

JANUARY 2026

Sheep reproduction RD&A alert

This sheep reproduction RD&A alert is an initiative of the Sheep Reproduction Strategic Partnership (SRSP).

Hear the latest updates on current sheep reproduction research projects at the [2026 MerinoLink Conference](#) in Armidale, New South Wales on 26 & 27 February. The two half-day event brings together the latest in sheep and wool research, innovation, and collaboration.

- Predicting the success of laparoscopic AI programs in sheep – *Jessica Rickard*, University of Sydney.
- The effect of edible shelter (crops/shrubs) on lamb survival and ewe behaviour – *Georgia Welsh*, Murdoch University.
- Causes of Merino ewe mortality during lambing – *Jillian Kelly*, AHN Consulting
- Fit to lamb: Opportunities to improve lamb survival – *Caroline Jacobson*, Murdoch University

Program coordinator

Dr Sue Hatcher
M: 0407 006 454
E: sue@makinoutcomes.com.au

The packed conference program also includes sessions on flies & worms, climate, feed & nutrition, wool and sheep benchmarking.

The SRSP aims to help sheep producers to profitability and sustainably increase lamb production through increasing lamb survival and weaning rates and will coordinate a national approach to improving sheep reproductive performance.

Feature project update

Fit to lamb

Background

Improving lamb survival and welfare remains a high priority for the Australian sheep industry, reflecting a shared commitment to both productivity and animal welfare by sheep producers, researchers and industry. Despite advances in genetics and sheep management, perinatal lamb losses continue to represent an important opportunity for further improvement across diverse production systems.

Aim

To compile existing lambing records from studies in Australia and New Zealand that determined lamb cause of death to prioritise strategies that may improve lamb survival and reduce losses associated with dystocia.

Key findings

- Dystocia is an important contributor to lamb mortalities with 45% lamb deaths associated with dystocia. The incidence of dystocia mortality was 10% of lambs born with very high heterogeneity

between farms/studies. Dystocia mortality incidence was higher for triplet-born/higher-order-multiples than twin-born and single-born lambs. Strategies to reduce dystocia impact and improve lamb survival should address risk factors for dystocia in all birth types.

- Direct and maternal heritabilities for lamb survival traits were low. Selection for lambing ease, observed birth vigour score and thorax circumference have potential to increase lamb survival genetically, based on higher heritability estimates than those for direct lamb survival traits.
- Sheep activity measured with sensor devices has moderate heritability and repeatability estimates, suggesting the potential for this novel trait to have favourable correlated responses for sheep health and production.

Benefits to industry

This study has confirmed previous research in that reducing dystocia in multiple-born lambs will improve lamb survival and breeding and selection strategies can be used to improve lamb survival.

Standardised approach for recording lambing data and cause of death in field studies

The compilation of existing lambing records from projects that measured lamb cause of death have been compiled into a single database will provide crucial baseline data to assess trends, plus larger dataset that can be used to improve analyses for future projects. A key output from this project was a standardised approach for recording lambing data and cause of death in field studies. Using this approach will ensure data from future sheep reproduction studies can be easily incorporated in the combined database. This will add significant value to future analyses and interpretation ensuring any recommendations are robust, evidence-based and regionally relevant.

For more information on the **Fit to lamb** project contact Caroline Jacobson (c.jacobson@murdoch.edu.au).

Review papers

Exploring the potential of prepubertal oocytes: a small ruminant model

Maria-Teresa Paramio (teresa.paramio@uab.cat), Mònica Ferrer-Roda, Dolors Izquierdo and Teresa Mogas
Reproduction, Fertility and Development, Volume 38, Issue 1, January 2026 **OPEN ACCESS**

DOI <https://doi.org/10.1071/RD25155>

Abstract

Juvenile in vitro embryo transfer (JIVET) employs oocytes from prepubertal females to reduce generation intervals. In human, it offers potential applications for fertility preservation in young cancer patients. Ruminant animals are good models for human research because of similar follicular dynamics and oocyte competence. Several studies have shown low embryo development of prepubertal oocytes. However, oocytes from follicles larger than 3 mm can develop into blastocysts at rates comparable to oocytes from adults. This review analyzes biomarkers of oocytes as a function of follicle size (larger or smaller than 3 mm). Follicular fluid from prepubertal females contains lower levels of n-3 fatty acids than that of adults; expression of epidermal growth factor receptor (EGFR) receptor in cumulus cells is higher in large than small follicles; the condensed germinal vesicle (GV) configuration is similar in prepubertal females to the adult ones, and prepubertal large follicles and oocytes are more susceptible to oxidative stress than adult ones. In vitro maturation (IVM) strategies have been investigated: capacitation IVM (CAPA-IVM) increases EGF receptor expression and promotes GV compaction; supplementation with bone morphogenetic protein 15 (BMP15) increases EGF receptor expression; and addition of antioxidants to IVM is essential. In conclusion, oocyte competence seems to be more related to follicular state than to female age, highlighting the importance of follicular selection and optimization of IVM conditions for improving JIVET outcomes.

Extended embryo culture: illuminating a black box of early development in ruminants

N. Martínez de los Reyes, A. Siegmund-Sabater, I. Flores-Borobia, L. González-Brusi, A. Salvo-Jiménez, P. Marigorta, P. Bermejo-Álvarez and P. Ramos-Ibeas (ramos.priscila@inia.csic.es)

Reproduction, Fertility and Development, Volume 38, Issue 1, January 2026 **OPEN ACCESS**

DOI <https://doi.org/10.1071/RD25156>

Abstract

Pregnancy losses due to early embryonic mortality remain a major concern in farm ungulates, including cattle, sheep, pigs and goats. The majority of these losses occur during conceptus elongation, a developmental phase unique to ungulates that follows blastocyst hatching. This stage entails complex cell differentiation, proliferation and migration processes, leading to a rapid expansion of the extraembryonic membranes (EEMs), namely the trophoblast and the hypoblast, and the formation of the embryonic disc (ED) from the epiblast. Despite its biological and economic relevance, the molecular mechanisms regulating embryo development beyond the blastocyst stage, particularly those governing the ED formation, remain poorly understood. Fortunately, recent advances in extended culture systems are enabling the study of these processes entirely in vitro, reducing the need for experimental animals. In this review, we highlight key interspecies differences in early embryogenesis across mammalian species. We discuss the progression and refinement of extended embryo culture systems, from early pioneering efforts to the latest advances, with a specific focus on ruminant species, including cow and sheep. Lastly, we review recent functional studies leveraging extended embryo culture systems in ruminants to elucidate the molecular pathways controlling post-hatching development.

Sheep artificial insemination: History, current practices, limitations, and methodological challenges

Lucie Langerová, Filipp Georgijevič Savvulidi (savvulidi@af.czu.cz), Martin Ptáček, Christopher LeBrun, Desislava Abadjieva, Alikhan Magauiya, Aizhan Makhanbetova, Temirkhan Kenzhebaev, Beybit Kulataev and Nurlan Malmakov

Agriculture, Volume 16, Issue 2 January 2026 **OPEN ACCESS**

DOI <https://doi.org/10.3390/agriculture16020160>

Abstract

Artificial insemination (AI) is a key reproductive biotechnology for genetic improvement in sheep. However, its efficiency remains lower and more variable than in most other livestock species. This review critically synthesizes the historical foundations of sheep AI, including methodological principles established by the Soviet school, and evaluates how these concepts have been further developed and adapted to contemporary reproductive biology. Particular emphasis is placed on estrous synchronization protocols, semen processing and cryopreservation, and insemination techniques. We highlight how anatomical constraints of the ovine cervix, seasonal reproductive physiology, and species-specific characteristics of ram sperm collectively limit fertility outcomes, especially when frozen–thawed semen is used. Comparative analysis of cervical, transcervical, and laparoscopic insemination methods indicates that laparoscopic AI remains the most reliable approach, although recent advances in catheter design and semen handling have improved the feasibility of less invasive techniques. This review further discusses emerging approaches, including sperm sex-sorting, alternative recovery methods, and early-stage spermatogonial stem cell-based technologies, emphasizing both their potential applications and current limitations. Overall, the available evidence suggests that future progress in sheep AI will depend on the integrated optimization of hormonal

synchronization, semen preservation, and insemination strategies, rather than on isolated technical innovations.

Evaluating sperm–polymorphonuclear leukocyte interactions in vitro: the immunomodulatory role of seminal plasma and implications for future ovine studies

Lydia Mikhael, Sophie Warr, Simon P. de Graaf and Jessica P. Rickard (jessica.rickard@sydney.edu.au)

Reproduction, Fertility and Development, Volume 38, Issue 2 January 2026 **OPEN ACCESS**

DOI <https://doi.org/10.1071/RD25131>

Abstract

The complex anatomical, biochemical and immunological architecture of the ovine cervix presents a substantial barrier to frozen-thawed (FT) ram spermatozoa migration following cervical artificial insemination (AI). A key component of the immunological barriers involves interactions between FT sperm and polymorphonuclear neutrophils (PMN), which are known to infiltrate the female reproductive tract (FRT) following semen deposition and engage in effector mechanisms, specifically degranulation, release of neutrophil extracellular traps (NETs) and phagocytosis. Seminal plasma (SP) has been shown to play a critical immunomodulatory role in regulating sperm–PMN interactions across several species, including sheep, reducing sperm–PMN binding in vitro. During in vitro processing and cryopreservation, SP is inherently diluted, potentially exacerbating immune-mediated clearance of FT sperm. Identifying the specific components of SP responsible for this immunoprotective effect may inform targeted supplementation strategies. Extracellular vesicles (EVs), a heterogenous class of SP-containing proteins, lipids, metabolites and nucleic acids, are also emerging as key mediators of immunological communication. Their potential role in modulating sperm–PMN interactions warrants further investigation to help understand sperm–PMN interactions and implications for improving survival of FT ram sperm in the cervix following AI.

Scientific papers

How does ewe age affect reproductive performance relative to rainfall conditions?

Theron P.G., Brand T.S., Cloete S.W.P. and van Zyl J.H.C.

South African Journal of Animal Science, Volume 55, Number 11 **OPEN ACCESS**

DOI <https://doi.org/10.17159/sajas.v55i11.01>

Abstract

With climate change and its associated impacts on weather patterns being an inescapable reality, livestock producers will have to explore management and mitigation strategies to maintain production levels under adverse weather conditions. It is well-documented that ewe age affects reproductive performance, but it is unclear whether this phenomenon can be utilised to mitigate the effects of adverse environments. This study aimed to determine whether certain ewe age groups are better adapted to reproduce under specific rainfall conditions. Historical rainfall data collected on Tygerhoek Research Farm, South Africa, between 1975 and 2018 was used to group production seasons into five rainfall classes: dry, below average, average, above average, and wet. Ewe performance traits (conception rate, number of lambs born, number of lambs weaned, average birthweight, and average weaning weight) were calculated for each age group (2–6 years) across all seasons and within each rainfall class. Age group performance for each trait in each rainfall class was compared to the overall trend to see if any marked differences existed. Overall, reproduction rate was maximal at three to four years of age, and this trend was largely repeated for each rainfall class. Birthweight increased with age except in wet seasons, when no discernible trend was present, while weaning weight was

highest in three- and four-year-old ewes. In dry seasons, however, there was a clear trend for weaning weight to increase as ewes aged. It was concluded that flock age structure cannot be used to mitigate environmental impacts if a flock is already structured to optimise reproduction.

Integrated multi-omics unveils rapid shifts in rumen bacterial community, gene expression, and metabolite profiles of lambs in response to weaning stress

Xiaobiao Cui, Shun Wu, Yuqin Wu, Lili Niu, Jiaxue Cao, Siyuan Zhan, Linjie Wang, Jiazhong Guo, Li Li, Hongping Zhang and Tao Zhong (zhongtao@sicau.edu.cn)

Small Ruminant Research, Volume 254, January 2026

DOI <https://doi.org/10.1016/j.smallrumres.2025.107658>

Highlights

- Multi-omics revealed that early weaning alters rumen genes, metabolites, and microbes.
- Early weaning induced compositional shifts in rumen microbial community.
- Elevated cortisol and LPAR1 expression suggest enhanced stress responses.
- Correlations among rumen metabolites, microbes, and genes provide insights into weaning.

Abstract

In intensive system, early weaning directly impacts lamb growth performance and enterprise profitability. However, the changes from milk to solid feed and abrupt desperation with ewes easily trigger weaning stress, especially causing a notable decline in immunity. The impacts of early weaning (EW) on lamb rumen microbiota, metabolites, and gene expression remain poorly characterized. Thus, this study assessed the host response to early weaning in lambs. Compared to per-weaning Hu lambs, the composition of the ruminal microbiota was found to be altered, with the abundance of Firmicutes ranged from 60.00 % to 65.00 % in post-weaned lambs. Prevotella remained the dominant genus, and its abundance increased by approximately 2.56 % after weaning. While the relative abundance of the Lachnospiraceae NK3A20 group significantly declined, proposing this reduction leading to weakened anti-inflammatory responses and compromised immune function in EW lambs. The ruminal DEGs were predominant enrichment in the PI3K-Akt signaling pathway. Notably, the LPAR1 gene, mediating stress adaptation candidate gene, was highly expressed after weaning. Furthermore, the cortisol in rumen fluid was significantly upregulated (over 1.5-fold) in EW lambs and was enriched in four pathways: aldosterone-regulated sodium reabsorption, Cushing's syndrome, prostate cancer, and cortisol synthesis and secretion. In addition, we found the above changes were correlated, particularly involving the Lachnospiraceae NK3A20 group, O-phosphoserine, and the LPAR1 gene. The present study reveals that early weaning disrupts ruminal microbial balance, notably by reducing the abundance of the Lachnospiraceae NK3A20 group, alters metabolite profiles, including O-phosphoserine, and induces differential expression of stress related genes, such as LPAR1, that converge on the PI3K-Akt signaling pathway. These findings provide mechanistic insights into how early weaning compromises rumen health and immune function in lambs.

Modelling the cost of ewe mortality in New Zealand sheep flocks

Anne L Ridler (A.L.Ridler@massey.ac.nz), Rene A Corner-Thomas and Peter Tozer

Livestock Science, Volume 303, January 2026 **OPEN ACCESS**

DOI <https://doi.org/10.1016/j.livsci.2025.105877>

Highlights

- Ewe deaths reduce farm profit; most occur during lambing and are preventable.
- Bioeconomic model links ewe mortality to cash surplus in NZ sheep flocks.

- Reducing ewe deaths by 50 % boosts cash surplus by up to NZ\$6.67 per ewe.
- Mortality cost estimates help farmers assess value of prevention strategies.

Abstract

Context. Reported ewe mortality rates in extensively farmed sheep flocks range from 2.9–12.8%. Most deaths occur over the lambing period, and many are potentially preventable or treatable. An understanding of the costs of ewe mortality would allow farmers to determine which interventions are most cost-effective.

Objective. Use a dynamic bioeconomic model to investigate the impacts of ewe mortality on cash operating surplus for New Zealand sheep flocks.

Methods. An existing dataset of 23 flocks was used which comprised data on ewe numbers throughout the year, ewe deaths, reproductive data and farm demographic data (location, size, topography and stock numbers). Each flock was modelled using economic data for the 2023 financial year. Cash operating surplus per ewe (COS/ewe) was generated for each flock using their actual death rates. For flocks with death rates >4%, the effects on COS/ewe were also modelled based on a reduction in ewe deaths by 20% or 50%.

Results and Conclusions. Flocks with higher ewe death rates had lower COS/ewe, with an overall correlation of 0.58. Reducing deaths by 20% and 50% resulted in an increased COS/ewe of NZ\$1.12 to \$2.66/ewe and NZ\$2.89 to \$6.67/ewe, respectively. Multiplying these numbers by the total number of ewes in their flock provides guidance to producers on how much they could spend to reduce the death rate of their ewes.

Significance. Producers can use the results, along with their flock-specific ewe mortality data, to determine cost-effective strategies to reduce ewe mortality.

Appropriate rumen-protected glutamine supplementation during late gestation in ewes promotes lamb growth and improves maternal and neonatal metabolic, immune and microbiota functions

Yifan Nie, Xiangjian Peng, Jiahao Li, Zhentiao Gao, Fei Zhang, Wei Jing, Yanfeng Liu and Cuxin Nie

Animals, Volume 16, issue 1, January 2026 **OPEN ACCESS**

DOI <https://doi.org/10.3390/ani16010002>

Simple Summary

During late gestation, optimal maternal nutrition plays a critical role in fetal development. This study demonstrated that supplementing pregnant ewes with an optimal dose of rumen-protected glutamine improved lamb birth weight and postnatal growth, enhanced antioxidant and immune function, and promoted a more beneficial healthier gut microbiome. These results offer sheep producers a viable feeding strategy to increase productivity and profitability. Researchers have also gained valuable insights into how functional amino acids can positively influence developmental programming in ruminants.

Abstract

The gestational period is a critical developmental window where maternal nutrition programs offspring growth and long-term health. This study evaluated dietary rumen-protected glutamine (RP-Gln) supplementation during late gestation on lamb growth performance, and its regulatory effects on metabolic, immune, and microbial parameters in ewes and offspring. Compared with controls, moderate RP-Gln significantly improved lamb growth, increasing birth weight, 15-day body weight, and average daily gain ($p < 0.01$). In ewes, RP-Gln elevated serum GGT activity ($p < 0.05$), improved lipid metabolism, and reduced offspring muscular stress. Antioxidant capacity was enhanced in both ewes and lambs, with higher antioxidant enzyme activities and lower MDA levels ($p < 0.05$). RP-Gln also remodeled gut microbiota by promoting beneficial genera like Lactobacillus and Faecalibacterium, and reinforcing dam–offspring microbial transmission. Metabolomics revealed elevated polyunsaturated fatty acids, vitamin C, and tyrosine derivatives in ewes, and enhanced aromatic amino acid biosynthesis in lambs. In summary, glutamine supplementation in late-gestation ewes enhances maternal antioxidant and anti-inflammatory capacity,

optimizes gut microbiota, and stimulates n-3 PUFA synthesis. These benefits are transmitted to the fetus, improving offspring antioxidant function, immune regulation, and intestinal health. Glutamine also promotes aromatic amino acid synthesis while inhibiting the tryptophan–kynurenine pathway, collectively supporting lamb growth and health.

Effects of ewe age on embryo viability and morphokinetics: A potential ovine model of human reproductive ageing

Karolina Fryc, Gee-Zou Wang, Maciej Murawski (maciej.murawski@urk.edu.pl) and Paweł M. Bartlewski (pmbart@uoguelph.ca)

Reproduction in Domestic Animals, Volume 61, Issue 1 January 2026

DOI <https://doi.org/10.1111/rda.70160>

Abstract

The main objective of this study was to assess the effects of donor age on the development of in vitro-derived sheep embryos. Ovaries were obtained after slaughter from cycling Polish Longwool ewes aged 1.5–3 years (Group Y—‘young’; n = 14) or 8–9 years (Group O—‘old’; n = 16). Cumulus-oocyte complexes were collected and subjected to in vitro maturation (IVM), followed by in vitro fertilisation (IVF) with fresh capacitated ram semen. The resultant embryos were then cultured and monitored with a time-lapse (TL) imaging system for up to 8 days (Group Y, n = 64 and Group O, n = 48). The timing of key developmental stages relative to the moment when the oocytes and sperm were combined and including cleavage divisions as well as morula and blastocyst formation was recorded. Both the cleavage (68.75%) and blastocyst formation (26.6%) rates were significantly higher in younger ewes compared with their older counterparts (50.0% and 10.4%, respectively), with Group Y zygotes showing fewer ($p < 0.05$) incidences of abnormal cleavage and morphology (fragmentation, direct cleavage or asymmetrical cleavage) compared with Group O (10.9% vs. 33.3%, respectively). The first cleavage division occurred earlier ($25:42 \pm 3:43$ vs. $29:20 \pm 6:59$ [hours: minutes post-insemination]; mean \pm SD; $p < 0.05$) and the duration of the second cell cycle (time between the first and second mitotic division) was greater for Group Y compared with Group O ($11:20 \pm 9:51$ vs. $4:14 \pm 6:40$; $p < 0.05$). No significant differences were observed between the times of the following mitotic divisions or formation of morulae and blastocysts. This study documents the specific differences in embryo morphokinetics between donor ewes varying in age and highlights the usefulness of TL imaging for assessing the influence of maternal ageing on embryogenesis in sheep as a model for different mammalian species including humans.

Use of an automated walk-over-weighing system to monitor and forecast liveweight in grazing lambs

Alessio Cotticelli (alessio.cotticelli@unina.it), Konstantinos Zaralis, Matteo Santinello, Roberta Matera and Luciano A. González

Smart Agricultural Technology, Volume 13, March 2026 **OPEN ACCESS**

DOI <https://doi.org/10.1016/j.atech.2025.101727>

Highlights

- Forecasting live weight of grazing lambs could enable tailored and precise flock management.
- Walk-over-weighing system was used in grazing sheep to monitor and predict future liveweight.
- Forecasted and observed live weight showed substantial agreement on the entire dataset.
- WoW system is recommended for on-farm decision making in pastoral-based system.

Abstract

Aim of the present study was to evaluate the use of a walk-over-weighing (WoW) technology to remotely weigh growing lambs in a pastoral sheep production system and then use these data to predict future liveweight (LW) at different lead times. Thus, an experiment was carried out in a flock of 144 lambs that were grazing freely for a total of 94 days while an automatic WoW system allowed to remotely estimate LW and growth rate of individual lambs daily under these grazing conditions. Data were recorded as each animal entered voluntarily into the WoW platform and walked through it to access water. Daily LW of each animal was used to forecast LW (FW) at 20, 30, 40, 50, and 60 days ahead of any actual day. The accuracy of the FW was assessed using a linear mixed-effects model and Lin's concordance correlation coefficient (LCCC) with FW as dependent variable and actual observed LW (OW) as independent for each target days, both animal and date were random effects. In total, data from 132 lambs were included in the final dataset which had an average growth rate of 0.25 ± 0.11 kg/d throughout the 93 days of the trial. The FW for the next 20 and 30 days showed substantial agreement with observed weight (LCCC > 0.90). However, FW beyond 40 days was less precise and accurate (LCCC < 0.75). In addition, the LCCC of FW was higher when estimated from the growth rate in the last 14 compared to the last 7 days and late compared to early in the trial. The WoW technology is suitable to monitor LW and growth rate of lambs both in real-time and to predict future LW in commercial farms. Hence, the WoW system can be recommended to help with on-farm decision making of individual sheep.

A genetic analysis of the causes of lamb mortality determined by an on-farm postmortem procedure

K. Hay (kim.hay@sruc.ac.uk), N. Lambe, J. Roden, S. Jarvis and C. M. Dwyer

Research in Veterinary Science, Volume 200, March 2026 **OPEN ACCESS**

DOI <https://doi.org/10.1016/j.rvsc.2025.106032>

Highlights

- A simple postmortem examination were conducted on farm
- Dystocia, stillbirth and starvation/mismothering and exposure were the most common causes of death in lambs.
- There is a direct heritability for dystocia and stillbirth causes of death
- Simple postmortems could be used to increase accuracy of selection for lamb survival in breeding programmes.

Abstract

Lamb mortality is a major challenge in sheep production with significant implications for animal welfare and farm profitability. This study investigated the causes of lamb mortality within the first three days of life in a lowland outdoor lambing flock in the Scottish Borders, UK, over three lambing seasons (2021–2023). Dead lambs were collected from the pastures during checking rounds three times a day, and simple on-farm postmortems were conducted once a day. A total of 468 lamb postmortem examinations were conducted to classify the most likely cause of death as dystocia, starvation/mismothering/exposure (SME), stillbirth, other, or unknown causes. Overall mortality to three days of age was 12 %, with SME (28 %) and stillbirth (27 %) the most common causes, followed by dystocia (13 %). Single and triplet born lambs ($p < 0.01$) were most likely to die from dystocia compared to other litter sizes and the risk of death from SME increased with litter size ($p < 0.01$). Direct lamb heritability estimates for death by dystocia and stillbirth were moderate (0.31 and 0.27, respectively), indicating potential for improvement via genetic selection. However, heritability for SME was not significant, highlighting the increased influence of environmental factors for this cause of lamb death. The findings demonstrate that the use of simple postmortems could be used to increase the accuracy of selection for lamb survival in breeding programmes, through the integration of breeding values for specific

causes of death. This would be most applicable in well-recorded nucleus flocks that are well connected to the rest of the breeding programme.

Upcoming events

Date	Event	Location
3 February	Improving lamb survival on leguminous pasture MLA PDS and Longford Red Meat Group	Westwood, Tas
3 February	Livestock summer session feed budgeting Central West Local Land Services	Grenfell, NSW
4 February	Livestock summer session feed budgeting Central West Local Land Services	Bogan Gate, NSW
9 February	Animal Health Workshop Delta Agribusiness and AWI	Dunedoo, NSW
16 February	Sticky Beak Day AWI Extension SA	Yallunda Flat, SA
17 February	Sticky Beak Day AWI Extension SA	Yantanabie, SA
17 – 19 February	Southern beef and lamb school Riverina Local Land Services	Wagga Wagga, NSW
26 – 27 February	2026 MerinoLink Conference MerinoLink	Armidale, NSW