World-leading Genetic Evaluation and Improvement for the Australian Beef Industry

Robert Banks

AGBU

• Implementation of single step

• Industry investment in Australian evaluations

• Future evaluation opportunities

What is single step BREEDPLAN?

- "ordinary" BREEDPLAN:
 - Accounts for non-genetic effects (animal age, age of dam, contemporary group)
 - Uses pedigree data and performance records
 - Uses information from all traits *multi-trait*
 - Uses information from overseas where available
 - Produces Estimated Breeding Values (EBVs) for 23 growth, carcase, fertility, eating quality and efficiency traits
 - Monthly analysis for most breeds, more frequent where dataflow requires
- Single step BREEDPLAN:
 - All the above <u>plus</u>
 - Uses pedigree, performance and DNA (genotype) data at the same time
 - Incorporates genomic prediction
 - Only fully multi-trait beef cattle single step in the world

Genomic Prediction: basic idea

 measure lots of animals' phenotypes and their DNA
→ Reference population

2) A breeder tests DNA on young animals

Look for patterns in the DNA associated with differences in performance

Accuracy of genomic BVs v traditional BVs:

Accuracy of genomic BVs v traditional BVs:

Breeds running single step BREEDPLAN:

Australia's BREEDPLAN evaluations

- Why should the industry support and continue investing in Australian evaluations?
 - EBVs must be relevant to Australian production systems, markets and cattle populations
 - Local genetic parameters are relevant to Australia and Australian populations
 - Overseas genetic information is included
 - Reliable meaningful EBVs allows everyone in the value chain to get the right animal for the job
 - Evaluations need to fit the flow of data and need for information
 - R&D needed:
 - to develop and incorporate new traits,
 - new methods eg single step and beyond (including increased volume of genotypes)

Australia's BREEDPLAN evaluations

- Why are we world leading?
 - Very comprehensive multi-trait analysis, using single step (no-one else does this combination, and most do not do multi-trait, and only a couple doing single step)
 - BREEDOBJECT \$Indexes unique
 - Already using commercial data and some cross-bred data
 - System has capacity to grow that
 - Leading breeders are using BREEDPLAN to make genetic progress as fast (in terms of \$Profit) as any breeders in the world

Australia's BREEDPLAN evaluations

- How will our genetic evaluation remain at the forefront of international genetic evaluation?
 - Next generation single step already being tested
 - Expanded multi-country linking with, and drawing on, relevant overseas data
 - Multi-breed
 - Needs more R&D data
 - Genetic information for all points in the value chain (ie for commercial producers using DNA tests)
 - Anticipate more traits being evaluated => EBVs (including Hard-to-Measure traits such as disease susceptibility)

Future Evaluation Opportunities ~ multi-breed and crossbred

Needs head-on comparison data for robust EBVs – ideally for all trait groups and main environments R&D has shown proof-ofconcept for growth and carcase traits in British and Euro breeds

- Software can handle it now
- Can include both other breeds <u>and</u> crosses
- Opportunities: assists composite development, stimulates within-breed selection

Future Evaluation Opportunities ~ *future traits:*

- Lifetime productivity: first-calver and lifetime fertility and productivity (age at puberty, Lactational Anoestrus, longevity)
- Disease: worms, BRD, heat tolerance, ticks, ...
- Meat nutritional content: *iron, zinc, omega-3, ...*
- Sector-specific traits: eg feedlot efficiency, processing yield, ...
- Data direct from retail outlets: eg consumer eating experience data collected via apps
- Cow feed intake & methane production

Remember:

- Any trait needs data either from many sources and/or via formal reference projects
- Focus on whether the trait impacts profit, or is closely genetically linked to traits impacting profit

Future opportunities ~ new applications

- Continuous evaluations (ie rather than fortnightly or monthly)
 - Could be achieved for genotype-only animals now
- Race-side testing ~ only needs rapid genotyping
- Genomic testing commercial cattle
 - Screening feeder cattle for entry, or feeding regime
 - Screening commercial heifers for entry to cow herd
 - Ready to be trialled now
- Whole of life evaluation at birth
 - based on DNA and updated with performance
 - Ready to be trialled now
- Coupling with reproductive technologies
 - JIVET plus mate selection based on genomic evaluation at birth
 - Scale is the biggest challenge (all the technology is in place now)

So what is possible?

- Genetic gain is worth c. \$30-50m per year now doubling that is feasible (and that is worth \$2bn NPV over 15 years, or \$2,600 per producer per year)
- For bull-breeders:
 - Faster progress (earlier selection)
 - Role in reference populations
 - Nucleus-multiplier enterprise option
- For producers:
 - Screening feeder cattle and heifers
 - Matching genetics to production-market pathway
 - Faster progress means beating the cost-price squeeze
- For other value chain partners:
 - Through-chain contracts
 - Better specification of genetics for suppliers, and of outcomes for customers

The disruptions

- Tapping into genetic progress that is faster than the cost-price squeeze is the game changer
 - Production efficiency:
 - Growth, fertility, yield, zero disease loss
 - Continually adding value for consumers
 - Eating & nutritional quality
 - Chemical-free
 - Environmentally friendly

• Managing (ie funding) the phenotypes is the #1 challenge

