 127 | 102 | 112 |

Table A.2 Faecal worm egg counts (eggs/g faeces) for trial ewes.

Precautionary drenches during the trial : Hb <75mg/mL yellow background, or FEC>10000 pink background.

| Ewe   | 0      | 11     |     |     |     |     |     | David    |       |      |      |      |      |     |      |     |
|-------|--------|--------|-----|-----|-----|-----|-----|----------|-------|------|------|------|------|-----|------|-----|
| no    | Group  | Lamb   |     |     |     |     |     | Day afte | er v1 |      |      |      |      |     |      |     |
|       |        | raised | 0   | 28  | 63  | 77  | 91  | 105      | 121   | 133  | 147  | 161  | 175  | 189 | 203  | 217 |
|       |        |        |     |     |     |     |     |          |       |      |      |      |      |     |      |     |
| 2011A |        |        |     |     |     |     |     |          |       |      |      |      |      |     |      |     |
| 0098  | Prev V | У      | 400 | 0   | 400 | 500 | 700 | 200      | 700   | 600  | 500  | 300  | 200  | 200 | 300  | 300 |
| 2011A |        |        |     |     |     |     |     |          |       |      |      |      |      |     |      |     |
| 0118  | Prev V | V      | 0   | 0   | 300 | 500 | 800 | 0        | 600   | 1600 | 3800 | 1700 | 1100 | 600 | 200  | 100 |
|       |        | У      | 0   | U   | 500 | 500 | 000 | U        | 000   | 1000 | 5000 | 1700 | 1100 | 000 | 200  | 100 |
| 2011A |        |        |     |     |     |     |     |          |       |      |      |      |      |     |      |     |
| 0144  | Prev V | У      | 200 | 600 | 800 | 700 | 400 | 500      | 1500  | 1400 | 1600 | 800  | 600  | 100 | 500  | 700 |
| 2011A |        |        |     |     |     |     |     |          |       |      |      |      |      |     |      |     |
| 0155  | Prev V | У      | 300 | 400 | 800 | 800 | 400 | 400      | 400   | 800  | 1300 | 800  | 600  | 400 | 0    | 100 |
| 2011A |        |        |     |     |     |     |     |          |       |      |      |      |      |     |      |     |
| 2011A |        |        |     |     |     |     |     |          |       |      |      |      |      |     |      |     |
| 7113  | Prev V | У      | 0   | 0   | 100 | 0   | 0   | 0        | 0     | 0    | 0    | 200  | 200  | 0   | 700  | 100 |
| 2011A | Prev V | У      | 400 | 100 | 0   | 0   | 0   | 0        | 0     | 600  | 1900 | 700  | 1300 | 600 | 1300 | 0   |

| 7115  |        |   |      |     |      |      |      |      |      |      |       |      |      |     |      |      |
|-------|--------|---|------|-----|------|------|------|------|------|------|-------|------|------|-----|------|------|
| 2011A |        |   |      |     |      |      |      |      |      |      |       |      |      |     |      |      |
| 7116  | Prev V | У | 0    | 0   | 800  | 500  | 100  | 300  | 700  | 1500 | 1800  | 600  | 0    | 100 | 400  | 700  |
| 2011A |        |   |      |     |      |      |      |      |      |      |       |      |      |     |      |      |
| 7126  | Prev V | n | 400  | 100 | 600  | 200  | 500  | 0    | 100  | 100  | 1900  | 800  | 1700 | 800 | 3600 | 1300 |
| 2011A |        |   |      |     |      |      |      |      |      |      |       |      |      |     |      |      |
| 7127  | Prev V | у | 300  | 500 | 1400 | 2000 | 700  | 1300 | 3400 | 0    | 100   | 200  | 100  | 0   | 3000 | 400  |
| 2011A |        |   |      |     |      |      |      |      |      |      |       |      |      |     |      |      |
| 7137  | Prev V | n | 300  | 200 | 100  | 2400 | 100  | 300  | 0    | 0    | 300   | 200  | 400  | 100 | 100  | 200  |
| 2011A |        |   |      |     |      |      |      |      |      |      |       |      |      |     |      |      |
| 7163  | Prev V | У | 0    | 0   | 100  | 300  | 300  | 0    | 0    | 0    | 0     | 100  | 200  | 0   | 0    | 0    |
| 2011A |        |   |      |     |      |      |      |      |      |      |       |      |      |     |      |      |
| 7165  | Prev V | у | 0    | 100 | 400  | 2500 | 100  | 200  | 1400 | 1500 | 2200  | 1900 | 0    | 0   | 100  | 0    |
| 2011A |        |   |      |     |      |      |      |      |      |      |       |      |      |     |      |      |
| 7168  | Prev V | у | 1300 | 300 | 3600 | 2700 | 3000 | 1900 | 8400 | 5100 | 10500 | 0    | 0    | 100 | 2200 | 2800 |
| 2011A |        |   |      |     |      |      |      |      |      |      |       |      |      |     |      |      |
| 7178  | Prev V | У | 0    | 0   | 200  | 200  | 100  | 0    | 0    | 300  | 1300  | 500  | 700  | 0   | 0    | 0    |
| 2011A | Prev V | у | 200  | 300 | 700  | 200  | 400  | 300  | 400  | 700  | 1300  | 800  | 600  | 0   | 0    | 100  |

| 7180          |                  |   |      |     |      |      |      |      |       |      |       |      |      |      |       |      |
|---------------|------------------|---|------|-----|------|------|------|------|-------|------|-------|------|------|------|-------|------|
| 2011A         |                  |   |      |     |      |      |      |      |       |      |       |      |      |      |       |      |
| 7186          | Prev V           | у | 100  | 0   | 0    | 200  | 200  | 600  | 5300  | 4200 | 6500  | 100  | 0    | 0    | 600   | 700  |
| 2011A         |                  |   |      |     |      |      |      |      |       |      |       |      |      |      |       |      |
| 7075          | First V          | У | 500  | 0   | 1000 | 500  | 1500 | 1500 | 1500  | 1500 | 7000  | 3000 | 0    | 0    | 400   | 500  |
| 2011A         |                  |   |      |     |      |      |      |      |       |      |       |      |      |      |       |      |
| 7102          | First V          | У | 300  | 0   | 800  | 500  | 500  | 600  | 3200  | 4600 | 9100  | 800  | 1800 | 200  | 500   | 200  |
| 2011A         | <b>—</b> ; , ) ( |   | 400  |     | 4500 | 1000 | 1000 |      | 10000 |      |       |      |      |      | 4000  | 100  |
| 7125          | First V          | У | 100  | 300 | 1500 | 1300 | 1300 | 200  | 10000 | 0    | 600   | 0    | 500  | 500  | 1900  | 100  |
| 2011A<br>7144 | First V          |   | 100  | 400 | 2300 | 2700 | 3400 | 1500 | 8000  | 0    | 200   | 300  | 0    | 200  | 1000  | 400  |
| 2011A         | FIISUV           | У | 100  | 400 | 2300 | 2700 | 3400 | 1500 | 8000  | 0    | 200   | 300  | 0    | 200  | 1000  | 400  |
| 7145          | First V          | У | 0    | 0   | 100  | 100  | 200  | 1800 | 4800  | 0    | 400   | 100  | 200  | 2000 | 10600 | 0    |
| 2011A         |                  | J | Ū    | Ū   | 100  | 100  | 200  | 1000 |       | 0    |       | 100  | 200  | 2000 | 10000 | 0    |
| 7172          | First V          | у | 600  | 700 | 800  | 700  | 500  | 700  | 1200  | 3100 | 5300  | 5000 | 0    | 100  | 600   | 1300 |
| 2011A         |                  | - |      |     |      |      |      |      |       |      |       |      |      |      |       |      |
| 7179          | First V          | У | 1300 | 900 | 3800 | 5100 | 1400 | 1800 | 17100 | 0    | 1200  | 400  | 1300 | 1400 | 14400 | 0    |
| 2011A         | First V          | У | 2100 | 200 | 2900 | 2900 | 2300 | 3000 | 9200  | 8600 | 17700 | 0    | 0    | 500  | 4000  | 1400 |

| 7187  |         |   |     |     |      |      |      |      |       |      |       |      |      |      |      |      |
|-------|---------|---|-----|-----|------|------|------|------|-------|------|-------|------|------|------|------|------|
| 2011A |         |   |     |     |      |      |      |      |       |      |       |      |      |      |      |      |
| 7189  | First V | У | 0   | 0   | 500  | 600  | 1200 | 1100 | 3300  | 2200 | 6200  | 3100 | 1800 | 100  | 400  | 200  |
| 2011A |         |   |     |     |      |      |      |      |       |      |       |      |      |      |      |      |
| 7387  | First V | У | 100 | 600 | 2000 | 4300 | 1800 | 3400 | 11000 | 0    | 300   | 600  | 600  | 1000 | 6200 | 9800 |
| 2011A |         |   |     |     |      |      |      |      |       |      |       |      |      |      |      |      |
| 7396  | First V | n | 300 | 200 | 500  | 500  | 1200 | 300  | 1600  | 2000 | 3600  | 1500 | 1300 | 1200 | 4800 | 600  |
| 2011A |         |   |     |     |      |      |      |      |       |      |       |      |      |      |      |      |
| 7407  | First V | У | 0   | 200 | 300  | 300  | 100  | 200  | 400   | 800  | 1200  | 1200 | 700  | 0    | 400  | 700  |
| 2011A |         |   |     |     |      |      |      |      |       |      |       |      |      |      |      |      |
| 7425  | First V | У | 0   | 0   | 1500 | 900  | 700  | 500  | 4500  | 1600 | 3600  | 2000 | 200  | 0    | 0    | 0    |
| 2011A |         |   |     |     |      |      |      |      |       |      |       |      |      |      |      |      |
| 7430  | First V | n | 400 | 500 | dead |      |      |      |       |      |       |      |      |      |      |      |
| 2011A |         |   |     |     |      |      |      |      |       |      |       |      |      |      |      |      |
| 7446  | First V | У | 400 | 300 | 2200 | 4400 | 2900 | 600  | 4100  | 4900 | 11400 | 0    | 0    | 0    | 100  | 200  |
| 2011A |         |   |     |     |      |      |      |      |       |      |       |      |      |      |      |      |
| 7453  | First V | У | 100 | 200 | 1300 | 1800 | 0    | 375  | 2200  | 1000 | 1600  | 100  | 2000 | 100  | 500  | 100  |
| 2011A | First V | n | 100 | 200 | 0    | 0    | 100  | 0    | 3500  | 1700 | 1800  | 1900 | 0    | 100  | 3600 | 1700 |

| 7463  |         |   |     |      |      |      |      |      |      |      |      |      |      |      |      |      |
|-------|---------|---|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 2011A |         |   |     |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 7465  | First V | у | 500 | 500  | 800  | 2200 | 600  | 1000 | 3800 | 1500 | 2700 | 2200 | 1000 | 600  | 800  | 600  |
| 2011A |         |   |     |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 7624  | First V | у | 400 | 500  | 200  | 1000 | 700  | 500  | 400  | 300  | 1200 | 1000 | 500  | 1200 | 1000 | 1100 |
| 2011A |         |   |     |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 7656  | First V | у | 300 | 1300 | 2700 | 2300 | 1800 | 300  | 3800 | 2400 | 4800 | 4100 | 4700 | 1100 | 2800 | 1100 |
| 2011A |         |   |     |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 7658  | First V | у | 200 | 500  | 1000 | 1900 | 800  | 200  | 7600 | 5000 | 3900 | 7400 | 500  | 600  | 1400 | 600  |
| 2011A |         |   |     |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 7665  | First V | у | 700 | 1000 | 2900 | 3300 | 1100 | 842  | 1700 | 2100 | 2000 | 1000 | 1700 | 2500 | 3100 | 1400 |
| 2011A |         |   |     |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 7667  | First V | у | 600 | 600  | 400  | 1000 | 2000 | 1300 | 8100 | 0    | 200  | 0    | 0    | 500  | 8300 | 700  |
| 2011A |         |   |     |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 7696  | First V | у | 400 | 200  | 1000 | 3100 | 0    | 100  | 7800 | 0    | 0    | 300  | 300  | 200  | 5200 | 1700 |
| 2011A |         | , |     |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 7702  | First V | у | 0   | 100  | 1300 | 3400 | 700  | 600  | 1900 | 1200 | 800  | 100  | 1100 | 600  | 1100 | 400  |
|       |         |   |     |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 2011A | Control | n | 200 | 0    | 900  | 300  | 300  | 0    | 0    | 0    | 2900 | 2700 | 4900 | 1600 | 1900 | 300  |

| 7106  |         |   |      |      |      |      |      |      |       |       |       |       |      |      |      |      |
|-------|---------|---|------|------|------|------|------|------|-------|-------|-------|-------|------|------|------|------|
| 2011A |         |   |      |      |      |      |      |      |       |       |       |       |      |      |      |      |
| 7112  | Control | У | 0    | 500  | 2100 | 2500 | 1100 | 700  | 6300  | 9800  | 17900 | 0     | 0    | 200  | 600  | 100  |
| 2011A |         |   |      |      |      |      |      |      |       |       |       |       |      |      |      |      |
| 7129  | Control | У | 200  | 200  | 1000 | 1200 | 1400 | 800  | 3300  | 1700  | 7000  | 6700  | 1900 | 900  | 2100 | 1900 |
| 2011A |         |   |      |      |      |      |      |      |       |       |       |       |      |      |      |      |
| 7157  | Control | n | 0    | 100  | 0    | 0    | 100  | 0    | 1600  | 2900  | 8600  | 4900  | 8800 | 200  | 1200 | 200  |
| 2011A |         |   |      |      |      |      |      |      |       |       |       |       |      |      |      |      |
| 7183  | Control | У | 200  | 200  | 600  | 500  | 1200 | 1000 | 3500  | 1700  | 9000  | 12300 | 0    | 0    | 500  | 500  |
| 2011A |         |   |      |      |      |      |      |      |       |       |       |       |      |      |      |      |
| 7185  | Control | У | 400  | 300  | 1400 | 3200 | 3500 | 5900 | 8400  | 15100 | 0     | 0     | 0    | 1100 | 2100 | 500  |
| 2011A |         |   |      |      |      |      |      |      |       |       |       |       |      |      |      |      |
| 7203  | Control | У | 0    | 100  | 1400 | 900  | 1200 | 600  | 5100  | 0     | 400   | 300   | 700  | 0    | 100  | 0    |
| 2011A |         |   |      |      |      |      |      |      |       |       |       |       |      |      |      |      |
| 7384  | Control | У | 200  | 500  | 2100 | 2600 | 2600 | 4200 | 11000 | 0     | 2300  | 1600  | 2000 | 2700 | 8700 | 5300 |
| 2011A |         |   |      |      |      |      |      |      |       |       |       |       |      |      |      |      |
| 7390  | Control | n | 0    | 0    | 0    | 300  | 0    | 300  | 4200  | 5200  | 10000 | 0     | 0    | 800  | 2600 | 1100 |
| 2011A | Control | n | 1600 | 1700 | 1200 | 1100 | 800  | 200  | 2200  | 3800  | 11900 | 0     | 0    | 600  | 6500 | 800  |

| 7400  |         |   |     |     |      |      |      |      |       |       |      |      |      |      |      |      |
|-------|---------|---|-----|-----|------|------|------|------|-------|-------|------|------|------|------|------|------|
| 2011A |         |   |     |     |      |      |      |      |       |       |      |      |      |      |      |      |
| 7414  | Control | У | 0   | 0   | 700  | 800  | 1500 | 1600 | 11000 | 0     | 700  | 600  | 1000 | 600  | 5200 | 500  |
| 2011A |         |   |     |     |      |      |      |      |       |       |      |      |      |      |      |      |
| 7442  | Control | У | 600 | 600 | 800  | 2200 | 1400 | 2700 | 3100  | 2500  | 2900 | 2100 | 2900 | 500  | 1800 | 1200 |
| 2011A |         |   |     |     |      |      |      |      |       |       |      |      |      |      |      |      |
| 7447  | Control | у | 0   | 100 | 1900 | 1200 | 600  | 353  | 5300  | 0     | 200  | 300  | 1000 | 0    | 200  | 300  |
| 2011A |         |   |     |     |      |      |      |      |       |       |      |      |      |      |      |      |
| 7452  | Control | У | 100 | 200 | 1500 | 2800 | 3700 | 800  | 5100  | 0     | 300  | 100  | 500  | 300  | 4100 | 500  |
| 2011A |         |   |     |     |      |      |      |      |       |       |      |      |      |      |      |      |
| 7454  | Control | У | 0   | 0   | 200  | 100  | 700  | 300  | 2400  | 2900  | 5900 | 3700 | 2000 | 300  | 3400 | 700  |
| 2011A |         |   |     |     |      |      |      |      |       |       |      |      |      |      |      |      |
| 7458  | Control | У | 0   | 300 | 600  | 1300 | 1300 | 1200 | 3300  | 12600 | 0    | 0    | 0    | 1300 | 5100 | 2600 |
| 2011A |         |   |     |     |      |      |      |      |       |       |      |      |      |      |      |      |
| 7488  | Control | У | 300 | 300 | 1300 | 1400 | 600  | 100  | 4600  | 5100  | 9300 | 8700 | 0    | 100  | 0    | 200  |
| 2011A |         |   |     |     |      |      |      |      |       |       |      |      |      |      |      |      |
| 7497  | Control | У | 500 | 300 | 2200 | 1800 | 1600 | 2500 | 12400 | 0     | 300  | 200  | 600  | 0    | 1700 | 300  |
| 2011A | Control | У | 100 | 200 | 1700 | 3300 | 4800 | 1600 | 9900  | 0     | 1300 | 900  | 1100 | 300  | 1500 | 500  |

| 7498  |         |   |      |     |      |      |      |      |       |      |       |     |     |      |      |      |
|-------|---------|---|------|-----|------|------|------|------|-------|------|-------|-----|-----|------|------|------|
| 2011A |         |   |      |     |      |      |      |      |       |      |       |     |     |      |      |      |
| 7626  | Control | У | 1000 | 600 | 3600 | 3600 | 2100 | 3200 | 10200 | 0    | 400   | 100 | 700 | 2000 | 8000 | 900  |
| 2011A |         |   |      |     |      |      |      |      |       |      |       |     |     |      |      |      |
| 7632  | Control | У | 100  | 700 | 1100 | 2100 | 1000 | 0    | 5800  | 8000 | 0     | 0   | 100 | 200  | 1800 | 1300 |
| 2011A |         |   |      |     |      |      |      |      |       |      |       |     |     |      |      |      |
| 7650  | Control | У | 300  | 500 | 2000 | 2000 | 600  | 700  | 5300  | 0    | 400   | 200 | 200 | 300  | 1600 | 600  |
| 2011A |         |   |      |     |      |      |      |      |       |      |       |     |     |      |      |      |
| 7662  | Control | У | 500  | 400 | 1900 | 400  | 1100 | 700  | 5800  | 0    | 900   | 700 | 900 | 2600 | 3100 | 700  |
| 2011A |         |   |      |     |      |      |      |      |       |      |       |     |     |      |      |      |
| 7678  | Control | У | 300  | 400 | 1900 | 5400 | 5500 | 4100 | 19200 | 0    | 400   | 200 | 300 | 1300 | 7600 | 7600 |
| 2011A |         |   |      |     |      |      |      |      |       |      |       |     |     |      |      |      |
| 7706  | Control | У | 800  | 100 | 1000 | 2900 | 1600 | 2000 | 8100  | 7600 | 15900 | 0   | 0   | 0    | 800  | 200  |

# Table A.3 Larval differentiation results from ewe trial copro-cultures

| Group   | Date       | Haem | Trich. | Tela | Oesoph | Other | Total | % Haem |
|---------|------------|------|--------|------|--------|-------|-------|--------|
| PV      | 04/09/2013 | 18   | 77     | 5    | 0      | 0     | 100   | 18%    |
| FV      | 04/09/2013 | 18   | 74     | 8    | 0      | 0     | 100   | 18%    |
| Cont    | 04/09/2013 | 9    | 87     | 4    | 0      | 0     | 100   | 9%     |
| PV      | 02/10/2013 | 21   | 72     | 7    | 0      | 0     | 100   | 21%    |
| FV      | 02/10/2013 | 44   | 48     | 8    | 0      | 0     | 100   | 44%    |
| Cont    | 02/10/2013 | 18   | 70     | 12   | 0      | 0     | 100   | 18%    |
| Tracers | 02/10/2013 | 57   | 37     | 6    | 0      | 0     | 100   | 57%    |
| PV      | 06/11/2013 | 60   | 36     | 4    | 0      | 0     | 100   | 60%    |
| FV      | 06/11/2013 | 71   | 23     | 6    | 0      | 0     | 100   | 71%    |
| Cont    | 06/11/2013 | 68   | 29     | 3    | 0      | 0     | 100   | 68%    |
| Tracers | 06/11/2013 | 7    | 0      | 0    | 0      | 0     | 7     | ?      |
| PV      | 20/11/2013 | 69   | 26     | 5    | 0      | 0     | 100   | 69%    |
| FV      | 20/11/2013 | 83   | 15     | 2    | 0      | 0     | 100   | 83%    |
| Cont    | 20/11/2013 | 82   | 14     | 4    | 0      | 0     | 100   | 82%    |
| Tracers | 20/11/2013 | 0    | 9      | 0    | 0      | 0     | 9     | ?      |
| PV      | 18/12/2013 | 46   | 44     | 10   | 0      | 0     | 100   | 46%    |
| FV      | 18/12/2013 | 60   | 27     | 12   | 1      | 0     | 100   | 60%    |
| Cont    | 18/12/2013 | 75   | 21     | 3    | 1      | 0     | 100   | 75%    |
| Tracers | 18/12/2013 | 29   | 8      | 4    | 2      | 0     | 43    | 67%    |
| PV      | 03/01/2014 | 89   | 7      | 4    | 0      | 0     | 100   | 89%    |
| FV      | 03/01/2014 | 89   | 11     | 0    | 0      | 0     | 100   | 89%    |
| Cont    | 03/01/2014 | 90   | 9      | 1    | 0      | 0     | 100   | 90%    |
| Tracers | 03/01/2014 | 97   | 3      | 0    | 0      | 0     | 100   | 97%    |
| PV      | 15/01/2014 | 79   | 16     | 5    | 0      | 0     | 100   | 79%    |
| FV      | 15/01/2014 | 92   | 7      | 1    | 0      | 0     | 100   | 92%    |

| Group   | Date       | Haem | Trich. | Tela | Oesoph | Other | Total     | % Haem |
|---------|------------|------|--------|------|--------|-------|-----------|--------|
| Cont    | 15/01/2014 | 97   | 2      | 0    | 0      | 0     | 99        | 98%    |
| Tracers | 15/01/2014 | 0    | 0      | 0    | 0      | 0     | no larvae | ?      |
| PV      | 29/01/2014 | 83   | 15     | 2    | 0      | 0     | 100       | 83%    |
| FV      | 29/01/2014 | 86   | 10     | 4    | 0      | 0     | 100       | 86%    |
| Cont    | 29/01/2014 | 96   | 1      | 3    | 0      | 0     | 100       | 96%    |
| Tracers | 29/01/2014 | 97   | 3      | 0    | 0      | 0     | 100       | 97%    |
| PV      | 12/02/2014 | 41   | 44     | 15   | 0      | 0     | 100       | 41%    |
| FV      | 12/02/2014 | 77   | 19     | 4    | 0      | 0     | 100       | 77%    |
| Cont    | 12/02/2014 | 94   | 5      | 1    | 0      | 0     | 100       | 94%    |
| Tracers | 12/02/2014 | 93   | 7      | 0    | 0      | 0     | 100       | 93%    |
| PV      | 26/02/2014 | 70   | 26     | 4    | 0      | 0     | 100       | 70%    |
| FV      | 26/02/2014 | 82   | 18     | 0    | 0      | 0     | 100       | 82%    |
| Cont    | 26/02/2014 | 93   | 7      | 0    | 0      | 0     | 100       | 93%    |
| Tracers | 26/02/2014 | 0    | 0      | 0    | 0      | 0     | no larvae | ?      |
| PV      | 12/03/2014 | 47   | 49     | 4    | 0      | 0     | 100       | 47%    |
| FV      | 12/03/2014 | 49   | 46     | 5    | 0      | 0     | 100       | 49%    |
| Cont    | 12/03/2014 | 65   | 30     | 5    | 0      | 0     | 100       | 65%    |
| Tracers | 12/03/2014 | 17   | 0      | 0    | 0      | 0     | 17        | 100%   |
| PV      | 26/03/2014 | 85   | 15     | 0    | 0      | 0     | 100       | 85%    |
| FV      | 26/03/2014 | 87   | 12     | 1    | 0      | 0     | 100       | 87%    |
| Cont    | 26/03/2014 | 74   | 22     | 4    | 0      | 0     | 100       | 74%    |
| Tracers | 26/03/2014 | 86   | 10     | 4    | 0      | 0     | 100       | 86%    |
| PV      | 09/04/2014 | 55   | 37     | 8    | 0      | 0     | 100       | 55%    |
| FV      | 09/04/2014 | 65   | 33     | 2    | 0      | 0     | 100       | 65%    |
| Cont    | 09/04/2014 | 61   | 37     | 2    | 0      | 0     | 100       | 61%    |
| Tracers | 09/04/2014 | 67   | 31     | 2    | 0      | 0     | 100       | 67%    |

Table A.4 Antibody titres

|       |     |      |       |       |       |       |       |       | D     | ays afte | r V1  |       |       |        |        |        |
|-------|-----|------|-------|-------|-------|-------|-------|-------|-------|----------|-------|-------|-------|--------|--------|--------|
| Ewe   | Grp | Lamb | 0     | 28    | 63    | 77    | 91    | 105   | 121   | 133      | 147   | 161   | 175   | 189    | 203    | 217    |
| 2011A |     |      |       |       |       |       |       |       |       |          |       |       |       |        |        |        |
| 0098  | PV  | У    | 5452  | 5873  | 6111  | 6988  | 9866  | 11460 | 9385  | 10788    | 8943  | 7658  | 9684  | 10,124 | 9,618  | 9,127  |
| 2011A |     |      |       |       |       |       |       |       |       |          |       |       |       |        |        |        |
| 0118  | PV  | У    | 22399 | 35517 | 19170 | 37575 | 88193 | 50794 | 25269 | 40973    | 22302 | 20753 | 32500 | 31,464 | 35,069 | 35,844 |
| 2011A |     |      |       |       |       |       |       |       |       |          |       |       |       |        |        |        |
| 0144  | PV  | У    | 4436  | 4401  | 6764  | 6912  | 12984 | 9974  | 9029  | 14074    | 10945 | 8650  | 9865  | 9,061  | 8,423  | 8,456  |
| 2011A |     |      |       |       |       |       |       |       |       |          |       |       |       |        |        |        |
| 0155  | PV  | У    | 19161 | 20595 | 13675 | 16515 | 54527 | 24488 | 44776 | 49223    | 26435 | 21554 | 21468 | 28,134 | 22,848 | 23,754 |
| 2011A |     |      |       |       |       |       |       |       |       |          |       |       |       |        |        |        |
| 7113  | PV  | У    | 10121 | 11927 | 10752 | 12840 | 22830 | 17081 | 15146 | 18262    | 15568 | 12410 | 12895 | 13,446 | 13,494 | 14,351 |
| 2011A |     |      |       |       |       |       |       |       |       |          |       |       |       |        |        |        |
| 7115  | PV  | У    | 7307  | 7652  | 7622  | 8618  | 17511 | 11838 | 9678  | 15563    | 11996 | 8892  | 15090 | 13,442 | 11,454 | 11,317 |
| 2011A |     |      |       |       |       |       |       |       |       |          |       |       |       |        |        |        |
| 7116  | PV  | У    | 10379 | 11045 | 10811 | 12196 | 31201 | 25103 | 13073 | 24406    | 24352 | 13446 | 18742 | 18,121 | 16,155 | 17,987 |

| 2011A |     |   |       |       |       |       |       |       |       |       |       |       |       |        |        |        |
|-------|-----|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|
| 7126  | PV  | n | 5981  | 6405  | 6734  | 7320  | 10345 | 8303  | 8253  | 10060 | 8013  | 6773  | 9721  | 9,267  | 8,403  | 8,380  |
| 2011A |     |   |       |       |       |       |       |       |       |       |       |       |       |        |        |        |
| 7127  | PV  | У | 4593  | 5049  | 4419  | 4907  | 6035  | 5103  | 5104  | 6577  | 5605  | 4978  | 6622  | 5,689  | 6,093  | 5,664  |
| 2011A |     |   |       |       |       |       |       |       |       |       |       |       |       |        |        |        |
| 7137  | PV  | n | 5729  | 6675  | 6717  | 6731  | 9620  | 7992  | 6927  | 9371  | 7378  | 6989  | 8144  | 7,319  | 7,844  | 218    |
| 2011A | , i |   |       |       |       |       |       |       |       |       |       |       |       |        |        |        |
| 7163  | PV  | у | 6183  | 6977  | 6437  | 7094  | 8665  | 8116  | 7622  | 10032 | 8162  | 6942  | 12004 | 10,312 | 9,075  | 8,539  |
| 2011A |     |   |       |       |       |       |       |       |       |       |       |       |       |        |        |        |
| 7165  | PV  | У | 5881  | 6676  | 6687  | 7823  | 11747 | 8598  | 8460  | 11043 | 8029  | 7112  | 9777  | 8,424  | 8,097  | 7,875  |
| 2011A |     |   |       |       |       |       |       |       |       |       |       |       |       |        |        |        |
| 7168  | PV  | у | 7166  | 8533  | 8003  | 9374  | 10765 | 10141 | 9954  | 8863  | 8321  | 8212  | 11282 | 11,088 | 10,350 | 10,260 |
| 2011A |     |   |       |       |       |       |       |       |       |       |       |       |       |        |        |        |
| 7178  | PV  | У | 6133  | 6883  | 8252  | 8861  | 17122 | 11121 | 10330 | 15681 | 10491 | 9143  | 11582 | 9,982  | 9,186  | 10,193 |
| 2011A |     |   |       |       |       |       |       |       |       |       |       |       |       |        |        |        |
| 7180  | PV  | У | 10207 | 13511 | 12892 | 21729 | 43123 | 19405 | 14706 | 26125 | 15487 | 13527 | 21700 | 17,118 | 18,094 | 18,820 |
| 2011A |     |   |       |       |       |       |       |       |       |       |       |       |       |        |        |        |
| 7186  | PV  | у | 5699  | 5929  | 5969  | 6525  | 7877  | 6831  | 6953  | 7788  | 6889  | 6540  | 9089  | 7,276  | 7,150  | 7,560  |

Page 47 of 179

|       |    |   |     |      | B.AHE. | 0232 Final | Report – I | Developme | nt of a con | nmercial va | accine for <i>F</i> | laemonchu | s contortus, the | e Barber's Pol | e Worm |       |
|-------|----|---|-----|------|--------|------------|------------|-----------|-------------|-------------|---------------------|-----------|------------------|----------------|--------|-------|
| 2011A |    |   |     |      |        |            |            |           |             |             |                     |           |                  |                |        |       |
| 7075  | FV | у | 0   | 76   | 112    | 53         | 2483       | 1055      | 810         | 4736        | 2456                | 1047      | 3107             | 1,427          | 1,498  | 907   |
| 2011A |    |   |     |      |        |            |            |           |             |             |                     |           |                  |                |        |       |
| 7102  | FV | У | 0   | 117  | 3807   | 3127       | 8528       | 7288      | 5390        | 7547        | 5800                | 4593      | 10759            | 8,049          | 6,303  | 5,305 |
| 2011A |    |   |     |      |        |            |            |           |             |             |                     |           |                  |                |        |       |
| 7125  | FV | У | 9   | 821  | 2426   | 1952       | 6281       | 4655      | 4613        | 7440        | 5917                | 5083      | 9414             | 7,309          | 6,430  | 5,746 |
| 2011A |    |   |     |      |        |            |            |           |             |             |                     |           |                  |                |        |       |
| 7144  | FV | У | 45  | 2560 | 2629   | 2413       | 6092       | 4446      | 3206        | 7517        | 5639                | 4717      | 6604             | 5,715          | 5,629  | 5,561 |
| 2011A |    |   |     |      |        |            |            |           |             |             |                     |           |                  |                |        |       |
| 7145  | FV | У | 0   | 1185 | 422    | 273        | 4183       | 2477      | 2301        | 5600        | 4427                | 3115      | 7231             | 5,613          | 4,618  | 3,799 |
| 2011A |    |   |     |      |        |            |            |           |             |             |                     |           |                  |                |        |       |
| 7172  | FV | у | 348 | 345  | 372    | 65         | 2532       | 1276      | 998         | 3971        | 1886                | 979       | 3704             | 2,174          | 2,257  | 1,500 |
| 2011A |    |   |     |      |        |            |            |           |             |             |                     |           |                  |                |        |       |
| 7179  | FV | У | 177 | 617  | 874    | 412        | 1641       | 1164      | 1045        | 3742        | 1867                | 634       | 3693             | 1,844          | 1,606  | 817   |
| 2011A |    |   |     |      |        |            |            |           |             |             |                     |           |                  |                |        |       |
| 7187  | FV | у | 28  | 209  | 534    | 192        | 3002       | 2145      | 1275        | 4268        | 2143                | 898       | 4482             | 3,163          | 3,110  | 2,169 |

|       |    |   |        |        | B.AHE. | .0232 Fina | I Report – | Developme | nt of a com | nmercial vac | cine for Ha | aemonchus c | ontortus, the | e Barber's Pole | .∍ Worm |        |
|-------|----|---|--------|--------|--------|------------|------------|-----------|-------------|--------------|-------------|-------------|---------------|-----------------|---------|--------|
| 2011A |    |   |        |        |        |            |            |           |             |              |             |             |               |                 |         |        |
| 7189  | FV | у | 0      | 611    | 338    | 162        | 4541       | 3134      | 2325        | 6046         | 4078        | 2585        | 9298          | 6,162           | 6,369   | 5,440  |
| 2011A |    |   |        |        |        |            |            |           |             |              |             |             |               |                 |         |        |
| 7387  | FV | У | 6      | 902    | 82     | 106        | 1600       | 526       | 218         | 4283         | 2357        | 909         | 4116          | 2,404           | 2,332   | 1,478  |
| 2011A |    |   |        |        |        |            |            |           |             |              |             |             |               |                 |         |        |
| 7396  | FV | n | 492    | 970    | 4346   | 4687       | 18118      | 12777     | 6549        | 13869        | 9264        | 7151        | 10920         | 10,978          | 8,539   | 8,690  |
| 2011A |    |   |        |        |        |            |            |           |             |              |             |             |               |                 |         |        |
| 7407  | FV | У | 42     | 3500   | 3431   | 3575       | 6325       | 4985      | 4345        | 7129         | 5484        | 4809        | 6609          | 5,170           | 4,847   | 4,601  |
| 2011A |    |   |        |        |        |            |            |           |             |              |             |             |               |                 |         |        |
| 7425  | FV | У | 696    | 2485   | 1779   | 3038       | 6071       | 4406      | 3693        | 8775         | 6001        | 4614        | 7001          | 6,446           | 5,268   | 4,483  |
| 2011A |    |   |        |        |        |            |            |           |             |              |             |             |               |                 |         |        |
| 7430  | FV | n | 94     |        |        |            |            |           |             |              |             |             |               |                 |         |        |
| 2011A | -  |   |        |        |        |            |            |           |             |              |             |             |               |                 |         |        |
| 7446  | FV | У | 254    | 3065   | 4533   | 4659       | 7430       | 5230      | 4522        | 8057         | 5837        | 4988        | 7432          | 6,470           | 5,650   | 5,496  |
| 2011A |    |   |        |        |        |            |            |           |             |              |             |             |               |                 |         |        |
| 7453  | FV | у | 1 16   | 38 14  | 48 1   | 1335       | 5960       | 4693      | 4289        | 9269         | 6215        | 5 5438      | 13458         | 9,613           | 7,173   | 6,192  |
| 2011A |    |   |        |        |        |            |            |           |             |              |             |             |               |                 |         |        |
| 7463  | FV | n | 14 138 | 80 124 | .37 1( | 0535 4     | 43367      | 14925     | 10308       | 30200        | 17154       | 4 11723     | 13841         | 12,911          | 12,814  | 11,575 |

| 2011A |      |   |     |      |      |      |       |      |      |       |      |      |       |        |       |       |
|-------|------|---|-----|------|------|------|-------|------|------|-------|------|------|-------|--------|-------|-------|
| 7465  | FV   | У | 1   | 1405 | 2117 | 2426 | 6064  | 4945 | 4703 | 8088  | 6344 | 5408 | 7900  | 6,559  | 6,346 | 5,442 |
| 2011A |      |   |     |      |      |      |       |      |      |       |      |      |       |        |       |       |
| 7624  | FV   | У | 385 | 2654 | 4261 | 3463 | 10606 | 7167 | 6043 | 17553 | 9860 | 7293 | 13989 | 10,095 | 7,464 | 6,949 |
| 2011A |      |   |     |      |      |      |       |      |      |       |      |      |       |        |       |       |
| 7656  | FV   | У | 1   | 3933 | 3954 | 3227 | 5698  | 4818 | 4199 | 7145  | 5515 | 4714 | 6530  | 5,684  | 4,895 | 4,587 |
| 2011A |      |   |     |      |      |      |       |      |      |       |      |      |       |        |       |       |
| 7658  | FV   | У | 0   | 266  | 2076 | 2641 | 4742  | 3816 | 2745 | 5772  | 4768 | 4058 | 5872  | 5,239  | 4,547 | 4,170 |
| 2011A |      |   |     |      |      |      |       |      |      |       |      |      |       |        |       |       |
| 7665  | FV   | У | 0   | 983  | 1691 | 2052 | 7718  | 5621 | 5005 | 8164  | 6620 | 6329 | 8320  | 6,915  | 6,659 | 5,801 |
| 2011A |      |   |     |      |      |      |       |      |      |       |      |      |       |        |       |       |
| 7667  | FV   | У | 0   | 2957 | 2325 | 3158 | 4421  | 3375 | 2977 | 5577  | 4789 | 4352 | 5767  | 4,953  | 4,570 | 3,640 |
| 2011A |      |   |     |      |      |      |       |      |      |       |      |      |       |        |       |       |
| 7696  | FV   | У | 3   | 1262 | 783  | 741  | 4871  | 3393 | 3060 | 5923  | 5194 | 4433 | 6101  | 5,454  | 5,016 | 4,488 |
| 2011A |      |   |     |      |      |      |       |      |      |       |      |      |       |        |       |       |
| 7702  | FV   | У | 1   | 1963 | 4042 | 3427 | 6020  | 4695 | 3974 | 10932 | 7238 | 6296 | 14323 | 10,169 | 8,941 | 7,700 |
| 2011A |      |   |     |      |      |      |       |      |      |       |      |      |       |        |       |       |
| 7106  | Cont | n | 0   | 1    | 341  | 0    | 0     | 0    | 9    | 0     | 1    | 1    | 237   | 22     | 88    | 10    |

| 2011A |      |   |    |    |    |    |    |    |     |     |     |     |     |     |       |     |
|-------|------|---|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-------|-----|
| 7112  | Cont | у | 7  | 1  | 0  | 11 | 1  | 1  | 139 | 3   | 8   | 66  | 0   | 3   | 2     | 28  |
| 2011A |      |   |    |    |    |    |    |    |     |     |     |     |     |     |       |     |
| 7129  | Cont | у | 1  | 2  | 5  | 34 | 4  | 1  | 6   | 68  | 2   | 6   | 15  | 93  | 2,066 | 737 |
| 2011A |      |   |    |    |    |    |    |    |     |     |     |     |     |     |       |     |
| 7157  | Cont | n | 5  | 3  | 18 | 45 | 33 | 61 | 95  | 284 | 516 | 332 | 331 | 279 | 214   | 290 |
| 2011A |      |   |    |    |    |    |    |    |     |     |     |     |     |     |       |     |
| 7183  | Cont | у | 1  | 11 | 0  | 8  | 10 | 37 | 54  | 98  | 70  | 51  | 28  | 12  | 18    | 47  |
| 2011A |      |   |    |    |    |    |    |    |     |     |     |     |     |     |       |     |
| 7185  | Cont | у | 0  | 1  | 0  | 1  | 4  | 2  | 38  | 4   | 400 | 9   | 4   | 29  | 9     | 31  |
| 2011A |      |   |    |    |    |    |    |    |     |     |     |     |     |     |       |     |
| 7203  | Cont | у | 0  | 0  | 0  | 0  | 0  | 1  | 2   | 2   | 0   | 0   | 0   | 3   | 1     | 73  |
| 2011A |      |   |    |    |    |    |    |    |     |     |     |     |     |     |       |     |
| 7384  | Cont | у | 32 | 53 | 25 | 19 | 21 | 16 | 38  | 4   | 1   | 1   | 4   | 9   | 8     | 5   |
| 2011A |      |   |    |    |    |    |    |    |     |     |     |     |     |     |       |     |
| 7390  | Cont | n | 0  | 0  | 0  | 0  | 3  | 11 | 8   | 12  | 13  | 2   | 1   | 1   | 1     | 1   |
|       |      |   | 1  |    |    |    |    |    |     |     |     |     |     |     |       | ļ   |

|       |      |   |     |     | B.Al- | HE.0232 Fin; | al Report – | Developmer | nt of a comm | nercial vaccii | ne for <i>Haem</i> | onchus con | <i>tortus</i> , the Ba | rber's Pole | Norm  |       |
|-------|------|---|-----|-----|-------|--------------|-------------|------------|--------------|----------------|--------------------|------------|------------------------|-------------|-------|-------|
| 2011A |      |   |     |     |       |              |             |            |              |                |                    |            |                        |             |       |       |
| 7400  | Cont | n | 0   | 1   | 0     | 6            | 45          | 12         | 47           | 39             | 31                 | 98         | 60                     | 30          | 262   | 7,249 |
| 2011A |      |   | 1   |     |       |              |             |            |              |                |                    |            |                        |             |       |       |
| 7414  | Cont | у | 0   | 537 | 12    | 52           | 0           | 20         | 15           | 11             | 28                 | 36         | 64                     | 25          | 5     | 7     |
| 2011A |      |   |     |     |       |              |             |            |              |                |                    |            |                        |             |       |       |
| 7442  | Cont | у | 14  | 53  | 52    | 65           | 271         | 160        | 448          | 895            | 480                | 617        | 518                    | 283         | 189   | 215   |
| 2011A |      |   |     |     |       |              |             |            |              |                |                    |            |                        |             |       |       |
| 7447  | Cont | у | 57  | 196 | 291   | 338          | 544         | 745        | 1079         | 452            | 162                | 261        | 370                    | 768         | 1,736 | 1,701 |
| 2011A |      |   |     |     |       |              |             |            |              |                |                    |            |                        |             |       |       |
| 7452  | Cont | У | 0   | 0   | 0     | 4            | 0           | 0          | 4            | 1              | 0                  | 0          | 1                      | 3           | 1     | 5     |
| 2011A |      |   |     |     |       |              |             |            |              |                |                    |            |                        |             |       |       |
| 7454  | Cont | У | 0   | 0   | 0     | 0            | 0           | 0          | 18           | 2              | 0                  | 17         | 15                     | 13          | 2     | 9     |
| 2011A |      |   |     |     |       |              |             |            |              |                |                    |            |                        |             |       |       |
| 7458  | Cont | У | 117 | 1   | 3     | 1            | 2           | 4          | 504          | 6              | 0                  | 0          | 3                      | 52          | 94    | 146   |
| 2011A |      |   |     |     |       |              |             |            |              |                |                    |            |                        |             |       |       |
| 7488  | Cont | У | 0   | 0   | 0     | 29           | 2           | 4          | 11           | 3              | 0                  | 13         | 2                      | 1           | 7     | 0     |
| 2011A |      |   |     |     |       |              |             |            |              |                |                    |            |                        |             |       |       |
| 7497  | Cont | У | 1   | 7   | 1     | 24           | 13          | 0          | 9            | 8              | 1                  | 7          | 1                      | 0           | 10    | 1     |

|       |      |   |     |     | B.A | HE.0232 Fin | al Report – | Developme | nt of a comn | nercial vacci | ne for Haen | nonchus cor | <i>itortus</i> , the Ba | arber's Pole V | Vorm |     |
|-------|------|---|-----|-----|-----|-------------|-------------|-----------|--------------|---------------|-------------|-------------|-------------------------|----------------|------|-----|
| 2011A |      |   |     |     |     |             |             |           |              |               |             |             |                         |                |      |     |
| 7498  | Cont | У | 4   | 34  | 8   | 0           | 21          | 26        | 30           | 26            | 16          | 83          | 62                      | 58             | 175  | 370 |
| 2011A |      |   |     |     |     |             |             |           |              |               |             |             |                         |                |      |     |
| 7626  | Cont | У | 0   | 2   | 0   | 6           | 1           | 2         | 139          | 0             | 0           | 2           | 1                       | 1              | 2    | 11  |
| 2011A |      |   |     |     |     |             |             |           |              |               |             |             |                         |                |      |     |
| 7632  | Cont | У | 2   | 46  | 0   | 4324        | 61          | 6         | 1            | 7             | 8           | 11          | 7                       | 2              | 8    | 2   |
| 2011A |      |   |     |     |     |             |             |           |              |               |             |             |                         |                |      |     |
| 7650  | Cont | У | 1   | 18  | 3   | 0           | 5           | 11        | 19           | 17            | 9           | 67          | 39                      | 5              | 12   | 3   |
| 2011A |      |   |     |     |     |             |             |           |              |               |             |             |                         |                |      |     |
| 7662  | Cont | У | 1   | 54  | 0   | 0           | 0           | 58        | 30           | 13            | 4           | 22          | 21                      | 35             | 28   | 36  |
| 2011A |      |   |     |     |     |             |             |           |              |               |             |             |                         |                |      |     |
| 7678  | Cont | У | 277 | 938 | 602 | 154         | 221         | 781       | 1249         | 861           | 1071        | 1000        | 1144                    | 576            | 758  | 366 |
| 2011A |      |   |     |     |     |             |             |           |              |               |             |             |                         |                |      |     |
| 7706  | Cont | У | 0   | 0   | 33  | 2           | 0           | 145       | 198          | 32            | 24          | 78          | 108                     | 30             | 76   | 25  |

Table A.5. Bodyweights (Kg) of ewes which raised a lamb

| Ewe no    | Group   | Lamb   |      | Day afte | r V1 |      |
|-----------|---------|--------|------|----------|------|------|
|           |         | raised | 29   | 77       | 147  | 217  |
| 2011A0098 | Prev V  | У      | 47   | 31.8     | 35.5 | 38.5 |
| 2011A0118 | Prev V  | у      | 47.5 | 35.6     | 35.5 | 41.5 |
| 2011A0144 | Prev V  | У      | 44   | 32.1     | 34.5 | 37.5 |
| 2011A0155 | Prev V  | у      | 48   | 33.2     | 36.5 | 38.5 |
| 2011A7113 | Prev V  | у      | 46   | 36.6     | 43   | 43.5 |
| 2011A7115 | Prev V  | у      | 48.5 | 40.2     | 44.5 | 45   |
| 2011A7116 | Prev V  | у      | 45.5 | 32.9     | 34.5 | 37.5 |
| 2011A7126 | Prev V  | n      |      |          |      |      |
| 2011A7127 | Prev V  | у      | 41   | 30.6     | 35.5 | 40.5 |
| 2011A7137 | Prev V  | n      |      |          |      |      |
| 2011A7163 | Prev V  | у      | 45.5 | 34.7     | 36.5 | 38   |
| 2011A7165 | Prev V  | у      | 47.5 | 31.8     | 41.5 | 41.5 |
| 2011A7168 | Prev V  | у      | 45.5 | 30.4     | 34.5 | 38   |
| 2011A7178 | Prev V  | у      | 53   | 37.8     | 43   | 47.5 |
| 2011A7180 | Prev V  | у      | 44.5 | 31.5     | 33.5 | 35.5 |
| 2011A7186 | Prev V  | у      | 43.5 | 31.3     | 34.5 | 38   |
| 2011A7075 | First V | у      | 47.5 | 32.9     | 35.5 | 39   |
| 2011A7102 | First V | у      | 40.5 | 31       | 32.5 | 35.5 |
| 2011A7125 | First V | у      | 42.5 | 31.4     | 34.5 | 35.5 |
| 2011A7144 | First V | у      | 41.5 | 31.7     | 36   | 36.5 |
| 2011A7145 | First V | у      | 49   | 35.5     | 39.5 | 42   |
| 2011A7172 | First V | У      | 51.5 | 33.9     | 41   | 44   |

|           |         |   |      |      |      |      | Pole Wo |
|-----------|---------|---|------|------|------|------|---------|
| 2011A7179 | First V | У | 45.5 | 32.3 | 35.5 | 40   |         |
| 2011A7187 | First V | У | 41   | 29.5 | 33.5 | 34.5 |         |
| 2011A7189 | First V | У | 42   | 31.8 | 32.5 | 34.5 |         |
| 2011A7387 | First V | У | 51.5 | 37.4 | 42   | 41   |         |
| 2011A7396 | First V | n |      |      |      |      |         |
| 2011A7407 | First V | У | 47   | 34.6 | 40.5 | 42   |         |
| 2011A7425 | First V | У | 47.5 | 34.6 | 37   | 40.5 |         |
| 004447440 |         |   | 50   | 25   | 07   | 40 5 |         |
| 2011A7446 | First V | У | 50   | 35   | 37   | 40.5 |         |
| 2011A7453 | First V | У | 41   | 28.9 | 31.5 | 34   |         |
| 2011A7463 | First V | n |      |      |      |      |         |
| 2011A7465 | First V | У | 43.5 | 32.7 | 39.5 | 37.5 |         |
| 2011A7624 | First V | У | 37.5 | 30.9 | 33   | 34   |         |
| 2011A7656 | First V | У | 46.5 | 39.3 | 41.5 | 43.5 |         |
| 2011A7658 | First V | У | 43.5 | 33.2 | 36.5 | 39.5 |         |
| 2011A7665 | First V | У | 40.5 | 29   | 33   | 35.5 |         |
| 2011A7667 | First V | У | 49   | 39.8 | 41   | 44   |         |
| 2011A7696 | First V | У | 47   | 31.2 | 39   | 41.5 |         |
| 2011A7702 | First V | У | 44.5 | 32   | 36.5 | 40.5 |         |
| 2011A7106 | Control | n |      |      |      |      |         |
| 2011A7112 | Control | У | 42   | 29.1 | 34.5 | 36   |         |
| 2011A7129 | Control | У | 43   | 30.3 | 33   | 34.5 |         |
| 2011A7157 | Control | n | 45.5 | 37.4 | 41   | 41.5 |         |
| 2011A7183 | Control | У | 48.5 | 33.7 | 37.5 | 40.5 |         |
| 2011A7185 | Control | У | 41.5 | 28.7 | 30   | 33.5 |         |
| 2011A7203 | Control | У | 40.5 | 30.1 | 34.5 | 34.5 |         |
| 2011A7384 | Control | У | 42   | 32.1 | 33.5 | 37.5 |         |
| 2011A7390 | Control | n |      |      |      |      |         |
|           |         |   |      |      |      |      |         |

| 2011A7400 | Control | n |      |      |      |      |
|-----------|---------|---|------|------|------|------|
| 2011A7414 | Control | У | 49   | 34.3 | 37   | 38   |
| 2011A7442 | Control | У | 45   | 31   | 34   | 35.5 |
| 2011A7447 | Control | У | 49   | 32.1 | 38.5 | 34.5 |
| 2011A7452 | Control | У | 52   | 37.3 | 38.5 | 42.5 |
| 2011A7454 | Control | У | 43.5 | 35.4 | 36.5 | 37   |
| 2011A7458 | Control | У | 49.5 | 36   | 39   | 39   |
| 2011A7488 | Control | У | 49   | 34.3 | 38.5 | 41   |
| 2011A7497 | Control | У | 49.5 | 33.5 | 37   | 39   |
| 2011A7498 | Control | У | 48.5 | 35.6 | 38.5 | 40.5 |
| 2011A7626 | Control | У | 43.5 | 33.5 | 37.5 | 36.5 |
| 2011A7632 | Control | У | 42.5 | 30.3 | 36   | 37.5 |
| 2011A7650 | Control | У | 44   | 28.6 | 34   | 36   |
| 2011A7662 | Control | У | 50.5 | 31.8 | 37.5 | 40.5 |
| 2011A7678 | Control | У | 39.5 | 26   | 28   | 31.5 |
| 2011A7706 | Control | У | 43   | 33.2 | 33.5 | 35.5 |

# Table A6

# Weather Data from Australian Bureau of Meteorology

# Armidale airport - monthly rainfall (mm)

## 2013-2014

| S    | 0    | Ν     | D               | J          | F     | М     | А    |
|------|------|-------|-----------------|------------|-------|-------|------|
| 25   | 41.4 | 117   | 39.2            | 2.4        | 48.8  | 115.8 | 7.4  |
|      |      |       | Mean me<br>(mm) | onthly rai | nfall |       |      |
| S    | 0    | Ν     | D               | J          | F     | М     | А    |
| 56.3 | 74.5 | 110.4 | 95.4            | 87.1       | 98.6  | 59.5  | 34.7 |

# VETERINARY HEALTH RESEARCH PTY LTD



# **STUDY REPORT**

Study Title: A field study to evaluate the efficacy of an *Haemonchus* vaccine when administered to vaccinated and unvaccinated lactating ewes during times of high parasite challenge. New England district NSW, Australia.

| Study No.:   | MIHO | 2920  | Sponsor Study No.: | N/A          |
|--------------|------|-------|--------------------|--------------|
| Version No.: | 6    | FINAL | Version Date:      | 10 July 2014 |

Author: T. Dale

| Sponsor: | Name:    | Julie Fitzpatrick                                                                                  |
|----------|----------|----------------------------------------------------------------------------------------------------|
|          |          | Moredun Group Director                                                                             |
|          | Address: | Moredun Institute                                                                                  |
|          |          | The Moredun Group<br>Pentlands Science Park<br>Bush Loan<br>Penicuik<br>Midlothian<br>Scotland, UK |

# VETERINARY HEALTH RESEARCH PTY LTD



# **STUDY REPORT**

| Sponsor Monitor & | Name:                       | David Smith                                                                                                     |
|-------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------|
| Representative:   | Address:                    | The Moredun Group<br>Pentlands Science Park<br>Bush Loan<br>Penicuik<br>Midlothian<br>Scotland, UK              |
| Investigator:     | Name:<br>Quals.:<br>Address | Timothy Dale<br>B. LISC<br>Veterinary Health Research Pty Ltd<br>Trevenna Road, Armidale, NSW 2350<br>Australia |

# TABLE OF CONTENTS

PAGE

# **Study Investigator Compliance Statement**

### **Quality Assurance Statement**

- 1. Objectives
- 2. Justification
- 3. Compliance
- 4. Test Site(s)
- 5. Study Dates
- 6. Study Design
  - a. Experimental Unit
  - **b.** Animal Model
  - c. Inclusion Criteria
  - d. Exclusion and Removal Criteria
  - e. Allocation
  - f. Blinding

### 7. Investigational Veterinary Product

- a. Investigational Veterinary Product
- **b.** Source
- c. Storage
- d. Safety
- e. Assays
- f. Drug Disposal

## 8. Treatment

a. Dose Calculation

- **b.** Dose Preparation
- c. Method of Dose Administration
- 9. Schedule of Events
- 10. Test System

### 11. Animal Management

- a. Animal Welfare
- b. Concurrent medication/Salvage drenches
- c. Health Management
- d. Housing
- e. Experimental Diets
- **f.** Animal Disposal

### 12. Study Procedures

- a. Trial Log
- **b.** Informed Consent
- c. Weather Data
- d. Sample Storage, Transfer & Disposal

#### 13. Assessment of Effects

- a. Body Weights
- **b.** Blood Analysis
- c. Faecal Egg Counts / Larval Differentiation

#### 14. Statistical Analysis

#### 15. Quality Assurance

## 16. Data Records

- a. Amendments
- **b.** Deviations
- c. Notes to File
- d. Change of Study Personnel

- e. Raw Data
- **f.** Communication Log
- g. Permits
- h. Confidentiality
- i. Study Report

#### 17. Results

- a. Deaths
- b. Lambing success & number of ewes used in the study
- c. Types of comparison made
- d. Rainfall & pasture infectivity
- e. Haemonchus egg counts
- **f.** Kinetics of & relationships between the parameters studied over the course of the trial
- g. Ewe bodyweights

#### 18. Concluding Remarks

#### Tables, Graphs and Data Listings

- Table 1 Treatment regime
- Table 2 Schedule of events
- Table 3 Salvage drench summary
- Table 4 Percent protection (eggs) on each sampling day
- Table 5 Precautionary drenches
- Table A1 Total strongyle egg counts (See Appendix 3)

Table A2 – Results of coprocultures – Percent of each Species of Nematode Larvae (See Appendix 3)

Table A3 – Blood haemoglobin concentrations (g/100mL) (See Appendix 3)

Table A4 – ELISA titres (See Appendix 3)

### Table A5 – Ewe bodyweights (kg) (See Appendix 3)

Table A6 – Rainfall date provided by the producer (mm) (See Appendix 3)

Figure 1 - Individual ewe counts averaged over lactation

Figure 2 – Individual egg counts averaged over the trial

Figure 3 – Kinetics of interventions, group mean total egg counts, *Haemonchus* specific egg counts and the anti-vaccine antibody response

Figure 4 – Kinetics of the *Haemonchus* specific egg counts in relation to blood haemoglobin concentrations and to precautionary drenching

Figure 5 – Ewe bodyweights over the course of the trial

Figure 6 – New South Wales rainfall deciles between 01 November 2013 to 30 April 2014 (See Appendix 5)

### Appendices

| Appendix 1 – List of Abbreviations                 |
|----------------------------------------------------|
| Appendix 2 – List of Standard Operating Procedures |
| Appendix 3 – Tabulated Raw Data                    |
| Appendix 4 – Statistical Output                    |
| Appendix 5 – Weather Data                          |
| Appendix 6 – Animal Ethics Authority               |
| Appendix 7 – Grazier's Report                      |
| Appendix 8 – TrialPak                              |

# STUDY INVESTIGATOR

### **COMPLIANCE STATEMENT**

I, the undersigned, hereby declare that the report is a complete, true and accurate representation of the study and its results.

This study was conducted in accordance with the approved Protocol and with VHR Standard Operating Procedures (see Appendix 2), unless otherwise stated, and the study objectives were achieved. The study was conducted in compliance with:

• VICH GL9 Good Clinical Practice (June 2000)

There were no deviations from Protocol or any other circumstances considered to have affected the outcome of the study.

Signed:

Timothy Dale, B.Li.Sc.

Study Investigator

Date:

# QUALITY ASSURANCE STATEMENT

Inspections were made by the Quality Assurance Unit of the various phases of the study described in this report. The date inspections were carried out and reported to the Investigator and to facility management are given below:

| Inspection<br>Date | Inspection<br>Type | Phase Inspected             | QA<br>Auditor | Inspection<br>Report<br>issued |
|--------------------|--------------------|-----------------------------|---------------|--------------------------------|
| 14 Aug 13          | Study              | Protocol V2 – 05 Aug 13     | L. Pearson    | 14 Aug 13                      |
| 01 Jul 14          | Study              | Study Report V4 – 17 Jun 14 | L. Pearson    | 03 Jul 14                      |
|                    |                    |                             |               |                                |
|                    |                    |                             |               |                                |
|                    |                    |                             |               |                                |

This report has been audited by the Quality Assurance Unit and is considered to be an accurate description of the methods and procedures used during the conduct of the study, and an accurate reflection of the raw data.

Signed:

Leonora Pearson, DipRQA

**Quality Assurance Manager** 

Date:

## 1. OBJECTIVE

To confirm the field efficacy of a *Haemonchus* vaccine in previously vaccinated and unvaccinated peri-parturient ewes against *Haemonchus contortus*, when previously vaccinated, previously unvaccinated and control (unvaccinated) sheep are grazed together, in the northern New England region of New South Wales, Australia. Data from this study may be used to support product registration.

#### 2. JUSTIFICATION

Commonly, the treatment of internal parasites in sheep has been via drenching with an anthelmintic compound to eradicate the parasites and with some compounds, kill the incoming larvae from the pasture. Parasite resistance to many of the commonly used anthelmintics is common in many parts of the world. The use of a vaccine to control these parasites would reduce dependence on anthelmintics, and hence be of great benefit to sheep producers, and for the welfare of the animal.

Initial field trials have shown that the vaccine in question is effective at reducing host anaemia and parasite egg output. This study aimed to investigate the efficacy in pregnant ewes (either vaccinated or not during the previous season) when given a course of immunizations starting before parturition.

#### 3. <u>COMPLIANCE</u>

The study complied with the following national and international standards:

VICH GL9 Good Clinical Practice (issued June 2000)

#### 4. TEST SITE(S)

| Animal Phase:   | Laboratory Phase:                     |
|-----------------|---------------------------------------|
| Anonomous       | Veterinary Health Research P/L        |
| Dundee NSW 2370 | Colin Blumer Animal Health Laboratory |
| Australia       | Trevenna Road                         |
|                 | Armidale NSW 2350 Australia           |

#### 5. STUDY DATES

Start date (animal phase): 22 AUG 13 Finish date (animal phase): 20 MAR 14 Finish date (laboratory phase): 20 May 14

### 6. STUDY DESIGN

a. Experimental Unit: The experimental unit was the individual animal.

**b.** Animal Model: The study used maiden Merino ewes on normal pre-lambing prepared paddocks which were contaminated by *Haemonchus contortus*.

**c.** Inclusion Criteria: Animals were selected for the study if they met the criteria outlined in section 10 below.

d. Exclusion and Removal Criteria: No animals were excluded or removed from the study.

**e.** Allocation: Group 1 – all ewe hoggets which were vaccinated as part of the 2012/2013 yearling trial on this property. Seventeen (17) animals were available for inclusion within this group.

**Groups 2 and 3 –** Fifty (50) pregnant first lambing ewes were randomly selected from a larger flock, after excessively heavy or light ("outliers", up to ~10% of the flock) animals have been removed. All trial animals were weighed at selection on Day 0 and ranked from heaviest to lightest, sequentially blocked into blocks of two (2) animals and randomly allocated (draw from hat technique)

Group mean bodyweights at allocation were analysed for significant differences between groups using One-Way Analysis of Variance and a commercially available software package (Statistix 10.0, 2013). There were no statistical differences (p<0.05) between groups.

**f. Blinding:** Laboratory personnel were blinded to treatment groups when performing faecal egg counts.

## 7. INVESTIGATIONAL VETERINARY PRODUCT

#### g. Investigational Veterinary Product:

| Name:        | BarberVax                               | Batch No .:  | 08        |
|--------------|-----------------------------------------|--------------|-----------|
| Composition: | Haemonchus antigen and saponin adjuvant | Expiry Date: | 01 APR 15 |
| Dose Level:  | 5µg antigen and 1mg saponin             | WHP:         | 12 months |

h. Source: WormVax Laboratory

Animal Health Laboratory

Dept of Agriculture and Food Western Australia

444 Albany Highway

Albany WA 6330

- **i.** Storage: Refrigerated between 2 to 8°C.
- j. Safety: A MSDS was not provided. (See Deviation #2).
- k. Assays: A Certificate of Analysis was provided (Appendix 8).
- **I.** Drug Disposal: The disposal of all remaining IVP will be documented.

## 8. TREATMENT

Animals in Group 3 will be retained as untreated controls but <u>individual</u> animals in either Group 1, 2 or 3 will be treated with a short acting anthelmintic if:

- *H.contortus*: the egg count rises above 10,000 epg or if the blood haemoglobin concentration falls below 6.5 g/100mL
- **Other genera:** (indicated by larval differentiation): the individual animal egg count rises above 1500 epg, or scouring is evident. For a flock treatment, the upper limit is a mean of 1000 epg (though scouring is likely to be evident before this level is reached). See NTF #1.
- **Scouring**: Individuals will be treated if above an AWI Scour Score of 3.

**a. Dose Calculation:** Dose volume was 1mL IVP by subcutaneous injection. Anthelmintic treatment was calculated according to individual animal bodyweight using Day 0, 112 or Day 210 bodyweights.

**b.** Dose Preparation: The IVP was transported on ice bricks and gently shaken immediately prior to first treatment.

**c.** Method of Dose Administration: Study animals were dosed according to the treatment regime detailed in Table 1 below.

| Grou<br>p | IVP Details        | Dose<br>Volume | Route   | Treatment<br>Day(s)                                                                           | No.<br>Animal<br>s |
|-----------|--------------------|----------------|---------|-----------------------------------------------------------------------------------------------|--------------------|
| 1         | IVP                | 1.0 mL         | Subcut. | Days 21, 70, 112, 154 and 196<br>Treat with an effective anthelmintic<br>on Days 0 and 210    | 17                 |
| 2         | IVP                | 1.0 mL         | Subcut. | Days 0, 21, 70, 112, 154 and 196<br>Treat with an effective anthelmintic<br>on Days 0 and 210 | 25                 |
| 3         | Untreated controls | N/A            | N/A     | Treat with an effective anthelmintic<br>on Days 0 and 210                                     | 25                 |

## Table 1: Treatment Regime

Subcut. = Subcutaneous

All animals were treated using either a Simcro Vaccine Gun or NJ Phillips Vaccine Gun at a dose level of 1.0 mL subcutaneously. Study animals were observed at the time of treatment, no abnormalities were observed.

# 9. <u>SCHEDULE OF EVENTS</u>

## Table 2: Schedule of Events

| Study<br>Day* | Date      | Event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|---------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Pre-Trial     |           | Obtained Animal Ethics Committee approval; Confirmed trial arrangements with Sponsor and Farmer that ran a previous study MIHO2898 which was run in northern portion of the NSW New England. All ewes were scanned in lamb (see <b>NTF #5</b> ).                                                                                                                                                                                                                                                                           |  |
| Day 0         | 22 AUG 13 | All animals were weighed and allocated into Groups. Collected bl samples from animals in Groups 1, 2 and 3 for haemoglobin analy and faecal samples from Groups 1, 2 and 3 for FECs and group la differentiation (see Deviation #1). Processed Groups 1, 2 and 3 bl samples and harvested plasma. Plasma stored frozen in 2 replicate approximately -20°C. Group 2 were vaccinated with 1.0 mL of (V1). All animals in Groups 1, 2 and 3 were treated with ZOLVIX drench out animals. Commenced twice weekly observations. |  |

| Study   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Day*    | Date      | Event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Day     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Day 14  | 05 SEP 13 | Collected blood samples from animals in Groups 1, 2 and 3 for haemoglobin analysis, and faecal samples from Groups 1, 2 and 3 for FECs and group larval differentiation (see Deviation #1). No animal required a salvage drench. Processed Groups 1 and 2 blood samples and harvested plasma. Plasma stored frozen in 2 replicates at approximately -20°C.                                                                                                                                            |
| Day 21  | 12 SEP 13 | Collected blood samples from animals in Groups 1, 2 and 3 for<br>haemoglobin analysis, and faecal samples from Groups 1, 2 and 3 for<br>FECs and group larval differentiation (see Deviation #1). No animal<br>required a salvage drench. Processed Groups 1 and 2 blood samples<br>and harvested plasma. Plasma stored frozen in 2 replicates at<br>approximately -20°C. Group 1 was vaccinated with IVP (V1) and<br>Group 2 received IVP (V2).                                                      |
| Day 28  | 19 SEP 13 | Start of lambing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Day 70  | 31 OCT 13 | <u>Marking</u> : Collected blood samples from animals in Groups 1, 2 and 3 for<br>haemoglobin analysis, and faecal samples from Groups 1, 2 and 3 for<br>FECs and group larval differentiation. Several animals required a<br>salvage drench (see Table 3 below). Processed Groups 1 and 2 blood<br>samples and harvested plasma. Plasma stored frozen in 2 replicates at<br>approximately -20°C. Group 1 was vaccinated with IVP (V3) and<br>Group 2 received IVP (V3). See Amendment #1 and NTF #4. |
| Day 84  | 14 NOV 13 | Collected blood samples from animals in Groups 1, 2 and 3 for haemoglobin analysis, and faecal samples from Groups 1, 2 and 3 for FECs and group larval differentiation. No animal required a salvage drench. Processed Groups 1 and 2 blood samples and harvested plasma. Plasma stored frozen in 2 replicates at approximately -20 <sup>o</sup> C.                                                                                                                                                  |
| Day 98  | 28 NOV 13 | Collected blood samples from animals in Groups 1, 2 and 3 for haemoglobin analysis, and faecal samples from Groups 1, 2 and 3 for FECs and group larval differentiation. No animal required a salvage drench. Processed Groups 1 and 2 blood samples and harvested plasma. Plasma stored frozen in 2 replicates at approximately -20 <sup>o</sup> C.                                                                                                                                                  |
| Day 112 | 12 DEC 13 | Weighed all sheep. Collected blood samples from animals in Groups 1, 2 and 3 for haemoglobin analysis, and faecal samples from Groups 1, 2 and 3 for FECs and group larval differentiation. No animal required a salvage drench. Processed Groups 1, 2 and 3 blood samples and harvested plasma. Plasma stored frozen in 2 replicates at approximately -20°C. Group 1 was vaccinated with IVP (V3 + V 'spare' 19) and Group 2 received IVP (V4).                                                      |

| Study   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Day*    | Date      | Event                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Day 123 | 23 DEC 13 | Collected blood samples from animals in Groups 1, 2 and 3 for haemoglobin analysis, and faecal samples from Groups 1, 2 and 3 for FECs and group larval differentiation. No animal required a salvage drench. Processed Groups 1 and 2 blood samples and harvested plasma. Plasma stored frozen in 2 replicates at approximately -20°C.                                                                                               |
| Day 140 | 09 JAN 14 | Collected blood samples from animals in Groups 1, 2 and 3 for haemoglobin analysis, and faecal samples from Groups 1, 2 and 3 for FECs and group larval differentiation. Several animals required a salvage drench (see Table 3 below). Processed Groups 1 and 2 blood samples and harvested plasma. Plasma stored frozen in 2 replicates at approximately -20°C.                                                                     |
| Day 154 | 23 JAN 14 | Collected blood samples from animals in Groups 1, 2 and 3 for haemoglobin analysis, and faecal samples from Groups 1, 2 and 3 for FECs and group larval differentiation. Several animals required a salvage drench (see Table 3 below). Processed Groups 1 and 2 blood samples and harvested plasma. Plasma stored frozen in 2 replicates at approximately -20°C. Group 1 was vaccinated with IVP (V4) and Group 2 received IVP (V5). |
| Day 165 | 03 FEB 14 | Weaning: Lambs were weaned off the ewes. The grazier "wet and dry" tested the ewes before moved them into new paddocks (see NTF #2 and NTF #3).                                                                                                                                                                                                                                                                                       |
| Day 167 | 05 FEB 14 | Dispatch Plasma samples to Moredun. All Replica 1 plasma samples from Day 0 to Day 154.                                                                                                                                                                                                                                                                                                                                               |
| Day 168 | 06 FEB 14 | Collected blood samples from animals in Groups 1, 2 and 3 for haemoglobin analysis, and faecal samples from Groups 1, 2 and 3 for FECs and group larval differentiation. No animal required a salvage drench. Processed Groups 1 and 2 blood samples and harvested plasma. Plasma stored frozen in 2 replicates at approximately -20 <sup>o</sup> C.                                                                                  |
| Day 182 | 20 FEB 14 | Collected blood samples from animals in Groups 1, 2 and 3 for haemoglobin analysis, and faecal samples from Groups 1, 2 and 3 for FECs and group larval differentiation. No animal required a salvage drench. Processed Groups 1 and 2 blood samples and harvested plasma. Plasma stored frozen in 2 replicates at approximately -20 <sup>o</sup> C.                                                                                  |

| Study<br>Day* | Date      | Event                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Day 196       | 06 MAR 14 | Collected blood samples from animals in Groups 1, 2 and 3 for haemoglobin analysis, and faecal samples from Groups 1, 2 and 3 for FECs and group larval differentiation. No animal required a salvage drench. Processed Groups 1 and 2 blood samples and harvested plasma. Plasma stored frozen in 2 replicates at approximately -20°C. Group 1 was vaccinated with IVP (V5) and Group 2 received IVP (V6). |
| Day 210       | 20 MAR 14 | Weighed all sheep. Collected blood samples from animals in Groups 1, 2 and 3 for haemoglobin analysis, and faecal samples from Groups 1, 2 and 3 for FECs and group larval differentiation. Processed Groups 1, 2 and 3 blood samples and harvested plasma. Plasma stored frozen in 2 replicates at approximately -20°C. All animals were treated with COLLEAGUE to drench out animals.                     |
|               | 15 APR 14 | Dispatch Plasma samples to Moredun. All remaining Replica 1 plasma samples.                                                                                                                                                                                                                                                                                                                                 |

\*Note: In the protocol, amendments, deviations and raw data all activities are timed relative to lambing (Day 0 was 19 SEP 13) but in this report they are timed relative to the day of first vaccination (Day 0 is 22 AUG 13). This is a more accurate way of portraying the kinetics of the trial data because lambing was spread out over a few weeks (see NTF #6).

#### 10.TEST SYSTEM

| Species:         | Ovine                                                        | Number:          | 67                                                     |
|------------------|--------------------------------------------------------------|------------------|--------------------------------------------------------|
| Breed:           | Merino                                                       | Source:          | Commercial sheep farm                                  |
| Weight:          | 44.0–63.5 kg (Day 0)                                         | Health & special | Healthy animals. Not within                            |
|                  | (see Deviation #3)                                           | requirements:    | existing WHP and ESI for<br>animal health products     |
| Sex:             | Maiden Merino ewes                                           |                  | used.                                                  |
| Age:             | 24 months                                                    |                  | Not treated with a long-<br>acting anthelmintic in the |
| Method<br>of ID: | Individually numbered<br>eartags, coloured group<br>eartags. |                  | previous 2 months.                                     |

#### 11.ANIMAL MANAGEMENT

**a.** Animal Welfare: Study animals were managed similarly and with due regard for their welfare. Animals were observed approximately twice weekly for health problems according to

AEC requirements. Animals were handled in compliance with UNE AEC no. 13-107 approved 01 AUG 13, and any applicable local regulations.

**b.** Concurrent Medications /Salvage Drenches: The grazier administered several concurrent medications over the duration of the trial as a part of normal husbandry and management practices.

- 09 SEP 13 Glenvac 6-in-1 Injection (Batch: 06703, Expiry: NOV 15).
- 31 OCT 13 1 mL Cobalife Vitamin B12 + Se. (Batch: V10754/1, Expiry: JAN 17).
- 31 OCT 13 1 mL Glanvac 6-in-1 Injection (Batch: 09403, Expiry AUG 15)
- 22 JAN 14 Animal #44 (Group 2) was treated for mastitis.

Salvage drenches that were administered on the basis of low haemoglobin content or high scour worm burden were recorded in the raw data (see NTF #1). A summary is provided below in Table 3.

| Day | Animal ID | Group | Drench | Volume* (mL) | Salvage Drench |
|-----|-----------|-------|--------|--------------|----------------|
| 70  | 110       | 3     | ZOLVIX | 6.0          | Low blood h/g  |
| 70  | 127       | 3     | ZOLVIX | 6.0          | Low blood h/g  |
| 70  | 128       | 3     | ZOLVIX | 6.0          | Low blood h/g  |
| 70  | 142       | 3     | ZOLVIX | 6.0          | Low blood h/g  |
| 140 | 15        | 3     | ZOLVIX | 6.0          | Low blood h/g  |
| 140 | 113       | 2     | ZOLVIX | 6.0          | Low blood h/g  |
| 140 | 137       | 3     | ZOLVIX | 6.0          | Low blood h/g  |
| 154 | 13        | 2     | ZOLVIX | 5.0          | Low blood h/g  |
| 154 | 29        | 2     | ZOLVIX | 5.0          | Low blood h/g  |
| 154 | 56        | 1     | ZOLVIX | 5.0          | Low blood h/g  |
| 154 | 62        | 2     | ZOLVIX | 5.0          | Low blood h/g  |
| 154 | 72        | 1     | ZOLVIX | 5.0          | Low blood h/g  |
| 154 | 80        | 1     | ZOLVIX | 5.0          | Low blood h/g  |
| 154 | 110       | 3     | ZOLVIX | 5.0          | Low blood h/g  |
| 154 | 117       | 2     | ZOLVIX | 5.0          | Low blood h/g  |
| 154 | 121       | 3     | ZOLVIX | 5.0          | Low blood h/g  |
| 154 | 125       | 3     | ZOLVIX | 5.0          | Low blood h/g  |
| 154 | 128       | 3     | ZOLVIX | 5.0          | Low blood h/g  |
| 154 | 129       | 2     | ZOLVIX | 5.0          | Low blood h/g  |
| 154 | 132       | 2     | ZOLVIX | 5.0          | Low blood h/g  |
| 154 | 133       | 2     | ZOLVIX | 5.0          | Low blood h/g  |
| 154 | 135       | 3     | ZOLVIX | 5.0          | Low blood h/g  |
| 154 | 138       | 3     | ZOLVIX | 5.0          | Low blood h/g  |
| 154 | 139       | 2     | ZOLVIX | 5.0          | Low blood h/g  |

 Table 3: Salvage Drench Summary

| 154 | 140 | 3 | ZOLVIX | 5.0 | Low blood h/g |
|-----|-----|---|--------|-----|---------------|
| 154 | 144 | 3 | ZOLVIX | 5.0 | Low blood h/g |
| 154 | 145 | 3 | ZOLVIX | 5.0 | Low blood h/g |

\*Note: all animals were drenched to the highest weight in the group based upon Day 0 (22 AUG 13) or Day 112 (12 DEC 13) weights recorded. h/g = haemoglobin

All animals in Groups 1, 2 and 3 were treated with an effective anthelmintic (ZOLVIX) on Day 0.

All animals in Groups 1, 2 and 3 were treated with an effective anthelmintic (COLLEAGUE) on Day 210.

**c.** Health Management: Study animals were clinically observed at each sampling time-point, no abnormalities were detected during the study. A single animal #62 (Group 2) was found dead in the paddock on 19 February 14 (Day 181). The ewe had been dead for approximately 48 hours and therefore an autopsy was not conducted. The death was not related to any treatments given during the trial.

**d.** Housing: Routine management practices were followed. All trial animals were maintained as a single group in one paddock (see NTF #3), with *ad-lib* access to a mixture of native and improved pastures and water from a dam.

e. Experimental diets: Not Applicable.

**f.** Animal Disposal: All animals were returned to the commercial herd on the source property at the conclusion of the study.

## 12.STUDY PROCEDURES

a. Trial Log: All scheduled and unscheduled events during the study were recorded

**b.** Informed Consent: An "Owner Consent and Agreement" form was signed by the Owner and the Investigator prior to administration of treatment.

**c. Weather Data:** Data obtained by the farmer and data from the nearest Bureau of Meteorology weather station for the study period are included in the raw data (see Appendix 5).

**d. Sample Storage, Transfer & Disposal:** Sample storage, transfer and disposal were recorded. Replicate 1 blood plasma samples were dispatched on dry-ice to Moredun Institute for analysis via World Courier on 05 February and 15 April 2014 with accompanying datalogger. Replicate 2 blood plasma samples will be held in frozen storage at VHR facilities for a period of 12 months after the last sample collection timepoint, after which point they will be disposed of by high temperature incineration.

#### 13.ASSESSMENT OF EFFECTS

**a. Body Weights:** Animals were weighed at intervals outlined in section 9 - Schedule of Events and individual animal weights were recorded. Animal weigh scales were checked preand post-weighing with calibrated test weights. Body weights and body weight change during the study were compared between groups to determine treatment effects, if any, and are detailed in the results section of the Study Report.

**b.** Blood Analysis: Single blood samples were collected from each animal at intervals outlined in section 9 – Schedule of Events. Blood samples were processed for collection of plasma samples on the day of collection, or following overnight refrigeration. Samples were individually labeled with the study no., animal no., study date & day, sample type, replicate. Frozen plasma samples were forwarded to Moredun Institute laboratories for haematology and biochemistry analysis on 05 Feb 14 and 15 Apr 14. Key haematological and biochemical parameters were compared to determine treatment effects, if any, and are detailed in the results section of the Study Report.

**c.** Faecal Egg Counts / Larval Differentiation: Faecal samples were collected at intervals outlined in section 9 – Schedule of Events. Faecal samples were individually labeled with the animal ID. Faecal egg counts and larval differentiation were performed (see Deviation #1). Faecal egg counts and larval differentiation were compared to determine treatment effects, if any, and are detailed in the results section of the Study Report.

#### 14.STATISTICAL ANALYSIS

One-Way Analysis of Variance, its equivalent non-parametric test and additional statistical analysis may be performed as appropriate by the Sponsor's professional statisticians. See Appendix 4.

#### 15.QUALITY ASSURANCE

Veterinary Health Research has an independent Quality Assurance Unit which reviewed all aspects of quality assurance relating to this study. The Protocol, Study Report and raw data were subject to quality assurance inspection.

## 16.DATA RECORDS

#### a. Amendments:

Amendment #1: The 'Marking' Day 56 (16<sup>th</sup> October 2013) was changed to Day 70 (31<sup>st</sup> October 2013). Some of the lambs were too young and risked being injured during the muster. This delay allowed us to work with the farmer; Ewes could be treated, bled and vaccinated (V3) on the same day, as would normally occur on a commercial sheep property (see Note to File #6). This amendment had no effect on the outcome of the trial.

#### b. Deviations:

Deviation #1: On Day 0 (22 August 2013), Day 14 (05 September 2013) and Day 21 (12 September 2013), the FEC samples were pooled into a single culture, instead of being cultured by groups, because of a misunderstanding between the Study Investigator and the Diagnostic lab staff. Since, every sample has been cultured by Group. This deviation had no effect on the outcome of the trial.

Deviation #2: The Sponsor did not provide an MSDS for the IVP 'BarberVax'. It wasn't deemed essential for pilot batches of the vaccine. This deviation had no effect on the outcome of the trial.

Deviation #3: In Section 10 Test system of the protocol it states that animals were to be between 30 – 55 kg. The weights of the animals used in the trial were outside those specifications outlined in the study protocol. All animals were in really good condition due to the season, and ewes were also in lamb. The ewes in Group 1 were animals used in another trial the previous year. Therefore these animals had to be used regardless of their weight. The other ewes that made up Groups 2 & 3 were the 'sisters' of the Group 1 ewes, as they are the same age and ran together as a mob. As a consequence, all animals were of the same age and were all 'maiden' ewes which were the requirement for the trial. This deviation had no effect on the outcome of the trial.

#### c. Notes to File:

Note to file #1: If the non *Haemonchus* egg count of an individual sheep, (calculated from the total egg count and the coproculture data) exceeded 1,500 epg that sheep was drenched at the next sampling date.

The Group Drenching threshold was calculated in a similar manner except the highest number of allowable scour worm larvae was lowered to 1000 and the group mean was substituted for the individual sheep FEC.

Note to file #2: At the sponsor's request, all animals in the trial were 'wet' or 'Dry'. 'Wet' ewes were lactating as they were rearing a lamb. 'Dry' ewes (#62, #78, #128 and #144) did not raise a lamb for one reason or another.

Note to file #3: In this study, lambs were weaned from the ewes on Monday 3<sup>rd</sup> February 2014, later than usual due to the drought and little feed or water in the paddocks. Ewes were moved into new 'clean' paddocks due to feed restrictions.

Note to file #4: V2 was spilt travelling to Dundee. Consequently, both groups 1 and 2 received V3.

Note to file #5: Animals #32 and #39 (both Group 1) raised twin lambs.

Note to file #6:

a) In the protocol, amendments, deviations and raw data all activities are timed relative to lambing (Day 0 was 19 SEP 13) but in this report they are timed relative to the day of first

vaccination (Day 0 is 22 AUG 13). This is a more accurate way of portraying the kinetics of the trial data because lambing was spread out over a few weeks.

b) Clarification of terms in Amendment #1: the day 'Marking' referred to all the activities that were to occur of that day (regardless of date) as out lined in the study protocol. I.e. Group 1 received V2, Group 2 received V3 and all animals were also bled, haemoglobin analysis conducted, FEC'ed and cultured.

#### d. Change of Study Personnel: Not applicable

**Raw Data:** All original raw data pages have been identified with the study number, signed and dated by the person making the observation and by the person recording the information, and will be paginated prior to appending to the final Study Report.

**e.** Communication Log: The Investigator maintained copies of all correspondence relating to the study. These will be archived with the final Study Report.

f. Permits: The study was covered by APVMA small trial permit no. PER 7250.

**g. Confidentiality:** Confidentiality of the raw data, Study Report and results of the study, plus any information received from the Sponsor, will be maintained during and after the study. Publication of material will remain at the sole discretion of the Sponsor.

**h. Study Report:** The original signed Study Report with raw data, Analytical Reports and Statistical Reports appended will be submitted to the Sponsor. A copy of the Study Report, plus appendices, will be archived at Veterinary Health Research Pty Ltd, Trevenna Road, Armidale, NSW, Australia for a minimum of five years.

#### 17.<u>RESULTS</u>

**a. Deaths:** One ewe from the First Vaccinated group (animal #62) died (19 FEB 14). Its data was excluded from the analysis.

**b.** Lambing success and number of ewes used in the study: There were 67 ewes at the start of the trial but four, two each in the First Vaccinated and Control groups, did not raise a lamb, either because they were not pregnant, or their lamb was born dead or died soon after birth. These 4 sheep remained with the rest of the flock throughout the trial but their data was excluded from the analysis.

Of the 63 surviving ewes which raised a lamb (all singles, except for 2 sets of twins in the Previously Vaccinated group), 17 had been previously vaccinated, 23 were vaccinated for the first time and 23 were Controls.


**c.** Types of comparison made: It was of particular interest to know how well the vaccine performed during the "periparturient" phase of the trial because worm eggs shed during lactation are an important source of infection for the next generation of lambs and hence the general epidemiology of Haemonchosis in a flock. Therefore the degree of protection attained from lambing to weaning is presented in addition to that calculated for the whole duration of the trial.

**d.** Rainfall and pasture infectivity: The 2013-2014 summer was exceptionally dry in New England and the trial site was no exception (Table A6, Fig 6). However, as can be seen from the egg counts of those sheep which received a precautionary drench, larvae were still being picked up in February despite little rain that month (Table A1, Fig 3).

#### e. Haemonchus Egg Counts:

#### iii) From lambing to weaning

During lactation the overall averaged egg counts were reduced by 58.6 % in the Previously Vaccinated sheep compared to the Controls (Fig 1), a statistically significant difference but differences between the First Vaccinated and Control or Previously Vaccinated groups were not statistically significant.



#### iv) Over the whole trial

Overall averaged *Haemonchus* egg counts were significantly reduced in both vaccinated groups of sheep compared to the Controls (Fig 2) but no significant difference was detected between the groups of vaccinates.

A single "non-responder" (defined as a vaccinated animal with a mean egg count greater than the 95% lower confidence limit of the control group) was identified in the Previously Vaccinated group.

0

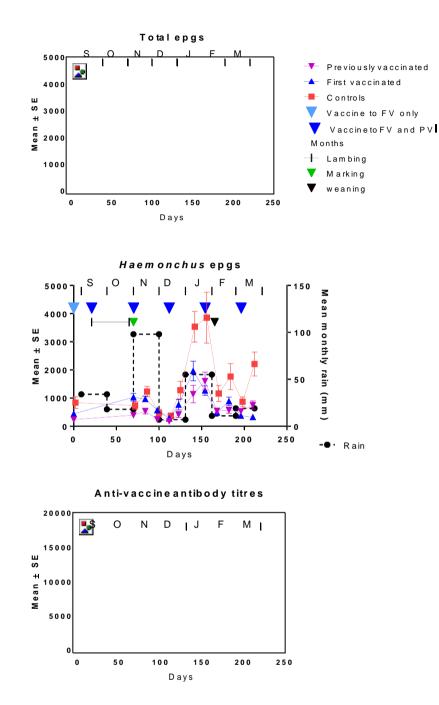
5000 6 4000 3 3000 8 % 9 2000 1000

Fig 2 Individual ewe egg counts averaged over the trial

Control

P value after ANOVA

|             | Days | PV   | %P   | FV   | %P    | Control | PV vs Cont | FV vs Cont | PV vs FV |
|-------------|------|------|------|------|-------|---------|------------|------------|----------|
|             |      | mean |      | mean |       | mean    |            |            |          |
| V1          | 0    | 240  | 71.3 | 435  | 47.9  | 834     | n/s        | n/s        | n/s      |
|             | 14   |      |      |      |       |         |            |            |          |
| V2          | 21   |      |      |      |       |         |            |            |          |
| V3, marking | 70   | 395  | 47.0 | 1033 | -38.6 | 745     | n/s        | n/s        | **       |
|             | 84   | 538  | 57.2 | 998  | 20.7  | 1259    | ***        | n/s        | *        |
|             | 98   | 246  | 44.3 | 558  | -26.1 | 442     | n/s        | n/s        | n/s      |
| V4          | 112  | 175  | 48.5 | 258  | 24.1  | 340     | n/s        | n/s        | n/s      |
|             | 123  | 417  | 64.6 | 726  | 38.5  | 1179    | *          | n/s        | n/s      |
|             | 140  | 1144 | 66.1 | 1972 | 41.5  | 3370    | ****       | *          | n/s      |
| V5          | 154  | 1606 | 57.1 | 1400 | 62.6  | 3746    | n/s        | *          | n/s      |
| weaned d165 | 168  | 547  | 53.0 | 469  | 59.7  | 1163    | n/s        | n/s        | n/s      |
|             | 182  | 572  | 65.0 | 872  | 46.6  | 1634    | *          | n/s        | n/s      |
| V6          | 196  | 534  | 34.0 | 390  | 51.7  | 808     | n/s        | **         | n/s      |
|             | 210  | 751  | 65.1 | 523  | 75.7  | 2151    | **         | ****       | *        |


## Table 4: Percent protection (eggs) on each sampling day

n/s: non-significant; \* P<0.05; \*\* P<0.02; \*\*\* P<0.01; \*\*\*\* P<0.001;

f. Kinetics of and relationships between the parameters studied over the course of the trial: Antibody titres in the unvaccinated control ewes remained at background levels close to zero throughout the trial (Table A4, Fig 3). In contrast, group mean titres in the Previously Vaccinated group were around 7,000 from the beginning of the trial where they remained until their second vaccination at marking time. After that they rose to about 10,000, staying at this level until their final boost, when they increased once again. Meanwhile, titres in the First Vaccinated ewes responded to each vaccine boost with a temporary spike in titre observed at the next sampling. Mean titres in the Previously Vaccinated ewes always exceeded those of the First Vaccinates by at least two-fold (Fig 3).

Total and *Haemonchus* specific group mean faecal egg counts were quite similar and followed very similar patterns in all groups, reflecting the fact that *Haemonchus* was usually the dominant gastrointestinal nematode genus infecting the ewes (Fig 3, Table A2).

Mean Control egg counts, which were about 1000 at the start of the trial, dropped to zero after the anthelmintic given then, before recovering to initial levels by marking time. Thereafter mean Control egg counts dipped during dry December before peaking to some 3,700 during January and then fluctuating in the 1-2000 range for the remainder of the trial. Mean *Haemonchus* egg counts in the Previously Vaccinated ewes were always lower than those of the Controls and often this difference was statistically significant (Table 4), but those of the First Vaccinated group tended to be intermediate, although they were significantly protected on three occasions (Table 4).



# Fig 3. Kinetics of interventions, group mean total egg counts, *Haemonchus* specific egg counts and the anti-vaccine antibody response

The kinetics and group differences in *Haemonchus* specific egg counts were inversely reflected in the degree of anaemia and precautionary drenching (Table 3, Fig 4). Thus, peak egg counts in January coincided with the lowest blood haemoglobin concentrations (Table A3) and when most precautionary drenching was required (Fig 4). Although there were few occasions when there were significant differences between the groups in terms of blood haemoglobin, the vaccinates needed significantly fewer precautionary drenches than the controls, with the Previously Vaccinated group requiring less treatment than those vaccinated for the first time (Table 5).

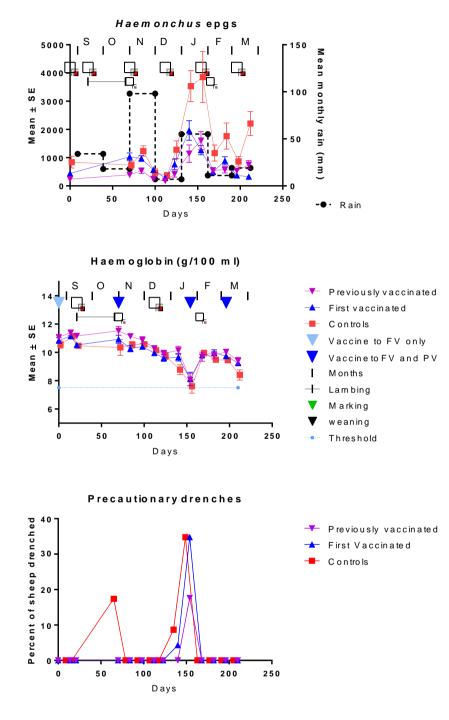



Fig 4. Kinetics of the *Haemonchus* specific egg counts in relation to blood haemoglobin concentrations and to precautionary drenching.

|                 | Num<br>giv |    |        |      | ent of gro<br>reated | up       | P by Fishers exact test |            |             |  |
|-----------------|------------|----|--------|------|----------------------|----------|-------------------------|------------|-------------|--|
| sheep/<br>group | 17         | 23 | 2<br>3 |      |                      |          |                         |            |             |  |
| Days            | PV         | FV | С      | PV   | FV                   | С        | PV vs<br>C              | FV vs<br>C | PV vs<br>FV |  |
| 0               | 0          | 0  | 0      | 0    | 0                    | 0        |                         |            |             |  |
| 14              | 0          | 0  | 0      | 0    | 0                    | 0        |                         |            |             |  |
| 21              | 0          | 0  | 0      | 0    | 0                    | 0        |                         |            |             |  |
| 70              | 0          | 0  | 4      | 0    | 0                    | 17.<br>4 | ****                    | ****       | n/s         |  |
| 84              | 0          | 0  | 0      | 0    | 0                    | 0        |                         |            |             |  |
| 98              | 0          | 0  | 0      | 0    | 0                    | 0        |                         |            |             |  |
| 112             | 0          | 0  | 0      | 0    | 0                    | 0        |                         |            |             |  |
| 123             | 0          | 0  | 0      | 0    | 0                    | 0        |                         |            |             |  |
| 140             | 0          | 1  | 2      | 0    | 4.3                  | 8.7      | **                      | n/s        | n/s         |  |
| 154             | 3          | 8  | 9      | 17.6 | 34.8                 | 39.<br>1 | **                      | n/s        | **          |  |
| 168             | 0          | 0  | 0      | 0    | 0                    | 0        |                         |            |             |  |
| 182             | 0          | 0  | 0      | 0    | 0                    | 0        |                         |            |             |  |
| 196             | 0          | 0  | 0      | 0    | 0                    | 0        |                         |            |             |  |
| 210             | 0          | 0  | 0      | 0    | 0                    | 0        |                         |            |             |  |
| Total           | 3          | 9  | 1<br>5 | 17.6 | 39.1                 | 65.<br>2 | ****                    | **         | **          |  |

## Table 5: Precautionary drenches

n/s: non-significant; \* P<0.05; \*\* P<0.02; \*\*\* P<0.01; \*\*\*\* P<0.001;

**g. Ewe bodyweights:** The Previously Vaccinated ewes were significantly heavier than the First Vaccinated sheep at the start of the trial and this difference was maintained at the half

way point, though had disappeared by the end of the trial (Table A5, Fig 5). More striking was the overall decline in bodyweight in all three groups (Fig 5).

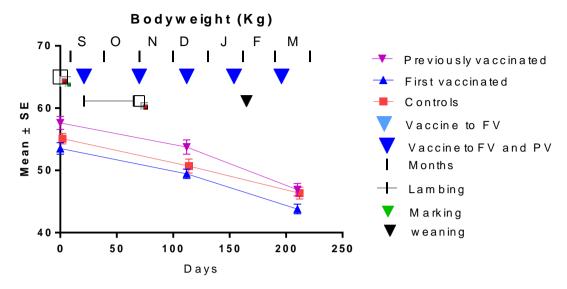



Fig. 5 Ewe bodyweights over the course of the trial.

## 18. Concluding Remarks

It was concluded that Barbervax was capable of suppressing *Haemonchus* egg counts in periparturient and lactating ewes, though the effect was stronger in sheep which had received a course of the vaccine in an earlier season. This was an important finding because the eggs shed by lactating ewes are an important source of contamination for their lambs and hence the epidemiology of *Haemonchus*. In addition the vaccine provided a distinct benefit to the ewes themselves, reducing the proportion which required anthelmintic support to prevent potentially fatal anaemia.

#### **APPENDIX 3**

## TABULATED AND RAW DATA

## Table A1: Total strongyle egg counts (epg)

|        | Event |        | V1     |        | V2     | V3     |        |        |        | V4     |        | V5     |        |        | V6     |        |
|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|        | Date  |        | 22-Aug | 05-Sep | 12-Sep | 31-Oct | 14-Nov | 28-Nov | 12-Dec | 23-Dec | 09-Jan | 23-Jan | 06-Feb | 20-Feb | 06-Mar | 20-Mar |
|        |       | Days   | 0      | 21     | 28     | 70     | 84     | 98     | 112    | 123    | 140    | 154    | 168    | 182    | 196    | 210    |
| Group  | Ewe#  | lamb   |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| Prev V | 1     | Single | 640    | 0      | 0      | 400    | 440    | 240    | 80     | 480    | 1040   | 320    | 640    | 1040   | 360    | 560    |
| Prev V | 12    | Single | 800    | 0      | 0      | 280    | 280    | 320    | 0      | 280    | 1920   | 320    | 640    | 40     | 800    | 240    |
| Prev V | 23    | Single | 0      | 0      | 0      | 320    | 320    | 120    | 120    | 200    | 240    | 280    | 280    | 360    | 440    | 560    |
| Prev V | 25    | Single | 400    | 0      | 0      | 920    | 320    | 160    | 160    | 360    | 1240   | 1360   | 1600   | 1440   | 1720   | 760    |
| Prev V | 32    | Twin   | 40     | 0      | 0      | 1120   | 1600   | 160    | 80     | 120    | 880    | 1680   | 680    | 40     | 520    | 160    |
| Prev V | 33    | Single | 240    | 0      | 0      | 200    | 440    | 360    | 80     | 160    | 600    | 2560   | 240    | 360    | 120    | 480    |
| Prev V | 39    | Twin   | 80     | 0      | 0      | 200    | 280    | 80     | 40     | 160    | 120    | 1480   | 680    | 520    | 600    | 280    |
| Prev V | 44    | Single | 200    | 0      | 0      | 120    | 240    | 120    | 200    | 440    | 640    | 2800   | 400    | 600    | 1120   | 1200   |
| Prev V | 48    | Single | 120    | 0      | 0      | 240    | 880    | 400    | 360    | 480    | 680    | 4480   | 720    | 880    | 600    | 680    |
| Prev V | 50    | Single | 520    | 0      | 0      | 280    | 280    | 120    | 80     | 200    | 440    | 1240   | 160    | 560    | 440    | 440    |

| Prev V  | 54 | Single | 0    | 0  | 0  | 240  | 240  | 0   | 80  | 0    | 120  | 600  | 400  | 440  | 280  | 320  |
|---------|----|--------|------|----|----|------|------|-----|-----|------|------|------|------|------|------|------|
| Prev V  | 56 | Single | 240  | 0  | 0  | 1320 | 1280 | 640 | 840 | 1840 | 5480 | 4360 | 80   | 600  | 640  | 2360 |
| Prev V  | 60 | Single | 0    | 0  | 0  | 0    | 200  | 120 | 120 | 320  | 1120 | 720  | 720  | 1720 | 400  | 680  |
| Prev V  | 66 | Single | 120  | 0  | 0  | 240  | 840  | 400 | 360 | 120  | 840  | 640  | 1040 | 1320 | 200  | 1040 |
| Prev V  | 68 | Single | 120  | NS | 0  | 280  | 40   | 200 | 80  | 360  | 320  | 400  | 320  | 600  | 640  | 440  |
| Prev V  | 72 | Single | 1640 | 0  | 0  | 440  | 920  | 400 | 40  | 1280 | 1800 | 2720 | 0    | 200  | 280  | 2200 |
| Prev V  | 80 | Single | 0    | 0  | 0  | 400  | 1000 | 640 | 440 | 800  | 3000 | 2560 | 0    | 40   | 520  | 1080 |
| First V | 62 | None   | 160  | 0  | 0  | 1480 | 1800 | 760 | 160 | 680  | 4400 | 5520 | 0    | dead | dead | dead |
| First V | 78 | None   | 640  | 0  | 0  | 680  | NS   | 240 | 0   | 40   | 200  | 1720 | 320  | 640  | 1600 | 8560 |
| First V | 7  | Single | 560  | 0  | NS | 2680 | 920  | 840 | 560 | 1600 | 4520 | 440  | 1320 | 3400 | 800  | 760  |
| First V | 10 | Single | 120  | 0  | 0  | 2280 | 1040 | 600 | 320 | 600  | 1960 | 760  | 1560 | 2440 | 640  | 600  |
| First V | 13 | Single | 40   | 0  | 0  | 1760 | 1600 | 600 | 360 | 1120 | 2640 | 720  | 0    | 520  | 640  | 680  |
| First V | 18 | Single | 0    | 0  | 0  | 1040 | 1040 | 520 | 240 | 280  | 640  | 680  | 320  | 1000 | 560  | 360  |
| First V | 29 | Single | 400  | 0  | 0  | 960  | 1560 | 800 | 600 | 2240 | 640  | 1720 | 0    | 480  | 0    | 40   |
| First V | 37 | Single | 80   | 0  | 0  | 520  | 280  | 280 | 80  | 280  | 560  | 480  | 400  | 480  | 840  | 80   |

Event V1

V2 V3

V4

V5

V6

|         | Date |        | 22-Aug | 05-Sep | 12-Sep | 31-Oct | 14-Nov | 28-Nov | 12-Dec | 23-Dec | 09-Jan | 23-Jan | 06-Feb | 20-Feb | 06-Mar | 20-Mar |
|---------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|         |      | Days   | 0      | 21     | 28     | 70     | 84     | 98     | 112    | 123    | 140    | 154    | 168    | 182    | 196    | 210    |
| Group   | Ewe# | lamb   |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| First V | 71   | Single | 840    | 0      | 0      | 640    | 1040   | 800    | 800    | 640    | 2840   | 2360   | 920    | 760    | 800    | 520    |
| First V | 113  | Single | 640    | 0      | 0      | 760    | 1080   | 1480   | 1160   | 5480   | 9040   | 0      | 80     | 600    | 760    | 1480   |
| First V | 115  | Single | 1240   | 0      | 40     | 1200   | 2360   | 1760   | 280    | 560    | 3320   | 2440   | 2200   | 2320   | 1760   | 1520   |
| First V | 117  | Single | 120    | 0      | 0      | 1560   | 1040   | 120    | 120    | 120    | 2640   | 3640   | 40     | 160    | 120    | 0      |
| First V | 118  | Single | 760    | 0      | NS     | 840    | 1080   | 440    | 360    | 1200   | 2200   | 1640   | 1480   | 1600   | 1320   | 120    |
| First V | 119  | Single | 400    | 0      | 0      | 1840   | 1040   | 680    | 560    | 600    | 2320   | 2000   | 920    | 1160   | 1840   | 1200   |
| First V | 122  | Single | 280    | 0      | 0      | 480    | 920    | 520    | 0      | 240    | 2080   | 2840   | 2160   | 880    | 80     | 1040   |
| First V | 123  | Single | 120    | 0      | 0      | 560    | 1080   | 520    | 120    | 560    | 2920   | 2800   | 2520   | 2280   | 1440   | 680    |
| First V | 124  | Single | 1360   | 0      | 0      | 360    | 640    | 480    | 480    | 800    | 960    | 1560   | 560    | 1680   | 800    | 1080   |
| First V | 126  | Single | 880    | 0      | 0      | 440    | 440    | 560    | 360    | 40     | 720    | 960    | 560    | 640    | 840    | 280    |
| First V | 129  | Single | 1240   | 0      | 0      | 1480   | 1920   | 1000   | 1440   | 1160   | 1160   | 1280   | 0      | 360    | 520    | 320    |
| First V | 131  | Single | 120    | 0      | 0      | 200    | 360    | 120    | 40     | 560    | 960    | 640    | 40     | 320    | 160    | 200    |
| First V | 132  | Single | 2280   | 0      | 0      | 920    | 1280   | 920    | 520    | 1720   | 3360   | 1960   | 0      | 640    | 120    | 920    |
| First V | 133  | Single | 200    | 0      | 0      | 160    | 40     | 80     | 80     | 40     | 680    | 920    | 0      | 0      | 40     | 80     |

| First V | 134 | Single | 120  | 0 | 0  | 1120 | 1440 | 1240 | NS   | 280  | 760   | 1400 | 600  | 1720 | 2160 | 120  |
|---------|-----|--------|------|---|----|------|------|------|------|------|-------|------|------|------|------|------|
| First V | 139 | Single | 1160 | 0 | 0  | 760  | 800  | 80   | 400  | 360  | 760   | 440  | 40   | 160  | 80   | 360  |
| First V | 141 | Single | 0    | 0 | 0  | 1640 | 1520 | 1160 | 640  | 1760 | 3120  | 3600 | 1360 | 1920 | 440  | 280  |
| Control | 128 | None   | 1920 | 0 | 0  | 0    | 0    | 0    | 0    | 0    | 160   | 440  | 0    | 0    | 120  | 320  |
| Control | 144 | None   | 0    | 0 | 0  | 1760 | 3000 | 280  | 40   | 40   | 3000  | 4880 | 0    | 280  | 160  | 2800 |
| Control | 4   | Single | 40   | 0 | 0  | 720  | 920  | 440  | 160  | 600  | 2680  | 1800 | 4160 | 5720 | 2520 | NS   |
| Control | 15  | Single | 3640 | 0 | 0  | 1440 | 2480 | 1760 | 2080 | 5520 | 12440 | 2800 | 160  | 560  | 960  | 6320 |
| Control | 26  | Single | 240  | 0 | 0  | 1360 | 2920 | 2560 | 640  | 1520 | 4800  | 7160 | 4480 | 2800 | 1320 | 3280 |
| Control | 35  | Single | 0    | 0 | 0  | 1000 | 680  | 80   | 0    | 120  | 2160  | 40   | 280  | 280  | 280  | 120  |
| Control | 64  | Single | 200  | 0 | 0  | 120  | 680  | 280  | 120  | 280  | 1840  | 2120 | 2400 | 2240 | 1880 | 3200 |
| Control | 110 | Single | 0    | 0 | 80 | 1920 | 0    | 0    | 640  | 3160 | 4880  | 320  | 40   | 120  | 480  | 3400 |
| Control | 111 | Single | 40   | 0 | 0  | 240  | 840  | 400  | 280  | 120  | 1080  | 880  | 720  | 1520 | 400  | 2120 |
| Control | 112 | Single | 600  | 0 | 0  | 680  | 1520 | 160  | 0    | 720  | 1760  | 1080 | 800  | 1000 | 400  | 1800 |
| Control | 114 | Single | 3160 | 0 | NS | 160  | 640  | 200  | 160  | 200  | 2720  | 1200 | 480  | 240  | 320  | 400  |
| Control | 116 | Single | 3600 | 0 | NS | 40   | NS   | 0    | 40   | 320  | 3200  | 3800 | 1040 | 920  | 760  | 440  |

Event V1

V2 V3

V4

V5

V6

|         | Date |        | 22-Aug | 05-Sep | 12-Sep | 31-Oct | 14-Nov | 28-Nov | 12-Dec | 23-Dec | 09-Jan | 23-Jan | 06-Feb | 20-Feb | 06-Mar | 20-Mar |
|---------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|         |      | Days   | 0      | 21     | 28     | 70     | 84     | 98     | 112    | 123    | 140    | 154    | 168    | 182    | 196    | 210    |
| Group   | Ewe# | lamb   |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| Control | 120  | Single | 40     | 0      | 0      | 400    | 1080   | 120    | NS     | 120    | 1800   | 3800   | 3960   | 7240   | 3160   | 7480   |
| Control | 121  | Single | 2280   | 0      | 0      | 280    | 1080   | 320    | 160    | 960    | 2680   | 3440   | 0      | 200    | 200    | 4200   |
| Control | 125  | Single | 3120   | 40     | 0      | 2520   | 1680   | 1800   | 2160   | 5440   | 7320   | 15480  | 0      | 480    | 280    | NS     |
| Control | 127  | Single | 1720   | 0      | 0      | NS     | 0      | 0      | 0      | 80     | 280    | 1440   | 800    | 1040   | 400    | 320    |
| Control | 130  | Single | 40     | 0      | 0      | 920    | 2320   | 880    | 240    | 880    | 2360   | 440    | 800    | 1160   | 1480   | 520    |
| Control | 135  | Single | 200    | 0      | 0      | 640    | 680    | 320    | 0      | 120    | 3120   | 6600   | 0      | 1240   | 2000   | 2560   |
| Control | 136  | Single | 0      | 0      | 0      | 160    | NS     | 40     | 160    | 520    | 1400   | 2800   | 2880   | 2640   | 880    | 560    |
| Control | 137  | Single | 1440   | 0      | 0      | 240    | 480    | 320    | 360    | 1840   | 8600   | 0      | 0      | 1240   | 1040   | 3520   |
| Control | 138  | Single | 1640   | 0      | 0      | 200    | 800    | 640    | 480    | 3000   | 3680   | 1800   | 0      | 920    | 240    | 1960   |
| Control | 140  | Single | 1040   | 0      | 0      | 2000   | 2760   | 2440   | 520    | 1360   | 7000   | 13320  | 0      | 440    | 480    | 2080   |
| Control | 142  | Single | 1200   | 0      | 0      | 280    | 0      | 0      | 280    | 2560   | 1840   | 520    | 600    | 1440   | NS     | 2720   |
| Control | 143  | Single | 200    | NS     | NS     | 440    | 640    | 440    | 680    | 1640   | 4840   | 7520   | 4280   | 8720   | 3480   | 320    |
| Control | 145  | Single | 40     | 0      | 0      | 920    | 760    | 0      | 80     | 240    | 4960   | 7040   | 0      | 120    | 120    | 560    |

Note: Animals were drenched due to low haemoglobin blood concentration (<6.5g/100mL)

#### Table A2: Results of coprocultures – percent of each species of nematode larvae

| Day | Group | Treatment    | Haem | Trich | Ost  | Соор | Oes | TOTAL |
|-----|-------|--------------|------|-------|------|------|-----|-------|
|     | 1     | Previous IVP |      |       |      |      |     |       |
| -28 | 2     | IVP          | 79%  | 11%   | 10%  |      |     | 100%  |
|     | 3     | Control      |      |       |      |      |     |       |
|     | 1     | Previous IVP |      |       |      |      |     |       |
| -14 | 2     | IVP          |      |       | 100% |      |     |       |
|     | 3     | Control      |      |       |      |      |     |       |
|     | 1     | Previous IVP |      |       |      |      |     |       |
| -7  | 2     | IVP          |      | 100%  |      |      |     |       |
|     | 3     | Control      |      |       |      |      |     |       |
|     | 1     | Previous IVP | 96%  |       | 4%   |      |     | 100%  |
| 42  | 2     | IVP          | 98%  | 1%    | 1%   |      |     | 100%  |
|     | 3     | Control      | 97%  | 1%    | 2%   |      |     | 100%  |
| 56  | 1     | Previous IVP | 82%  | 10%   | 7%   | 1%   |     | 100%  |

| Day | Group | Treatment    | Haem | Trich | Ost | Соор | Oes | TOTAL |
|-----|-------|--------------|------|-------|-----|------|-----|-------|
|     | 2     | IVP          | 91%  | 3%    | 6%  |      |     | 100%  |
|     | 3     | Control      | 97%  |       | 3%  |      |     | 100%  |
|     | 1     | Previous IVP | 50%  | 33%   | 13% | 4%   |     | 100%  |
| 70  | 2     | IVP          | 84%  | 5%    | 8%  | 1%   | 2%  | 100%  |
|     | 3     | Control      | 82%  | 9%    | 4%  |      | 5%  | 100%  |
|     | 1     | Previous IVP | 26%  | 25%   | 42% |      | 7%  | 100%  |
| 82  | 2     | IVP          | 64%  | 3%    | 27% | 1%   | 5%  | 100%  |
|     | 3     | Control      | 88%  | 7%    | 5%  |      |     | 100%  |
|     | 1     | Previous IVP | 53%  | 38%   | 9%  |      |     | 100%  |
| 95  | 2     | IVP          | 79%  | 12%   | 1%  | 7%   | 1%  | 100%  |
|     | 3     | Control      | 94%  | 6%    |     |      |     | 100%  |
|     | 1     | Previous IVP | 75%  | 17%   | 8%  |      |     | 100%  |
| 112 | 2     | IVP          | 89%  | 3%    | 6%  |      | 2%  | 100%  |
|     | 3     | Control      | 93%  | 5%    | 2%  |      |     | 100%  |
| 126 | 1     | Previous IVP | 72%  | 28%   |     |      |     | 100%  |

| Day | Group | Treatment    | Haem | Trich | Ost | Соор | Oes | TOTAL |
|-----|-------|--------------|------|-------|-----|------|-----|-------|
|     | 2     | IVP          | 79%  | 15%   | 5%  | 1%   |     | 100%  |
|     | 3     | Control      | 98%  | 2%    |     |      |     | 100%  |
|     | 1     | Previous IVP | 14%  | 39%   | 43% | 4%   |     | 100%  |
| 140 | 2     | IVP          | 46%  | 18%   | 33% |      | 3%  | 100%  |
|     | 3     | Control      | 71%  | 18%   | 11% |      |     | 100%  |
|     | 1     | Previous IVP | 37%  | 32%   | 19% | 2%   | 10% | 100%  |
| 154 | 2     | IVP          | 80%  | 15%   | 3%  |      | 2%  | 100%  |
|     | 3     | Control      | 96%  | 3%    |     |      | 1%  | 100%  |
|     | 1     | Previous IVP | 34%  | 48%   | 13% |      | 5%  | 100%  |
| 168 | 2     | IVP          | 51%  | 18%   | 30% |      | 1%  | 100%  |
|     | 3     | Control      | 83%  | 16%   | 1%  |      |     | 100%  |
|     | 1     | Previous IVP | 65%  | 18%   | 13% |      | 4%  | 100%  |
| 182 | 2     | IVP          | 59%  | 36%   | 4%  |      | 1%  | 100%  |
|     | 3     | Control      | 97%  | 3%    |     |      |     | 100%  |

|        |      |      |      |      |      | Da   | ays  |      |      |      |      |      | = Hb<6. | 5 g/100ml | 1    |
|--------|------|------|------|------|------|------|------|------|------|------|------|------|---------|-----------|------|
| Group  | EWE# | 0    | 21   | 28   | 70   | 84   | 98   | 112  | 123  | 140  | 154  | 168  | 182     | 196       | 210  |
| Prev V | 1    | 10.2 | 11.9 | 11.2 | 12.5 | 10.8 | 10.7 | 9.3  | 9.9  | 8.9  | 8.6  | 8.8  | 9.2     | 9.3       | 8.5  |
| Prev V | 12   | 10.1 | 11.4 | 12.1 | 8.6  | 10.4 | 9.6  | 10.6 | 10.8 | 9.6  | 9.0  | 10.2 | 7.7     | 10.9      | 10.3 |
| Prev V | 23   | 10.0 | 10.6 | 10.5 | 10.9 | 9.9  | 9.3  | 8.9  | 9.1  | 9.8  | 9.8  | 8.2  | 9.5     | 9.6       | 8.0  |
| Prev V | 25   | 11.2 | 12.0 | 10.9 | 11.5 | 11.1 | 11.1 | 10.0 | 10.1 | 9.2  | 9.0  | 9.2  | 8.2     | 9.4       | 9.0  |
| Prev V | 32   | 11.4 | 12.3 | 12.3 | 12.5 | 11.3 | 10.7 | 10.6 | 11.6 | 11.6 | 9.6  | 11.9 | 10.9    | 10.2      | 11.2 |
| Prev V | 33   | 12.3 | 10.7 | 10.0 | 12.1 | 11.6 | 11.4 | 9.8  | 9.2  | 9.9  | 10.4 | 9.6  | 10.1    | 10.5      | 9.8  |
| Prev V | 39   | 11.3 | 11.6 | 11.4 | 11.7 | 11.2 | 10.5 | 9.9  | 9.4  | 10.3 | 5.8  | 10.3 | 9.7     | 10.3      | 8.9  |
| Prev V | 44   | 11.4 | 10.0 | 11.5 | 12.1 | 12.1 | 12.1 | 11.2 | 11.3 | 11.6 | 7.8  | 8.1  | 9.3     | 10.0      | 8.9  |
| Prev V | 48   | 12.3 | 12.5 | 11.9 | 9.3  | 10.2 | 11.5 | 10.7 | 11.2 | 12.3 | 10.1 | 11.8 | 10.6    | 11.3      | 10.9 |
| Prev V | 50   | 10.5 | 11.7 | 11.8 | 12.4 | 11.1 | 10.7 | 11.1 | 9.8  | 10.5 | 7.2  | 10.2 | 9.9     | 9.5       | 10.9 |
| Prev V | 54   | 10.7 | 11.3 | 9.9  | 13.3 | 11.9 | 11.5 | 11.0 | 9.6  | 10.1 | 10.1 | 9.1  | 8.1     | 8.7       | 8.9  |
| Prev V | 56   | 10.8 | 11.2 | 11.0 | 10.1 | 10.3 | 8.8  | 9.1  | 7.6  | 7.8  | 7.4  | 9.9  | 10.8    | 10.3      | 7.4  |
| Prev V | 60   | 11.0 | 13.2 | 11.6 | 11.9 | 12.5 | 12.1 | 10.2 | 10.5 | 11.0 | 7.4  | 6.9  | 10.8    | 10.0      | 10.0 |
| Prev V | 66   | 11.2 | 10.9 | 11.6 | 11.8 | 11.8 | 11.3 | 11.3 | 8.9  | 10.4 | 6.0  | 9.6  | 10.3    | 9.1       | 8.7  |

## Table A3: Blood Haemoglobin concentrations (g/100ml)

| Prev V  | 68  | 12.2 | 11.2 | 11.7 | 13.0 | 12.0 | 12.3 | 11.5 | 10.4 | 11.2 | 4.7  | 10.5 | 11.0 | 11.0 | 9.6 |
|---------|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|
| Prev V  | 72  | 10.1 | 10.2 | 9.8  | 10.6 | 9.9  | 10.1 | 10.0 | 9.3  | 8.9  | 8.8  | 9.1  | 9.1  | 9.4  | 9.8 |
| Prev V  | 80  | 11.7 | 10.9 | 10.6 | 11.6 | 11.2 | 11.1 | 9.7  | 10.0 | 9.4  | 5.5  | 11.4 | 11.5 | 11.2 | 9.1 |
| First V | 7   | 10.8 | 11.8 | 10.7 | 9.9  | 7.3  | 10.1 | 10.1 | 9.6  | 8.6  | 7.2  | 9.2  | 8.9  | 9.5  | 9.5 |
| First V | 10  | 10.8 | 10.8 | 10.7 | 11.0 | 10.4 | 9.8  | 10.5 | 10.1 | 10.6 | 10.8 | 8.8  | 9.0  | 10.3 | 9.9 |
| First V | 13  | 12.4 | 11.0 | 11.0 | 11.8 | 11.1 | 9.5  | 10.0 | 9.4  | 8.9  | 10.0 | 10.0 | 10.1 | 10.9 | 9.3 |
| First V | 18  | 11.0 | 10.3 | 10.2 | 12.8 | 9.8  | 9.3  | 8.2  | 8.6  | 9.7  | 9.4  | 9.0  | 9.3  | 9.8  | 8.2 |
| First V | 29  | 10.4 | 10.9 | 10.4 | 10.2 | 10.2 | 9.6  | 10.5 | 8.9  | 8.9  | 10.6 | 10.7 | 10.3 | 10.4 | 9.7 |
| First V | 37  | 11.3 | 11.4 | 10.7 | 11.8 | 11.1 | 11.6 | 11.4 | NS   | 11.1 | 12.7 | 10.1 | 10.1 | 10.1 | 9.3 |
| First V | 62  | 11.4 | 10.8 | 10.4 | 10.9 | 10.6 | 10.0 | 10.0 | 9.2  | 8.8  | 10.2 | 10.2 |      |      |     |
| First V | 71  | 11.5 | 12.1 | 11.6 | 7.1  | 12.2 | 11.4 | 10.4 | 9.9  | 10.7 | 4.7  | 10.1 | 10.7 | 9.8  | 9.1 |
| First V | 78  | 11.5 | 12.1 | 7.7  | 10.6 | 8.7  | 11.0 | 11.3 | 13.0 | 13.1 | 8.5  | 9.8  | 12.0 | 8.5  | 9.0 |
| First V | 113 | 9.6  | 10.9 | 10.2 | 12.0 | 11.2 | 10.5 | 8.1  | 6.6  | 6.3  | 6.8  | 9.4  | 8.1  | 9.7  | 8.8 |
| First V | 115 | 10.3 | 11.0 | 11.0 | 10.2 | 9.6  | 9.9  | 9.7  | 9.3  | 8.9  | 3.8  | 10.1 | 10.1 | 10.1 | 9.7 |
| First V | 117 | 10.1 | 11.2 | 10.3 | 10.3 | 8.9  | 9.6  | 9.7  | 9.0  | 8.3  | 9.1  | 8.9  | 9.3  | 8.8  | 9.6 |
| First V | 118 | 11.1 | 11.4 | 11.6 | 12.3 | 11.3 | 10.4 | 9.6  | 9.2  | 8.4  | 10.7 | 10.0 | 10.2 | 9.5  | 9.5 |

| Group   | EWE# | 0    | 21   | 28   | 70   | 84   | 98   | 112  | 123  | 140  | 154  | 168  | 182  | 196  | 210  |
|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| First V | 119  | 11.2 | 12.2 | 11.3 | 13.6 | 10.4 | 11.2 | 10.7 | 10.4 | 9.5  | 5.6  | 9.9  | 10.8 | 7.9  | 10.0 |
| First V | 122  | 11.1 | 11.5 | 11.0 | 12.4 | 11.6 | 10.9 | 10.1 | 9.5  | 8.1  | 7.8  | 9.0  | 9.8  | 9.9  | 10.5 |
| First V | 123  | 14.1 | 12.7 | 11.4 | 12.1 | 11.8 | 11.4 | 10.9 | 10.6 | 10.6 | 10.0 | 10.6 | 9.3  | 10.5 | 9.7  |
| First V | 124  | 10.7 | 10.3 | 12.4 | 11.0 | 9.5  | 10.7 | 9.3  | 9.2  | 9.5  | 9.9  | 9.7  | 11.0 | 9.4  | 8.3  |
| First V | 126  | 8.9  | 9.6  | 9.9  | 8.4  | 9.5  | 10.2 | 9.7  | 9.4  | 9.8  | 9.6  | 9.9  | 8.4  | 8.6  | 8.4  |
| First V | 129  | 10.1 | 10.6 | 9.0  | 8.9  | 9.3  | 9.9  | 9.7  | 8.1  | 9.3  | 6.4  | 9.9  | 11.0 | 10.4 | 7.2  |
| First V | 131  | 10.3 | 10.2 | 10.6 | 11.2 | 10.7 | 9.1  | 8.4  | 10.1 | 10.6 | 5.8  | 10.1 | 11.0 | 7.5  | 7.0  |
| First V | 132  | 9.9  | 11.4 | 9.8  | 11.6 | 11.5 | 11.2 | 9.9  | 9.8  | 9.3  | 8.6  | 10.0 | 7.4  | 11.1 | 10.5 |
| First V | 133  | 11.1 | 10.6 | 11.2 | 10.1 | 9.9  | 10.4 | 10.3 | 10.9 | 11.6 | 4.9  | 10.8 | 10.3 | 9.6  | 10.0 |
| First V | 134  | 10.6 | 11.9 | 10.1 | 11.1 | 10.4 | 10.9 | 9.7  | 9.3  | 10.5 | 4.2  | 10.9 | 10.7 | 10.4 | 9.1  |
| First V | 139  | 9.8  | 10.3 | 9.7  | 10.9 | 10.3 | 10.8 | 10.5 | 10.5 | 10.5 | 6.9  | 9.6  | 11.1 | 10.7 | 9.4  |
| First V | 141  | 10.9 | 11.9 | 10.2 | 10.8 | 9.3  | 10.8 | 10.1 | 9.6  | 9.8  | 8.7  | 8.2  | 10.2 | 10.4 | 10.1 |
| Control | 4    | 11.3 | 11.4 | 10.5 | 12.2 | 10.4 | 10.1 | 9.9  | 9.7  | 10.2 | 9.4  | 9.7  | 9.8  | 8.2  | 7.4  |
| Control | 15   | 8.9  | 11.0 | 10.9 | 12.8 | 11.3 | 10.4 | 9.2  | 7.8  | 4.3  | 9.6  | 10.6 | 9.2  | 9.5  | 7.8  |
| Control | 26   | 12.5 | 11.9 | 11.4 | 11.8 | 10.2 | 10.1 | 10.4 | 9.8  | 7.8  | 4.7  | 9.1  | 9.6  | 9.7  | 8.5  |
| Control | 35   | 10.8 | 12.1 | 11.1 | 11.2 | 12.0 | 11.1 | 11.2 | 10.5 | 9.6  | 9.9  | 10.0 | 9.8  | 9.5  | 10.3 |

| Control | 64  | 10.8 | 10.6 | 10.3 | 11.8 | 11.6 | 11.6 | 10.8 | 10.8 | 10.2 | 7.7  | 9.9  | 10.6 | 10.1 | 7.5  |
|---------|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Control | 110 | 13.1 | 13.1 | 9.2  | 5.0  | 9.7  | 9.7  | 9.4  | 7.5  | 6.9  | 4.7  | 9.3  | 8.0  | 8.3  | 8.0  |
| Control | 111 | 13.1 | 11.5 | 11.0 | 12.7 | 11.7 | 12.0 | 11.1 | 11.3 | 11.2 | 10.6 | 10.5 | 9.1  | 10.3 | 10.0 |
| Control | 112 | 10.9 | 11.6 | 11.7 | 11.7 | 10.2 | 9.2  | 9.8  | 9.5  | 8.7  | 7.4  | 10.0 | 8.6  | 9.1  | 9.6  |
| Control | 114 | 11.1 | 11.7 | 10.6 | 13.5 | 12.5 | 12.0 | 9.1  | 9.8  | 9.7  | 3.5  | 10.8 | 11.2 | 11.2 | 11.7 |
| Control | 116 | 10.1 | 10.9 | NS   | NS   | NS   | 12.6 | 11.3 | 12.3 | 10.2 | 11.0 | 11.7 | 9.7  | 10.3 | 10.9 |
| Control | 120 | 10.3 | 10.9 | 10.4 | 12.0 | 10.9 | 10.6 | 10.3 | 10.0 | 8.2  | 8.0  | 8.5  | 9.6  | 7.6  | 4.1  |
| Control | 121 | 9.3  | 9.7  | 10.4 | 10.5 | 10.3 | 10.2 | 8.9  | 8.3  | 7.5  | 10.4 | 9.1  | 10.4 | 10.0 | 6.3  |
| Control | 125 | 11.4 | 12.2 | 11.9 | 7.6  | 10.4 | 10.8 | 9.8  | 9.3  | 7.3  | 7.8  | 8.8  | 8.2  | 9.3  | 8.7  |
| Control | 127 | 8.8  | 10.8 | 11.8 | 6.2  | 9.4  | 9.9  | 10.2 | 10.2 | 11.2 | 11.8 | 9.2  | 9.7  | 7.8  | 8.0  |
| Control | 128 | 8.1  | 8.9  | 9.4  | 3.8  | 8.8  | 9.8  | 10.1 | 10.0 | 10.5 | 3.7  | 10.5 | 10.8 | 9.6  | 7.9  |
| Control | 130 | 10.6 | 11.3 | 9.8  | 11.4 | 10.3 | 10.0 | 10.7 | 10.7 | 9.3  | 6.3  | 11.9 | 7.9  | 10.4 | 10.1 |
| Control | 135 | 10.5 | 11.1 | 10.8 | 12.2 | 12.5 | 11.7 | 11.3 | 10.4 | 8.9  | 8.9  | 11.7 | 8.9  | 10.2 | 8.6  |
| Control | 136 | 9.3  | 10.7 | 10.6 | 7.3  | 10.2 | 10.8 | 11.1 | 10.9 | 10.1 | 4.3  | 8.9  | 8.7  | 8.9  | 9.4  |
| Control | 137 | 9.3  | 10.6 | 10.6 | 12.6 | 10.7 | 10.0 | 8.6  | 7.3  | 6.2  | 7.5  | 10.1 | 10.1 | 8.6  | 5.4  |
| Control | 138 | 10.0 | 10.2 | 9.5  | 11.5 | 9.5  | 9.3  | 8.2  | 7.8  | 7.4  | 7.8  | 9.4  | 9.6  | 9.3  | 7.4  |

| Group   | EWE# | 0    | 21   | 28   | 70   | 84   | 98   | 112  | 123  | 140  | 154 | 168  | 182  | 196  | 210  |
|---------|------|------|------|------|------|------|------|------|------|------|-----|------|------|------|------|
| Control | 140  | 9.8  | 10.3 | 11.0 | 10.2 | 9.2  | 9.0  | 9.1  | 9.1  | 6.9  | 9.4 | 10.1 | 10.5 | 8.2  | 6.4  |
| Control | 142  | 10.3 | 11.3 | 10.4 | 5.9  | 8.5  | 10.2 | 9.6  | 8.6  | 8.8  | 6.0 | 10.1 | 9.8  | 8.6  | 7.4  |
| Control | 143  | 10.9 | 11.5 | 9.8  | 10.3 | 10.8 | 10.8 | 10.8 | 10.3 | 9.0  | 8.8 | 10.4 | 7.6  | 10.3 | 11.2 |
| Control | 144  | 12.5 | 11.3 | 7.5  | 11.8 | 10.9 | 10.9 | 11.7 | 11.7 | 11.0 | 6.2 | 9.2  | 9.3  | 11.4 | 8.3  |
| Control | 145  | 10.1 | 11.7 | 10.5 | 12.4 | 11.3 | 11.3 | 11.2 | 10.0 | 8.3  | 4.7 | 9.6  | 10.3 | 10.0 | 9.2  |

#### Table A4: ELISA titres

| Group  | Ewe # |       |       |       |       |       |       | Da    | iys   |       |       |       |       |       |       |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| e. eup |       | 0     | 14    | 21    | 70    | 84    | 98    | 112   | 123   | 140   | 154   | 168   | 182   | 196   | 210   |
| Prev V | 1     | 6328  | 6205  | 6263  | 6097  | 10545 | 9963  | 8352  | 7531  | 7022  | 7758  | 9539  | 8530  | 9981  | 16110 |
| Prev V | 12    | 5608  | 5487  | 5557  | 4683  | 9938  | 7679  | 7211  | 10675 | 10213 | 9013  | 7643  | 6554  | 7877  | 7221  |
| Prev V | 23    | 4206  | 3405  | 2954  | 3601  | 9645  | 7967  | 7172  | 12948 | 8070  | 8148  | 9903  | 7639  | 8087  | 12759 |
| Prev V | 25    | 4607  | 4451  | 3537  | 3907  | 7890  | 6841  | 6077  | 6931  | 6088  | 6375  | 7827  | 6235  | 6686  | 13718 |
| Prev V | 32    | 7662  | 7431  | 7298  | 5631  | 9140  | 8336  | 7597  | 8647  | 7895  | 7869  | 8399  | 7138  | 7810  | 10275 |
| Prev V | 33    | 8117  | 8876  | 8276  | 8750  | 17107 | 26164 | 15402 | 12994 | 14123 | 15586 | 12247 | 10377 | 13307 | 18075 |
| Prev V | 39    | 15012 | 16433 | 14462 | 14852 | 22904 | 26957 | 35468 | 28636 | 22062 | 20207 | 24021 | 17095 | 28000 | 49206 |
| Prev V | 44    | 11143 | 11471 | 11003 | 8416  | 13284 | 22482 | 14370 | 11268 | 15015 | 10435 | 10725 | 9235  | 12750 | 13925 |
| Prev V | 48    | 7133  | 7116  | 6764  | 6074  | 7811  | 7273  | 6885  | 8954  | 7013  | 7188  | 9737  | 8107  | 8398  | 10580 |
| Prev V | 50    | 7963  | 7895  | 9292  | 6572  | 9207  | 8559  | 8051  | 8800  | 7781  | 7449  | 7817  | 8312  | 8705  | 12320 |
| Prev V | 54    | 2259  | 1744  | 1382  | 3510  | 5976  | 5458  | 5152  | 5695  | 6867  | 6164  | 10189 | 7888  | 7220  | 9549  |
| Prev V | 56    | 4355  | 4110  | 3713  | 3986  | 5462  | 4857  | 4643  | 4306  | 5294  | 5218  | 6563  | 6441  | 6790  | 9257  |
| Prev V | 60    | 7763  | 7416  | 7428  | 7103  | 9537  | 9232  | 8181  | 3990  | 8826  | 8899  | 10595 | 8844  | 9550  | 10378 |
| Prev V | 66    | 5955  | 5751  | 5698  | 7743  | 8385  | 7705  | 7936  | 7387  | 9580  | 7833  | 11160 | 9706  | 8235  | 11238 |

| Group   | Ewe # |      |      |      |      |      |      | Da   | iys   |      |      |       |      |      |       |
|---------|-------|------|------|------|------|------|------|------|-------|------|------|-------|------|------|-------|
| 0.00p   |       | 0    | 14   | 21   | 70   | 84   | 98   | 112  | 123   | 140  | 154  | 168   | 182  | 196  | 210   |
| Prev V  | 68    | 6662 | 6822 | 7129 | 6112 | 9060 | 8444 | 7514 | 11268 | 8857 | 9440 | 8220  | 8226 | 7251 | 10291 |
| Prev V  | 72    | 3595 | 3164 | 2891 | 4964 | 7519 | 6512 | 5823 | 8954  | 7803 | 7433 | 11366 | 9781 | 8876 | 10720 |
| Prev V  | 80    | 4215 | 4541 | 3897 | 5528 | 7662 | 6633 | 5637 | 8800  | 7400 | 6803 | 10476 | 9693 | 8261 | 9599  |
| First V | 7     | 0    | 25   | 1    | 613  | 5656 | 3492 | 2961 | 5695  | 4192 | 2986 | 7356  | 5052 | 3444 | 12051 |
| First V | 10    | 0    | 1899 | 494  | 139  | 4296 | 2010 | 1867 | 4306  | 3089 | 2074 | 4118  | 2673 | 1411 | 5477  |
| First V | 13    | 437  | 1885 | 992  | 2172 | 4278 | 2831 | 2592 | 3990  | 3007 | 2251 | 6344  | 5386 | 4056 | 10586 |
| First V | 18    | 19   | 258  | 10   | 56   | 4381 | 2160 | 2020 | 7387  | 6473 | 5308 | 9446  | 7692 | 5749 | 12767 |
| First V | 29    | 3    | 488  | 45   | 221  | 3528 | 2043 | 1443 | 827   | 356  | 652  | 3381  | 1669 | 1002 | 4728  |
| First V | 37    | 1    | 1841 | 695  | 131  | 5232 | 4095 | 3724 |       | 5794 | 5331 | 16539 | 8268 | 6545 | 14248 |
| First V | 62    | 6    | 568  | 54   | 151  | 2846 | 1512 | 928  | 3510  | 2344 | 1822 | 4722  |      |      |       |
| First V | 71    | 138  | 2160 | 993  | 440  | 3430 | 2099 | 2363 | 7392  | 4416 | 3399 | 7220  | 4656 | 3464 | 6060  |
| First V | 78    | 108  | 2208 | 279  | 844  | 3061 | 1706 | 1367 | 4312  | 2631 | 2389 | 4032  | 2543 | 1812 | 3067  |
| First V | 113   | 195  | 2109 | 7355 | 193  | 5460 | 3708 | 3225 | 5378  | 2904 | 2527 | 5022  | 3942 | 2953 | 6945  |
| First V | 115   | 370  | 3121 | 567  | 1310 | 3590 | 2168 | 2603 | 2885  | 1887 | 2013 | 5174  | 4414 | 3734 | 6289  |
| First V | 117   | 4    | 726  | 174  | 220  | 1169 | 800  | 770  | 3339  | 1753 | 1069 | 3302  | 2039 | 1137 | 5412  |

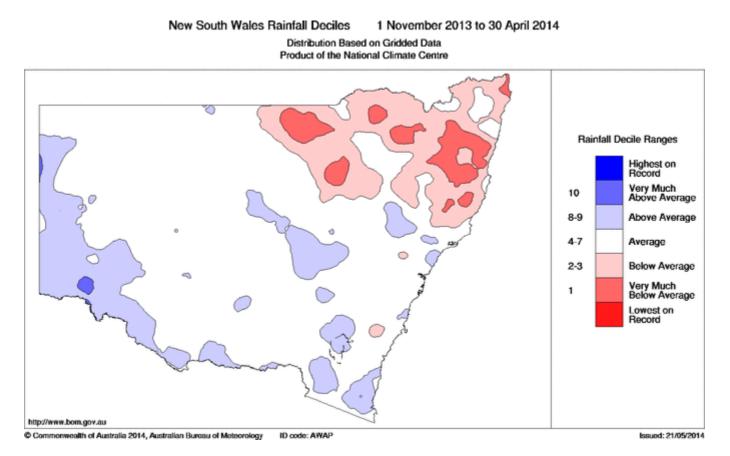
| Group   | Ewe # |     |      |      |      |      |      | Da   | iys  |      |      |       |      |      |       |
|---------|-------|-----|------|------|------|------|------|------|------|------|------|-------|------|------|-------|
| Group   | LWC#  | 0   | 14   | 21   | 70   | 84   | 98   | 112  | 123  | 140  | 154  | 168   | 182  | 196  | 210   |
| First V | 118   | 0   | 980  | 132  | 28   | 2869 | 1203 | 579  | 4336 | 2675 | 2324 | 5487  | 4078 | 3114 | 8066  |
| First V | 119   | 2   | 1508 | 165  | 154  | 4542 | 3033 | 2139 | 6505 | 4273 | 3422 | 6948  | 5536 | 4042 | 8522  |
| First V | 122   | 35  | 2216 | 876  | 1583 | 6346 | 4658 | 3788 | 2964 | 2333 | 3270 | 7295  | 4976 |      | 13480 |
| First V | 123   | 722 | 6773 | 4826 | 2207 | 5210 | 3979 | 4094 | 6208 | 4836 | 4486 | 7414  | 511  | 4580 | 8794  |
| First V | 124   | 23  | 1993 | 648  | 259  | 2644 | 1239 | 837  | 4755 | 3306 | 2030 | 1577  | 1258 | 790  | 4860  |
| First V | 126   | 201 | 748  | 229  | 184  | 4366 | 2757 | 1849 | 7418 | 4713 | 4272 | 24944 | 9179 | 6309 | 80065 |
| First V | 129   | 83  | 6303 | 3994 | 1335 | 5885 | 4630 | 3898 | 8599 | 5819 | 4700 | 7246  | 5783 | 5045 | 9721  |
| First V | 131   | 40  | 3443 | 1693 | 933  | 3890 | 3401 | 2629 | 5028 | 3103 | 2966 | 5761  | 4784 | 3728 | 13944 |
| First V | 132   | 0   | 2180 | 734  | 859  | 5179 | 4197 | 2826 | 4141 | 1625 | 2106 | 8261  | 5091 | 3998 | 6812  |
| First V | 133   | 205 | 2487 | 1354 | 294  | 5005 | 3307 | 3207 | 6213 | 6097 | 4106 | 10449 | 7959 | 6824 | 9222  |
| First V | 134   | 131 | 4300 | 2856 | 597  | 3716 | 2416 | 2261 | 7273 | 5503 | 4435 | 6845  | 5496 | 4422 | 8537  |
| First V | 139   | 103 | 2264 | 810  | 989  | 5258 | 4064 | 3559 | 5799 | 4695 | 3662 | 6886  | 6286 | 5330 | 9525  |
| First V | 141   | 13  | 4201 | 2836 | 258  | 4768 | 3222 | 2317 | 7674 | 5452 | 3982 | 7621  | 5888 | 4276 | 12100 |
| Control | 128   | 1   |      |      |      |      |      | 1585 |      |      |      |       |      |      | 9     |
| Control | 144   | 0   |      |      |      |      |      | 0    |      |      |      |       |      |      | 0     |

| Group   | Ewe #  |     |    |    |    |    |    | Da   | ys  |     |     |     |     |     |      |
|---------|--------|-----|----|----|----|----|----|------|-----|-----|-----|-----|-----|-----|------|
| Croup   | 2000 # | 0   | 14 | 21 | 70 | 84 | 98 | 112  | 123 | 140 | 154 | 168 | 182 | 196 | 210  |
| Control | 4      | 2   |    |    |    |    |    | 0    |     |     |     |     |     |     | 1    |
| Control | 15     | 1   |    |    |    |    |    | 0    |     |     |     |     |     |     | 41   |
| Control | 26     | 672 |    |    |    |    |    | 34   |     |     |     |     |     |     | 225  |
| Control | 35     | 0   |    |    |    |    |    | 5    |     |     |     |     |     |     | 33   |
| Control | 64     | 290 |    |    |    |    |    | 18   |     |     |     |     |     |     | 3    |
| Control | 110    | 116 |    |    |    |    |    | 67   |     |     |     |     |     |     | 147  |
| Control | 111    | 454 |    |    |    |    |    | 0    |     |     |     |     |     |     | 2    |
| Control | 112    | 77  |    |    |    |    |    | 1    |     |     |     |     |     |     | 0    |
| Control | 114    | 207 |    |    |    |    |    | 87   |     |     |     |     |     |     | 41   |
| Control | 116    | 43  |    |    |    |    |    | 56   |     |     |     |     |     |     | 20   |
| Control | 120    | 1   |    |    |    |    |    | 0    |     |     |     |     |     |     | 0    |
| Control | 121    | 292 |    |    |    |    |    | 1557 |     |     |     |     |     |     | 1761 |
| Control | 125    | 644 |    |    |    |    |    | 1194 |     |     |     |     |     |     | 1500 |
| Control | 127    | 3   |    |    |    |    |    | 176  |     |     |     |     |     |     | 1143 |
| Control | 130    | 3   |    |    |    |    |    | 4    |     |     |     |     |     |     | 2    |

| Group   | Ewe # |     |    |    |    |    |    | Da  | iys |     |     |     |     |     |     |
|---------|-------|-----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| Group   | LWC#  | 0   | 14 | 21 | 70 | 84 | 98 | 112 | 123 | 140 | 154 | 168 | 182 | 196 | 210 |
| Control | 135   | 72  |    |    |    |    |    | 87  |     |     |     |     |     |     | 513 |
| Control | 136   | 4   |    |    |    |    |    | 3   |     |     |     |     |     |     | 42  |
| Control | 137   | 3   |    |    |    |    |    | 0   |     |     |     |     |     |     | 4   |
| Control | 138   | 70  |    |    |    |    |    | 32  |     |     |     |     |     |     | 221 |
| Control | 140   | 1   |    |    |    |    |    | 40  |     |     |     |     |     |     | 2   |
| Control | 142   | 0   |    |    |    |    |    | 0   |     |     |     |     |     |     | 1   |
| Control | 143   | 0   |    |    |    |    |    | 167 |     |     |     |     |     |     | 36  |
| Control | 145   | 169 |    |    |    |    |    | 276 |     |     |     |     |     |     | 175 |

# Table A5: Ewe Bodyweights (kg)

|         |      |      | Days |      |
|---------|------|------|------|------|
| Group   | Ewe~ | 0    | 112  | 210  |
| Prev V  | 1    | 47.5 | 49.5 | 44.5 |
| Prev V  | 12   | 52.0 | 49.5 | 42.0 |
| Prev V  | 23   | 56.5 | 50.5 | 42.0 |
| Prev V  | 25   | 61.0 | 61.0 | 48.5 |
| Prev V  | 32   | 58.0 | 52.0 | 49.0 |
| Prev V  | 33   | 55.5 | 51.5 | 47.5 |
| Prev V  | 39   | 59.0 | 49.5 | 48.5 |
| Prev V  | 44   | 54.5 | 54.5 | 46.0 |
| Prev V  | 48   | 60.0 | 54.0 | 37.5 |
| Prev V  | 50   | 61.0 | 51.0 | 48.5 |
| Prev V  | 54   | 61.5 | 55.5 | 51.5 |
| Prev V  | 56   | 55.0 | 54.5 | 46.5 |
| Prev V  | 60   | 63.5 | 59.0 | 49.0 |
| Prev V  | 66   | 64.0 | 63.0 | 53.0 |
| Prev V  | 68   | 54.0 | 45.0 | 41.5 |
| Prev V  | 72   | 55.5 | 54.0 | 49.5 |
| Prev V  | 80   | 61.0 | 59.5 | 52.0 |
| First V | 62   | 63.5 | 58.0 | Dead |
| First V | 78   | 59.5 | 59.5 | 57.5 |
| First V | 7    | 54.5 | 49.0 | 41.0 |
| First V | 10   | 55.0 | 49.0 | 43.0 |
| First V | 13   | 52.0 | 48.0 | 41.5 |
| First V | 18   | 49.0 | 43.5 | 39.0 |


|         |      | Days |      |      |
|---------|------|------|------|------|
| Group   | Ewe~ | 0    | 112  | 210  |
| First V | 29   | 57.5 | 56.0 | 46.5 |
| First V | 37   | 55.5 | 49.5 | 41.5 |
| First V | 71   | 58.5 | 49.5 | 41.5 |
| First V | 113  | 48.0 | 45.0 | 37.5 |
| First V | 115  | 58.0 | 51.0 | 43.5 |
| First V | 117  | 60.0 | 48.5 | 41.0 |
| First V | 118  | 52.5 | 52.5 | 43.5 |
| First V | 119  | 49.0 | 48.0 | 40.5 |
| First V | 122  | 57.5 | 50.0 | 49.0 |
| First V | 123  | 49.5 | 50.0 | 48.5 |
| First V | 124  | 48.0 | 49.0 | 43.0 |
| First V | 126  | 51.5 | 49.0 | 43.5 |
| First V | 129  | 61.5 | 56.0 | 52.0 |
| First V | 131  | 55.5 | 49.0 | 43.5 |
| First V | 132  | 50.5 | 48.0 | 45.5 |
| First V | 133  | 53.0 | 48.0 | 43.5 |
| First V | 134  | 53.5 | 58.0 | 50.0 |
| First V | 139  | 57.0 | 48.5 | 48.5 |
| First V | 141  | 44.0 | 42.0 | 40.0 |
| Control | 128  | 48.5 | 49.5 | 46.0 |
| Control | 144  | 45.0 | 57.0 | 53.5 |
| Control | 4    | 63.0 | 57.5 | 53.0 |
| Control | 15   | 54.0 | 55.0 | 50.0 |
| Control | 26   | 60.0 | 57.5 | 55.0 |

|         |      | Days |      |      |
|---------|------|------|------|------|
| Group   | Ewe~ | 0    | 112  | 210  |
| Control | 35   | 56.0 | 52.0 | 45.0 |
| Control | 64   | 58.0 | 64.0 | 56.0 |
| Control | 110  | 61.5 | 45.0 | 41.0 |
| Control | 111  | 49.0 | 41.5 | 38.5 |
| Control | 112  | 59.5 | 50.5 | 42.5 |
| Control | 114  | 58.0 | 42.0 | 41.0 |
| Control | 116  | 58.5 | 50.5 | 45.0 |
| Control | 120  | 50.5 | 48.0 | 46.0 |
| Control | 121  | 55.0 | 47.0 | 42.0 |
| Control | 125  | 54.5 | 50.5 | 49.0 |
| Control | 127  | 53.0 | 48.0 | 46.5 |
| Control | 130  | 56.5 | 52.0 | 48.0 |
| Control | 135  | 53.5 | 55.0 | 51.0 |
| Control | 136  | 52.0 | 50.0 | 42.0 |
| Control | 137  | 52.5 | 53.0 | 45.0 |
| Control | 138  | 57.5 | 57.0 | 50.5 |
| Control | 140  | 55.5 | 48.5 | 42.5 |
| Control | 142  | 52.0 | 42.0 | 43.5 |
| Control | 143  | 48.0 | 48.5 | 45.0 |
| Control | 145  | 49.0 | 51.0 | 48.0 |

# Table A6: Rainfall data provided by the producer (mm)

|              | Rainfall | Avera | ge                                                                     |
|--------------|----------|-------|------------------------------------------------------------------------|
|              | 2013-14  |       |                                                                        |
| September    | 34       | 60    |                                                                        |
| October      | 18       | 80    |                                                                        |
| November     | 98       | 133   |                                                                        |
| December     | 7        | 110   |                                                                        |
| January (14) | 55       | 100   |                                                                        |
| February     | 11       | 94    |                                                                        |
| March        | 19       | 71    | (Figures up to 22 <sup>nd</sup> March, there was good rain after that) |
| TOTAL        | 253      | 695   |                                                                        |

#### Study no. MIHO2920



## Fig 6. New South Wales Rainfall Deciles between 1 Nov 13 to 30 Apr 14

# Appendix 6.3 Kingstown ewe efficacy trial

CH PTY LTD



Study Title: A field study to evaluate the efficacy of an *Haemonchus* vaccine when administered to pre-lambing ewes during times of high parasite challenge. New England district NSW, Australia.

Study No.:MIHO2918Sponsor Study No.:N/AVersion No.:5FINALVersion Date:30 June 2014

Author: T. Dale

| Sponsor:      | Name:    | Julie Fitzpatrick                  |
|---------------|----------|------------------------------------|
|               |          | Moredun Group Director             |
|               | Address: | Moredun Institute                  |
|               |          | The Moredun Group                  |
|               |          | Pentlands Science Park             |
|               |          | Bush Loan                          |
|               |          | Penicuik                           |
|               |          | Midlothian                         |
|               |          | Scotland, UK                       |
| Investigator: | Name:    | Tim Dale                           |
|               | Quals.:  | B. LISC                            |
|               | Address: | Veterinary Health Research Pty Ltd |
|               |          | Trevenna Road, Armidale, NSW 2350  |
|               |          | Australia                          |

VETERINARY HEALTH RESEARCH PTY LTD



# **STUDY REPORT**

| Monitor: | Name:    | David Smith                                                                                        |
|----------|----------|----------------------------------------------------------------------------------------------------|
|          | Address: | The Moredun Group<br>Pentlands Science Park<br>Bush Loan<br>Penicuik<br>Midlothian<br>Scotland, UK |

## TABLE OF CONTENTS

PAGE

## **Study Investigator Compliance Statement**

## **Quality Assurance Statement**

- 19. Objectives
- 20. Justification
- 21. Compliance
- 22. Test Site(s)
- 23. Study Dates

## 24. Study Design

- g. Experimental Unit
- h. Animal Model
- i. Inclusion Criteria
- j. Exclusion and Removal Criteria
- **k.** Allocation
- I. Blinding

## **25.** Investigational Veterinary Product

- g. Investigational Veterinary Product
- h. Source
- i. Storage
- j. Safety
- k. Assays
- I. Drug Disposal

## 26. Treatment

d. Dose Calculation

- e. Dose Preparation
- f. Method of Dose Administration
- 27. Schedule of Events
- 28. Test System

#### 29. Animal Management

- g. Animal Welfare
- **h.** Health Management
- i. Housing
- j. Animal Disposal

## **30.** Study Procedures

- e. Trial Log
- f. Informed Consent
- g. Weather Data
- h. Sample Storage, Transfer & Disposal

## **31.** Assessment of Effects

- **d.** Body Weights
- e. Blood Analysis
- f. Faecal Egg Counts / Larval Differentiation

## 32. Data Analysis

33. Quality Assurance

## 34. Data Records

- j. Amendments & Deviations
- k. Notes to File
- I. Change of Study Personnel
- m. Raw Data
- n. Communication Log
- o. Permits

- p. Confidentiality
- **q.** Study Report

#### Results

- **h.** Lambing success and number of ewes used in the study
- i. Types of comparison made
- j. Rainfall and pasture infectivity
- **k.** *Haemonchus* Egg Counts
- I. Kinetics of and relationships between the parameters studied over the course of the trial

## 36. Concluding Remarks

37. References

35.

## Tables, Graphs, Figures and Data Listings

- Table 1 Treatment Regime
- Table 2 Schedule of Events

Table 3 – Percent protection (eggs) on each sampling day

- Table A1 Weather Data (See Appendix 3)
- Table A2 Faecal egg counts (See Appendix 4)

Table A3 – Coproculture data: Percent of each nematode genus identified (See Appendix 4)

Table A4 – ELISA titres (See Appendix 4)

Table A5 – Blood Haemoglobin (See Appendix 4)

Table A6 – Ewes Bodyweight (See Appendix 4)

Figure 1 – Individual ewe egg counts averaged from lambing to weaning

Figure 2 – Individual ewe egg counts averaged over the whole trial

Figure 3 – Kinetics of interventions, group mean total egg counts, Haemonchus specific egg counts and the anti-vaccine antibody response in lactating ewes.

Figure 4 – Kinetics of the Haemonchus specific egg counts in relation to blood haemoglobin concentrations and to bodyweight in lactating ewes.

Figure 5 – New South Wales rainfall deciles with trial site location marked

(Appendix 3)

Figure 6 – Site map with trial location marked (Appendix 6)

## Appendices

- Appendix 1 List of standard Operating Procedures
- Appendix 2 List of Abbreviations
- Appendix 3 Weather Data
- Appendix 4 Tabulated Raw data
- Appendix 5 Statistical Output
- Appendix 6 Site Map
- Appendix 7 TrialPak

## STUDY INVESTIGATOR

## **COMPLIANCE STATEMENT**

I, the undersigned, hereby declare that the report is a complete, true and accurate representation of the study and its results.

This study was conducted in accordance with the approved Protocol and with VHR Standard Operating Procedures (see Appendix 2), unless otherwise stated, and the study objectives were achieved. The study was conducted in compliance with:

• VICH GL9 Good Clinical Practice (June 2000)

There were no deviations from Protocol or any other circumstances considered to have affected the outcome of the study.

Signed:

Timothy Dale, B Liv. Sc.

Study Investigator

Date:

## QUALITY ASSURANCE STATEMENT

Inspections were made by the Quality Assurance Unit of the various phases of the study described in this report. The date inspections were carried out and reported to the Investigator and to facility management are given below:

| Inspection<br>Date | Inspection<br>Type | Phase Inspected             | QA<br>Auditor | Inspection<br>Report<br>issued |
|--------------------|--------------------|-----------------------------|---------------|--------------------------------|
| 13 Aug 13          | Study              | Protocol V2 – 05 Aug 13     | L. Pearson    | 13 Aug 13                      |
| 24 Jun 14          | Study              | Study Report V4 – 11 Jun 14 | L. Pearson    | 30 Jun 14                      |
|                    |                    |                             |               |                                |
|                    |                    |                             |               |                                |
|                    |                    |                             |               |                                |

This report has been audited by the Quality Assurance Unit and is considered to be an accurate description of the methods and procedures used during the conduct of the study, and an accurate reflection of the raw data.

Signed:

Leonora J. Pearson, DipRQA

**Quality Assurance Manager** 

Date:

#### 19.OBJECTIVE

To confirm the field efficacy of a *Haemonchus* vaccine in peri-parturient ewes in the New England region of New South Wales, Australia. Data from this study may be used to support product registration.

#### 20.JUSTIFICATION

Commonly, the treatment of internal parasites in sheep has been via drenching with an anthelmintic compound to eradicate the parasites and with some compounds, kill the incoming larvae from the pasture. Parasite resistance to many of the commonly used anthelmintics is common in many parts of the world. The use of a vaccine to control these parasites would reduce dependence on anthelmintics, and hence be of great benefit to sheep producers, and for the welfare of the animal.

Initial field trials have shown that the vaccine in question is effective at reducing host anaemia and parasite egg output in lambs and yearlings. This study aims to investigate its efficacy for periparturient and lactating ewes.

#### 21.COMPLIANCE

The study complied with the following national and international standards:

VICH GL9 Good Clinical Practice (issued June 2000)

#### 22.TEST SITE(S)

The trial site location is marked on the site map in Appendix 6.

| Animal Phase:   | Laboratory Phase:                     |
|-----------------|---------------------------------------|
| Anonymous       | Veterinary Health Research P/L        |
| Uralla NSW 2358 | Colin Blumer Animal Health Laboratory |
|                 | Trevenna Road                         |
|                 | Armidale NSW 2350 Australia           |

## 23.STUDY DATES

Start date (animal phase): 30 JUL 13

Finish date (animal phase): 18 MAR 14

Finish date (laboratory phase): 21 MAY 14

## 24.<u>STUDY DESIGN</u>

g. Experimental Unit: The experimental unit was the individual animal.

**h. Animal Model:** This study used second lambing Merino ewes on normal pre-lambing prepared paddocks naturally contaminated by *Haemonchus contortus*.

**i.** Inclusion Criteria: Animals were selected for the study if they met the criteria outlined in section 10 below.

j. Exclusion and Removal Criteria: No animals were excluded or removed from the study.

**k.** Allocation: Sixty (60) pregnant second lambing ewes were randomly selected from a larger flock, after excessively heavy or light ("outliers", up to ~10% of the flock) animals had been removed. All trial animals were weighed at selection on Day 0 and ranked from heaviest to lightest and sequentially blocked in pairs of two (2) animals. The animals were then randomly allocated into the Group 1 and 2 using the 'draw from hat technique'. Group mean bodyweights at allocation were analysed for significant differences between groups using Student t test and a commercially available software package (Statistix 10.0, 2013). There were no statistical differences (p<0.05) between groups.

**I.** Blinding: Laboratory personnel were blinded to treatment groups when performing faecal egg counts and larval differentiation counts.

## 25. INVESTIGATIONAL VETERINARY PRODUCT

All formulation details including batch number, expiry date, receipt and usage were recorded on the "Drug Reconciliation" form according to VHR SOP STU-308.

#### m. Investigational Veterinary Product:

| Name:        | BarberVax                                      | Batch No .:  | 08          |
|--------------|------------------------------------------------|--------------|-------------|
| Composition: | <i>Haemonchus</i> antigen and saponin adjuvant | Expiry Date: | 01 APR 2015 |
| Dose Level:  | 5µg antigen and 1mg saponin                    | WHP:         | 12 months   |

**n. Source:** WormVax Laboratory

Animal Health Laboratory

Dept of Agriculture and Food Western Australia

444 Albany Highway

Albany W.A. 6330

- o. Storage: Refrigerated in the Post-Mortem room walk in refrigerator between 2 to 8°C
- **p.** Safety: A MSDS was not provided by the Sponsor (see Deviation #5).
- q. Assays: A Certificate of Analysis was provided for the IVP
- r. Drug Disposal: The disposal of all remaining IVP will be documented.

## 26.<u>TREATMENT</u>

Animals in Group 1 were untreated controls, but individual animals in either Group 1 or 2 were treated with a short acting anthelmintic if the following criteria were met:

- *H. contortus*: the egg count rose above 10,000 epg or the blood haemoglobin concentration was equal to or fell below 6.5 g/100 mL.
- Other nematode genera: (indicated by larval differentiation): the individual animal egg count rose above 1500 epg, or scouring was evident. For a flock treatment, the upper limit was a mean of 1000 epg (though scouring was evident before this level was reached). See NTF #1.
- **Scouring**: Individuals were treated if above an AWI Scour Score of 3.

**d.** Dose Calculation Dose volume was 1.0 mL IVP by subcutaneous injection. Anthelmintic treatment was calculated according to individual animal bodyweight using Day 0, Day 133 or Day 231 bodyweights.

**e.** Dose Preparation: The IVP was transported on wet ice bricks and gently shaken immediately prior to the first treatment.

**f.** Method of Dose Administration: Study animals were dosed according to the treatment regime detailed in Table 1 below.

## Table 1: Treatment Regime

| Tx.<br>Grp. | IVP Details        | Dose<br>Volum<br>e | Route   | Tx.<br>Day(s)                                                                                                      | No.<br>Anim. |
|-------------|--------------------|--------------------|---------|--------------------------------------------------------------------------------------------------------------------|--------------|
| 1           | Untreated controls |                    |         | Anthelmintic treatment occured on Days 0,<br>28, 189 and 231                                                       | 30           |
| 2           | IVP                | 1mL                | Subcut. | Days 0, 28, 91 (marking), 133 (weaning),<br>and 189<br>Treated with an effective anthelmintic on<br>Days 0 and 231 | 30           |

Subcut. = Subcutaneous

## 27.SCHEDULE OF EVENTS

## Table 2: Schedule of Events

| Study<br>Day* | Date      | Event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pre-Study     |           | Obtained Animal Ethics Committee approval and received IVP.<br>Confirmed suitable mob of sheep from a commercial sheep farm with<br><i>Haemonchus contortus</i> infection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0             | 30 JUL 13 | Weighed and tagged (see NTF #5) 60 second lambing Merino ewes<br>and allocated into 2 treatment groups; Group 1 - Untreated Controls<br>and Group 2 – Treat with IVP. Faecal and blood samples were<br>collected from all animals in Group 1 and 2 to conduct a haemoglobin<br>analysis and FECs for group larval differentiation (see NTF #1). All<br>animals in Group 1 and 2 were treated with an effective anthelmintic<br>(CYDECTIN LV + SE - Batch: 1200301, Expiry: JAN 2014). <b>Group 2</b><br><b>was treated with IVP 'V1'</b> (see deviation #1 and deviation #2).<br>Processed Group 2 blood samples and harvested Plasma. Group 2<br>plasma stored in 2 replicates in separate -20°C freezers. |

| Study<br>Day* | Date      | Event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|---------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 28            | 27 AUG 13 | Faecal and blood samples were collected from all animals in Group<br>and 2 to conduct a haemoglobin analysis and FECs for group larva<br>differentiation (see Deviation #4). Group 1 ewes were treated wit<br>anthelmintic (ZOLVIX – Batch: 805523, Expiry: APR 2015). Group<br>was treated with IVP 'V2'. Processed Group 2 blood samples an<br>harvested Plasma. Group 2 plasma stored in 2 replicates in separate<br>20°C freezers.                                                                                                                 |  |
| 35            | 3 SEP 13  | Lambing. Commenced twice weekly health observations (see Deviation #6).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 91            | 29 OCT 13 | Marking (see Amendment #1 & Deviation #7): Faecal and blo<br>samples were collected from all animals in Group 1 and 2 to conduct<br>haemoglobin analysis and FECs for group larval differentiation. <b>Gro</b><br><b>2 was treated with IVP 'V3'</b> . Processed Group 2 blood samples a<br>harvested Plasma. Group 2 plasma stored in 2 replicates in separat<br>20°C freezers.                                                                                                                                                                       |  |
| 105           | 12 NOV 13 | Faecal and blood samples were collected from all animals in Group 1<br>and 2 to conduct a haemoglobin analysis and FECs for group larval<br>differentiation. Processed Group 2 blood samples and harvested<br>Plasma. Group 2 plasma stored in 2 replicates in separate -20°C<br>freezers.                                                                                                                                                                                                                                                             |  |
| 119           | 26 NOV 13 | Faecal and blood samples were collected from all animals in Grou<br>and 2 to conduct a haemoglobin analysis and FECs for group la<br>differentiation. Processed Group 2 blood samples and harve<br>Plasma. Group 2 plasma stored in 2 replicates in separate -2<br>freezers.                                                                                                                                                                                                                                                                           |  |
| 133           | 10 DEC 13 | Weaning (see Deviations #3 & #7): Weighed all animals in Group 1<br>and 2 and recorded individual bodyweights. Faecal and blood samples<br>were collected from all animals in Group 1 and 2 to conduct a<br>haemoglobin analysis and FECs for group larval differentiation. <b>Group</b><br><b>2 was treated with IVP 'V4'</b> . 'Wet and Dry' tested all ewes at<br>sponsors request (See Note to File #2). Processed Group 1 and 2<br>blood samples and harvested Plasma. Group 1 and 2 plasma stored<br>in 2 replicates in separate -20°C freezers. |  |

| Study |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|-------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Day*  | Date      | Event                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 147   | 24 DEC 13 | Faecal and blood samples were collected from all animals in Group 7<br>and 2 to conduct a haemoglobin analysis and FECs for group larva<br>differentiation. Sheep #102 (Group 2) required a salvage drencl<br>(ZOLVIX – Batch: 805523, Expiry: APR 2015). Processed Group 2<br>blood samples and harvested Plasma. Group 2 plasma stored in 2<br>replicates in separate -20°C freezers.                                                                     |  |  |
| 161   | 07 JAN 14 | Faecal and blood samples were collected from all animals in Group 1<br>and 2 to conduct a haemoglobin analysis and FECs for group larva<br>differentiation. Processed Group 2 blood samples and harvested<br>Plasma. Group 2 plasma stored in 2 replicates in separate -20°C<br>freezers.                                                                                                                                                                   |  |  |
| 175   | 21 JAN 14 | Faecal and blood samples were collected from all animals in Group 1<br>and 2 to conduct a haemoglobin analysis and FECs for group larva<br>differentiation. Sheep #326 and #741 (Group 1) required salvage<br>drench (ZOLVIX – Batch: 805523, Expiry: APR 2015). Processed<br>Group 2 blood samples and harvested Plasma. Group 2 plasma<br>stored in 2 replicates in separate -20°C freezers.                                                              |  |  |
| 189   | 04 FEB 14 | Faecal and blood samples were collected from all animals in Group 1<br>and 2 to conduct a haemoglobin analysis and FECs for a group larval<br>differentiation. Group 1 ewes were treated with an anthelmintic<br>(ZOLVIX – Batch: 805523, Expiry: APR 2015) see NTF #4. <b>Group 2</b><br><b>was treated with IVP 'V5'</b> . Processed Group 2 blood samples and<br>harvested Plasma. Group 2 plasma stored in 2 replicates in separate -<br>20°C freezers. |  |  |
| 190   | 05 FEB 14 | Group 1 & 2 Replicate 1 frozen plasma samples (Days 0-175) sent to Moredun Institute.                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 204   | 19 FEB 14 | Faecal and blood samples were collected from all animals in Group<br>and 2 to conduct a haemoglobin analysis and FECs for group lar<br>differentiation. Sheep #102 and #209 (Group 2) required a salva<br>drench (QDrench – Batch: F7473, Expiry: AUG 2014). Process<br>Group 2 blood samples and harvested Plasma. Group 2 plas<br>stored in 2 replicates in separate -20°C freezers.                                                                      |  |  |
| 217   | 04 MAR 14 | Faecal and blood samples were collected from all animals in Group 1<br>and 2 to conduct a haemoglobin analysis and FECs for group larval<br>differentiation. Processed Group 2 blood samples and harvested<br>Plasma. Group 2 plasma stored in 2 replicates in separate -20°C<br>freezers.                                                                                                                                                                  |  |  |

| Study<br>Day* | Date      | Event                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 231           | 18 MAR 14 | Weighed all animals in Group 1 and 2 and recorded individual bodyweights. Blood samples were collected from all animals in Group 1 and 2. Processed Group 1 and 2 blood samples and harvested Plasma. Group 1 and 2 plasma stored in 2 replicates in separate - 20°C freezers. All trial animals were treated with an effective anthelmintic. (ZOLVIX – Batch: 805523, Expiry: APR 2015). (See Amendment #2) |
|               | 15 Apr 14 | Group 1 & 2 Replicate 1 frozen plasma samples (Days 189-231) sent to Moredun Institute.                                                                                                                                                                                                                                                                                                                      |

\* In the protocol, amendments, deviations and raw data all activities are timed relative to lambing (Day 0 was 3 SEP 13) but in this report they are timed relative to the day of first vaccination (Day 0 is 30 JUL 13). This is a more accurate way of portraying the kinetics of the trial data because lambing was spread out over a few weeks (see NTF #5).

## 28. TEST SYSTEM

| Species: | Ovine                         | Number:          | 60                                                                          |
|----------|-------------------------------|------------------|-----------------------------------------------------------------------------|
| Breed:   | Merino                        | Source:          | Commercial sheep farm.                                                      |
| Weight:  | 30.0 – 42.0 kg (Day 0)        | Health & special | Healthy animals. Not within                                                 |
| Sex:     | Second lambing Merino<br>ewes | requirements:    | existing WHP and ESI for animal health products used.                       |
| Age:     | 3-4 years                     | Method of ID:    | Individually numbered ear<br>tags, coloured group ear tags<br>(see NTF #5). |

#### 29. ANIMAL MANAGEMENT

**g.** Animal Welfare: Study animals were managed similarly and with due regard for their welfare. Animals were monitored twice weekly for health problems according to AEC requirements (see Deviation #6). Animals were handled in compliance with UNE AEC no. 13-107 approved 01AUG13, and any applicable local regulations.

**h.** Health Management (Concurrent Medications/Salvage Drenches): Study animals were clinically observed at each sampling time-point, no abnormalities were detected during the study.

A salvage drench was administrated to the animals when the individual animal's haemoglobin levels fell below 6.5 g/100mL or had a high scour burden. A summary is provided below:

Day 0; Routine drench, all animals in Groups 1 and 2 were given a salvage treatment.

Day 28; all animals in Group 1 were treated with an effective anthelmintic.

Day 147; animal #102 from Group 2 was treated for low blood haemoglobin content.

Day 175; animals #326 (Group 1) and #741 (Group 1) were treated for low blood haemoglobin content.

Day 189; all animals in Group 1 were treated with an effective anthelmintic (see NTF #4).

Day 204; animals #102 (Group 2) and #209 (Group 2) were treated for low blood haemoglobin content.

Day 231; all trial animals (except for animals #333 and #388; See NTF #3) were drenched out with an effective anthelmintic for the completion of the study.

**i.** Housing: Routine management practices were followed. All sheep were run as a single mob in the same paddock with *ad lib* to native and improved pastures and a dam for water.

**j.** Animal Disposal: All ewes used in the trial were returned to commercial herd; not to be sold due to WHP and ESI interval of 12 months from the last treatment date.

## 30.STUDY PROCEDURES

**e.** Trial Log: All scheduled and unscheduled events and activities which occurred during the study were recorded.

**f.** Informed Consent: An "Owner Consent and Agreement" form was signed by the Owner and the Investigator post administration of first treatment (see Deviation #1), however, verbal agreement and permission was given prior to first treatment.

**g. Weather Data:** Data from the nearest Bureau of Meteorology weather station for the study period are included in the raw data (see Appendix 3).

**h. Sample Storage, Transfer & Disposal:** Sample storage, transfer and disposal were recorded. Replicate 1 plasma samples were dispatched to Moredun Institute for analysis on dry ice via World Courier international dispatch with an accompanying temperature data logger. Replicate 2 plasma samples will be held in frozen storage at VHR facilities for a period of 12 months after the last sample collection timepoint, after which point they will be disposed of by high temperature incineration.

## 31.ASSESSMENT OF EFFECTS

**d.** Body Weights: Animals were weighed on Days 0, 133 and 231 as outlined in section 9 - Schedule of Events and individual animal weights were recorded. Animal weigh scales were checked pre- and post-weighing with calibrated test weights. Body weights and body weight change during the study were compared between groups to determine treatment effects, if any, and are detailed in the results section of the Study Report.

**e. Blood Analysis:** Single blood samples were collected and recorded from each animal using 18 gauge needles into 8 mL LH Lithium Heparin gel separated Vacuettes at intervals outlined in section 9 – Schedule of Events. Blood samples were processed for collection of plasma samples on the day of collection. Samples were individually labeled with the study no., animal no., study date & day, sample type, replicate. Frozen plasma samples were forwarded to Moredun Institute for haematology and biochemistry analysis on 05 FEB 14 and 15 APR 14. Key haematological and biochemical parameters were compared to determine treatment effects, if any, and are detailed in the results section of the Study Report.

**f.** Faecal Egg Counts / Larval Differentiation: Faecal samples were collected at intervals outlined in section 9 – Schedule of Events. Faecal samples were individually labeled with the animal ID. Faecal egg counts and larval differentiation were performed (see Deviation #4). Faecal egg counts and larval differentiation were compared to determine treatment effects, if any, and are detailed in the results section of the Study Report.

#### 32. DATA ANALYSIS

Parasite burdens for each animal were determined from faecal egg counts (see Appendix 5). Percentage efficacy was calculated using the following equation:

[Group Mean (untreated) - Group Mean (treated)] / Group Mean (untreated) x 100

Data from faecal egg counts was entered into Microsoft EXCEL spreadsheet, validated and group arithmetic and geometric means and treatment efficacies were calculated using the spreadsheet.

The total number of individual animal anthelmintic treatments per group was compared.

One-Way Analysis of Variance, its equivalent non-parametric test and additional statistical analysis may be performed as appropriate by the Sponsor's professional statisticians.

## 33.QUALITY ASSURANCE

Veterinary Health Research has an independent Quality Assurance Unit which reviewed all aspects of quality assurance relating to this study. The Protocol, Study Report and raw data were subject to quality assurance inspection.

#### 34. DATA RECORDS

#### i. Amendments & Deviations:

Amendment #1: Changed 'Marking' from 01 OCT 13 to 22 OCT 13. The ewes did not start lambing until after Day 0, and the farmer wanted to delay marking until the lambs were ready. This amendment had no impact upon the outcome of the trial.

Amendment #2: The study was concluded after the activities of Day 196 (18 MAR 14) at Sponsor's request. All animals in Groups 1 and 2 were weighed; bloods collected and were treated with an effective anthelmintic. This amendment had no impact upon the outcome of the trial.

Deviation #1: Owner consent was not signed prior to administration of the first treatment. The owner had given verbal consent to use and treat the sheep as he was not able to be at the yards on Day 0. This deviation had no impact upon the outcome of the trial.

Deviation #2: Animals in Group 2 were treated at Day -35 with IVP before the protocol was finalized. Although the Protocol was finalized and approved post Day 0, no changes were made to the final protocol that affected study procedures completed to date. This deviation had no impact upon the outcome of the trial.

Deviation #3: The date of weaning was postponed at the grazier's request because of the poor grazing caused by the drought. This deviation had no impact upon the outcome of the trial.

Deviation #4: On Day 28 (27 AUG 13) the FEC samples were pooled into a single culture, instead of being cultured by groups. There was a misunderstanding between the study investigator and diagnostic lab staff. Sponsor was notified post event. Every sample since has been cultured by Group. This deviation had no impact upon the outcome of the trial.

Deviation #5: The Sponsor did not provide an MSDS for the IVP. Indeed, it was not deemed essential for pilot batches of the vaccine. This deviation had no impact upon the outcome of the trial.

Deviation #6: The Record of Animal Care was misplaced. The grazier gave the investigator verbal confirmation that the livestock were checked twice weekly (sometimes more) for health observations through his normal management/ animal husbandry practices. This deviation had no impact upon the study as no animal was excluded from the study and no adverse events or abnormalities were detected either by the grazier or VHR staff.

Deviation #7:

- a) Deviation to Amendment #1. The day 'Marking' actually occurred on 29 OCT 13 (Day 56).
- b) Clarification of terminology in Amendment #1; the term 'Marking' related not just to the date but also to all the activities that were to be conducted on that occasion as outlined in the protocol.
- c) Clarification of terminology in Deviation #3; the term 'Weaning' related not just to the date but also to all the activities that were to be conducted on that occasion as outlined in the protocol, i.e. V4 was given on 10 DEC 13 (Day 98).

## j. Notes to File:

Note to File #1: If the non *Haemonchus* egg count of an individual sheep, (calculated from the total egg count and the Coproculture data) exceeded 1,500 epg that sheep was drenched at the next sampling date.

The Group Drenching threshold was calculated in a similar manner except the highest number of allowable scour worm larvae was lowered to 1000 and the group mean was substituted for the individual sheep FEC.

Note to File #2: All ewes were "wet and dry" tested at the sponsor's request. 'Wet' ewes were defined as ewes which still contained milk in the udder as they are rearing a lamb. 'Dry' ewes were defined as ewes which did not contain any milk in the udder, due to the loss of lamb. Dry sheep ID's were #199, #363, #417, #270, #294, #356, #107, #521, #405, #510, #741, #769 and #279.

Note to File #3: On 23 FEB 14, Kingstown was hit by a storm and strong winds caused a tree to fall over a fence line allowing the trial animals to merge with a different mob. Grazier Jamie Swales stated that he would draft the ewes back into their rightful mob for each trial. Only 58 out of the 60 animals for trial MIHO2918 were returned to their paddock. Animals #333 and #388 were missing for the last 2 visits; Day 217 and Day 231. Therefore no data was collected from these two animals during the last visits.

Note to File #4: On Day 189 the Controls were treated with Zolvix as per the protocol. This treatment should not have occurred but unfortunately its presence in the Protocol was overlooked by the trial monitor. It prevented further useful comparison between the groups and so the trial was ended earlier than planned.

Note to File #5:

- a) All sheep enrolled in the trial had the same coloured ear tag (orange) with unique individual ID number. All animals in Group 2 (IVP) were given a second plain orange tag to differentiate between groups. The unique ID tag number was always checked against each animal before any activity was conducted, eg: before vaccinating, all animals had their ID checked prior to administrating the vaccine.
- b) In the protocol, amendments, deviations and raw data all activities are timed relative to lambing (Day 0 was 3 SEP 13) but in this report they are timed relative to the day of first vaccination (Day 0 is 30 JUL 13). This is a more accurate way of portraying the kinetics of the trial data because lambing was spread out over a few weeks

**k. Change of Study Personnel:** There were no changes in study personnel over the duration of the study.

**I.** Raw Data: All original raw data pages have been identified with the study number, signed and dated by the person making the observation and by the person recording the information, and will be paginated prior to appending to the final Study Report.

**m.** Communication Log: The Investigator maintained copies of all correspondence relating to the study. These will be archived with the final Study Report.

n. Permits: The study was covered by APVMA small trial permit no. PER 7250.

**o. Confidentiality:** Confidentiality of the raw data, Study Report and results of the study, plus any information received from the Sponsor, will be maintained during and after the study. Publication of material will remain at the sole discretion of the Sponsor.

**p. Study Report:** The original signed Study Report with raw data appended will be submitted to the Sponsor. A copy of the Study Report, plus appendices, will be archived at Veterinary Health Research Pty Ltd, Trevenna Road, Armidale, NSW, Australia for a minimum of five years.

## 35.<u>RESULTS</u>

- i. Lambing success and number of ewes used in the study: There were sixty (60) ewes at the start of the trial but eight (8) in the Vaccinated and five (5) in the Control groups, did not raise a lamb, either because they were not pregnant, or their lamb was born dead or died soon after birth. These thirteen (13) sheep remained with the rest of the flock throughout the trial but their data was excluded from the analysis.
- i. **Types of comparison made:** It was of particular interest to know how well the vaccine performed during the "periparturient" phase of the trial because worm eggs shed during lactation are an important source of infection for the next generation of lambs and hence the

general epidemiology of Haemonchosis in a flock. Therefore the degree of protection attained from lambing to weaning is presented in addition to that calculated for the whole duration of the trial.

- **Rainfall and pasture infectivity:** The 2013-2014 summer was exceptionally dry in New England and the trial site was no exception, especially during December and January (Appendix 3, Table A1).
- iv. **Haemonchus Egg Counts:** During lactation *Haemonchus* egg counts were significantly reduced in the Vaccinated sheep compared to the Controls (Fig 1, Table 3, p<0.01) and the same was true over the whole period of the trial (Fig 2, Table 3, p<0.001).

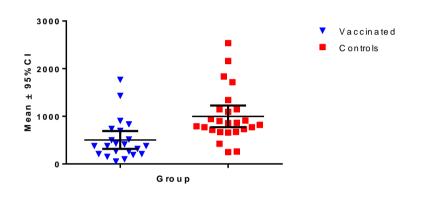
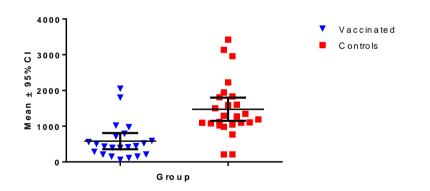




Fig 1. Individual ewe egg counts averaged from lambing to weaning



#### Fig 2. Individual ewe egg counts averaged over the whole trial

Thus BarberVax reduced *Haemonchus* egg output by 60.6% over the course of the whole trial and by 49.5% during the lactation phase, respectively.

| Days     | Mean <i>Haemonchus</i><br>epg |         | %Prot | P value  |
|----------|-------------------------------|---------|-------|----------|
| after V1 | Control                       | Vaccine |       | (t-test) |
| 0        | 344                           | 311     | 9.7   | n/s      |
| 28       | 60                            | 28      | 53.7  | n/s      |
| 91       | 850                           | 994     | -17.0 | n/s      |
| 105      | 691                           | 327     | 52.7  | ***      |
| 119      | 895                           | 458     | 48.8  | ***      |
| 133      | 692                           | 426     | 38.5  | *        |
| 147      | 925                           | 358     | 61.3  | ***      |
| 161      | 1940                          | 475     | 75.5  | ****     |
| 175      | 3880                          | 1171    | 69.8  | ****     |
| 189      | 1947                          | 454     | 76.7  | ****     |

Table 3: Percent protection (eggs) on each sampling day

n/s: non-significant; \* P<0.05; \*\* P<0.02; \*\*\* P<0.01; \*\*\*\* P<0.001:

v. Kinetics of and relationships between the parameters studied over the course of the trial: Antibody titres in the unvaccinated control ewes remained at background levels close to zero throughout the trial (Fig 3 and Appendix 3, Table A4). Group mean titres in the Vaccinated ewes also remained low until two weeks after their third immunization at marking time, when they rose to a temporary peak of around 7,700. A similar pattern was observed after each subsequent vaccine boost, which is a sharp increase in titre followed by a somewhat slower decline, so that antibody concentrations gradually increased as the trial progressed (Fig 3).

Total and *Haemonchus* specific group mean faecal egg counts were very similar within each group throughout the trial, reflecting the fact that *Haemonchus* was always the dominant gastrointestinal nematode genus infecting the ewes (Fig 3 and Appendix 3, Tables A2 and A3).

Mean Vaccinate and Control *Haemonchus* specific counts were similar up until marking time when they both approached 1000 epg (Table 3), but after that those in the vaccinates were significantly lower until Day 204, two weeks after anthelmintic had mistakenly been given to the Control group. During January the Controls showed a big increase in egg output, but this was substantially suppressed in the Vaccinated ewes (Fig 3).

Mean blood haemoglobin concentrations in the Vaccinated ewes remained relatively steady during the trial fluctuating between 9 and 10 g/100mL (Appendix 3, Table A5). Control values were similar except for a noticeable dip during their egg count peak in January and February when they were significantly lower than Vaccinates, (Fig 4). Seven lactating ewes required a precautionary drench during the course of the trial, four Controls and two Vaccinates, one of which was treated twice (as per Table A2). In five cases this was because the blood haemoglobin had fallen below the 6.5 g/100mL threshold and in two cases because egg counts exceeded 10,000 per g. These drenches were given, when egg counts were at or close to their maximum (Table A2).

Despite the dry conditions and delayed weaning, the ewes put on weight during the trial (Fig 4 and Appendix 3, Table A6). There was no discernible difference between the groups, but the final weighing took place 6 weeks after the Controls had been mistakenly given a drench, a factor which may have confounded that result.

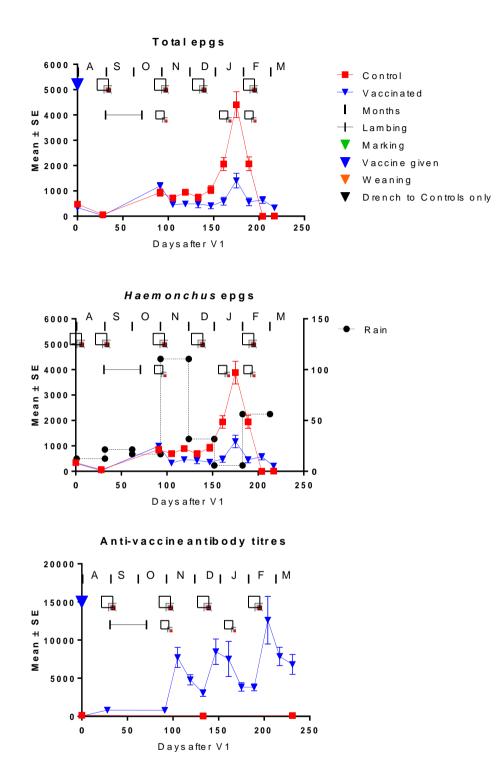



Fig 3. Kinetics of interventions, group mean total egg counts, *Haemonchus* specific egg counts and the anti-vaccine antibody response in lactating ewes.

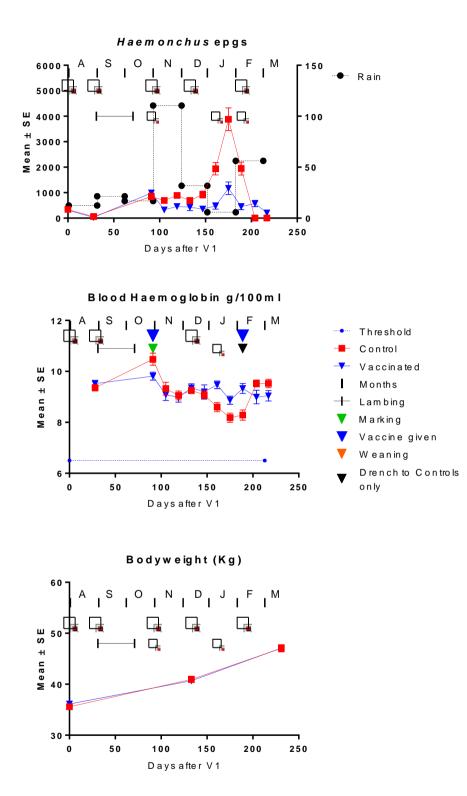



Fig 4. Kinetics of the *Haemonchus* specific egg counts in relation to blood haemoglobin concentrations and to bodyweight in lactating ewes.

#### 36.CONCLUDING REMARKS

It was clear that the course of BarberVax given during the trial, starting with two vaccinations pre-lambing (one of which could coincide with shearing on some properties) followed by further injections at lamb marking, weaning and later in the summer, effectively suppressed Barber's Pole worm egg output by the ewes and most of the associated anemia.

This difference was apparent both during the phase when the ewes had lambs at foot and post weaning when the risk of Haemonchosis is usually at its highest. Thus by suppressing the "periparturient rise", the vaccine offers a method for reducing pasture infectivity for the next generation of lambs, thus curbing the buildup of infection over the high risk summer "season". Although several vaccinations were needed to achieve this, most could be fitted in with other management practices, reducing the number of special musters needed. Furthermore the two parallel trials have shown that, if the ewes had been vaccinated in a previous season the protective effect was stronger and one less vaccination was needed.

## 37. REFERENCES

Nil.

## WEATHER DATA

## Table A1. From Kingstown Post Office – Australian Meteorological Bureau data

Rainfall (mm)

|           | Aug  | Sep  | Oct  | Nov   | Dec  | Jan  | Feb  | Mar   |
|-----------|------|------|------|-------|------|------|------|-------|
|           |      |      |      |       |      |      |      |       |
| 2013-2014 | 12.4 | 21.4 | 16.8 | 110.4 | 31.8 | 5.8  | 56.2 | 100.4 |
|           |      |      |      |       |      |      |      |       |
| Mean      | 39.8 | 47.5 | 63.8 | 88.6  | 95   | 89.3 | 82.3 | 50.9  |

Weather Data Cont.

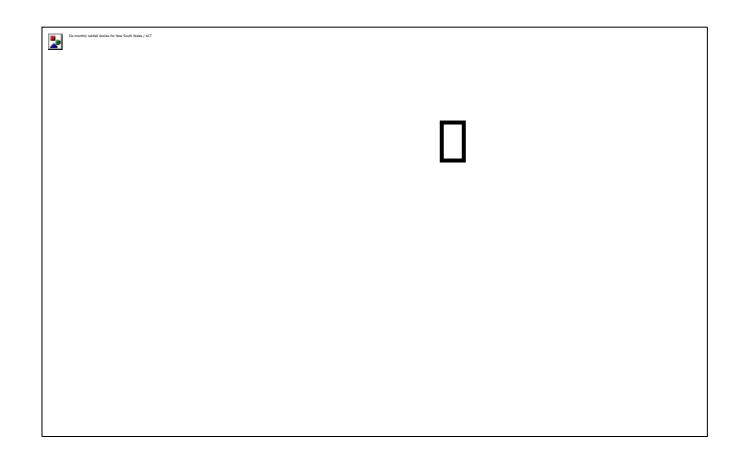



Figure 5. New South Wales rainfall deciles with trial site location marked.

**APPENDIX 4** 

## TABULATED RAW DATA

## Table A2.Faecal egg counts (EPG)

epg>10K, drench next sampling

Dry= ewes which did not rear a lamb and therefore excluded from the calculations

HB<6.5 precautionary drench

Lambing from days 35 to 70 after V1

V1 V2 V3 V4 V5

Days after V1

| Ewe# | Group   | Dry | 0    | 28  | 91   | 105  | 119  | 133  | 147  | 161  | 175  | 189  | 204 | 217 |
|------|---------|-----|------|-----|------|------|------|------|------|------|------|------|-----|-----|
| 356  | Control | Y   | 1920 | 40  | 1560 | 1640 | 4360 | 2280 | 2600 | 2680 | 5920 | 6160 | 40  | 0   |
| 363  | Control | Y   | 320  | 0   | 120  | 200  | 240  | 120  | 440  | 2240 | 4760 | 5120 | 0   | 0   |
| 510  | Control | Y   | 520  | 80  | 760  | 720  | 680  | 1040 | 1520 | 2720 | 4000 | 2400 | 0   | 0   |
| 521  | Control | Y   | 560  | 360 | 520  | 720  | 1920 | 1080 | 2320 | 2360 | 4680 | 3400 | 0   | 0   |
| 741  | Control | Y   | 200  | 0   | 600  | 1720 | 320  | 280  | 480  | 640  | 1200 | 40   | 40  | 0   |
| 1    | Control |     | 0    | 0   | 1520 | 320  | 760  | 280  | 960  | 3240 | 5520 | 3640 | 0   | 0   |
| 2    | Control |     | 1360 | 320 | 3480 | 2720 | 440  | 2960 | 2680 | 4160 | 6760 | 5520 | 0   | 0   |
| 43   | Control |     | 840  | 0   | 680  | 360  | 1000 | 600  | 960  | 1960 | 3800 | 5040 | 0   | 0   |
| 98   | Control |     | 560  | 40  | 760  | 600  | 880  | 1440 | 880  | 2840 | 2800 | 5320 | 0   | 0   |
| 123  | Control |     | 720  | 80  | 1280 | 600  | 720  | 1040 | 1120 | 1160 | 2760 | 3720 | 0   | 0   |

| Ewe# | Group   | Dry | 0    | 28  | 91   | 105  | 119  | 133  | 147  | 161  | 175   | 189  | 204 | 217 |
|------|---------|-----|------|-----|------|------|------|------|------|------|-------|------|-----|-----|
| 145  | Control |     | 80   | 0   | 680  | 680  | 1000 | 280  | 400  | 1280 | 3360  | 3840 | 0   | 0   |
| 161  | Control |     | 640  | 280 | 720  | 760  | 600  | 600  | 880  | 1560 | 2880  | 2200 | 0   | 0   |
| 311  | Control |     | 200  | 80  | 360  | 760  | 1000 | 400  | 840  | 2440 | 5800  | 0    | 0   | 0   |
| 326  | Control |     | 640  | 80  | 400  | 360  | 1040 | 760  | 520  | 1880 | 3320  | 560  | 0   | 0   |
| 329  | Control |     | 480  | 0   | 1080 | 1480 | 1320 | 160  | 200  | 1800 | 6080  | 4240 | 0   | 0   |
| 333  | Control |     | 760  | 0   | 800  | 520  | 1440 | 1040 | 920  | 3920 | 3320  | 3440 | 0   | NS  |
| 348  | Control |     | 920  | 80  | 960  | 880  | 2240 | 1000 | 2160 | 3880 | 11040 | 6000 |     | 0   |
| 375  | Control |     | 200  | NS  | 440  | 760  | 1120 | 400  | 920  | 1080 | 4680  | 4440 | 0   | NS  |
| 388  | Control |     | 760  | 80  | 880  | 480  | 1320 | 520  | 1520 | 2720 | 6920  | 9280 | 0   | NS  |
| 420  | Control |     | 160  | 40  | 280  | 520  | 560  | 120  | 1360 | 1800 | 5440  | 6640 | 0   | 0   |
| 443  | Control |     | 360  | 0   | 1160 | 1120 | 1480 | 1120 | 3560 | 5600 | 10400 | 9120 |     | 0   |
| 508  | Control |     | 720  | 0   | 200  | 280  | 240  | 80   | 800  | 40   | 160   | 1560 | 0   | 40  |
| 514  | Control |     | 1080 | 160 | 2200 | 1440 | 2160 | 2080 | 1600 | 2400 | 5160  | 5520 | 0   | 80  |
| 524  | Control |     | 200  | 120 | 440  | 680  | 1120 | 880  | 960  | 1480 | 2600  | 3400 | 0   | 0   |
| 658  | Control |     | 120  | 0   | 760  | 440  | 800  | 720  | 840  | 1440 | 3160  | 4160 | 0   | 0   |
| 662  | Control |     | 80   | 0   | 1640 | 240  | 400  | 120  | 520  | 1360 | 3560  | 3280 | 0   | 0   |
| 669  | Control |     | 80   | 40  | 320  | 440  | 400  | 480  | 0    | 40   | 80    | 40   | 0   | 0   |
| 671  | Control |     | 520  | 80  | 1040 | 800  | 560  | 560  | 480  | 880  | 3440  | 3600 | 0   | 0   |

| Ewe# | Group   | Dry | 0    | 28  | 91   | 105  | 119  | 133  | 147  | 161  | 175  | 189  | 204              | 217  |
|------|---------|-----|------|-----|------|------|------|------|------|------|------|------|------------------|------|
| 830  | Control |     | 400  | 0   | 960  | 520  | 640  | 680  | 1000 | 1520 | 4320 | 5720 | 0                | 0    |
| 846  | Control |     | 80   | 0   | 320  | 240  | 560  | 280  | 200  | 1120 | 2880 | 4680 | 0                | 40   |
| 107  | IVP     | Y   | 240  | 120 | 1760 | 200  | 280  | 200  | 320  | 120  | 280  | 360  | 120              | 40   |
| 199  | IVP     | Y   | 1480 | 120 | 1520 | 600  | 600  | 600  | 800  | 640  | 1360 | 2040 | 1120             | 520  |
| 270  | IVP     | Y   | 320  | 0   | 1520 | 1080 | 2040 | 1360 | 1240 | 1280 | 3520 | 3600 | 2560             | 1920 |
| 279  | IVP     | Y   | 240  | 40  | 1360 | 1240 | 1560 | 1040 | 200  | 200  | 1600 | 2440 | 1720             | 440  |
| 294  | IVP     | Y   | 400  | 0   | 760  | 1720 | 1000 | 520  | 1240 | 1880 | 2760 | 2240 | 1560             | 360  |
| 405  | IVP     | Y   | 560  | 40  | 1120 | 760  | NS   | 760  | 440  | 120  | 2160 | 2160 | 1960             | 80   |
| 417  | IVP     | Y   | 160  | 0   | 0    | 0    | 40   | 80   | 0    | 80   | 40   | 80   | 200              | 40   |
| 769  | IVP     | Y   | 80   | 40  | 760  | 680  | 1240 | 800  | 360  | 320  | 1520 | 2000 | 520              | 400  |
| 32   | IVP     |     | 80   | 0   | 1320 | 360  | 480  | 880  | 560  | 1680 | 2760 | 2000 | 200              | 40   |
| 78   | IVP     |     | 560  | 40  | 1640 | 240  | 120  | 80   | NS   | 200  | 1120 | 2160 | 80               | 0    |
| 102  | IVP     |     | 520  | NS  | 440  | 240  | 280  | 200  | 80   | 0    | 0    | NS   | <mark>40</mark>  | 0    |
| 143  | IVP     |     | 0    | 0   | 120  | 80   | 80   | 40   | 0    | 40   | 200  | 80   | 40               | 0    |
| 178  | IVP     |     | 400  | 40  | 720  | 160  | 160  | 200  | 40   | 80   | 520  | 800  | 80               | 0    |
| 205  | IVP     |     | 120  | 0   | 440  | 80   | 0    | 80   | 40   | 80   | 280  | 960  | 200              | 0    |
| 209  | IVP     |     | 840  | 40  | 1120 | 280  | 160  | 320  | 200  | 920  | 920  | 2080 | <mark>240</mark> | NS   |
| 218  | IVP     |     | 280  | 0   | 800  | 120  | 120  | 40   | 200  | 640  | 2400 | 3600 | 1160             | 800  |

| Ewe# | Group | Dry | 0    | 28  | 91   | 105  | 119  | 133  | 147  | 161  | 175  | 189  | 204  | 217  |
|------|-------|-----|------|-----|------|------|------|------|------|------|------|------|------|------|
| 241  | IVP   |     | 200  | 40  | 1360 | 200  | 360  | 280  | 240  | 240  | 1280 | 1200 | 360  | 280  |
| 261  | IVP   |     | 280  | 0   | 2360 | 240  | 480  | 160  | 160  | 160  | 80   | 80   | 120  | 40   |
| 300  | IVP   |     | 1080 | 120 | 1600 | 480  | 280  | 160  | 240  | 360  | 1840 | 5120 | 640  | 360  |
| 327  | IVP   |     | 0    | 0   | 640  | 520  | 640  | 320  | 120  | 0    | 440  | 2440 | 400  | 200  |
| 365  | IVP   |     | 520  | 0   | 1960 | 1520 | 1160 | 1800 | 1680 | 2160 | 4720 | 6960 | 2160 | 40   |
| 380  | IVP   |     | 320  | 80  | 1440 | 2080 | 2240 | 2480 | 2120 | 2240 | 4640 | 3920 | 2240 | 800  |
| 427  | IVP   |     | 80   | 0   | 560  | 200  | 0    | 40   | 200  | 120  | 240  | 280  | 240  | 40   |
| 447  | IVP   |     | 200  | 40  | 920  | 80   | 160  | 120  | 200  | 440  | 1520 | 2440 | 1600 | 1000 |
| 504  | IVP   |     | 120  | 0   | 1280 | 400  | 560  | NS   | 0    | 0    | 1040 | 440  | 400  | 360  |
| 591  | IVP   |     | 120  | 0   | 2360 | 640  | 1120 | 0    | 680  | 1160 | 2160 | 1240 | 960  | 440  |
| 638  | IVP   |     | 920  | 40  | 640  | 480  | 280  | 320  | 520  | 1520 | 1640 | 2400 | 720  | 240  |
| 643  | IVP   |     | 40   | 40  | 1040 | 160  | 80   | 80   | 80   | 80   | 440  | 1280 | 680  | 360  |
| 716  | IVP   |     | 360  | 80  | 1480 | 960  | 1320 | 1680 | 760  | 160  | 920  | 840  | 1040 | 1720 |
| 749  | IVP   |     | 400  | 40  | 2120 | 600  | 640  | 880  | 520  | 200  | 440  | 320  | 560  | 360  |

| Group | Day | Treatment | Haem. | Trich. | Ost. | Coop. | Oes. | Total |
|-------|-----|-----------|-------|--------|------|-------|------|-------|
| 1     | 0   | Control   | 72%   | 19%    | 7%   |       | 2%   | 100%  |
| 2     |     | IVP       | 92%   | 4%     | 4%   |       |      | 100%  |
| 1     | 28  | 1 & 2     | 98%   |        | 2%   |       |      | 100%  |
| 2     |     | 102       | 50/0  |        | 270  |       |      | 100/0 |
| 1     | 91  | Control   | 91%   | 4%     | 5%   |       |      | 100%  |
| 2     |     | IVP       | 83%   | 7%     | 10%  |       |      | 100%  |
| 1     | 105 | Control   | 96%   | 1%     | 3%   |       |      | 100%  |
| 2     |     | IVP       | 71%   | 15%    | 14%  |       |      | 100%  |
| 1     | 119 | Control   | 94%   | 2%     | 4%   |       |      | 100%  |
| 2     |     | IVP       | 94%   | 3%     | 3%   |       |      | 100%  |
| 1     | 133 | Control   | 93%   | 2%     | 5%   |       |      | 100%  |
| 2     |     | IVP       | 88%   | 4%     | 7%   |       | 1%   | 100%  |
| 1     | 147 | Control   | 88%   | 3%     | 9%   |       |      | 100%  |
| 2     |     | IVP       | 87%   | 11%    | 2%   |       |      | 100%  |
| 1     | 161 | Control   | 94%   | 2%     | 4%   |       |      | 100%  |
| 2     |     | IVP       | 80%   | 12%    | 7%   |       | 1%   | 100%  |

## Table A3. Coproculture data: Percent of each nematode genus identified

| 1 | 175 | Control | 98%  |     | 2%  |    | 100% |
|---|-----|---------|------|-----|-----|----|------|
| 2 |     | IVP     | 74%  | 15% | 11% |    | 100% |
| 1 | 189 | Control | 99%  |     |     | 1% | 100% |
| 2 |     | IVP     | 94%  | 3%  | 3%  |    | 100% |
| 1 | 204 | Control | 100% |     |     |    | 100% |
| 2 |     | IVP     | 89%  | 7%  | 3%  | 1% | 100% |
| 1 | 217 | Control | 100% |     |     |    | 100% |
| 2 |     | IVP     | 62%  | 26% | 12% |    | 100% |

#### Table A4. ELISA titres

## Days after V1

| Group | Ewe # | Lamb | 0   | 28   | 91   | 105   | 119   | 133   | 147   | 161   | 175  | 189  | 204   | 217   | 231   |
|-------|-------|------|-----|------|------|-------|-------|-------|-------|-------|------|------|-------|-------|-------|
| V     | 107   | no   | 18  | 173  | 599  | 7147  | 5576  | 5164  | 4136  | 3459  | 2825 | 2633 | 7064  | 5447  | 5105  |
| V     | 199   | no   | 8   | 554  | 2316 | 54205 | 22337 | 13756 | 14501 | 13670 | 9037 | 8373 | 68867 | 36884 | 21183 |
| V     | 270   | no   | 8   | 7    | 165  | 2600  | 1325  | 576   | 3120  | 2426  | 1532 | 1965 | 4180  | 3209  | 2811  |
| V     | 279   | no   | 0   | 1368 | 947  | 3747  | 2113  | 1187  | 3098  | 3376  | 1495 | 1759 | 4984  | 3966  | 2987  |
| V     | 294   | no   | 2   | 34   | 43   | 5089  | 4506  | 3009  | 5215  | 4327  | 2802 | 3018 | 11300 | 7258  | 5877  |
| V     | 405   | no   | 0   | 587  | 2318 | 7267  | 4914  | 3641  | 6883  | 6469  | 5276 | 4869 | 8306  | 6227  | 5815  |
| V     | 417   | no   | 280 | 76   | 699  | 6880  | 5248  | 3796  | 7185  | 6526  | 5509 | 5161 | 9739  | 8611  | 6359  |
| V     | 769   | no   | 38  | 1056 | 1506 | 2883  | 2034  | 1670  | 7962  | 5699  | 4787 | 4417 | 9690  | 6367  | 5127  |
| V     | 32    |      | 0   | 156  | 207  | 6028  | 3129  | 1851  | 1629  | 1418  | 932  | 1055 | 6528  | 4623  | 4920  |
| V     | 78    |      | 4   | 73   | 289  | 5739  | 4649  | 3730  | 5954  | 4489  | 3668 | 4128 | 13571 | 6871  | 6300  |
| V     | 102   |      | 21  | 387  | 1662 | 7979  | 5202  | 4084  | 6628  | 5909  | 3743 | 4093 | 10310 | 6514  | 5954  |
| V     | 143   |      | 94  | 1238 | 1706 | 9694  | 5594  | 4296  | 11718 | 8053  | 5650 | 4711 | 12213 | 9756  | 7533  |
| V     | 178   |      | 7   | 2567 | 132  | 5139  | 3109  | 1348  | 7987  | 5398  | 2836 | 2603 | 9866  | 6397  | 4938  |
| V     | 205   |      | 141 | 1530 | 1181 | 8607  | 4412  | 2562  | 5104  | 4046  | 2727 | 2436 | 8114  | 5764  | 4325  |

| Group | Ewe # | Lamb | 0   | 28   | 91   | 105   | 119   | 133  | 147   | 161   | 175   | 189  | 204   | 217   | 231   |
|-------|-------|------|-----|------|------|-------|-------|------|-------|-------|-------|------|-------|-------|-------|
| V     | 209   |      | 1   | 42   | 918  | 5979  | 3940  | 2222 | 1830  | 1283  | 947   | 1497 | 5429  | 3242  | 3127  |
| V     | 218   |      | 2   | 157  | 27   | 7375  | 4558  | 2492 | 3475  | 2967  | 1762  | 1879 | 4944  | 3376  | 2436  |
| V     | 241   |      | 187 | 654  | 954  | 6817  | 5323  | 3714 | 9316  | 7555  | 6014  | 5405 | 11546 | 7858  | 7189  |
| V     | 261   |      | 20  | 1956 | 2104 | 28260 | 14401 | 9038 | 25134 | 51901 | 10738 | 9265 | 19939 | 13610 | 10991 |
| V     | 300   |      | 17  | 71   | 234  | 5233  | 4558  | 1219 | 4970  | 4212  | 2147  | 1808 | 4271  | 3544  | 2427  |
| V     | 327   |      | 61  | 624  | 1266 | 6019  | 4389  | 3460 | 6695  | 6081  | 5484  | 5547 | 16668 | 12435 | 7383  |
| V     | 365   |      | 5   | 2195 | 219  | 4498  | 2732  | 1063 | 480   | 733   | 731   | 1101 | 5257  | 3264  | 2583  |
| V     | 380   |      | 389 | 29   | 251  | 449   | 468   | 311  | 3072  | 2305  | 1356  | 1671 | 4901  | 3830  | 2891  |
| V     | 427   |      | 48  | 3481 | 1593 | 21752 | 11795 | 7209 | 34030 | 22271 | 9618  | 7652 | 74681 | 28825 | 13303 |
| V     | 447   |      | 97  | 690  | 1092 | 8617  | 5556  | 3639 | 8965  | 5567  | 4383  | 4636 | 10286 | 8118  | 6418  |
| V     | 504   |      | 32  | 40   | 477  | 5273  | 3840  | 2308 | 8279  | 5123  | 3958  | 3334 | 7836  | 6818  | 5355  |
| V     | 591   |      | 0   | 645  | 1169 | 8680  | 4966  | 3390 | 4480  | 3593  | 2727  | 3057 | 7820  | 6494  | 4871  |
| V     | 638   |      | 84  | 0    | 1    | 7350  | 5100  | 3287 | 2907  | 2307  | 1798  | 2310 | 7562  | 6210  | 5029  |
| V     | 643   |      | 5   | 592  | 1250 | 8123  | 5917  | 4401 | 9261  | 5488  | 4664  | 4430 | 8747  | 6503  | 6183  |
| V     | 716   |      |     | 43   | 538  | 1646  | 1099  | 880  | 8374  | 6142  | 4527  | 5452 | 6369  | 5194  | 4402  |
| V     | 749   |      |     | 927  | 306  | 670   | 805   | 828  | 15987 | 8813  | 4613  | 5878 | 20635 | 13693 | 31277 |
| С     | 356   | no   | 292 |      |      |       |       | 237  |       |       |       |      |       |       | 373   |

| Group | Ewe # | Lamb | 0   | 28 | 91 | 105 | 119 | 133 | 147 | 161 | 175 | 189 | 204 | 217 | 231 |
|-------|-------|------|-----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| С     | 363   | no   | 78  |    |    |     |     | 108 |     |     |     |     |     |     | 97  |
| С     | 510   | no   | 0   |    |    |     |     | 0   |     |     |     |     |     |     | 0   |
| С     | 521   | no   | 20  |    |    |     |     | 54  |     |     |     |     |     |     | 88  |
| С     | 741   | no   | 1   |    |    |     |     | 0   |     |     |     |     |     |     | 1   |
| С     | 1     |      | 121 |    |    |     |     | 64  |     |     |     |     |     |     | 321 |
| С     | 2     |      | 0   |    |    |     |     | 6   |     |     |     |     |     |     | 2   |
| С     | 43    |      | 0   |    |    |     |     | 1   |     |     |     |     |     |     | 0   |
| С     | 98    |      | 95  |    |    |     |     | 78  |     |     |     |     |     |     | 283 |
| С     | 123   |      | 11  |    |    |     |     | 162 |     |     |     |     |     |     | 151 |
| С     | 145   |      | 65  |    |    |     |     | 24  |     |     |     |     |     |     | 147 |
| С     | 161   |      | 7   |    |    |     |     | 2   |     |     |     |     |     |     | 22  |
| С     | 311   |      | 289 |    |    |     |     | 133 |     |     |     |     |     |     | 82  |
| С     | 326   |      | 8   |    |    |     |     | 20  |     |     |     |     |     |     | 10  |
| С     | 329   |      | 38  |    |    |     |     | 34  |     |     |     |     |     |     | 28  |
| С     | 333   |      | 6   |    |    |     |     | 15  |     |     |     |     |     |     |     |
| С     | 348   |      | 50  |    |    |     |     | 33  |     |     |     |     |     |     | 133 |
| C     | 375   |      | 23  |    |    |     |     | 21  |     |     |     |     |     |     | 80  |

| Group | Ewe # | Lamb | 0    | 28 | 91 | 105 | 119 | 133 | 147 | 161 | 175 | 189 | 204 | 217 | 231 |
|-------|-------|------|------|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| С     | 388   |      | 64   |    |    |     |     | 31  |     |     |     |     |     |     | 0   |
| С     | 420   |      | 18   |    |    |     |     | 18  |     |     |     |     |     |     | 82  |
| С     | 443   |      | 48   |    |    |     |     | 31  |     |     |     |     |     |     | 125 |
| С     | 508   |      | 1    |    |    |     |     | 0   |     |     |     |     |     |     | 15  |
| С     | 514   |      | 2    |    |    |     |     | 2   |     |     |     |     |     |     | 5   |
| С     | 524   |      | 0    |    |    |     |     | 0   |     |     |     |     |     |     | 0   |
| С     | 658   |      | 48   |    |    |     |     | 24  |     |     |     |     |     |     | 43  |
| С     | 662   |      | 14   |    |    |     |     | 21  |     |     |     |     |     |     | 41  |
| С     | 669   |      | 552  |    |    |     |     | 344 |     |     |     |     |     |     | 418 |
| С     | 671   |      | 2130 |    |    |     |     | 410 |     |     |     |     |     |     | 409 |
| С     | 830   |      | 45   |    |    |     |     | 25  |     |     |     |     |     |     | 8   |
| С     | 846   |      | 31   |    |    |     |     | 20  |     |     |     |     |     |     | 10  |

| Table A5. | Blood Haemoglobin (g/100ml) |
|-----------|-----------------------------|
|-----------|-----------------------------|

| Group | Ewe# | Lamb  |      |      |      |      | Da   | ys after | V1   |     |     |      |      |
|-------|------|-------|------|------|------|------|------|----------|------|-----|-----|------|------|
| Group | LWC# | Lanto | 28   | 91   | 105  | 119  | 133  | 147      | 161  | 175 | 189 | 204  | 217  |
| С     | 356  | no    | 9.7  | 7.6  | 9.2  | 8.1  | 9.6  | 8.7      | 8.7  | 8.8 | 8.7 | 9.1  | 9.8  |
| С     | 363  | no    | 9.3  | 13.1 | 12.5 | 11.8 | 9.6  | 8.0      | 9.2  | 9.5 | 9.3 | 10.8 | 9.8  |
| С     | 510  | no    | 9.5  | 11.4 | 8.5  | 8.4  | 8.4  | 8.3      | 7.7  | 7.8 | 8.1 | 9    | 9.4  |
| С     | 741  | no    | 9.5  | 11.7 | 12.0 | 9.7  | 9.8  | 9.2      | 9.8  | 4.8 | 7.7 | 9.5  | 9.3  |
| С     | 1    |       | 9.5  | 11.2 | 12.0 | 9.7  | 9.0  | 8.6      | 6.9  | 7.6 | 7.4 | 8.7  | 8.4  |
| С     | 2    |       | 9.7  | 7.4  | 7.2  | 7.4  | 8.7  | 8.9      | 8.5  | 7.4 | 7   | 9.5  | 9    |
| С     | 43   |       | 10.2 | 11.9 | 9    | 10.4 | 10.5 | 10.4     | 10.0 | 9.0 | 9.2 | 10   | 9.8  |
| С     | 98   |       | 9.4  | 9.4  | 10.9 | 9.3  | 9.2  | 9.0      | 8.8  | 8.4 | 8.4 | 9.7  | 7.1  |
| С     | 123  |       | 9.6  | 11.7 | 8.4  | 9.2  | 9.7  | 11.6     | 9.4  | 9.0 | 9.2 | 9.9  | 10.2 |
| С     | 145  |       | 9.6  | 11.6 | 11.3 | 9.7  | 9.8  | 8.2      | 8.7  | 8.1 | 8.7 | 10   | 9.8  |
| С     | 161  |       | 8.9  | 11.0 | 7.7  | 9.2  | 9.1  | 10.4     | 8.8  | 8.1 | 8.2 | 8.8  | 9.5  |
| С     | 311  |       | 9.1  | 11.2 | 10.0 | 8.8  | 8.7  | 8.5      | 7.2  | 7.1 | 7.1 | 8.3  | 9.3  |
| С     | 326  |       | 7.8  | 9.0  | 8.6  | 8.1  | 8.2  | 7.5      | 7.5  | 6.5 | 8.3 | 8.6  | 9    |
| С     | 329  |       | 9.6  | 8.5  | 8.5  | 7.9  | 8.9  | 9.4      | 8.4  | 8.5 | 8.1 | 9.7  | 9.7  |
| С     | 333  |       | 10.0 | 9.1  | 9.5  | 8.1  | 9.4  | 8.5      | 7.3  | 6.6 | 7   | 9    | NS   |
| С     | 348  |       | 8.5  | 10.7 | 10.5 | 9.0  | 9.5  | 9.1      | 7.8  | 7.8 | 7.6 | 10   | 10.6 |
| С     | 375  |       | 9.1  | 10.1 | 8.1  | 9.6  | 8.9  | 9.4      | 8.8  | 8.1 | 8.4 | 9.7  | 9.9  |
| С     | 388  |       | 9.7  | 10.8 | 10.5 | 8.9  | 9.7  | 9.3      | 8.2  | 7.7 | 8.6 | 10.8 | NS   |
| С     | 420  |       | 8.9  | 12.7 | 8.8  | 9.8  | 10.3 | 9.3      | 8.9  | 8.1 | 7.7 | 9.6  | 9.9  |
| С     | 443  |       | 8.9  | 10.6 | 9.4  | 7.9  | 8.9  | 8.5      | 7.7  | 9.4 | 6.5 | 9    | 8.8  |
| С     | 508  |       | 9.0  | 11.5 | 8.6  | 10.0 | 9.8  | 9.5      | 9.4  | 9.7 | 9.9 | 9.8  | 10.4 |
| С     | 514  |       | 9.6  | 9.2  | 8.7  | 7.8  | 8.4  | 8.4      | 8.9  | 8.3 | 8.4 | 10.2 | 10.1 |
| С     | 521  |       | 7.7  | 9.2  | 7.8  | 8.1  | 8.3  | 8.0      | 6.7  | 6.9 | 6.6 | 7.9  | 8.6  |
| С     | 524  |       | 8.4  | 10.4 | 9.4  | 9.3  | 8.8  | 9.1      | 9.4  | 8.8 | 8.8 | 9.8  | 9.7  |

| Group | Ewe# | Lamb  | Days after V1 |      |      |      |      |      |      |      |      |      |      |
|-------|------|-------|---------------|------|------|------|------|------|------|------|------|------|------|
| Group | LWC# | Lanto | 28            | 91   | 105  | 119  | 133  | 147  | 161  | 175  | 189  | 204  | 217  |
| С     | 658  |       | 10.1          | 10.5 | 8.2  | 8.6  | 9.4  | 8.8  | 10.0 | 8.8  | 8.7  | 9.6  | 10.3 |
| С     | 662  |       | 9.8           | 11.7 | 11.1 | 10.4 | 9.5  | 9.2  | 8.8  | 8.4  | 7.6  | 9.4  | 9.2  |
| С     | 669  |       | 10.8          | 10.8 | 10.4 | 10.7 | 10.6 | 10.2 | 10.4 | 10.3 | 10.7 | 11.1 | 10.2 |
| С     | 671  |       | 9.5           | 10.9 | 7.7  | 9.4  | 8.5  | 8.5  | 8.5  | 8.1  | 8.1  | 8.9  | 8.7  |
| С     | 830  |       | 9.0           | 9.4  | 8.4  | 8.2  | 8.8  | 8.8  | 9.0  | 7.5  | 10   | 8.7  | 9.3  |
| С     | 846  |       | 9.2           | 10.7 | 10.2 | 9.0  | 9.0  | 8.0  | 7.6  | 7.3  | 7.6  | 9.4  | 10.2 |
| V     | 107  | no    | 9.6           | 10.2 | 10.4 | 10.2 | 10.6 | 9.3  | 9.8  | 9.6  | 10.7 | 10.9 | 10   |
| V     | 199  | no    | 8.9           | 6.9  | 10.3 | 7.1  | 9.8  | 9.6  | 9.3  | 7.0  | 7    | 8.3  | 8.5  |
| V     | 270  | no    | 9.8           | 10.6 | 10.1 | 9.7  | 9.7  | 9.8  | 10.1 | 9.9  | 9.1  | 9.3  | 8.6  |
| V     | 279  | no    | 9.1           | 9.9  | 9.3  | 9.5  | 9.6  | 9.5  | 10.4 | 9.8  | 10.9 | 10   | 10.6 |
| V     | 294  | no    | 9.1           | 9.2  | 9.5  | 8.9  | 9.3  | 9.1  | 9.0  | 8.5  | 8.8  | 9    | 8.2  |
| V     | 405  | no    | 9.0           | 9.0  | 8.9  | 8.9  | 9.7  | 9.7  | 9.1  | 9.2  | 9.2  | 8.7  | 9.6  |
| V     | 417  | no    | 9.1           | 10.0 | 9.6  | 9.4  | 9.5  | 8.7  | 9.8  | 9.4  | 9.2  | 9.9  | 9.1  |
| V     | 769  | no    | 8.3           | 8.1  | 8.2  | 7.7  | 8.5  | 8.7  | 8.6  | 8.8  | 8.4  | 8.4  | 8.9  |
| V     | 32   |       | 9.0           | 9.6  | 9.3  | 9.1  | 9.2  | 9.5  | 9.2  | 9.2  | 8.9  | 9.4  | 9.6  |
| V     | 78   |       | 10.0          | 11.0 | 8.7  | 10.2 | 10.4 | 9.5  | 10.4 | 8.9  | 9.8  | 9    | 9.6  |
| V     | 102  |       | 8.7           | 9.5  | 9.3  | 7.4  | 8.2  | 4.5  | 8.2  | 9.0  | 8.2  | 6.3  | 7.6  |
| V     | 143  |       | 10.2          | 10.7 | 10.2 | 10.0 | 10.2 | 9.8  | 9.9  | 9.7  | 10.2 | 10   | 6.7  |
| V     | 178  |       | 9.8           | 9.7  | 9.7  | 9.8  | 9.0  | 9.0  | 8.7  | 8.4  | 9.5  | 9.4  | 9.1  |
| V     | 205  |       | 9.9           | 10.0 | 9.1  | 10.2 | 9.2  | 9.0  | 9.9  | 9.3  | 9.7  | 9.3  | 9.2  |
| V     | 209  |       | 8.7           | 9.3  | 9.3  | 8.8  | 8.5  | 9.8  | 8.5  | 8.2  | 8.5  | 5.3  | 8.5  |
| V     | 218  |       | 8.9           | 11.7 | 11.7 | 10.3 | 10.0 | 10.8 | 10.1 | 10.3 | 9.2  | 10.1 | 9.3  |
| V     | 241  |       | 8.3           | 9.7  | 9.8  | 9.0  | 9.4  | 8.9  | 9.1  | 9.4  | 9.8  | 9.3  | 8.9  |
| V     | 261  |       | 9.9           | 10.6 | 7.9  | 8.8  | 10.0 | 9.6  | 9.9  | 10.0 | 9.8  | 10.3 | 9.9  |
| V     | 300  |       | 10.3          | 9.6  | 10.4 | 9.3  | 8.7  | 9.4  | 9.5  | 8.2  | 9.1  | 8.9  | 9.4  |
| V     | 327  |       | 9.1           | 10.3 | 10.0 | 9.7  | 8.5  | 10.2 | 9.7  | 9.6  | 9.7  | 9.6  | 8.8  |

| Group | Ewe# | Lamb |      |      |      |     | Da   | ys after | s after V1 |      |      |      |      |  |
|-------|------|------|------|------|------|-----|------|----------|------------|------|------|------|------|--|
|       |      |      | 28   | 91   | 105  | 119 | 133  | 147      | 161        | 175  | 189  | 204  | 217  |  |
| V     | 365  |      | 10.0 | 9.5  | 8.7  | 8.0 | 10.3 | 8.3      | 8.9        | 7.7  | 8    | 8.2  | 9.5  |  |
| V     | 380  |      | 10.3 | 9.4  | 8.1  | 8.2 | 9.0  | 9.2      | 9.1        | 7.7  | 7.4  | 7.5  | 9.8  |  |
| V     | 427  |      | 9.2  | 9.7  | 10.2 | 8.9 | 9.3  | 8.7      | 8.9        | 7.7  | 8.7  | 9.5  | 8.1  |  |
| V     | 447  |      | 10.5 | 10.0 | 8.7  | 9.5 | 10.8 | 10.9     | 9.4        | 8.6  | 9.1  | 9.7  | 9.1  |  |
| V     | 504  |      | 9.3  | 9.2  | 7    | 9.7 | 10.1 | 10.5     | 10.4       | 9.2  | 11.3 | 8.9  | 8.5  |  |
| V     | 591  |      | 8.8  | 8.7  | 7.6  | 8.1 | 8.0  | 8.3      | 9.3        | 9.2  | 10.6 | 9.3  | 8.5  |  |
| V     | 638  |      | 9.3  | 9.3  | 7.6  | 8.8 | 8.4  | 8.3      | 8.7        | 8.3  | 9.1  | 8.4  | 7.5  |  |
| V     | 643  |      | 9.0  | 10.9 | 9.5  | 9.5 | 9.3  | 10.4     | 10.7       | 10.2 | 11   | 11.3 | 9.7  |  |
| V     | 716  |      | 9.7  | 8.7  | 8.7  | 8.3 | 8.8  | 8.0      | 8.6        | 8.4  | 9.9  | 8.5  | 11.5 |  |
| V     | 749  |      | 10.0 | 9.3  | 8.7  | 7.5 | 9.9  | 9.5      | 10.4       | 8.4  | 8.5  | 9.3  | 9.6  |  |

# Table A6. Ewes bodyweight (kg)

Days after V1

| Group   | Ewe# | Lamb | 0    | 133  | 231  |
|---------|------|------|------|------|------|
| Control | 356  | no   | 35.5 | 40   | 46   |
| Control | 363  | no   | 34.5 | 47   | 52.5 |
| Control | 510  | no   | 33   | 37.5 | 45.5 |
| Control | 521  | no   | 35.5 | 38   | 42.5 |
| Control | 741  | no   | 38.5 | 44.5 | 48   |
| Control | 1    |      | 33.5 | 34   | 39   |
| Control | 2    |      | 35.5 | 42   | 48.5 |
| Control | 43   |      | 34   | 44.5 | 42   |
| Control | 98   |      | 33.5 | 39.5 | 47   |
| Control | 123  |      | 38.5 | 43.5 | 53   |
| Control | 145  |      | 31.5 | 36.5 | 42   |
| Control | 161  |      | 33.5 | 37.5 | 44.5 |
| Control | 311  |      | 38   | 41.5 | 48   |
| Control | 326  |      | 34   | 37   | 47.5 |
| Control | 329  |      | 33   | 39.5 | 46   |
| Control | 333  |      | 37   | 43   | -    |
| Control | 348  |      | 39   | 43.5 | 46.5 |
| Control | 375  |      | 35   | 38.5 | 44   |
| Control | 388  |      | 35.5 | 41.5 | -    |
| Control | 420  |      | 37   | 38.5 | 50.5 |
| Control | 443  |      | 34   | 39.5 | 46.5 |
| Control | 508  |      | 40   | 44.5 | 50   |
| Control | 514  |      | 33   | 38.5 | 46   |
| Control | 524  |      | 36.5 | 40.5 | 48   |
| Control | 643  |      | 35   | 43   | 52   |

|         |     | I  | <u> </u> | <br>Davs after V | 1    |
|---------|-----|----|----------|------------------|------|
| Vaccine | 241 |    | 39       | 46.5             | 53   |
| Vaccine | 218 |    | 36.5     | 42.5             | 53   |
| Vaccine | 209 |    | 37.5     | 41.5             | 48.5 |
| Vaccine | 205 |    | 38       | 40               | 44   |
| Vaccine | 178 |    | 39       | 44.5             | 49   |
| Vaccine | 143 |    | 42       | 43.5             | 50   |
| Vaccine | 102 |    | 38       | 39.5             | 47.5 |
| Vaccine | 78  |    | 33.5     | 39               | 44.5 |
| Vaccine | 32  |    | 33       | 37               | 45.5 |
| Vaccine | 769 | no | 35.5     | 42               | 47.5 |
| Vaccine | 417 | no | 36.5     | 47.5             | 53.5 |
| Vaccine | 405 | no | 38.5     | 44.5             | 52   |
| Vaccine | 294 | no | 30       | 40.5             | 44.5 |
| Vaccine | 279 | no | 34       | 41.5             | 48.5 |
| Vaccine | 270 | no | 34       | 41.5             | 47   |
| Vaccine | 199 | no | 35.5     | 45               | 51.5 |
| Vaccine | 107 | no | 34       | 47               | 52   |
| Control | 846 |    | 37.5     | 47.5             | 51.5 |
| Control | 830 |    | 36.5     | 44.5             | 49   |
| Control | 671 |    | 39       | 42               | 48.5 |
| Control | 669 |    | 36.5     | 43               | 45.5 |
| Control | 662 |    | 33       | 40.5             | 47   |

Days after V1

| Group   | Ewe# | Lamb | 0    | 133  | 231  |
|---------|------|------|------|------|------|
| Vaccine | 261  |      | 37   | 42.5 | 50.5 |
| Vaccine | 300  |      | 35   | 37   | 40.5 |
| Vaccine | 327  |      | 38.5 | 43.5 | 48.5 |
| Vaccine | 365  |      | 33   | 41.5 | 47.5 |

| r       |     |      |      | 1    |
|---------|-----|------|------|------|
| Vaccine | 380 | 36   | 43   | 47.5 |
| Vaccine | 427 | 34   | 38   | 45   |
| Vaccine | 447 | 36.5 | 39   | 45.5 |
| Vaccine | 504 | 37.5 | 41.5 | 46   |
| Vaccine | 591 | 34.5 | 38   | 43.5 |
| Vaccine | 638 | 33   | 38   | 46.5 |
| Vaccine | 638 | 38   | 40.5 | 48   |
| Vaccine | 716 | 32   | 38   | 44   |
| Vaccine | 749 | 33.5 | 40.5 | 48.5 |

# **VETERINARY HEALTH RESEARCH PTY LTD**



# **STUDY REPORT**

Study Title: A field study to evaluate the safety under field use conditions of an *Haemonchus* vaccine when administered subcutaneously post-weaning to ewes during times of high parasite challenge. New England district NSW, Australia.

Study No.: MIHO2937

Sponsor Study No.: N/A

Version No.: 3

Version Date: 24 March 2014

Author: T. Dale

| Sponsor: | Name:    | Julie Fitzpatrick                                                                  |
|----------|----------|------------------------------------------------------------------------------------|
|          |          | Moredun Group Director                                                             |
|          | Address: | Moredun Institute                                                                  |
|          |          | The Moredun Group<br>Pentlands Science Park<br>Bush Loan<br>Penicuik<br>Midlothian |
|          |          | Scotland, UK                                                                       |

# VETERINARY HEALTH RESEARCH PTY LTD



# STUDY REPORT

| Sponsor Monitor &<br>Representative: | Name:<br>Address:            | David Smith<br>The Moredun Group<br>Pentlands Science Park<br>Bush Loan<br>Penicuik<br>Midlothian<br>Scotland, UK |
|--------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Investigator:                        | Name:<br>Quals.:<br>Address: | Tim Dale<br>B. LISC<br>Veterinary Health Research Pty Ltd<br>Trevenna Road, Armidale, NSW 2350<br>Australia       |

### **TABLE OF CONTENTS**

PAGE

### **Study Investigator Compliance Statement**

#### **Quality Assurance Statement**

- 38. Objectives
- 39. Justification
- 40. Compliance
- 41. Test Site
- 42. Study Dates

### 43. Study Design

- **m.** Experimental Unit
- n. Animal Model
- **o.** Inclusion Criteria
- p. Exclusion and Removal Criteria
- **q.** Allocation
- r. Blinding

## 44. Investigational and Control Products

- m. Investigational Veterinary Product
- n. Source
- o. Storage
- p. Safety
- q. Assays
- r. Drug Disposal

## 45. Treatment

- g. Dose Calculation
- h. Dose Preparation

i. Method of Dose Administration

### 46. Schedule of Events

### 47. Test System

### 48. Animal Management

- k. Animal Welfare
- I. Health Management
- m. Housing
- n. Animal Disposal

### 49. Study Procedures

- i. Trial Log
- j. Informed Consent
- **k.** Weather Data

### 50. Assessment of Effects

- g. Body Weights
- **h.** Clinical Observations
- i. Clinical Examinations
- **j.** Body Temperatures

## 51. Statistical Analysis

### 52. Quality Assurance

## 53. Data Records

- r. Amendments & Deviations
- s. Notes to File
- t. Change of Study Personnel
- u. Raw Data
- $\boldsymbol{v}_{\scriptscriptstyle \bullet}$  Communication Log
- w. Permits
- **x.** Confidentiality

- y. Study Report
- 54. Results
- **55. Concluding Remarks / Conclusions** (*delete as appropriate*)
- 56. References

### Tables, Graphs and Data Listings

Table 1 – Treatment Regime

Table 2 – Schedule of Events

## Appendices

Appendix 1 – List of Abbreviations Appendix 2 – List of Standard Operating Procedures Appendix 3 – Weather Data Appendix 4 – Site map Appendix 5 – Trial Pak Appendix 6 – Bodyweight Statistical data Appendix 7 – Data logger Temperature

### 38.OBJECTIVE

A field study to evaluate the safety under field use conditions of an *Haemonchus* vaccine when administered subcutaneously post-weaning to ewes during times of high parasite challenge. Data from this study may be used to support product registration.

### 39.JUSTIFICATION

Commonly, the treatment of internal parasites in sheep has been via drenching with an anthelmintic compound to eradicate the parasites and with some compounds, kill the incoming larvae from the pasture. Parasite resistance too many of the commonly used anthelmintics is common in many parts of the world. The use of a vaccine to control these parasites would reduce dependence on anthelmintics, and hence be of great benefit to sheep producers, and for the welfare of the animal.

Initial field trials have shown that the vaccine in question is effective at reducing host anaemia and parasite egg output. This study aims to confirm the safety when breeding ewes are vaccinated according to both 'label directions' (single dose) and twice "label directions" (two doses) on each of two occasions.

### 40.COMPLIANCE

The study complied with the following national and international standards:

VICH GL9 Good Clinical Practice (issued June 2000)

APVMA Vet MORAG – Efficacy and target animal safety (Vol. 3, Part 8, 01 Apr 07)

## 41.<u>TEST SITE</u>

| Animal Phase:   | Laboratory Phase:                     |
|-----------------|---------------------------------------|
| Anonymous       | Veterinary Health Research P/L        |
| Uralla NSW 2358 | Colin Blumer Animal Health Laboratory |
| Australia       | Trevenna Road                         |
|                 | Armidale NSW 2350 Australia           |

### 42.STUDY DATES

Start date (animal phase): 17 Feb 14

Finish date (animal phase): 21 Mar 14

Finish date (laboratory phase): N/A

### 43.STUDY DESIGN

**m. Experimental Unit:** The experimental unit was the individual animal.

**n. Animal Model:** This study used second lambing Merino ewes due to their on-property retention for the full anticipated 12 month withhold period. Study ewes were grazed upon normal pre-weaning prepared paddocks with likely contamination by *Haemonchus contortus*.

**o. Inclusion Criteria:** Animals were selected for the study if they met the criteria outlined in section 10 below.

**p. Exclusion and Removal Criteria:** No animals were excluded or removed from the study.

**q. Allocation:** <u>Cohort 1 animals:</u> Seventy (70) second lambing Merino ewes postcrutching were randomly selected as they presented in the animal handling facility from a larger flock of approximately 600 animals. All 70 selected animals were individually identified (eartag), weighed, and ranked by bodyweight. The 70 animal's bodyweights were graphed and excessively heavy or light "outliers" (the 5 highest bodyweights and lightest 5 bodyweights) were removed from the allocation. The 10 excluded animals were reintegrated into Cohort 2. The remaining 60 animals were sequentially blocked into twenty (20) blocks, each of 3 animals. Group mean bodyweights at allocation were analysed for significant differences between groups using One-Way Analysis of Variance and a commercially available software package (Statistix 10.0, 2013) and can be found in Appendix #6.

<u>Cohort 2 animals:</u> Remaining animals were given either of two different coloured tags, orange or purple. Group 1 (270+) animals received an Orange tag and Group 2 (270) animals received a Purple tag.

r. Blinding: Not applicable

#### 44. INVESTIGATIONAL & CONTROL PRODUCTS

#### s. Investigational Veterinary Product:

| Name:        | BarberVax                                      | Batch No.:   | 09        |
|--------------|------------------------------------------------|--------------|-----------|
| Composition: | <i>Haemonchus</i> antigen and saponin adjuvant | Expiry Date: | 01 Apr 15 |
| Dose Level:  | 5ug antigen and 1mg saponin                    | WHP:         | 12 Months |

t. Source: WormVax Laboratory

Animal Health Laboratory

Dept of Agriculture and Food Western Australia

444 Albany Highway

Albany W.A. 6330

**u. Storage:** Refrigerated in the PM Room walk in refrigerator between 2 to 8°C (See Appendix 7 datalogger temperature).

v. Safety: A MSDS was not provided by the Sponsor (See Deviation #1).

w. Assays: A Certificate of Analysis was not provided for the IVP (See Deviation #1).

**x. Drug Disposal:** The balance of remaining vaccine was given to sheep grazier Jamie Swales.

### 45.<u>TREATMENT</u>

#### a. Dose Calculation:

<u>Cohort 1</u> Group 1 animals (20) were retained as untreated control animals

Group 2 animals (20) were vaccinated on each of two occasions 4 weeks apart with a single dose of IVP.

Group 3 animals (20) were vaccinated on each of two occasions 4 weeks apart with two doses of IVP.

<u>Cohort 2</u> Group 1 animals (270+) were vaccinated on each of two occasions 4 weeks apart with a single dose of IVP.

Group 2 animals (270) were vaccinated on each of two occasions 4 weeks apart with two doses of IVP.

- **b. Dose Preparation:** Dose volume was 1.0 mL IVP by one subcutaneous injection (single dose) or 2.0 mL by subcutaneous injection (double dose) given as two injections of 1.0 mL at two different sites a minimum of 5 cm apart.
- **c. Method of Dose Administration:** Study animals were dosed according to the treatment regime detailed in Table 1 below.

| Cohort | Grp. | IVP Details | Dose                    | Dose          | Route                    | Freq. | Trt.                | No.   |
|--------|------|-------------|-------------------------|---------------|--------------------------|-------|---------------------|-------|
|        |      |             | Level                   | Volume        |                          |       | Day(s)              | Anim. |
| 1      | 1    | Untreated   | -                       | -             | -                        | -     | -                   | 20    |
| 1      | 2    | BarberVax   | 1.0 mL<br>per<br>Animal | 1 x 1.0<br>mL | Subcut.<br>Right<br>neck | 2     | Days<br>0 and<br>28 | 20    |
| 1      | 3    | BarberVax   | 1.0 mL<br>per<br>Animal | 2 x 1.0<br>mL | Subcut.<br>Right<br>neck | 2     | Days<br>0 and<br>28 | 20    |
| 2      | 1    | BarberVax   | 1.0 mL<br>per<br>Animal | 1 x 1.0<br>mL | Subcut.<br>Right<br>neck | 2     | Days<br>0 and<br>28 | 270+  |
| 2      | 2    | BarberVax   | 1 mL per<br>Animal      | 2 x 1.0<br>mL | Subcut.<br>Right<br>neck | 2     | Days<br>0 and<br>28 | 270   |

# Table 1: Treatment Regime

All animals were treated using either a Simcro Vaccine Gun or NJ Phillips Vaccine Gun at a dose level of 1.0 mL subcutaneously, using an 18 gauge ½ inch vaccination needle. Study animals were observed immediately post treatment, no abnormalities were observed.

# 46.SCHEDULE OF EVENTS

# Table 2: Schedule of Events

| Study Day | Date | Event                                                                                                                                                                                                                          |
|-----------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pre-study | -    | Obtained Animal Ethics Committee approval. Confirmed suitable groups of sheep on selected commercial sheep farm.                                                                                                               |
| 17 Feb 14 | -1   | Weighed, tagged, monitored body temperatures and conducted clinical observations on 70 (Cohort 1) animals. Allocated animals into Groups as per protocol. No animal required a more detailed clinical examination.             |
| 18 Feb 14 | 0    | Recorded body temperature from all animals in Cohort 1.<br>Conducted clinical observations on Cohorts 1 and 2. No animal<br>required a more detailed clinical examination. Treated all<br>animals with IVP as per their group. |

| 19 Feb 14 | 1  | Recorded body temperature from all animals in Cohort 1.<br>Conducted clinical observations on Cohorts 1 and 2. No animal<br>required a clinical examination.                                                     |
|-----------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20 Feb 14 | 2  | Recorded body temperature from all animals in Cohort 1.<br>Conducted clinical observations on Cohorts 1 and 2. No animal<br>required a clinical examination.                                                     |
| 21 Feb 14 | 3  | Recorded body temperature from all animals in Cohort 1.<br>Conducted clinical observations on Cohorts 1 and 2. No animal<br>required a clinical examination.                                                     |
| 17 Mar 14 | 27 | Weighed and recorded body temperature on all animals in<br>Cohort 1, Groups 1, 2 and 3. Conducted clinical observations on<br>Cohorts 1 and 2. No animal required a more detailed clinical<br>examination.       |
| 18 Mar 14 | 28 | Recorded temperature from all animals in Cohort 1. Conducted clinical observations on Cohorts 1 and 2. No animal required a more detailed clinical examination. Treated all animals with IVP as per their group. |
| 19 Mar 14 | 29 | Recorded temperature from all animals in Cohort 1. Treated<br>Conducted clinical observations on Cohorts 1 and 2. No animal<br>required a more detailed clinical examination.                                    |
| 20 Mar 14 | 30 | Recorded temperature from all animals in Cohort 1. Treated<br>Conducted clinical observations on Cohorts 1 and 2. No animal<br>required a more detailed clinical examination.                                    |
| 21 Mar 14 | 31 | Weighed and recorded body temperature on all animals in<br>Cohort 1, Groups 1, 2 and 3. Conducted clinical observations on<br>Cohorts 1 and 2. No animal required a more detailed clinical<br>examination.       |

### 47.TEST SYSTEM

| Species: | Ovine                | Number:          | 600                        |
|----------|----------------------|------------------|----------------------------|
| Breed:   | Merino               | Source:          | Commercial sheep farm      |
| Weight:  | 39.5 – 51.5 kg (D.31 | Health & special | Healthy Animals            |
|          | bwt)                 | requirements:    |                            |
| Sex:     | Second lambing       |                  |                            |
|          | Merino ewes          |                  |                            |
| Age:     | 4 years              | Method of ID:    | Cohort 1: Unique ID tag    |
|          |                      |                  | Cohort 2: Coloured ear tag |

### 48.ANIMAL MANAGEMENT

**k. Animal Welfare:** Study animals were managed similarly and with due regard for their welfare. Animals were observed twice weekly for health problems according to AEC requirements. Animals were handled in compliance with UNE AEC no. AEC13-016 approved 01AUG13, and any applicable local regulations.

**I. Health Management:** No health problems or adverse events were observed during the study.

**m. Housing:** Routine management practices were followed. Study animals in Cohort 1, Groups 1, 2 and 3 were grazed as a discreet single group in paddocks of native and improved pasture. Cohort 2, Groups 1 and 2 were grazed as a discrete single group in paddocks of native and improved pasture (separate from Cohort 1).

**n. Animal Disposal:** Animals treated with the IVP will not enter the human food chain for 12 months past the last treatment with the IVP on Day 28. An "Animal Accountability" form was completed.

### 49. STUDY PROCEDURES

i. Trial Log: All scheduled and unscheduled events during the study were recorded

**j. Informed Consent:** An "Owner Consent and Agreement" form was signed by the Owner and the Investigator prior to administration of treatment.

**k. Weather Data:** Data from the nearest Bureau of Meteorology weather station for the study period are included in the raw data.

### 50.ASSESSMENT OF EFFECTS

**g. Body Weights:** Animals were weighed at intervals outlined in section 9 - Schedule of Events and individual animal weights were recorded. Animal weigh scales were checked pre- and post-weighing with calibrated test weights. Body weights and body weight change during the study were compared between groups to determine treatment effects, if any, and are detailed in the results section of the Study Report.

**h. Clinical observations:** All animals were observed in a group paddock setting on Days - 1, 0, 1, 2, 3 thence twice weekly to Day 26 thence Days 27, 28, 29, 30 and 31 according to VHR SOP FLD-409 and recorded on a "Clinical Observations Record".

**i. Clinical Examinations:** No clinical examination was conducted as no trial animal showed any signs and symptoms of abnormal behavior or ill effects towards the vaccine.

**j. Body Temperatures:** Body (rectal) temperatures were recorded at intervals outlined in section 9 - Schedule of Events. Rectal temperatures during the study were compared between groups to determine treatment effects, if any, and are detailed in the results section of the Study Report.)

### 51.<u>STATISTICAL ANALYSIS</u>

Data from body temperature and bodyweight was entered into a computer spreadsheet (Microsoft EXCEL); validated and group arithmetic means calculated using the spreadsheet.

One-Way Analysis of Variance, its equivalent non-parametric test and / or additional statistical analysis may be performed as appropriate by the Sponsor's professional statisticians.

### 52.QUALITY ASSURANCE

Veterinary Health Research has an independent Quality Assurance Unit which reviewed all aspects of quality assurance relating to this study. The Protocol, Study Report and raw data were subject to quality assurance inspection.

### 53. DATA RECORDS

### q. Amendments & Deviations:

Deviation #1: The sponsor did not provide an MSDS or Certificate of analysis of the IVP 'BarberVax', which was not deemed essential for pilot batches '09' of the vaccine. This deviation had no impact upon the outcome of the trial.

- r. Notes to File: There were no notes to file.
- s. Change of Study Personnel: There were no changes of personnel during the trial.

**t. Raw Data:** All original raw data pages have been identified with the study number, signed and dated by the person making the observation and by the person recording the information, and were paginated prior to appending to the final Study Report.

**u. Communication Log:** The Investigator maintained copies of all correspondence relating to the study. These will be archived with the final Study Report.

v. Permits: The study was covered by APVMA small trial permit no. PER 7250

**w. Confidentiality:** Confidentiality of the raw data, Study Report and results of the study, plus any information received from the Sponsor, will be maintained during and after the study. Publication of material will remain at the sole discretion of the Sponsor.

**x. Study Report:** The original signed Study Report with raw data will be submitted to the Sponsor. A copy of the Study Report, plus appendices, will be archived at Veterinary Health Research Pty Ltd, Trevenna Road, Armidale, NSW, Australia for a minimum of five years.

### 54.RESULTS

### a) Bodyweights

Group mean and standard error bodyweights are plotted in Fig 1 and individual values are presented in Table 3.

All three groups gained weight during the trial. Analysis of variance did not detect any differences between the groups except on day 31, when the group vaccinated with the double dose of Barbervax were significantly lighter than the controls (see Appendix 6 for detailed statistical output)

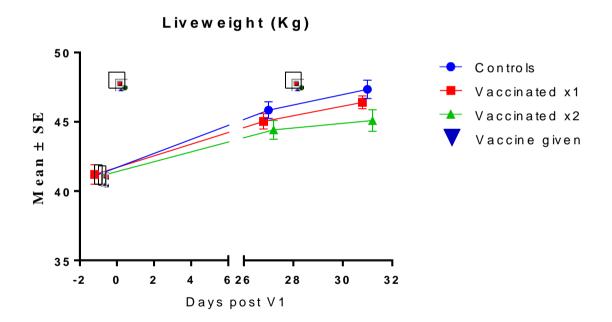



Fig 1. Group mean and standard error bodyweights.

Table 3. Individual, group mean and standard error bodyweights (kg) on the day before and 27 and 31 days after the sheep were first vaccinated.

|      |      | Group | 1    |      |         | Grou  | p 2  | Group 3 |      |      |      |
|------|------|-------|------|------|---------|-------|------|---------|------|------|------|
|      |      |       |      | 0    | Day aft | er V1 |      |         |      |      |      |
|      | -1   | 27    | 31   |      | -1      | 27    | 31   |         | -1   | 27   | 31   |
| Tag  |      |       |      | Tag  |         |       |      | Tag     |      |      |      |
| no   |      |       |      | no   |         |       |      | no      |      |      |      |
| 8331 | 41.0 | 48.0  | 50.5 | 8335 | 42.0    | 50.5  | 48.5 | 8332    | 38.0 | 42.5 | 44.5 |
| 8333 | 44.5 | 48.5  | 51.5 | 8337 | 41.5    | 45.5  | 45.0 | 8334    | 41.5 | 44.0 | 45.0 |
| 8338 | 39.0 | 42.0  | 43.5 | 8339 | 43.5    | 47.0  | 48.0 | 8336    | 40.5 | 43.5 | 45.5 |
| 8343 | 45.5 | 47.0  | 48.5 | 8340 | 35.5    | 43.5  | 46.0 | 8345    | 37.5 | 41.5 | 40.5 |
| 8347 | 37.5 | 43.5  | 46.5 | 8341 | 46.0    | 47.5  | 50.0 | 8346    | 40.0 | 41.5 | 40.5 |
| 8349 | 39.5 | 42.0  | 43.0 | 8342 | 38.0    | 42.0  | 44.0 | 8348    | 39.0 | 42.0 | 42.0 |
| 8350 | 41.5 | 48.5  | 51.0 | 8344 | 39.0    | 44.0  | 44.0 | 8351    | 42.5 | 44.0 | 47.0 |
| 8352 | 39.0 | 45.0  | 46.5 | 8360 | 36.5    | 41.5  | 44.0 | 8353    | 46.0 | 49.5 | 50.0 |
| 8356 | 38.0 | 48.5  | 45.0 | 8362 | 45.0    | 47.0  | 47.5 | 8358    | 41.5 | 42.5 | 43.5 |
| 8361 | 46.0 | 48.5  | 51.5 | 8363 | 39.5    | 43.5  | 43.5 | 8359    | 43.5 | 47.5 | 50.0 |
| 8365 | 42.0 | 47.0  | 49.0 | 8374 | 42.0    | 46.5  | 50.0 | 8366    | 43.0 | 43.0 | 47.0 |
| 8369 | 36.0 | 42.0  | 42.5 | 8378 | 45.5    | 47.5  | 46.5 | 8368    | 41.0 | 47.5 | 46.5 |
| 8371 | 42.5 | 47.5  | 48.5 | 8382 | 43.5    | 45.0  | 47.0 | 8370    | 36.0 | 43.5 | 42.5 |
| 8372 | 46.0 | 49.5  | 51.0 | 8386 | 40.5    | 43.0  | 44.5 | 8380    | 38.0 | 44.5 | 44.0 |
| 8373 | 44.0 | 46.0  | 47.0 | 8387 | 38.0    | 42.0  | 43.5 | 8381    | 46.0 | 46.0 | 45.0 |
| 8376 | 41.0 | 46.0  | 49.5 | 8389 | 43.0    | 46.0  | 47.5 | 8384    | 44.5 | 50.5 | 51.0 |
| 8377 | 42.0 | 47.5  | 47.5 | 8391 | 46.0    | 48.5  | 49.0 | 8392    | 39.5 | 41.5 | 41.0 |
| 8379 | 43.5 | 46.0  | 46.0 | 8395 | 40.0    | 44.0  | 45.5 | 8393    | 45.5 | 48.5 | 49.5 |
| 8390 | 39.5 | 43.5  | 45.5 | 8397 | 37.5    | 42.0  | 47.0 | 8394    | 42.5 | 46.0 | 47.5 |
| 8396 | 36.0 | 40.5  | 43.0 | 8398 | 41.5    | 44.0  | 47.0 | 8400    | 36.5 | 39.0 | 39.5 |

| Mean | 41.2  | 45.9  | 47.4 | 41.2  | 45.0 | 46.4 | 41.1  | 44.4 | 45.1 |
|------|-------|-------|------|-------|------|------|-------|------|------|
| SE   | 0.698 | 0.605 | 0.67 | 0.712 | 0.56 | 0.47 | 0.689 | 0.68 | 0.78 |

# b) Clinical observations:

The results are recorded in Table 4. No signs of abnormal behaviour were observed in any sheep during the trial.

# Table 4. Clinical observations after vaccination with Barbervax on Day 0 and 28

(NAD = no abnormality detected)

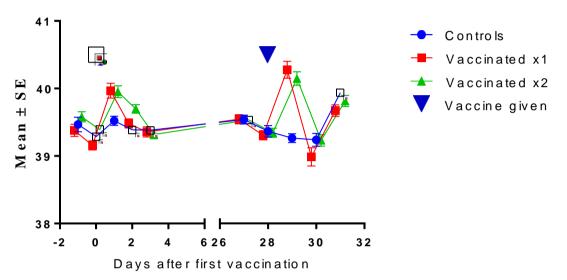
## Days after first vaccinated

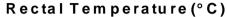
| Sheep | Group | -1  | 0   | 1   | 2   | 3   | 27  | 28  | 29  | 30  | 31  |
|-------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 8331  | 1     | NAD |
| 8333  | 1     | NAD |
| 8338  | 1     | NAD |
| 8343  | 1     | NAD |
| 8347  | 1     | NAD |
| 8349  | 1     | NAD |
| 8350  | 1     | NAD |
| 8352  | 1     | NAD |
| 8356  | 1     | NAD |
| 8361  | 1     | NAD |
| 8365  | 1     | NAD |
| 8369  | 1     | NAD |
| 8371  | 1     | NAD |
| 8372  | 1     | NAD |
| 8373  | 1     | NAD |
| 8376  | 1     | NAD |
| 8377  | 1     | NAD |

| 8379 | 1 | NAD |
|------|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 8390 | 1 | NAD |
| 8396 | 1 | NAD |
| 8335 | 2 | NAD |
| 8337 | 2 | NAD |
| 8339 | 2 | NAD |
| 8340 | 2 | NAD |
| 8341 | 2 | NAD |
| 8342 | 2 | NAD |
| 8344 | 2 | NAD |
| 8360 | 2 | NAD |
| 8362 | 2 | NAD |
| 8363 | 2 | NAD |
| 8374 | 2 | NAD |
| 8378 | 2 | NAD |
| 8382 | 2 | NAD |
| 8386 | 2 | NAD |
| 8387 | 2 | NAD |
| 8389 | 2 | NAD |
| 8391 | 2 | NAD |
| 8395 | 2 | NAD |
| 8397 | 2 | NAD |
| 8398 | 2 | NAD |
| 8332 | 3 | NAD |
| 8334 | 3 | NAD |
| 8336 | 3 | NAD |
| 8345 | 3 | NAD |
| 8346 | 3 | NAD |
|      |   |     |     |     |     |     |     |     |     |     |     |

| 8348 | 3 | NAD |
|------|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 8351 | 3 | NAD |
| 8353 | 3 | NAD |
| 8358 | 3 | NAD |
| 8359 | 3 | NAD |
| 8366 | 3 | NAD |
| 8368 | 3 | NAD |
| 8370 | 3 | NAD |
| 8380 | 3 | NAD |
| 8381 | 3 | NAD |
| 8384 | 3 | NAD |
| 8392 | 3 | NAD |
| 8393 | 3 | NAD |
| 8394 | 3 | NAD |
| 8400 | 3 | NAD |

A single animal from Cohort 2, Group 1 died on March 12 (Day 25 after V1) of suspected myiasis as there was extensive fly-strike damage over the animal


### c) Clinical Examinations:


None were made because no trial animal showed any signs and symptoms of abnormal behavior or ill effects towards the vaccine.

#### d) Body Temperatures:

Individual, group mean and standard error rectal temperatures are presented

in Table 5 and the last two of these parameters are plotted in Fig 2. (Note that for reasons of clarity the data plotted in Fig 2 has been slightly offset along the X-axis).





#### Fig 2. Group mean and standard error rectal temperatures.

Table 5.

Individual, group mean and standard error body temperatures

### Days after first vaccination

| Tag  | Group | -1   | 0    | 1    | 2    | 3    | 27   | 28   | 29   | 30   | 31   |
|------|-------|------|------|------|------|------|------|------|------|------|------|
| 8331 | 1     | 39.2 | 39.3 | 39.1 | 39.4 | 39.1 | 39.1 | 39.4 | 39.3 | 39.5 | 39.5 |
| 8333 | 1     | 39.1 | 39.3 | 38.9 | 39.1 | 39.3 | 39.3 | 39.8 | 39.4 | 39.4 | 40.2 |
| 8338 | 1     | 40.1 | 39.9 | 40.1 | 39.3 | 39.3 | 39.7 | 39.0 | 38.9 | 39.3 | 39.3 |
| 8343 | 1     | 39.5 | 39.6 | 39.5 | 39.3 | 39.3 | 39.6 | 39.9 | 39.4 | 38.6 | 39.9 |
| 8347 | 1     | 39.6 | 39.2 | 39.4 | 39.4 | 39.5 | 39.5 | 38.4 | 39.4 | 39.2 | 39.9 |
| 8349 | 1     | 39.3 | 39.3 | 39.7 | 39.5 | 39.6 | 39.8 | 39.4 | 39.3 | 39.4 | 39.9 |
| 8350 | 1     | 39.4 | 39.6 | 39.3 | 39.5 | 39.5 | 39.9 | 39.9 | 39.4 | 39.8 | 40.3 |
| 8352 | 1     | 39.6 | 39.0 | 39.5 | 39.0 | 39.4 | 39.9 | 39.5 | 39.1 | 39.1 | 40.2 |

Study no. MIHO2937

| 8356                                                                 | 1                                                        | 38.9                                                                                                                                                                 | 38.9                                                                                                                                                   | 39.4                                                                                                                                                                               | 39.2                                                                                                                                     | 39.5                                                                                                                                                   | 39.4                                                                                                                                                   | 39.5                                                                                                                                                   | 39.2                                                                                                                                                   | 39.3                                                                                                                                     | 39.9                                                                                                                                                   |
|----------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8361                                                                 | 1                                                        | 39.1                                                                                                                                                                 | 39.3                                                                                                                                                   | 39.6                                                                                                                                                                               | 39.2                                                                                                                                     | 39.6                                                                                                                                                   | 39.3                                                                                                                                                   | 39.5                                                                                                                                                   | 39.4                                                                                                                                                   | 38.3                                                                                                                                     | 40.3                                                                                                                                                   |
| 8365                                                                 | 1                                                        | 39.7                                                                                                                                                                 | 39.3                                                                                                                                                   | 39.5                                                                                                                                                                               | 39.3                                                                                                                                     | 39.1                                                                                                                                                   | 39.3                                                                                                                                                   | 38.6                                                                                                                                                   | 38.9                                                                                                                                                   | 39.1                                                                                                                                     | 39.7                                                                                                                                                   |
| 8369                                                                 | 1                                                        | 39.3                                                                                                                                                                 | 39.2                                                                                                                                                   | 39.6                                                                                                                                                                               | 39.6                                                                                                                                     | 39.2                                                                                                                                                   | 39.8                                                                                                                                                   | 39.6                                                                                                                                                   | 39.3                                                                                                                                                   | 39.1                                                                                                                                     | 40.0                                                                                                                                                   |
| 8371                                                                 | 1                                                        | 40.0                                                                                                                                                                 | 39.7                                                                                                                                                   | 39.5                                                                                                                                                                               | 39.4                                                                                                                                     | 39.5                                                                                                                                                   | 39.4                                                                                                                                                   | 39.1                                                                                                                                                   | 39.8                                                                                                                                                   | 40.1                                                                                                                                     | 40.3                                                                                                                                                   |
| 8372                                                                 | 1                                                        | 39.0                                                                                                                                                                 | 39.3                                                                                                                                                   | 39.4                                                                                                                                                                               | 39.2                                                                                                                                     | 39.2                                                                                                                                                   | 40.0                                                                                                                                                   | 39.6                                                                                                                                                   | 39.3                                                                                                                                                   | 39.2                                                                                                                                     | 39.9                                                                                                                                                   |
| 8373                                                                 | 1                                                        | 39.5                                                                                                                                                                 | 39.2                                                                                                                                                   | 39.7                                                                                                                                                                               | 39.7                                                                                                                                     | 39.9                                                                                                                                                   | 39.8                                                                                                                                                   | 39.6                                                                                                                                                   | 39.3                                                                                                                                                   | 39.3                                                                                                                                     | 40.0                                                                                                                                                   |
| 8376                                                                 | 1                                                        | 38.2                                                                                                                                                                 | 39.2                                                                                                                                                   | 39.6                                                                                                                                                                               | 39.3                                                                                                                                     | 39.2                                                                                                                                                   | 39.2                                                                                                                                                   | 39.2                                                                                                                                                   | 38.9                                                                                                                                                   | 38.4                                                                                                                                     | 39.7                                                                                                                                                   |
| 8377                                                                 | 1                                                        | 40.3                                                                                                                                                                 | 39.0                                                                                                                                                   | 39.3                                                                                                                                                                               | 39.7                                                                                                                                     | 39.7                                                                                                                                                   | 39.2                                                                                                                                                   | 39.6                                                                                                                                                   | 39.4                                                                                                                                                   | 39.8                                                                                                                                     | 39.8                                                                                                                                                   |
| 8379                                                                 | 1                                                        | 40.0                                                                                                                                                                 | 39.1                                                                                                                                                   | 40.2                                                                                                                                                                               | 39.8                                                                                                                                     | 39.1                                                                                                                                                   | 39.7                                                                                                                                                   | 39.1                                                                                                                                                   | 39.9                                                                                                                                                   | 39.3                                                                                                                                     | 40.0                                                                                                                                                   |
| 8390                                                                 | 1                                                        | 40.0                                                                                                                                                                 | 38.9                                                                                                                                                   | 39.2                                                                                                                                                                               | 39.4                                                                                                                                     | 39.3                                                                                                                                                   | 39.8                                                                                                                                                   | 39.2                                                                                                                                                   | 39.1                                                                                                                                                   | 39.3                                                                                                                                     | 40.0                                                                                                                                                   |
| 8396                                                                 | 1                                                        | 39.5                                                                                                                                                                 | 39.4                                                                                                                                                   | 39.9                                                                                                                                                                               | 39.4                                                                                                                                     | 39.3                                                                                                                                                   | 39.1                                                                                                                                                   | 39.4                                                                                                                                                   | 38.6                                                                                                                                                   | 39.3                                                                                                                                     | 39.9                                                                                                                                                   |
| Mean                                                                 |                                                          | 39.5                                                                                                                                                                 | 39.3                                                                                                                                                   | 39.5                                                                                                                                                                               | 39.4                                                                                                                                     | 39.4                                                                                                                                                   | 39.5                                                                                                                                                   | 39.4                                                                                                                                                   | 39.3                                                                                                                                                   | 39.2                                                                                                                                     | 39.9                                                                                                                                                   |
| SE                                                                   |                                                          | 0.1                                                                                                                                                                  | 0.1                                                                                                                                                    | 0.1                                                                                                                                                                                | 0.0                                                                                                                                      | 0.0                                                                                                                                                    | 0.1                                                                                                                                                    | 0.1                                                                                                                                                    | 0.1                                                                                                                                                    | 0.1                                                                                                                                      | 0.1                                                                                                                                                    |
|                                                                      |                                                          |                                                                                                                                                                      |                                                                                                                                                        |                                                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                        |                                                                                                                                                        |                                                                                                                                                        |                                                                                                                                                        |                                                                                                                                          |                                                                                                                                                        |
|                                                                      |                                                          | -1                                                                                                                                                                   | 0                                                                                                                                                      | 1                                                                                                                                                                                  | 2                                                                                                                                        | 3                                                                                                                                                      | 27                                                                                                                                                     | 28                                                                                                                                                     | 29                                                                                                                                                     | 30                                                                                                                                       | 31                                                                                                                                                     |
| 8335                                                                 | 2                                                        | <b>-1</b><br>39.2                                                                                                                                                    | <b>0</b><br>39.2                                                                                                                                       | <b>1</b><br>39.6                                                                                                                                                                   | <b>2</b><br>39.6                                                                                                                         | <b>3</b><br>39.0                                                                                                                                       | <b>27</b><br>39.2                                                                                                                                      | <b>28</b><br>39.7                                                                                                                                      | <b>29</b><br>41.0                                                                                                                                      | <b>30</b><br>39.6                                                                                                                        | <b>31</b><br>39.7                                                                                                                                      |
| 8335<br>8337                                                         | 2<br>2                                                   |                                                                                                                                                                      |                                                                                                                                                        |                                                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                        |                                                                                                                                                        |                                                                                                                                                        |                                                                                                                                                        |                                                                                                                                          |                                                                                                                                                        |
|                                                                      |                                                          | 39.2                                                                                                                                                                 | 39.2                                                                                                                                                   | 39.6                                                                                                                                                                               | 39.6                                                                                                                                     | 39.0                                                                                                                                                   | 39.2                                                                                                                                                   | 39.7                                                                                                                                                   | 41.0                                                                                                                                                   | 39.6                                                                                                                                     | 39.7                                                                                                                                                   |
| 8337                                                                 | 2                                                        | 39.2<br>39.6                                                                                                                                                         | 39.2<br>39.3                                                                                                                                           | 39.6<br>40.6                                                                                                                                                                       | 39.6<br>40.0                                                                                                                             | 39.0<br>39.7                                                                                                                                           | 39.2<br>39.2                                                                                                                                           | 39.7<br>39.7                                                                                                                                           | 41.0<br>40.9                                                                                                                                           | 39.6<br>39.8                                                                                                                             | 39.7<br>39.8                                                                                                                                           |
| 8337<br>8339                                                         | 2<br>2                                                   | 39.2<br>39.6<br>38.3                                                                                                                                                 | 39.2<br>39.3<br>39.8                                                                                                                                   | 39.6<br>40.6<br>40.4                                                                                                                                                               | 39.6<br>40.0<br>40.0                                                                                                                     | 39.0<br>39.7<br>39.7                                                                                                                                   | 39.2<br>39.2<br>39.8                                                                                                                                   | 39.7<br>39.7<br>39.2                                                                                                                                   | 41.0<br>40.9<br>40.7                                                                                                                                   | 39.6<br>39.8<br>39.8                                                                                                                     | 39.7<br>39.8<br>40.0                                                                                                                                   |
| 8337<br>8339<br>8340                                                 | 2<br>2<br>2                                              | 39.2<br>39.6<br>38.3<br>39.2                                                                                                                                         | 39.2<br>39.3<br>39.8<br>38.9                                                                                                                           | 39.6<br>40.6<br>40.4<br>39.6                                                                                                                                                       | 39.6<br>40.0<br>40.0<br>39.2                                                                                                             | 39.0<br>39.7<br>39.7<br>39.0                                                                                                                           | 39.2<br>39.2<br>39.8<br>39.5                                                                                                                           | 39.7<br>39.7<br>39.2<br>39.9                                                                                                                           | 41.0<br>40.9<br>40.7<br>40.4                                                                                                                           | 39.6<br>39.8<br>39.8<br>39.5                                                                                                             | 39.7<br>39.8<br>40.0<br>39.9                                                                                                                           |
| 8337<br>8339<br>8340<br>8341                                         | 2<br>2<br>2<br>2                                         | 39.2<br>39.6<br>38.3<br>39.2<br>39.0                                                                                                                                 | <ul> <li>39.2</li> <li>39.3</li> <li>39.8</li> <li>38.9</li> <li>38.8</li> </ul>                                                                       | 39.6<br>40.6<br>40.4<br>39.6<br>39.3                                                                                                                                               | <ul> <li>39.6</li> <li>40.0</li> <li>40.0</li> <li>39.2</li> <li>39.4</li> </ul>                                                         | 39.0<br>39.7<br>39.7<br>39.0<br>39.5                                                                                                                   | 39.2<br>39.2<br>39.8<br>39.5<br>39.6                                                                                                                   | 39.7<br>39.7<br>39.2<br>39.9<br>39.0                                                                                                                   | 41.0<br>40.9<br>40.7<br>40.4<br>40.3                                                                                                                   | 39.6<br>39.8<br>39.8<br>39.5<br>38.2                                                                                                     | 39.7<br>39.8<br>40.0<br>39.9<br>39.2                                                                                                                   |
| 8337<br>8339<br>8340<br>8341<br>8342                                 | 2<br>2<br>2<br>2<br>2                                    | <ul> <li>39.2</li> <li>39.6</li> <li>38.3</li> <li>39.2</li> <li>39.0</li> <li>39.5</li> </ul>                                                                       | <ul> <li>39.2</li> <li>39.3</li> <li>39.8</li> <li>38.9</li> <li>38.8</li> <li>39.1</li> </ul>                                                         | <ul> <li>39.6</li> <li>40.6</li> <li>40.4</li> <li>39.6</li> <li>39.3</li> <li>40.8</li> </ul>                                                                                     | <ul> <li>39.6</li> <li>40.0</li> <li>40.0</li> <li>39.2</li> <li>39.4</li> <li>39.1</li> </ul>                                           | <ul> <li>39.0</li> <li>39.7</li> <li>39.7</li> <li>39.0</li> <li>39.5</li> <li>40.0</li> </ul>                                                         | 39.2<br>39.2<br>39.8<br>39.5<br>39.6<br>39.7                                                                                                           | 39.7<br>39.7<br>39.2<br>39.9<br>39.0<br>39.3                                                                                                           | 41.0<br>40.9<br>40.7<br>40.4<br>40.3<br>40.9                                                                                                           | 39.6<br>39.8<br>39.8<br>39.5<br>38.2<br>39.5                                                                                             | 39.7<br>39.8<br>40.0<br>39.9<br>39.2<br>39.7                                                                                                           |
| 8337<br>8339<br>8340<br>8341<br>8342<br>8344                         | 2<br>2<br>2<br>2<br>2<br>2<br>2                          | <ul> <li>39.2</li> <li>39.6</li> <li>38.3</li> <li>39.2</li> <li>39.0</li> <li>39.5</li> <li>39.2</li> </ul>                                                         | <ul> <li>39.2</li> <li>39.3</li> <li>39.8</li> <li>38.9</li> <li>38.8</li> <li>39.1</li> <li>39.0</li> </ul>                                           | <ul> <li>39.6</li> <li>40.6</li> <li>40.4</li> <li>39.6</li> <li>39.3</li> <li>40.8</li> <li>39.6</li> </ul>                                                                       | <ul> <li>39.6</li> <li>40.0</li> <li>40.0</li> <li>39.2</li> <li>39.4</li> <li>39.1</li> <li>39.0</li> </ul>                             | <ul> <li>39.0</li> <li>39.7</li> <li>39.7</li> <li>39.0</li> <li>39.5</li> <li>40.0</li> <li>39.4</li> </ul>                                           | <ul> <li>39.2</li> <li>39.2</li> <li>39.8</li> <li>39.5</li> <li>39.6</li> <li>39.7</li> <li>39.6</li> </ul>                                           | <ul> <li>39.7</li> <li>39.7</li> <li>39.2</li> <li>39.9</li> <li>39.0</li> <li>39.3</li> <li>39.3</li> </ul>                                           | <ul> <li>41.0</li> <li>40.9</li> <li>40.7</li> <li>40.4</li> <li>40.3</li> <li>40.9</li> <li>40.1</li> </ul>                                           | <ul> <li>39.6</li> <li>39.8</li> <li>39.5</li> <li>38.2</li> <li>39.5</li> <li>38.6</li> </ul>                                           | <ul> <li>39.7</li> <li>39.8</li> <li>40.0</li> <li>39.9</li> <li>39.2</li> <li>39.7</li> <li>39.8</li> </ul>                                           |
| 8337<br>8339<br>8340<br>8341<br>8342<br>8344<br>8360                 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                     | <ul> <li>39.2</li> <li>39.6</li> <li>38.3</li> <li>39.2</li> <li>39.0</li> <li>39.5</li> <li>39.2</li> <li>39.1</li> </ul>                                           | <ul> <li>39.2</li> <li>39.3</li> <li>39.8</li> <li>38.9</li> <li>38.8</li> <li>39.1</li> <li>39.0</li> <li>39.2</li> </ul>                             | <ul> <li>39.6</li> <li>40.6</li> <li>40.4</li> <li>39.6</li> <li>39.3</li> <li>40.8</li> <li>39.6</li> <li>40.0</li> </ul>                                                         | <ul> <li>39.6</li> <li>40.0</li> <li>40.0</li> <li>39.2</li> <li>39.4</li> <li>39.1</li> <li>39.0</li> <li>39.4</li> </ul>               | <ul> <li>39.0</li> <li>39.7</li> <li>39.7</li> <li>39.0</li> <li>39.5</li> <li>40.0</li> <li>39.4</li> <li>39.1</li> </ul>                             | <ul> <li>39.2</li> <li>39.2</li> <li>39.8</li> <li>39.5</li> <li>39.6</li> <li>39.6</li> <li>39.8</li> </ul>                                           | <ul> <li>39.7</li> <li>39.7</li> <li>39.2</li> <li>39.9</li> <li>39.0</li> <li>39.3</li> <li>39.3</li> <li>39.6</li> </ul>                             | 41.0<br>40.9<br>40.7<br>40.4<br>40.3<br>40.9<br>40.1<br>40.3                                                                                           | <ul> <li>39.6</li> <li>39.8</li> <li>39.5</li> <li>38.2</li> <li>39.5</li> <li>38.6</li> <li>38.6</li> </ul>                             | <ul> <li>39.7</li> <li>39.8</li> <li>40.0</li> <li>39.9</li> <li>39.2</li> <li>39.7</li> <li>39.8</li> <li>39.9</li> </ul>                             |
| 8337<br>8339<br>8340<br>8341<br>8342<br>8344<br>8360<br>8362         | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2           | <ul> <li>39.2</li> <li>39.6</li> <li>38.3</li> <li>39.2</li> <li>39.0</li> <li>39.5</li> <li>39.1</li> <li>39.5</li> </ul>                                           | <ul> <li>39.2</li> <li>39.3</li> <li>39.8</li> <li>38.8</li> <li>39.1</li> <li>39.0</li> <li>39.2</li> <li>39.3</li> </ul>                             | 39.6<br>40.6<br>39.6<br>39.3<br>40.8<br>39.6<br>40.0<br>39.6                                                                                                                       | <ul> <li>39.6</li> <li>40.0</li> <li>40.0</li> <li>39.2</li> <li>39.4</li> <li>39.0</li> <li>39.4</li> <li>39.6</li> </ul>               | <ul> <li>39.0</li> <li>39.7</li> <li>39.7</li> <li>39.0</li> <li>39.5</li> <li>40.0</li> <li>39.4</li> <li>39.1</li> <li>39.2</li> </ul>               | <ul> <li>39.2</li> <li>39.2</li> <li>39.8</li> <li>39.5</li> <li>39.6</li> <li>39.7</li> <li>39.6</li> <li>39.8</li> <li>39.7</li> </ul>               | <ul> <li>39.7</li> <li>39.7</li> <li>39.2</li> <li>39.9</li> <li>39.0</li> <li>39.3</li> <li>39.6</li> <li>39.3</li> </ul>                             | <ul> <li>41.0</li> <li>40.9</li> <li>40.7</li> <li>40.4</li> <li>40.3</li> <li>40.9</li> <li>40.1</li> <li>40.3</li> <li>39.9</li> </ul>               | <ul> <li>39.6</li> <li>39.8</li> <li>39.5</li> <li>38.2</li> <li>39.5</li> <li>38.6</li> <li>38.6</li> <li>39.2</li> </ul>               | 39.7<br>39.8<br>40.0<br>39.9<br>39.2<br>39.7<br>39.8<br>39.9<br>38.6                                                                                   |
| 8337<br>8339<br>8340<br>8341<br>8342<br>8344<br>8360<br>8362<br>8363 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | <ul> <li>39.2</li> <li>39.6</li> <li>38.3</li> <li>39.2</li> <li>39.0</li> <li>39.5</li> <li>39.1</li> <li>39.5</li> <li>39.5</li> <li>39.5</li> <li>39.2</li> </ul> | <ul> <li>39.2</li> <li>39.3</li> <li>39.8</li> <li>38.9</li> <li>38.8</li> <li>39.1</li> <li>39.0</li> <li>39.2</li> <li>39.3</li> <li>39.2</li> </ul> | <ul> <li>39.6</li> <li>40.6</li> <li>40.4</li> <li>39.6</li> <li>39.3</li> <li>40.8</li> <li>39.6</li> <li>40.0</li> <li>39.6</li> <li>39.6</li> <li>39.6</li> <li>39.6</li> </ul> | <ul> <li>39.6</li> <li>40.0</li> <li>40.0</li> <li>39.2</li> <li>39.4</li> <li>39.0</li> <li>39.4</li> <li>39.6</li> <li>39.7</li> </ul> | <ul> <li>39.0</li> <li>39.7</li> <li>39.7</li> <li>39.0</li> <li>39.5</li> <li>40.0</li> <li>39.4</li> <li>39.1</li> <li>39.2</li> <li>39.1</li> </ul> | <ul> <li>39.2</li> <li>39.2</li> <li>39.8</li> <li>39.5</li> <li>39.6</li> <li>39.7</li> <li>39.6</li> <li>39.8</li> <li>39.7</li> <li>39.2</li> </ul> | <ul> <li>39.7</li> <li>39.7</li> <li>39.2</li> <li>39.9</li> <li>39.0</li> <li>39.3</li> <li>39.3</li> <li>39.6</li> <li>39.3</li> <li>39.4</li> </ul> | <ul> <li>41.0</li> <li>40.9</li> <li>40.7</li> <li>40.4</li> <li>40.3</li> <li>40.9</li> <li>40.1</li> <li>40.3</li> <li>39.9</li> <li>39.6</li> </ul> | <ul> <li>39.6</li> <li>39.8</li> <li>39.5</li> <li>38.2</li> <li>39.5</li> <li>38.6</li> <li>38.6</li> <li>39.2</li> <li>38.7</li> </ul> | <ul> <li>39.7</li> <li>39.8</li> <li>40.0</li> <li>39.9</li> <li>39.2</li> <li>39.7</li> <li>39.8</li> <li>39.9</li> <li>38.6</li> <li>39.5</li> </ul> |

Study no. MIHO2937

| 8386 | 2 | 39.4 | 39.4 | 39.5 | 39.8 | 39.5 | 40.0 | 39.5 | 40.1 | 39.2 | 39.9 |
|------|---|------|------|------|------|------|------|------|------|------|------|
| 8387 | 2 | 39.4 | 39.2 | 39.5 | 39.3 | 39.1 | 39.3 | 38.8 | 40.0 | 38.9 | 39.2 |
| 8389 | 2 | 39.6 | 39.2 | 40.2 | 39.5 | 39.7 | 39.1 | 39.2 | 40.8 | 39.4 | 39.5 |
| 8391 | 2 | 39.1 | 39.2 | 39.7 | 39.3 | 39.1 | 39.1 | 38.5 | 39.2 | 39.2 | 39.7 |
| 8395 | 2 | 39.5 | 39.2 | 39.8 | 38.9 | 39.2 | 39.9 | 39.2 | 40.0 | 38.9 | 39.6 |
| 8397 | 2 | 39.6 | 38.7 | 39.7 | 39.9 | 39.9 | 39.3 | 39.3 | 39.7 | 37.6 | 39.4 |
| 8398 | 2 | 40.0 | 39.1 | 40.3 | 39.4 | 39.4 | 39.8 | 39.3 | 40.7 | 39.0 | 39.5 |
| Mean |   | 39.4 | 39.2 | 40.0 | 39.5 | 39.4 | 39.5 | 39.3 | 40.3 | 39.0 | 39.7 |
| SE   |   | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  |
| 8332 | 3 | 39.5 | 39.1 | 40.4 | 39.4 | 39.4 | 39.1 | 39.3 | 41.0 | 39.0 | 39.3 |
| 8334 | 3 | 39.6 | 39.6 | 40.0 | 39.8 | 39.6 | 39.6 | 39.4 | 40.4 | 39.7 | 39.9 |
| 8336 | 3 | 39.7 | 39.4 | 40.8 | 39.6 | 39.4 | 39.4 | 39.7 | 40.5 | 39.1 | 39.7 |
| 8345 | 3 | 39.1 | 39.1 | 39.7 | 39.7 | 39.1 | 39.6 | 39.0 | 39.9 | 39.2 | 39.6 |
| 8346 | 3 | 39.6 | 39.5 | 40.0 | 39.6 | 39.4 | 39.3 | 39.4 | 40.7 | 39.7 | 39.8 |
| 8348 | 3 | 39.6 | 39.3 | 40.0 | 39.7 | 39.4 | 39.6 | 39.6 | 39.4 | 39.1 | 39.7 |
| 8351 | 3 | 39.6 | 39.3 | 39.3 | 39.7 | 39.6 | 39.4 | 39.5 | 39.8 | 38.5 | 40.2 |
| 8353 | 3 | 39.7 | 39.2 | 39.9 | 39.9 | 39.4 | 39.4 | 39.0 | 40.6 | 39.5 | 39.4 |
| 8358 | 3 | 39.6 | 39.8 | 39.7 | 39.8 | 39.4 | 39.7 | 39.8 | 40.0 | 39.2 | 39.9 |
| 8359 | 3 | 39.6 | 39.2 | 40.2 | 39.4 | 39.4 | 39.5 | 38.9 | 40.2 | 38.7 | 39.9 |
| 8366 | 3 | 40.1 | 39.5 | 40.1 | 40.1 | 39.5 | 39.2 | 39.3 | 40.2 | 39.1 | 39.8 |
| 8368 | 3 | 39.4 | 39.5 | 39.6 | 39.6 | 39.2 | 39.9 | 39.4 | 40.5 | 38.7 | 39.1 |
| 8370 | 3 | 38.8 | 39.4 | 40.6 | 39.4 | 38.8 | 39.8 | 39.3 | 40.5 | 39.6 | 40.0 |
| 8380 | 3 | 40.0 | 39.8 | 39.5 | 39.9 | 39.4 | 39.4 | 39.1 | 39.8 | 39.0 | 39.9 |
| 8381 | 3 | 38.8 | 39.2 | 39.5 | 39.9 | 38.9 | 39.6 | 39.0 | 40.2 | 39.7 | 40.5 |
| 8384 | 3 | 39.8 | 39.5 | 40.5 | 40.5 | 39.9 | 39.7 | 39.0 | 40.0 | 39.5 | 39.8 |
| 8392 | 3 | 39.8 | 39.4 | 39.6 | 39.5 | 39.3 | 40.0 | 40.1 | 39.4 | 39.3 | 40.5 |
| 8393 | 3 | 39.6 | 39.5 | 40.0 | 39.3 | 39.4 | 39.6 | 39.3 | 40.5 | 39.5 | 39.5 |

|      |   |      |      |      |      |      |      | Study not Philo2937 |      |      |      |  |
|------|---|------|------|------|------|------|------|---------------------|------|------|------|--|
| 8394 | 3 | 39.8 | 39.2 | 39.7 | 39.7 | 39.3 | 39.6 | 39.5                | 39.8 | 39.8 | 40.3 |  |
| 8400 | 3 | 39.9 | 39.3 | 39.9 | 39.4 | 38.6 | 39.3 | 39.3                | 39.5 | 38.7 | 39.5 |  |
| Mean |   | 39.6 | 39.4 | 40.0 | 39.7 | 39.3 | 39.5 | 39.3                | 40.1 | 39.2 | 39.8 |  |
| SE   |   | 0.1  | 0.0  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1                 | 0.1  | 0.1  | 0.1  |  |
|      |   |      |      |      |      |      |      |                     |      |      |      |  |

Study no. MIH02937

Rectal temperatures were significantly higher in both vaccinated groups compared to the controls one day after each vaccination (Fig 2, Table5 and Appendix 7 for ANOVA results).

## **CONCLUSIONS**

**STUDY REPORT** – Version 1 – 24 MAR 14

It was concluded that vaccination caused a temporary pyrexia a day later. On average this rise in body temperature was less than one degree Centigrade and lasted for only one day. The result was the same irrespective of whether one or two vaccinations had been administered and was insufficient to give rise to any detectable changes in behaviour.

Despite this, by four days after the second vaccination, the group vaccinated with the double dose of vaccine did not gain weight as fast as the other two groups. Possibly this was a consequence of reduced appetite and hence lower herbage intake associated with the temporary pyrexia detected two days earlier, but, if so it would be expected in both vaccinated groups, since a similar degree of pyrexia was recorded in each.

The overall conclusion was that the adverse signs associated with administration of Barbervax were mild and commercially acceptable. The data essentially confirmed that of the earlier, smaller scale trial in housed sheep (see Appendix 8-6.1) and broadly agreed with published descriptions of the side effects of other ruminant vaccines containing saponin (see Appendix 8.3).

# Appendix 6.5. Extensively raised lamb trial

#### Introduction.

A vaccine trial was conducted with extensively raised lambs on a property in the North West plains of NSW. Producers in this region would be reluctant to adopt the 5 vaccination schedule recommended for Barbervax in New England lambs because the effort and expense of mustering on their more extensively grazed properties would be prohibitive. Currently these farmers largely control Barbers Pole by giving a long acting drench, usually closantel or moxidectin, at weaning. However, properties with worms resistant to these drugs are becoming more common and so the possibility that control could be achieved by giving Barbervax at marking and weaning followed by subsequent boosts at 6 week intervals was investigated.

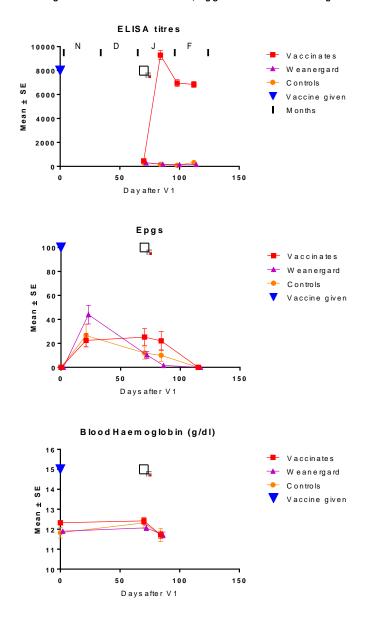
The trial was conducted by Dr F. Fishpool, who had recently completed a PhD on gastrointestinal nematodes in sheep. She was under the direction of S. Slattery and L. Guest, veterinarians based at the LHPA office at Narrabri.

#### Design of the trial

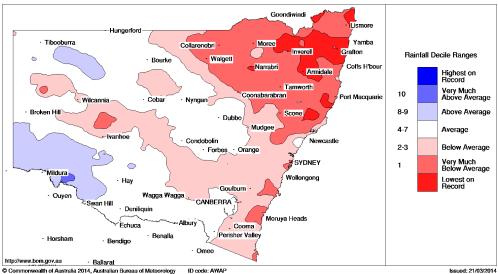
This trial was conducted on a private property some 20 kms west of Narrabri.

One hundred and twenty Merino lambs were randomly allocated to three groups treated as follows:- 1) vaccinated at marking and weaning, 2) given moxidectin (Weanergard) at weaning or 3) untreated controls. Fifty animals were assigned to each treatment group and 20 to the controls. All grazed the same paddock with their mothers.

Faeces were sampled at marking on 28 October when the lambs were 2 months old, then 3 weeks later, at weaning on January 6, and 14 and 45 days post weaning. Egg counts were made by Veterinary Health Research in Armidale. Blood samples for serology were collected at marking, weaning and 2 and 4 weeks later. The haemoglobin concentrations of the samples collected at marking, weaning and 2 weeks post weaning were also determined. The serology was done at the Moredun Research Institute using a standard ELISA which detected the antibody response to the vaccine antigens. Blood haemoglobin was measured on the farm using a Haemacue device.


#### Results

These are summarised in the graphs of Fig. 1. Mean egg counts in all three groups were always less than 50 eggs per g throughout the trial, with no obvious difference between the groups.


Blood haemoglobin concentrations remained at normal concentrations throughout the trial, no differences were detected between the groups.

Elisa titres were at baseline levels in all three groups until weaning and remained so in the moxidectin and control groups until the end of the trial. In contrast, antibody concentrations rose sharply two weeks after the vaccinates received their boost at weaning. Mean titres rose to about 9,000 before falling off to approximately 7,000 for the rest of the study.

Fig 1. Kinetics of antibodies, egg counts and haem og lobin







### Discussion

It was unfortunate that the exceptionally dry summer (see rainfall map below), resulted in insufficient natural *Haemonchus* challenge to determine directly whether the vaccine could have afforded any useful protection.

Nevertheless, it was useful to know that a boost of Barbervax given 10 weeks after a primary vaccination stimulated a response very similar to that obtained in earlier New England trials where the interval between the first two immunisations was only 3 or 4 weeks (Fig 2).

It seems highly likely that the response stimulated by the boost given at weaning would have been protective, because lambs on two New England properties possessed similar titres after their first or second boost and their egg counts were significantly reduced compared to unvaccinated controls (Fig 2).

#### Conclusion

The results were inconclusive, because natural challenge of the vaccine did not occur.