Report Detail Page

Assessing the Value of Trees in Sustainable Grazing Systems

The retention of trees in strips provides an option for managing non-remnant woody vegetation in native and sown pastures in northern Australia. However, the impact of tree strips on pasture production has not been previously researched in detail in southern Queensland. The influence of existing tree strips on pasture production in southern Queensland was measured at three grazing properties during 2004 and 2005. Soil and pasture attributes were sampled along transects 80 to 300 metres in length positioned perpendicular to tree strips. The tree strips ranged from 15 to 75 metres wide and were 120 to 500 metres apart. The effects of tree strips along the pasture transect were quantified in terms of pasture microclimate (e.g. temperature, humidity and, at one location, wind), pasture growth in grazed and exclosed situations, soil water, soil nutrients and condition, and nutrient availability. An experimental approach using exclosed pasture transects provided a useful ‘bioassay’ potentially integrating beneficial and competitive effects of tree strips on pasture growth as well as other factors (e.g. soil variability).

Averaged across two locations and two years, the competitive effects of the tree strip were compensated to some extent by enhanced pasture growth at distances of 1-6 x tree height from the tree strip edge. However, the observed effects on pasture growth along the transect were likely to be due to different causes: pasture microclimate at one site, soil texture and microtopography at a second site and pasture establishment history at a third site. Thus, the trial highlighted the difficulty of attributing effects in real-world situations, given the number of possible causes including the tree strip effects on pasture microclimate and nutrient availability, soil surface disturbance, and systematic variation on soil and water redistribution due to soil micro-topography and felled timber. Despite these many sources of variation, general effects were derived from the field data consistent with other studies on tree strips and wind breaks across Australia. To extrapolate the project results to other locations, tree strip configurations and climates, a new version of the soil water-pasture growth simulation model GRASP was developed allowing simulation of tree and pasture effects and processes for various distances along a pasture transect perpendicular from the tree strip.

Downloads

Title Size Date published
5.4MB 08/12/2011

This page was last updated on 24/07/2017

Join myMLA today

One username and password for key integrity and information Systems (LPA/NVD, NLIS, MSA & LDL).

A personalised online dashboard that provides news, weather, events and R&D tools relevant to you.

Customised market information and analysis.

Learn more about myMLA

myMLA Sign Up

Already registered for myMLA?

Sign in here