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Abstract 
 
The lamb Meat Standards Australia (MSA) grading system utilises no individual carcase 
measurements, apart from specifying minimum weight and fat thresholds, and therefore cannot 
differentiate eating quality between individual carcases.  There is a strong call from industry to 
transition the lamb MSA grading system to an individual carcase grading system; however, this is 
impeded by the lack of individual carcase measurement for traits that influence lamb eating quality.  
Through extensive eating quality research, two traits have been identified as key drivers of eating 
quality in lamb: intramuscular fat percentage and Warner-Bratzler shear force.  Technologies that can 
measure these two traits on-line at abattoir chain speed would enable the roll-out of an individual 
carcase grading system for lamb.  
 
This study explored a number of analytical and calibration methods that are likely suitable for the 
development of Multi-energy X-ray Absorptiometry (MEXA) technology.  It also highlighted the 
potential for MEXA to differentiate tissue components and predict complex multi-factorial traits such 
as shear force, as well as simpler traits such as intramuscular fat percentage, with good precision and 
accuracy.  The promising outcomes from this work must be weighed with some conservatism, as the 
scale of the study provided only limited opportunity for validation testing, and the precision upon 
validation was significantly eroded.  Nonetheless, these outcomes have highlighted the potential of 
this technology, and provided an opportunity to refine the analytical and calibration methods for 
future MEXA analysis.  This will be crucial given MLA’s investment in this technology. 
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Executive summary 

The rationale for undertaking this study 

This was an opportunistic study, undertaken while Spanish collaborators had access to the Multiscan 
Technologies Multi-energy X-ray Absorptiometry (MEXA) scanner.  It considered the feasibility of a 
range of analytical and calibration methods that are likely suitable for the development of MEXA 
technology.  This is crucial given MLA’s investment in MEXA technology.  We explored simple linear 
associations, partial least squares regression and, finally, extreme gradient boosting, with the latter 
suggesting some potential. 
 
This study was also a chance to investigate the potential for MEXA to differentiate tissue components 
and predict complex multi-factorial traits such as Warner-Bratzler shear force, as well as simpler traits 
such as intramuscular fat percentage (IMF).  Previous studies have already demonstrated that Dual-
Energy X-ray Absorptiometry (DEXA) can measure the proportion of fat in a carcase (Gardner et al., 
2018) based upon the ratio of attenuation of high and low energy x-rays passing through it.  
Fundamentally, this approach relies upon the physical principle of the ratio of the attenuation of high 
and low energy photons correlating with the atomic mass of the substance through which they pass 
(Pietrobelli et al., 1996).  Differing atoms have varying k-edge attenuation which can influence these 
ratio values.  On this basis, if multiple energies were detected as in MEXA (as opposed to only two 
energies as in DEXA), better differentiation of tissue types may be possible, particularly where multiple 
tissues may be involved, as is the case with shear force.  As such, we explored MEXA’s precision in 
differentiating tissue components and predicting both complex multi-factorial traits (i.e. shear force) 
and simpler traits (i.e. IMF). 

The experimental design and methodology  

Forty Merino-cross lambs were sourced from a commercial sheep flock located in Bordertown, South 
Australia.  Half were born in September/October 2016, the other half in May/June 2017.  All were 
slaughtered in October 2017 at a commercial abattoir as lambs (6 months old) and yearlings (12 
months old) respectively.  All lambs were maintained in the same paddock 3 weeks prior to slaughter 
on pasture with supplementary hay or pellet feeding when necessary.  After slaughter, 3 samples 5cm 
long were taken from the m.longissimus dorsi near to the 12/13th rib, aged for 5 days and then frozen.  
The first sample was used to determine shear force, the second to determine intramuscular fat 
percentage, and the third was used for MEXA scanning. 

Prior to MEXA scanning, samples were cut into two sections, creating sample ‘repetition a’ and sample 
‘repetition b’. All samples were scanned twice through the MEXA, effectively enabling a machine 
repetition comparison between ‘run 1’ and ‘run 2’.  The system acquired a spectroscopic image of the 
entire sample with each pixel containing an X-ray energy spectra of 128 channels.  Within each 
spectroscopic image, a region of interest within the longissimus dorsi muscle was selected 
corresponding to a uniform section of the sample, while also maximising the sample area.  Hence, the 
acquired information was a 3D matrix of variable pixel numbers x 128 channels.  

The data was then transformed using three different methods.  In the first method (referred to 
hereafter as calibration method ‘none’), the mean of the raw pixel values for each sample was 
calculated for each of the 128 channels, resulting in 128 values for each sample.  In the second method 
(referred to hereafter as calibration method ‘minus’), the 128 values for each image were corrected 
against the clear-field region of the image.  In the third method (referred to hereafter as calibration 
method ‘log’), the 128 values for each image were corrected against the clear-field region of the image 
and log transformed. 
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Following the unsuccessful use of Partial Least Squares Regression to predict shear force, an 
alternative (machine learning) approach was taken.  A predictive model was established using Extreme 
Gradient Boosting coupled with Bayesian optimisation, constructed using AutoStat® software.  A 5-
fold cross-validation procedure was used, with models trained in 4 groups and validated in the 5th, 
with this process repeated 5 times until models had been tested in each of the 5 groups.  Shear force 
and intramuscular fat percentage were predicted within each of the 4 datasets, for run 1, repetition a 
and b, and for run 2, repetition a and b.  Data from each calibration method (‘none’, ‘minus’, ‘log’) was 
analysed, and the average root mean square error of the prediction (RMSEP) across the 5 validation 
tests was recorded in each instance.  A general linear model within AutoStat® was then used to 
generate the coefficient of determination (R2), slope and bias of the relationship between actual 
versus predicted values for shear force and for intramuscular fat percentage. 

The achievements of this study 

This study demonstrated the potential of extreme gradient boosting as an analytical method suitable 
for exploring MEXA prediction of the commercially-relevant traits of shear force and intramuscular fat 
percentage, as evidenced by good precision within the trained models.  The consistency of the trained 
predictions for the repeat scan of the same samples, and the within-sample repetitions, provide some 
level of confidence that the predictions were repeatable.  This needs to be demonstrated upon 
validation to be confident that these results are not simply one-off random associations. 
 
MEXA’s capacity to predict both shear force and intramuscular fat percentage must be taken with 
cautious conservatism, as the models were imprecise and inaccurate upon validation.  There were 
significant limitations to the rigour of the validation testing due to the experimental design of this 
opportunistic study.  Nonetheless, these outcomes have highlighted the potential of this technology, 
and provided an opportunity to refine the analytical and calibration methods for future MEXA analysis. 

The industry benefits of this study 

MLA’s strategy is to pursue objective carcase measurement.  The findings from this study inform the 
numerous MLA projects that deploy x-ray technology for objective carcase measurement and the 
broader research being undertaken within the associated commercial companies, accelerating their 
commercial delivery.  In particular, technologies (potentially MEXA) that can measure Warner-Bratzler 
shear force and intramuscular fat percentage—key drivers of eating quality in lamb—on-line at 
abattoir chain speed would meet industry’s demand to transition from the existing pathways-based 
lamb MSA grading system to an individual carcase grading system. 
 
In the short-term, the commercial deployment of a MEXA imaging system is to couple it with a 
conveyor, allowing product to smoothly pass between x-ray tube and detector.  However, one of the 
limitations of the present methodology is the need to scan trimmed samples of muscle devoid of fat 
or bone tissue.  This is due to the 2-dimensional nature of the image captured, and the confounding 
of multiple tissue types within each pixel.  Commercial meat cuts consist of lean surrounded by layers 
of subcutaneous and intermuscular fat, and in some cases bone.  In a 2-dimensional image, this results 
in mixtures of tissue types within each pixel, in particular confounding intramuscular fat depots with 
subcutaneous and intermuscular fat.  We speculate that a machine learning approach may find 
relevant associations when analysing entire images that capture differentials between pixels; 
however, we suspect that this will be difficult to validate across datasets.  The alternative would be to 
progress to a computed tomography MEXA image, enabling identification of tissue regions within 3-
dimensions, and the isolation of key regions of interest (i.e. specific muscle groups).  These devices 
are becoming more common-place, both in medical scanning and commercial baggage scanning 
industries, and should continue to be explored. 
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1 Background 

Compared to other proteins, lamb meat is relatively expensive, hence consumer satisfaction is vital to 
underpin demand.  Eating quality is strongly linked to consumer satisfaction (Grunert, Bredahl & 
Brunsø, 2004; Henchion et al., 2014), thus traits that predict eating quality are vital (Pethick et al., 
2006).  In an effort to predict the eating quality of the end product for consumers, the MSA grading 
system was developed in 1998 for beef (Polkinghorne et al., 2008) and in 2005 for sheepmeat.  The 
beef system utilises a series of carcase measurements and other information about its on-farm and 
processing history to predict the eating quality of all commercially relevant cuts, enabling consumers 
to purchase beef based upon an expected eating quality (Polkinghorne et al., 2008).  By contrast, the 
lamb system utilises no individual carcase measurements, apart from specifying minimum weight and 
fat thresholds, and therefore cannot differentiate eating quality between individual carcases.  It is 
limited to simply identifying those that meet the minimum threshold for satisfactory consumer eating 
quality.  There is a strong call from industry to transition the lamb MSA grading system to an individual 
carcase grading system; however, this is impeded by the lack of individual carcase measurements for 
traits that influence lamb eating quality. 
 
Through extensive eating quality research, two traits have been identified as key drivers of eating 
quality in lamb.  The first is intramuscular fat percentage (IMF), which strongly influences juiciness, 
flavour, and—to a lesser extent—tenderness of the meat (Pannier et al., 2014a).  A 4.5% change in 
IMF could increase lamb juiciness, flavour and overall liking scores by as much as 11 points across a 
100 point scale (Pannier et al., 2018).  The second trait is Warner-Bratzler shear force, a measurement 
closely related to the tenderness of meat and reflective of a number of intrinsic muscle characteristics 
such as sarcomere length, connective tissue content and the cross-linked structure of the connective 
tissue.  In this case, a 37 Newton reduction in shear force was associated with an 11.6 unit increase in 
consumer tenderness scores for lamb meat (Pannier et al., 2014a).  On this basis, technologies that 
can measure either IMF or shear force on-line at abattoir chain speed would enable the roll-out of an 
individual carcase grading system for lamb, using IMF and shear force as the key differentiators of 
eating quality. 
 
One technology that may have the capacity to measure eating quality traits is Multi-Energy X-ray 
Absorptiometry (MEXA).  Previous studies have already demonstrated that Dual-Energy X-ray 
Absorptiometry (DEXA) can measure the proportion of fat in a carcase (Gardner et al., 2018) based 
upon the ratio of attenuation of high and low energy x-rays passing through it.  Fundamentally, this 
approach relies upon the physical principle of the ratio of the attenuation of high and low energy 
photons correlating with the atomic mass of the substance through which they pass (Pietrobelli et al., 
1996).  On this basis, x-ray attenuation ratio values should be able to determine the IMF content of 
dissected meat cuts where the subcutaneous fat has been removed.  Another tissue that may vary in 
structure and total content within meat is collagen, a connective tissue protein that strongly influences 
shear force and therefore consumer tenderness scores (Young & Braggins, 1993).  To date, no studies 
have explored the capacity to identify differing collagen levels using x-ray technologies. 
 
Differing atoms have varying k-edge attenuation which can influence these ratio values.  On this basis, 
if multiple energies were detected (as opposed to only two energies), better differentiation of tissue 
types may be possible, particularly where multiple tissues may be involved, as is the case with shear 
force.  As such, MEXA offers potential to differentiate tissue components and predict complex multi-
factorial traits such as shear force, or simpler traits such as IMF, with more precision. 
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2 Milestone description 

This report delivers on all three milestones described in the contract V.TEC.1712. This report also 
appends another report compiled with our Spanish collaborators, which details corresponding 
estimation of these traits using near infra-red (NIR) imaging. Although not required as part of this 
contract, we have decided to report this centrally to enable direct comparison of technologies. The 
milestones specific to this project include: 

2.1 Milestone 1  

1.1 – Report on processing of samples for MEXA imagery and collation of data with phenotypic 
information. 

2.2 Milestone 2  

2.1 – Undertake analyses to develop and validate predictive models for Warner-Bratzler shear force. 
2.2 – Undertake analyses to develop and validate predictive models for intramuscular fat percentage. 

2.3 Milestone 3  

3.1 – Assess the feasibility of MEXA for objectively measuring individual Australian lamb carcases. 
3.2 – Assess the accuracy of objective measurements at chain speed in Australian lambs. 
3.3 – Assess the suitability of MEXA for Meat Standards Australia objective measurements. 

3 Project objectives 

3.1 Objective 1 

Collate MEXA data with phenotypic information of twenty new season (4-6 month old) and twenty old 
season (10-12 month old) lamb carcases for analysis. 

3.2 Objective 2 

Analyse MEXA data and validate predictive models for Warner-Bratzler shear force and intramuscular 
fat percentage. 

3.3 Objective 3 

Assess feasibility and accuracy of MEXA operating at chain speed. 

4 Methodology 

4.1 Samples 

Forty Merino-cross lambs were sourced from a commercial sheep flock located in Bordertown, South 
Australia.  Half were born in September/October 2016, the other half in May/June 2017.  All were 
slaughtered in October 2017 at a commercial abattoir as lambs (6 months old) and yearlings (12 
months old) respectively.  All lambs were maintained in the same paddock 3 weeks prior to slaughter 
on pasture with supplemental hay or pellet feeding when necessary.  After slaughter, 3 samples 5cm 
long were taken from the m.longissimus dorsi near to the 12/13th rib, aged for 5 days and then frozen.  
The first sample was used to determine shear force, the second to determine intramuscular fat 
percentage, and the third was used for MEXA scanning. 
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4.2 MEXA scanning 

Prior to MEXA scanning, samples were cut into two sections, creating sample ‘repetition a’ and sample 
‘repetition b’.  All samples were scanned twice through the MEXA, effectively enabling a machine 
repetition comparison between ‘run 1’ and ‘run 2’. 

An industrial X-ray prototype system with a multi energy detector (MXV-PACK 4010, Multiscan 
Technologies, Cocentaina, Spain) was used to scan the samples.  The prototype had an X-ray 
spectrometric detector made of a semiconductor crystal (CDTe/CZT) with a pixel size of 0.8 mm. A belt 
conveyor transported the sample at a speed of 10 m/min.  Simultaneously, X-rays were emitted from 
below the samples using a tungsten X-ray tube that was pulsed at 140kV.  The resulting polychromatic 
array of photons was detected and transmitted radiation recorded across 128 channels, 
corresponding to energies from 20 to 160 keV.  Thus, the system acquired a spectroscopic image of 
the entire sample with each pixel containing an X-ray energy spectra of 128 channels.  

4.3 Spectral analysis 

Firstly, within each spectroscopic image, a region of interest within the longissimus dorsi muscle was 
selected corresponding to a uniform section of the sample, while also maximising the sample area. 
Hence, the acquired information was a 3D matrix of variable pixel numbers x 128 channels.  This data 
was then transformed using three different methods.  

In the first method (referred to hereafter as calibration method ‘none’), the mean of the raw pixel 
values for each sample was calculated for each of the 128 channels, resulting in 128 values for each 
sample.  

In the second method (referred to hereafter as calibration method ‘minus’), the 128 values for each 
image were corrected against the clear-field region of the image.  This was done by isolating the clear-
field region around each of the images and then calculating the average of these pixel values.  This 
process was undertaken for each of the 128 channels.  Thus, 128 separate clear-field values were 
calculated for each sample, with each clear-field value corresponding to the intensity of the incident 
radiation (Io) at each pixel for that channel. The clear-field value was then subtracted from each of the 
image pixel values according to the following formula: 

𝑆𝑎 =
 ∑ 𝐼𝑓

𝑎,𝑖− 𝐼𝑜
𝑎,𝑖  

𝑝
𝑖=

𝑝
        (Equation 1) 

where If is the intensity of the transmitted radiation through the sample and Io is the intensity of the 
incident radiation at each pixel i of the region of interest, which contains p pixels.  The calculation was 
done for each energy channel of the spectra a, which ranges from 1 to 128 and represents a given X-
ray energy.  According to Equation 1, an increase in the Sa value represents a decrease in the X-ray 
attenuation for channel a. 

In the third method (referred to hereafter as calibration method ‘log’), the 128 values for each image 
were corrected against the clear-field region of the image and log transformed.  The clear-field region 
of each image was isolated, and the 128 separate clear-field values were calculated using the method 
described above, with each clear-field value corresponding to the intensity of the incident radiation 
(Io) at each pixel for that channel.  The pixel values of the sample were then expressed as a ratio against 
the incident radiation and log transformed according to the following formula: 

𝑆𝑏 =
− ∑ ln(

𝐼𝑓
𝑏,𝑖

𝐼𝑜
𝑏,𝑖)

𝑝
𝑖=1

𝑝
        (Equation 2) 
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where If is the intensity of the transmitted radiation and Io is the intensity of the incident radiation at 
each pixel i of the region of interest, which contains p pixels.  The calculation was done for each energy 
channel of spectra b, which ranges from 1 to 128 and represents a given X-ray energy.  According to 
Equation 2, an increase in the Sb value represents an increase in the X-ray attenuation for channel b. 

4.4 Tenderness and intramuscular fat percentage measurement 

Approximately 65 g loin samples were used for shear force testing as described by Pannier et al. 
(2014a).  Initially, samples were vacuum packed and aged for 5 days, and then frozen at −20 °C until 
subsequent testing.  Frozen samples were cooked in plastic bags in a water bath for 35 minutes at 71 
°C, and were cooled in running water for 30 minutes after cooking.  Six cores (~3–4 cm long, 1 cm2 
cross sections) from each loin sample were cut and shear force was measured using a Lloyd texture 
analyser (Model LRX, Lloyd Instruments, Hampshire, UK) with a Warner–Bratzler shear blade fitted as 
described by Hopkins, Toohey, Warner, Kerr & van de Ven (2010). 
 
To determine IMF%, approximately 40 g of diced loin muscle was collected. Samples were stored at 
−20 °C until they were subsequently freeze-dried using a Cuddon FD 1015 freeze dryer (Cuddon Freeze 
Dry, NZ).  The IMF content was determined using a near infra-red procedure in a Technicon InfraAlyzer 
450 (19 wavelengths) (Perry, Shorthose, Ferguson & Thompson, 2001).  NIR readings were validated 
against chemical fat determinations using solvent extraction. IMF was expressed as percentage fat. 

4.5 Construction and cross-validation of predictive models 

4.5.1 Partial Least Squares Regression Analysis 

Calibration models were developed using Partial Least Squares Regression (PLSR) for shear force in 
lamb meat. Validations were made by a cross-validation (Venetian blinds) model.  The best 
combination of pre-treatments was selected based on the lowest error of prediction and the lowest 
number of PLS factors.  Partial Least Squares discriminant analysis (PLS-DA) was used as a linear 
classification method to predict the class (new or old).  When needed, interval variable selection was 
applied to discard variables which may be adding complexity to a model and improve performance of 
a final model.  This analysis method proved to be unsuccessful; however, as a point of reference, these 
results are still provided in the appended report submitted to the Spanish Institute of Food Research 
and Technology, the funding body supporting our Spanish collaborators. 

4.5.2 Extreme Gradient Boosting Analysis  

Following the unsuccessful use of PLSR to predict shear force, an alternative (machine learning) 
approach was taken.  A predictive model was established using Extreme Gradient Boosting coupled 
with Bayesian optimisation, constructed using AutoStat® software.  A 5-fold cross-validation 
procedure was used, with models trained in 4 groups and validated in the 5th, with this process 
repeated 5 times until models had been tested in each of the 5 groups. Shear force and intramuscular 
fat percentage were predicted within each of the 4 datasets, for run 1, repetition a and b, and for run 
2, repetition a and b. Data from each calibration method (‘none’, ‘minus’, ‘log’) was analysed, and the 
average root mean square error of the prediction (RMSEP) across the 5 validation tests was recorded 
in each instance.  The RMSEP represented the bounds within which 2/3 of the actual data lies from 
the predicted. 
 
A general linear model within AutoStat® was then used to generate the coefficient of determination 
(R2), slope and bias of the relationship between actual versus predicted values for shear force and for 
intramuscular fat percentage.  Bias represented the difference between the predicted and actual 
values calculated at the mean of the observations, while slope reflected that this bias may differ at 
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observations above or below the mean.  The RMSEP and R2 are reported as indicators of precision and 
the slope and bias are reported as indicators of accuracy. 

5 Results 

The descriptive statistics for all forty samples are shown in Table 1 below. 
 
Table 1. The descriptive statistics for intramuscular fat percentage (IMF), hot carcase weight (HCWT), fat depth measured at 
the C-site (Cfat), eye muscle area (EMA) and shear force as measured on day 5 (SF5). 

 IMF (%) HCWT (kg) Cfat (mm) EMA (cm2) SF5 (N) 

Mean 4.7005 22.3350 3.2338 13.8720 34.8649 

Standard Deviation 1.3232 2.1727 1.4765 2.7248 8.4468 

Minimum 3.0769 19.2000 0.5800 9.3870 24.6823 

Maximum 8.5317 31.9000 6.4200 21.2212 56.5589 

5.1 Shear force prediction 

The results for shear force prediction are shown in Table 2 plus Figures 1 and 2 below. Figure 1 
represents the “trained” prediction, while Figure 2 represents the “validated” prediction. 
 
Table 2. The root mean square error (RMSE), coefficient of determination (R2), root mean square error of prediction (RMSEP), 
slope and bias for each combination of run (1, 2), repetition (a, b), and calibration method (‘none’, ‘minus’, ‘log’) for 
prediction of shear force (N). 
 

Calibration Statistic Run 1 Rep a Run 1 Rep b Run 2 Rep a Run 2 Rep b Mean 

‘None’  Training performance 

RMSE 0.2113 0.2317 0.2313 0.2700 0.2361 

R2 0.9413 0.9295 0.9315 0.9043 0.9267 

 Validation performance 

RMSEP 0.9375 1.1003 1.0303 0.9688 1.0092 

R2 0.0057 0.0618 0.0100 0.0043 0.0205 

slope 0.0928 -0.3356 -0.1509 -0.0898 -0.1209 

bias 1.0487 -0.2253 -0.9961 -0.1791 -0.0880 

‘Minus’  Training performance 

RMSE 0.2682 0.3058 0.2050 0.2700 0.2623 

R2 0.9055 0.8772 0.9448 0.9043 0.9080 
 

Validation performance 

RMSEP 1.0214 0.9236 1.0759 1.0469 1.0170 

R2 0.0447 0.0011 0.0472 0.0178 0.0277 

slope -0.3060 0.0487 -0.2600 -0.1662 -0.1709  

bias -0.0954 -0.0963 1.1748 0.9556 0.4847 

‘Log’  Training performance 

RMSE 0.2441 0.2636 0.2502 0.2089 0.2417 

R2 0.9218 0.9088 0.9178 0.9427 0.9228 
 

Validation performance 

RMSEP 1.0250 0.9006 1.0122 0.9378 0.9689 

R2 0.0825 0.0046 0.0087 0.0024 0.0246 

slope -0.4228 0.1179 -0.1215 0.0704 -0.0890 

bias -0.3820 -0.1766 0.9038 0.0542 0.0999 
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(A) (B)  

(C) (D)  
Figure 1. “Trained” predicted versus actual shear force for calibration method ‘log’: (A) run 1, repetition a; (B) run 1, 
repetition b; (C) run 2, repetition a; (D) run 1, repetition b. Line represents the outcome of a perfect fit between predicted 
and actual values. 

 

(A) (B)  

(C) (D)  
Figure 2. “Validated” predicted versus actual shear force for calibration method ‘log’: (A) run 1, repetition a; (B) run 1, 
repetition b; (C) run 2, repetition a; (D) run 1, repetition b. Line represents the outcome of a perfect fit between predicted 
and actual values. 

 
Within the training analysis, the precision of predicting shear force was high across each of the ‘none’, 
‘minus’, and ‘log’ calibration methods, and consistent across runs and sample repetitions.  However, 
upon validation, this performance was markedly diminished, with the magnitude of the RMSEP, 
indicatively about 9.8070N across all tests, representing about 30% of the full 31.8766N range in shear 
force raw data. 
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Given the poor precision upon validation, the bias and slope estimates were highly variable across 
each of the ‘none’, ‘minus’, and ‘log’ calibration methods. 

5.2 Intramuscular fat percentage prediction 

The results for intramuscular far percentage prediction are shown in Table 3 plus Figures 3 and 4 
below. Figure 3 represents the “trained” prediction, while Figure 2 represents the “validated” 
prediction. 
 
Table 3. The root mean square error (RMSE), coefficient of determination (R2), root mean square error of prediction (RMSEP), 
slope and bias for each combination of run (1, 2), repetition (a, b), and calibration method (‘none’, ‘minus’, ‘log’) for 
prediction of intramuscular fat (%). 
 

Calibration Statistic Run 1 Rep a Run 1 Rep b Run 2 Rep a Run 2 Rep b Mean 

  Training performance 

‘None’ RMSE 0.1452 0.3171 0.1324 0.1801 0.1937 

R2 0.9883 0.9440 0.9904 0.9819 0.9762 

 Validation performance 

RMSEP 1.5006 1.4004 1.6140 1.5989 1.5285 

R2 0.0049 0.0205 0.0060 0.0302 0.0154 

slope 0.0994 0.2409 -0.1143 -0.2955 -0.0174 

bias 0.0725 0.1755 0.1884 0.1140 0.1376 

‘Minus’  Training performance 

RMSE 0.4516 0.2018 0.1917  0.3546 0.2817 

R2 0.8865 0.9773 0.9795 0.9300 0.9433 

 Validation performance 

RMSEP 1.5676 1.6046 1.5443 1.4851 1.5504 

R2 0.0475 0.0154 0.0083 0.0003 0.0179 

slope -0.4111 -0.1966 -0.1562 -0.0337 -0.1994 

bias 0.0539 0.1752 0.0904 -0.0532 0.0666 

‘Log’  Training performance 

RMSE 0.2496 0.2457 0.2354 0.2743 0.2513 

R2 0.9653 0.9664 0.9692 0.9581 0.9648 

 Validation performance 

RMSEP 1.6167 1.7386 1.5724 1.5489 1.6192 

R2 0.0908 0.0180 0.0015 0.0052 0.0289 

slope -0.5816 -0.1779 -0.0562 -0.1176 -0.2333 

bias 0.1653 0.3271 0.0737 0.2033 0.1924 
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(C) (D)  
Figure 3. “Trained” predicted versus actual intramuscular fat percentage for calibration method ‘log’: (A) run 1, repetition a; 
(B) run 1, repetition b; (C) run 2, repetition a; (D) run 1, repetition b. Line represents the outcome of a perfect fit between 
predicted and actual values. 

 

(A) (B)  

(C) (D)  
Figure 4. “Validated” predicted versus actual intramuscular fat percentage for calibration method ‘log’: (A) run 1, repetition 
a; (B) run 1, repetition b; (C) run 2, repetition a; (D) run 1, repetition b. Line represents the outcome of a perfect fit between 
predicted and actual values. 
 

Similar to the shear force results, the precision of predicting the percentage of intramuscular fat within 
the training analysis was high across each of the ‘none’, ‘minus’, and ‘log’ calibration methods, and 
consistent across runs and sample repetitions.  However, as was the case with shear force, the 
precision diminished upon validation, with the magnitude of the RMSEP, indicatively about 1.55% 
across all tests, representing about 28% of the full 5.45% unit range in IMF% data.  Furthermore, the 
R2 indicated very little predictive power of the validated models. 
 
This loss of precision resulted in relatively meaningless slope and bias estimates, which varied 
somewhat randomly between tests.  
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6 Discussion 

6.1 MEXA effectiveness in predicting SF5 and IMF% 

6.1.1 Adequate prediction, though interpret results conservatively 

This was an opportunistic study, undertaken while Spanish collaborators had access to the Multiscan 
Technologies MEXA scanner.  One of the key goals of this study was to explore a range of different 
approaches that can be utilised for analysing and interpreting MEXA images.  In this case, we have 
explored simple linear associations, partial least squares regression and, finally, extreme gradient 
boosting, with the latter suggesting some potential. 
 
This study has also shown that MEXA may have capacity to predict both shear force and intramuscular 
fat percentage, as indicated by the performance of trained models.  This likely indicates simple 
associations that are informing this prediction.  However, this statement must be taken with cautious 
conservatism, as the models were imprecise and inaccurate upon validation.  It is too early to conclude 
that this technology will not work, as there were significant limitations to the rigour of the validation 
testing.  Most importantly, the dataset was small and thus validation testing was undertaken on only 
8 animals per test—far from ideal for this type of modelling.  Another factor to consider is that there 
was minimal opportunity to validate across either diverse animal genotypes or environmental 
conditions that may affect the machine reading.  Although not genetically diverse, the lambs at least 
varied in age, which is likely responsible for some of the phenotypic divergence in SF5 and IMF% that 
the MEXA has been able to detect in the trained models.  Nonetheless, the actual phenotypic range 
for both SF5 and IMF% was relatively small compared to that seen in resource flock experimental 
datasets where IMF% ranged between 1.5% and 9.8% (Pannier et al., 2014b) and SF5 ranged between 
16.6N and 104.8N (Stewart, McGilchrist, Gardner & Pethick, 2018).  This limited range would also limit 
our ability to construct a robust model predicting these traits.  Lastly, our Spanish collaborators 
anecdotally noted that the amount of fluid exudate from each sample upon defrosting varied 
substantially.  While their technicians were careful to handle the samples in a uniform fashion, it is 
likely that this variable purge has impacted the MEXA readings adding considerable random variation.  
Given the quantitative nature of this technology, we expect that this would certainly have restricted 
the performance of our validation analysis. 
 
The physical principal behind the effectiveness of MEXA is similar to that of DEXA, in which the log of 
the ratio of attenuation for two different energy levels correlates with atomic mass.  Our log 
transformation method was an attempt to represent that correlation.  However, MEXA may be more 
effective than DEXA because each of the energy level contrasts will potentially enable classification of 
both the density and the Z-effective value of different substances across an atomic mass continuum.  
The Z-effective value, or the effective nuclear charge, is related to the shielding effect of an atom.  This 
property is linked to the balance between the pull of the protons on valence electrons and the 
repulsion forces from inner electrons.  A point to note is that it is likely that many of the 128 energy 
levels captured by the MEXA detector are superfluous.  While each additional energy level detected 
may enhance our ability to differentiate individual atomic components that contribute to the eating 
quality within meat.  However, we speculate that with the addition of several of these energy levels, 
most of the atomic components determining meat quality traits would be characterised. 
 
The most surprising trait successfully predicted was shear force.  This trait is an outcome of both the 
inherent muscle structure (with the entire muscle architecture consisting of connective tissues, fibre 
types and sarcomere lengths) and the way that muscle deteriorates post-mortem (i.e. aging through 
proteolysis).  We expect that MEXA will only detect variation in atomic mass of substances in the meat 
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and, as such, it must be reflecting inherent muscle structures at the point of slaughter—not the 
subsequent proteolytic change through aging. 
 
Lastly, the consistency of the trained predictions for the repeat scan of the same samples, and the 
within-sample repetitions, provide some level of confidence that the predictions were repeatable.  
Nonetheless, this needs to be demonstrated upon validation to be confident that these results are not 
simply one-off random associations. 

6.1.2 Extreme Gradient Boosting versus Partial Least Squares Regression 

Partial least squares regression is effective at discriminating signals within a spectra more optimised 
for trait identification; however, in this study, this analytical approach did not work.  By contrast with 
the extreme gradient boosting methodology, PLS was not effective at either the training or the 
validation phase.  As shown in the appended report, PLS models demonstrated poor precision even at 
the training phase of this analysis, as opposed to extreme gradient boosting, which at least 
demonstrated good precision within the trained models.  This demonstrates the potential of extreme 
gradient boosting as an analytical method suitable for exploring MEXA prediction of commercially-
relevant traits.  Extreme gradient boosting is an ensemble learning algorithm, somewhat similar to 
“random forest”, using a collection (or ensemble) of weaker individual models to arrive at a final 
predictive model.  The extensive information available across the 128 energy levels, and the highly 
correlated nature of this data, appear well-suited to this machine learning methodology. 

6.1.3 No real pressure on calibration 

The calibration method had no obvious impact upon the results.  In addition to the log transformation 
method, we also tested a crude background correction method (i.e. ‘minus’) and simply using the raw 
pixel values (i.e. ‘none’) to differentiate these calibration methods.  On the basis of this limited 
dataset, there was actually little difference between these methods, although this may be due to the 
machine learning approach, which is likely to have captured the inherent associations “blindly”, 
avoiding the need for structured calibration. 
 
Alternatively, it is also possible that calibration has little bearing on this dataset.  The samples scanned 
within this study were all imaged within the same 10 minute window.  An electrical device like the 
MEXA is not likely to have been exposed to very much “machine-drift” across such a short period.  Had 
these samples been scanned across several hours, days, or weeks, or across different MEXA devices, 
then it is likely that calibration would have had a more significant impact upon our results. 

6.2 Industrial capacity for deploying MEXA 

6.2.1 Clean and trimmed sample required 

In the short-term, the commercial deployment of a MEXA imaging system is to couple it with a 
conveyor, allowing product to smoothly pass between x-ray tube and detector.  However, one of the 
limitations of the present methodology is the need to scan trimmed samples of muscle devoid of fat 
or bone tissue.  This is due to the 2-dimensional nature of the image captured, and the confounding 
of multiple tissue types within each pixel.  Commercial meat cuts consist of lean surrounded by layers 
of subcutaneous and intermuscular fat, and in some cases bone.  In a 2-dimensional image, this results 
in mixtures of tissue types within each pixel, in particular confounding intramuscular fat depots with 
subcutaneous and intermuscular fat.  We speculate that a machine learning approach may find 
relevant associations when analysing entire images that capture differentials between pixels; 
however, we suspect that this will be difficult to validate across datasets.  The alternative would be to 
progress to a computed tomography MEXA image, enabling identification of tissue regions within 3-
dimensions, and the isolation of key regions of interest (i.e. specific muscle groups).  These devices 



V.TEC.1712 – Investigating the viability of MEXA for objective measurement of IMF and WBSF in lamb 

Page 16 of 23 

are becoming more common-place, both in medical scanning and commercial baggage scanning 
industries, and should continue to be explored. 

7 Conclusions and recommendations 

This report highlights the potential for MEXA to predict key eating quality traits, however the limited 
capacity for validation testing indicated substantial loss of precision and accuracy for predicting 5-day 
aged shear force and intramuscular fat percentage.  Given the small scale of the study, which provided 
only limited opportunity for validation testing, we cannot yet conclude that this technology won’t 
work.  Future experimental data should be gathered across a more balanced dataset that includes 
structures to validate across time and environmental effects.  Importantly, this study has enabled us 
to explore a number of analytical and calibration methods that are likely suitable for future MEXA 
analysis.  This will be crucial given MLA’s investment in this technology. 
 
In future work, it is recommended to calibrate MEXA across a larger dataset consisting of more 
genetically and phenotypically diverse animals, across varying environmental conditions, across time 
(hours/days/weeks), and across different MEXA devices. 

8 Key messages 

 Partial least squares regression models demonstrated poor precision even at the training 
phase of this analysis, as opposed to extreme gradient boosting, which demonstrated good 
precision within the trained models.  This demonstrates the potential of extreme gradient 
boosting as an analytical method suitable for exploring MEXA prediction of commercially-
relevant traits, such as Warner-Bratzler shear force and intramuscular fat percentage (IMF). 

 Validation testing of MEXA’s prediction of shear force and IMF, demonstrated a substantial 
loss in precision and accuracy.  However, this needs to be treated with some conservatism as 
there were significant limitations to the rigour of the validation testing. 

 The consistency of the trained predictions for the repeat scan of the same samples, and the 
within-sample repetitions, provide some level of confidence that the predictions were 
repeatable.  Nonetheless, this needs to be demonstrated upon validation to be confident that 
these results are not simply one-off random associations. 

 The most surprising trait successfully predicted was shear force.  This trait is an outcome of 
both the inherent muscle structure (with the entire muscle architecture consisting of 
connective tissues, fibre types and sarcomere lengths) and the way that muscle deteriorates 
post-mortem (i.e. aging through proteolysis).  We expect that MEXA will only detect variation 
in atomic mass of substances in the meat and, as such, it must be reflecting inherent muscle 
structures at the point of slaughter—not the subsequent proteolytic change through aging. 
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10 Appendix 

Non-destructive spectrometric technologies to determine sheep age at 

sacrifice according to meat tenderness 
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1. Introduction 

The feasibility of vis-NIR technology to predict sensory and instrumental tenderness or aging times has 

been evaluated previously by several authors using high performance NIR instruments (Barbin, Valous 

& Sun, 2013; Hildrum, Nilsen, Mielnik & Næs, 1994; Kamruzzaman, ElMasry, Sun & Allen, 2013; 

Ripoll, Albertí, Panea, Olleta & Sañudo, 2008). Recently, low-cost NIR devices connected to 

smartphones specially designed for consumers have become available in the market. These devices 

show promising results for the qualitative classification of horticultural products according to quality 

attributes (Li, Qian, Shi, Medlicott & East, 2018), for the determination of egg storage time (Coronel-

Reyes, Ramirez-Morales, Fernandez-Blanco, Rivero & Pazos, 2018) and for the evaluation of total 

antioxidant capacity in gluten free grains (Wiedemair & Huck, 2018). However, there is currently little 

work related to meat tenderness in the literature. On the other hand, Kroger et al (2006) suggested that 

dual energy X-ray was suitable for tenderness estimation, showing a coefficient of determination of 0.69 

for a multiple non-linear regression. Soladoye et al (2018) reported that dual energy X-ray and NIR 

spectroscopy can be effectively used as a means of classifying pork bellies according to softness. New 

multi energy X-ray sensors have also shown the capacity to monitor meat aging during chilling-vacuum 

packaging of beef samples (Austrich et al 2017). However, compositional variations of meat (such as 

fat content) are likely to influence the spectra, hence the ability to evaluate tenderness or aging time in 

samples with variable composition needs to be investigated.  

The aim of this study was to evaluate the feasibility of NIR and multi energy X-ray spectroscopy to 

determine animal age at slaughter from the characterization of the instrumental tenderness of meat. We 

assessed the performance of a multi energy X-ray sensor, a high performance NIR system and a portable 

low-cost NIR system to predict shear-force in sheep samples and to discriminate between 

age/tenderness groups and between tenderness groups. 

2. Material and methods 

2.1. Samples 

Merino-cross lambs were sourced from a commercial sheep flock located in Bordertown (South 

Australia). Half were born in September/October 2016 (n=20), the other half in May/June 2017 (n=20), 

all were slaughtered in October 2017 at a commercial abattoir as lambs (6 months old) and yearlings 

(12 months old). All lambs were maintained in the same paddock 3 weeks prior to slaughter on pasture 

with supplemental hay or pellet feeding when necessary. After slaughter 2 samples 5cm long were taken 

from the longissimus dorsi near to the 12/13th rib, aged for 5 days and then frozen. One sample was 

used to determine shear force; the other was used for scanning using 3 different spectrometric devices. 

2.2. Spectrometric acquisition systems 

Spectra were acquired using two NIR-based systems (a high performance and a low-cost device) and a 

multi energy X-ray spectroscopic sensor as described below. 

a.  High performance NIR device  

Spectra were recorded on a Fourier Transform NIR spectrometer model Matrix-F duplex (Bruker Optik 

GmbH, Germany). NIR spectra were collected using the OPUS™ software (Bruker Optik GmbH, 

Germany). NIR reflectance spectra were collected over the 12,000–4000 cm−1 spectral region 

(corresponding to a wavelength interval of 830–2500 nm) using an on-contact probe IN 268–2 (Solvias 
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AG, Switzerland). This probe uses a bifurcated (Y-shaped) fibre optic bundle to illuminate the sample 

(four fibres input) and to collect the diffuse reflection (four fibres output). The measured spot size is 

3 mm ø. Using this probe, spectra were acquired on-contact with the sample. Each spectrum was 

obtained from 16 scans performed at 8 cm−1 resolution. All spectra were recorded in reflectance mode 

with respect to a reference standard made of bakelite.  

Data acquisition was performed on the region of interest (Longissimus dorsi muscle) (Figure 1), in 

which instrumental tenderness determination was later performed. For each device, five spectra were 

acquired in this muscle at 15 ºC. Mean spectra was calculated and used for development and validation 

of the predictive models. 

b.  Low-cost NIR device 

The SCiO handheld smartphone-based NIR spectrometer (Consumer Physics, Israel) was used to collect 

spectra. A reflection spectra in a range between 740 nm and 1070 nm with a 1 nm resolution were 

collected. Samples were scanned using SCiO(TM) shade accessory that helps to avoid the influence of 

external light and to keep the same 10 mm distance in all the collected spectra. The measured spot size 

was 20 mm2. Spectra were stored in a cloud-based data set and using a research license of Scio Lab, 

spectral signals were downloaded and imported into Matlab in order to develop and optimize the 

chemometric models. Data acquisition was performed following the procedure described in section a. 

c.  Multi energy X-ray device 

An industrial X-ray prototype system with a multi energy detector (MXV-PACK 4010, Multiscan 

Technologies, Cocentaina, Spain) was used to scan the samples. The prototype had an X-ray 

spectrometric detector made of a semiconductor crystal (CDTe/CZT) with a pixel size of 0.8 mm. A 

belt conveyor transported the sample at a speed of 10 m/min.  

Simultaneously, X-rays were emitted from below the samples using a tungsten X-ray tube that was 

pulsed at 140kV. The resulting polychromatic array of photons was detected and transmitted radiation 

recorded across 128 channels, corresponding to energies from 20 to 160 keV. Thus the system acquired 

a spectroscopic image of the sample with each pixel containing an X-ray energy spectra of 128 channels. 

Within each spectroscopic image a region of interest (Longissimus dorsi muscle) was identified that 

corresponded to a uniform section of the sample, while also maximising the sample area.  So the size 

of the acquired information was a 3D matrix of variable pixel numbers x 128 channels which was 

analysed using a Matlab script written in house (MATLAB, Ver. 7.7.0, The Mathworks Inc., Natick, MA, 

USA). The mean X-ray attenuation (Sa) for the energy channel a of the selected ROI was calculated after 

background correction and log-transformation as described in equation 1. 

𝑆𝑎 =
− ∑ ln(

𝐼𝑓
𝑎,𝑖

𝐼𝑜
𝑎,𝑖)

𝑝
𝑖=1

𝑝
        (Eq. 1) 

where If is the intensity of the transmitted radiation and Io is the intensity of the incident radiation at 

each pixel i of the ROI which contains p pixels. The calculation was done for each energy channel of 

the spectra a, that ranges from 1 to 128 and represents a given X-ray energy. According to Eq. 1, an 

increase of Sa value represents an increase of the X-ray attenuation for channel a.  

2.3  Tenderness determination 

Approximately 65 g loin samples were used for shear force testing as described by Pannier et al. 2014. 

Initially samples were vacuum packed and aged for 5 days, and then frozen at −20 °C until subsequent 

testing. Frozen samples were cooked in plastic bags in a water bath for 35 min at 71 °C, and were cooled 

in running water for 30 min after cooking. Six cores (~3–4 cm long, 1 cm2 cross sectional) from each 

loin sample were cut and shear force was measured using a Lloyd texture analyser (Model LRX, Lloyd 

Instruments, Hampshire, UK) with a Warner–Bratzler shear blade fitted as described by Hopkins, 

Toohey, Warner, Kerr, and van de Ven (2010). 

2.4 Construction and cross-validation of predictive models 

Spectra were subjected to various pre-treatments including mean center, vector normalisation, constant 

offset elimination, straight line subtraction, min-max normalisation, multiplicative scatter correction 

and first derivative. All spectra were processed and multivariate calibration models constructed with 
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the aid of the software in Matlab® environment, version 7.1 (The MathWorks, Inc) and applying 

algorithms from the PLS Toolbox, version 8.1.1 (Eigenvector Research, Inc., Wenatchee, WA, USA).  

Calibration models were developed by using Partial Least Squares regression (PLSR) for shear force in 

lamb meat. Validations were made by a cross validation (Venetian blinds) model. The best combination 

of pre-treatments was selected based on the lowest error of prediction and the lowest number of PLS 

factors. Partial Least Squares discriminant analysis (PLS-DA) was used as a linear classification method 

to predict the class (new or old). When needed, interval variable selection was applied to discard 

variables which may be adding complexity to a model and improve performance of a final model.  

The goodness of fit of the models was assessed using the coefficient of determination (R2) obtained in 

the cross-validation set of samples, and the root mean square error of cross validation (RMSECV). 

Furthermore, in order to evaluate the predictive ability of the calibration models, the residual predictive 

deviation (RPD) statistic was used. This qualitative measure for the assessment of the validation results 

is the relationship between the standard deviation (SD) of the reference values and RMSECV (Williams 

& Norris, 1987). Conzen (2006) considered a model good for screening with a RPD > 3, good for 

quality control with a RPD > 5, and excellent for all analytical tasks with a RPD > 8. 

3. Results and discussion 

3.1  Samples characterization 

Tenderness of samples ranged from 24.68 to 56.56 N. Table 1 shows significant differences in shear 

force between young and old animals (p=0.01). Mean shear force was 38.45±8.99 N for young animals 

and 31.65±7.25 N for old animals. This is an unusual trend, as older animals were expected to have 

greater shear force, as has been shown by previous authors (Hopkins et al 2007). None-the-less these 

samples still provided substantial variation for instrument prediction testing. Water content of samples 

was not significantly different. 

Table 1. Lamb meat samples characterization in terms of tenderness for young and old animals. 

  Shear force (N) 

Animal age n Mean  Desvest min max 

Young 21 38.45a 8.99 25.32 56.56 

Old 21 31.65b 7.25 24.68 55.79 
ab Different letters mean significant differences (p<0.05) 

3.2  Predictive ability of lamb meat tenderness  

PLSR models and internal cross-validation were developed using the spectra acquired with the different 

spectrometric systems. R2 values were low for both calibration and cross-validation data sets for the 

three tested spectrometric systems. Mean centering and first derivative were found to improve 

predictive results. However, for NIR this was only after selection of the most representative spectral 

intervals for estimating shear force (Table 2). In the case of high performance NIR (that acquires from 

830 to 2500 nm) the most informative wavelength were from 956 to 960 nm, from 1053 to 1058 nm 

and from 1640 to 1660 nm. The models used these specific regions of the spectra and 8 PLS factors to 

achieve a RMSECV of 5.54. In the case of low-cost NIR device (that acquires from 740 to 1070), the 

most representative wavelengths were found to be from 780 to 790 nm and from 1040 to 1050 nm. The 

models used these specific regions of the spectra and 3 PLS factors to achieve a RMSECV of 0.69. 

However, R2
cv were still low in both cases showing values of 0.578 and 0.359 (see Figure 1). Multi 

energy X-ray showed no capacity to predict lamb meat tenderness. 

Table 2. Performance metrics in iPLSR models for WBSF using the three investigated systems. 

 Multi energy X-ray NIR-high performance NIR-low cost 

Used spectral 

interval 

20-40 keV 956-960 nm, 1053-1058 

nm, 1640-1660 nm 

780-790 nm,  

1040-050nm 

PLS factors 3 8 3 

RMSEC 7.66 1.93 6.19 

R2 cal 0.15 0.947 0.448 

RMSECV 9.02 5.54 6.69 

R2
CV 0.005 0.578 0.359 

https://www.sciencedirect.com/science/article/pii/S0308814612010084#b0125
https://www.sciencedirect.com/science/article/pii/S0308814612010084#b0125
https://www.sciencedirect.com/science/article/pii/S0308814612010084#b0025
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A      B  

 

Figure 1. Relationship between the measured and predicted shear force using PLSR models obtained 

from high performance NIR spectra (a) and low-cost NIR spectra (b). 

3.3 Classification ability according to animal’s age 

Figure 2 shows the average spectra for the different age groups for the multi energy X-ray device (a), 

high performance NIR device (b) and low-cost NIR device (c), before and after pre-processing was 

applied. 
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Figure 2. Average spectra for the two age groups and the same spectra after pre-processing (mean 

center and first derivative). Interval selection for iPLSDA is shown. 

The results for the PLSDA and iPLSDA models for classification of samples according to animal age 

are shown in Table 3. The lowest error rate (%) was found for the high performance NIR where accuracy 

of calibration and prediction reached 100% for all the samples when using the most representative 

interval selection. The highest error was found when using multi energy X-ray (27.5%), suggesting that 

currently this technology is non-acceptable for implementation within the food industry. This might 

partly be due to the variations in thickness found between samples which may cause variation in the 

attenuation values, producing higher errors. However, low cost NIR devices are shown to be able to 

discriminate accurately (with 2.5% of error rate in cross validation when using specific spectral 

intervals). 

Table 3. Confusion matrix for discrimination of young and old animals by PLSDA models obtained 

from multi energy X-ray, high performance and low cost NIR systems. 

 multi energy X-ray NIR-high performance NIR-low cost 

PLSDA 

PLS factors 2 4 5 

Used spectra region 20-130 keV 830-2500 nm 740-1070 nm 

Calibration 

Actual 

Young 

Actual 

Old 

Actual 

Young Actual Old 

Actual 

Young 

Actual 

Old 

Predicted Young 12 4 19 1 18 2 

Predicted Old 7 17 0 19 1 20 

Error rate (%) 27.5% 2.5% 7.6% 

Cross-validation 

Predicted Young 12 4 13 2 18 1 

Predicted Old 7 17 6 18 2 18 

Error rate (%) 27.5% 20.5% 7.6% 

iPLSDA 

PLS factors 2 3 5 

Used spectra region 20-30 keV 1358-1364, 1465-1480, 

1935-1948 nm 900-940 nm 

Calibration 

Actual 

Young 

Actual 

Old 

Actual 

Young Actual Old 

Actual 

Young 

Actual 

Old 

Predicted Young 13 2 19 0 19 0 

Predicted Old 6 19 0 20 0 20 

Error rate (%) 20% 0% 0% 

Cross-validation 

Predicted Young 11 3 19 0 19 1 

Predicted Old 8 18 0 20 0 19 

Error rate (%) 27.5% 0% 2.5% 

Conclusions 

This study has demonstrated the ability of spectroscopic methods, especially high performance and low-

cost NIR, to provide a fast and effective method for classifying meat from old or young sheep animals 

at slaughter. The potential of studied spectroscopic devices in the prediction of sheep age needs to be 

further investigated on a larger number of samples. 
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